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There is a growing interest in searching for topology in fractal dimensions with the aim of finding
different properties and advantages compared to the integer dimensional case. Here, we construct a
local Hamiltonian on a fractal lattice whose ground state exhibits topological braiding properties.
The fractal lattice is obtained from a second generation Sierpinski carpet with Hausdorff dimension
1.89. We use local potentials to trap and exchange anyons in the model, and the numerically obtained
results for the exchange statistics of the anyons are close to the ideal statistics for quasiholes in a
bosonic Laughlin state at half filling. For the considered system size, the energy gap is about three
times larger for the fractal lattice than for a two-dimensional square lattice, and we find that the
braiding results obtained on the fractal lattice are more robust against disorder. We propose a
scheme to implement both fractal lattices and our proposed local Hamiltonian with ultracold atoms
in optical lattices.

Topologically ordered quantum systems harbor frac-
tionalized excitations that are neither fermions nor
bosons, but anyons [1, 2]. Phases hosting anyons have
been realized experimentally in solid state systems in
strong magnetic fields displaying the fractional quantum
Hall effect [3–6]. Fractional quantum Hall phases also ex-
ist in systems defined on two-dimensional lattices, where
the physical magnetic field is replaced by an artificial
magnetic field, which can be much stronger [7–11]. Due
to their unique degree of tunability, realizing fractional
quantum Hall physics with ultracold atoms in optical lat-
tices would give unique possibilities for investigating the
effect in great detail, and there are currently several ef-
forts towards achieving this for systems with few atoms
[12–16]. The key components of artificial magnetic fields
and topological band structures have already been pre-
pared in several experiments [17].

Topological phases are mainly studied in systems with
spatial (and Hausdorff) dimension one, two, and three,
but recently interest has grown in studying topological
models on fractal lattices with non-integer Hausdorff di-
mension. The Hausdorff dimension is a generalisation of
the dimension of a vector space and can provide a mea-
sure of how the details of a system change at different
scales. While much of the knowledge generated in con-
densed matter physics relies on the presence of an under-
lying Bravais lattice, fractal lattices do not fit into this
framework and can hence give rise to different physics.
Most of the studies of topological quantum models on
fractal lattices so far have considered non-interacting sys-
tems [18–21] and those have, indeed, revealed new and
interesting properties, including modifications of the Hof-
stadter butterfly and the presence of inner edge states.
Much less is currently known about how fractal lattices
affect the properties of topologically ordered phases of
interacting systems. Initial steps have been taken by
constructing Laughlin and Moore-Read trial states on

fractal lattices [22, 23], but the derived parent Hamilto-
nians of these states are nonlocal and involve many differ-
ent types of interactions making them difficult to realize.
The study of models on fractal lattices is also motivated
by experimental developments, such as the preparation of
fractal models in molecules on surfaces [24, 25]. It is de-
sirable to realize fractal models of matter with ultracold
atoms due to their ability to reach the regime of strongly
interacting quantum systems and achieve single-site res-
olution [26, 27].

Here, we show that a system with only nearest-
neighbor complex hopping and hardcore interactions on
a finite generation fractal lattice can give rise to any-
onic braiding properties, and we propose a scheme to
implement the Hamiltonian experimentally with ultra-
cold atoms in optical lattices. We use local potentials to
trap anyons in the model, and we study their braiding
properties under adiabatic time evolution. We find that
the considered system with relatively few sites and par-
ticles is already enough to get braiding statistics close
to the ideal value for quasiholes in a bosonic Laughlin
state at half filling and to produce interesting differences
compared to a corresponding model on a two-dimensional
lattice with the same number of sites and particles. In
particular, the gap between the ground state and the first
excited state is approximately three times larger for the
considered model on the fractal lattice. We also observe
that the phase acquired by the wavefunction due to braid-
ing is more robust with respect to disorder on the fractal
lattice, and the anyons are better screened. This robust-
ness could be advantageous in future applications that
utilize anyons, including the experimental proposal con-
sidered here, and the relatively small system size is also
an advantage for implementations in ultracold atoms.

The proposed protocol to implement the Hamiltonian
involves single-site addressing [28] and laser-assisted hop-
ping tuned to achieve the desired phase factors [29]. We
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expect that the setup could also be used to generate in-
teger quantum Hall phases on fractal lattices. The main
challenge in realizing fractional quantum Hall phases in
ultracold atoms in optical lattices is to reach the ground
state, and the larger gap for the fractal lattice is hence
an advantage. Generating optical, fractal lattices as de-
scribed below also opens the door for studying various
phenomena of quantum systems on fractal lattices.

Model—Typical ingredients required to obtain frac-
tional quantum Hall physics include interactions and a
magnetic field perpendicular to the plane. In lattice sys-
tems, the magnetic field is often translated into corre-
sponding complex hopping terms through the Peierls sub-
stitution [30] as we shall also do below. We start from
a second generation Sierpinski carpet [Fig. 1(a)] and ob-
tain the considered fractal lattice by putting a lattice site
in the center of each of the small squares. We denote the
positions of the N = 64 lattice sites in the complex plane
by zj with j ∈ {1, . . . , N} and consider M = 4 bosons on
the lattice. The Hamiltonian

H = −J
∑
〈jk〉

c†jcke
iφjk + U

∑
l

nl(nl − 1), U � J, (1)

consists of complex, nearest-neighbor hopping terms of
strength J and an on-site interaction term of strength U .
The operator ck annihilates a boson on the kth lattice
site, nk = c†kck, and φjk is the phase the wavefunction
acquires when a particle hops from zk to zj . In the com-
putations below, which are all done using exact diago-
nalization, we assume that U/J is so large that one can
neglect the possibility to have more than one boson on a
site, i.e. we work with hardcore bosons.

The particular form of φjk is determined from the cho-
sen magnetic field. In two-dimensional fractional quan-
tum Hall models, the magnetic field is often either uni-
form or only penetrates the lattice sites. For a fractal
lattice, it is similarly natural to let the magnetic field
only penetrate the lattice sites, since then the pattern of
magnetic flux also forms a fractal. We hence choose the
magnetic field to be ~B(z) = α

∑
l δ(z − zl)ẑ, where α is

the flux penetrating one lattice site measured in terms of
the magnetic flux unit, δ is the Dirac delta function, and
ẑ is a unit vector perpendicular to the plane. This field
configuration gives rise to the vector potential

~A(z) =
∑
l

αθ̂l
|z − zl|

, (2)

where θ̂l is a unit vector in the plane rotated by π/2
compared to z − zl. From this we obtain

φjk =

∫ zj

zk

~A(r) · ~dl = α
∑

l( 6=j 6=k)

Im

[
ln

(
zj − zl
zk − zl

)]
, (3)

where ~dl is an infinitesimal vector along the hopping di-
rection. Below, we take M/(αN) = 1/2, where M is

the number of particles. If the system is topological, we
hence expect it to be in a bosonic Laughlin phase with
quasiholes of charge 1/2.

The model described above can also be defined on a
square lattice, which we will do for comparison. We
will consider the 8 × 8 quadratic lattice to allow for a
proper comparison to the fractal lattice. We will con-
sider open boundary conditions for both the square and
fractal lattice for appropriate comparison. Note, periodic
boundary conditions are not consistent with the fractal
retaining its scaling nature.

Energy gap—The energy gap, δE, between the ground
state and the first excited state is an important property
of the model. This is due to the gap’s relation to the
state’s stability, both in terms of robustness to disorder
and feasibility of experimental implementations. We find
that the size of the energy gap varies substantially with
the number of particles and is particularly large for the
fractal lattice with 4 particles. For 4 particles, we find
that the energy gap is about three times larger for the
fractal lattice than for the square lattice. Specifically,
the gap is δE = 0.313J for the fractal lattice and δE =
0.105J for the square lattice.

Creation of anyons—Quasiholes give rise to local re-
ductions of the particle density, and therefore local po-
tentials tend to trap them [31]. To obtain anyons in our
model, we hence add local trapping potentials of the form

HV = V nl + V nm, l 6= m, U � V � J, (4)

to the Hamiltonian H and simultaneously remove one
particle. If the model is in a topological phase, we expect
the potentials to trap one anyon at site l and one anyon
at site m. The anyons have a finite spread and hence
also modify the densities on nearby sites. To show that
anyons are indeed formed, we compute the charge and
statistics of the anyons.

The anyon density profile

ρ(zi) = 〈ni〉H+HV ,M−1 − 〈ni〉H,M (5)

is the difference between the particle density for the
ground state of H + HV with M − 1 particles and the
particle density for the ground state of H with M parti-
cles. We sum this quantity over a local region σk around
the position of the kth potential to obtain the change in
the number of particles within σk. The region should be
large enough to enclose the complete anyon, and here we
take σk to be the sites inside the dashed circles in Fig.
1(b-c). Taking the charge of a particle to be −1, the
anyon charges

Qk = −
∑
zi∈σk

ρ(zi), k ∈ {1, 2}, (6)

evaluate to 0.466 for the square lattice and 0.480 for the
fractal lattice, which are close to the expected value 1/2.
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FIG. 1. (a) The model is defined on a second generation Sierpinski carpet (red squares). The lattice sites are marked by circles,
and the bonds connecting the sites illustrate the hopping terms. A magnetic flux goes through each lattice site in the direction
perpendicular to the plane. (b-c) Anyons trapped on the square and fractal lattices. The colors of the sites show the anyon
density profiles ρ(zi) from (5) when the anyon trapping potentials are on the sites marked by diamonds. It is seen that the
anyons are screened. The dashed lines encircle the regions that we sum over when we compute the anyon charges. The arrows
show the considered braiding path. We compute the Aharonov-Bohm phase by placing one of the anyons on the site marked
by a cross while the other anyon follows the marked path.

Note that Q1 = Q2 in both cases due to symmetry. That
the charges are close to 1/2 shows that there is some
screening in the system, but this can happen also in the
absence of topology. We therefore now turn to computing
the exchange statistics.

Fractional statistics—We now calculate the anyon ex-
change statistics to further characterize the type of
anyons present in the system. We do this by adiabat-
ically exchanging two anyons in the counterclockwise di-
rection. This exchange results in the ground state |Ψ〉
of the Hamiltonian H + HV acquiring a Berry phase
exp(iπθ), defined by

θ = i

∮
C
〈Ψ|∇w|Ψ〉dw + c.c., (7)

where w parametrizes the exchange path C. There are
two contributions to consider in θ; the Aharonov-Bohm
phase θAB, since anyons circulate around the magnetic
fluxes, and the statistical phase θs of the anyons them-
selves. Therefore we have θ = θAB + θs. The value of
θAB is obtained by circulating one anyon and keeping
the other anyon fixed at a position sufficiently outside
the moving anyon’s path. The particular value of θs
(6= [0, 1]) characterizes the type of anyons present in a
given topological order.

To adiabatically move a trapping potential from the
site l to the nearby site l′, we follow the procedure in
Ref. [31] and consider the Hamiltonian

HT = H + (1− γ)V nl + γV nl′ + V nm. (8)

We vary γ from 0 to 1, following the ramp

γ =
δr

r
− 1

2π
sin

(
2πδr

r

)
, (9)

with r a number of steps sufficiently large to maintain
adiabaticity and δr ∈ [0, 1, . . . , r] as the individual step.
We move one anyon at a time while keeping the other
anyon fixed at its position to minimize overlap during
the driving. The exact diagonalization used to obtain the
ground state in each step does not fix the global phase
factor of the state. We hence need to fix the global phase
factor relative to the state at the beginning of the adia-
batic evolution. We do this by choosing the global phase
factor of the ground state in a given step such that its
overlap with the ground state at the previous step is real.

We choose the exchange path for the square and frac-
tal lattices shown in Fig. 1. The statistical phase of the
anyons are found to be θs = 0.4589 on the square lattice
and θs = 0.5089 on the Sierpinski carpet fractal lattice.
These numbers are close to the expected value θs = 1/2
for quasiholes in a bosonic Laughlin state at half filling.
Therefore, we conclude that the local Hamiltonian pro-
posed here hosts anyons displaying Laughlin-type braid-
ing statistics. We also note that if we instead choose a
uniform magnetic field on the fractal lattice, we do not
obtain a statistical phase close to 1/2.

Effect of disorder—We next study the robustness of
the braiding properties of the models with respect to
weak disorder. We add a disordered potential at each
lattice site and write the Hamiltonian as

H ′ = H +
∑
i

hini, (10)

where hi ∈ [−h, h] is drawn from a uniform random dis-
tribution with h the disorder strength.

We plot in Fig. 2 the energy gap δE/J , averaged over
random disorder realizations, between the ground state
and the first excited state as a function of h/J for both
the models on the square lattice and on the fractal lat-
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FIG. 2. The energy gap δE/J between the ground state and
the first excited state of the Hamiltonian (10) as a function of
the disorder strength h/J for the models on the square and
fractal lattices with 64 sites and 4 particles. We average over
400 statistically independent disorder realizations for each h
to ensure convergence. The error bar is of order 10−3 for all
data points. The energy gap is seen to be significantly larger
for the model on the fractal lattice.

Disorder θs on square lattice θs on fractal lattice

h/J = 0 0.4589 0.5089

h/J = 0.25 0.0570 0.4803

h/J = 0.5 0.2615 0.5034

h/J = 1 0.0977; 0.0994 0.5171; 0.5479

TABLE I. Exchange phases for a single disorder realization on
the square and fractal lattices. Overlap between the charge
distributions of the two anyons lead to deviations from the
ideal value θs = 1/2. The two numbers provided for disor-
der strength h/J = 1 correspond to two different disorder
realizations.

tice with 64 sites and 4 particles. The model acquires a
larger gap on the fractal lattice than that on the square
lattice, which could be significant for its realization. This
gap reduces with the introduction of disorder but is still
substantially larger than that of the square lattice over
large ranges of disorder.

Evaluating the braiding statistics of the anyons is a
computationally expensive task. Therefore, we consider
the case of h = 0 and three h 6= 0 values where we take
a single or two disorder realizations. We find that the
statistics of the anyons are approximately θs = 1/2 on
the fractal lattice for the considered disorder strengths,
see Table I. For the square lattice, however, we find that
the anyon statistics is destroyed already for h/J = 0.25.
Inspecting the anyon density profiles along the trajec-
tory, we find that the anyons are not well separated at
all times. Thus, for the square lattice, we are hence not
able to draw conclusions about the statistics without con-
sidering a larger lattice. In the fractal lattice, the anyons
are better screened, which allows for robust braiding in
a smaller system.

Proposal for implementing the Hamiltonian—An ex-

perimental demonstration of the Sierpinski carpet fractal
lattice in a cold-atom system requires two components:
efficient preparation of the lattice system with the de-
sired filling factor and generation of the required site-to-
site hopping phases. For the former, we assume that we
start by loading a single plane of a 3D cubic lattice in a
conventional quantum-gas microscopy system [26, 27] ca-
pable of imaging atoms with single-site resolution using a
high-numerical aperture (NA) microscope objective. Us-
ing spin-addressing techniques, a set number of atoms
can be loaded into the lattice [28].

We now discuss the problem of generating the desired
site-to-site hopping magnitudes and phases via light-
assisted tunneling [29, 32]. In general, tunneling is inhib-
ited in the system if there exists an energy gradient along
x and y giving rise to a bias ∆ between each adjacent site.
Light-assisted tunneling between adjacent sites can be re-
stored if a pair of running-wave beams is added to the
system. Given that the frequency difference between the
running waves satisfies the relation ω = ω1−ω2 = ±∆/~,
atoms are again allowed to tunnel between adjacent sites.
The two light fields need only be present where the Wan-
nier functions overlap significantly (that is, between ad-
jacent lattice sites) [33]. Therefore, we can control the
magnitude of the effective tunneling parameter through
control of the amplitudes of the two running waves we
project onto the system. In Refs. [29, 32], the hopping
phases were controlled via the relative directions of the
two running waves. Here, however, we propose to control
the amplitude and phase of the tunneling parameter by
locally shaping one of these two running waves using a
spatial light modulator (SLM) [34, 35].

The required tunneling phases are controlled via pro-
jection of two counterpropagating light potentials from
the top and bottom of the lattice, respectively, with
both beams running orthogonal to the lattice axes. The
first laser acts as a light sheet onto the atoms from one
direction and does not require high-resolution capabili-
ties. Then, through the high-resolution objective, one
can project a second light-based potential with a phase
and amplitude pattern mapped onto it via a SLM [35]. In
this way, one can engineer the local tunneling properties
by carefully configuring the system so that light is present
only between the adjacent lattice sites where tunneling is
desired. If the resolution of the objective is high enough
such that the point-spread function of the projection sys-
tem is comparable to (or smaller than) the distance be-
tween lattice sites (see, e.g., the system in Ref. [36]), one
can project these light potentials onto the lattice with
minimal crosstalk between sites. Even in the presence
of small amounts of crosstalk, the SLM-generated light
field can readily be modified such that the desired field
amplitudes and phases are generated at each lattice site.
Finally, given that crosstalk is small, SLMs can also be
used to project (again through the high-resolution ob-
jective) the local trapping potentials required for anyon
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generation and exchange.

Conclusions—We have constructed a local Hamilto-
nian that shows topological braiding on both the Sierpin-
ski carpet, which is itself a fractal lattice, and a square
lattice. The proposed Hamiltonian is found to lead to a
larger energy gap between the topological ground state
and the first excited state on the fractal lattice with 64
sites and 4 particles than that on a square lattice of the
same size. We have also found that the fractal lattice
enhances the robustness of the braiding properties of the
topological state against the effects of disorder. We hy-
pothesize that this enhancement is due to the different
non-integer scaling dimension that characterises the frac-
tal lattice, and future research in this direction is war-
ranted. We have proposed an experimental implemen-
tation of the local model introduced here with ultracold
atoms in optical lattices. The experimental realization of
the local model studied allow for the consideration of dif-
ferent geometries of the lattice, including different fractal
lattices that could support topological order.
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