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Eigenstates of local many-body interacting systems that are far from spectral edges are thought to be ergodic
and close to being random states. This is consistent with the eigenstate thermalization hypothesis and volume-law
scaling of entanglement. We point out that systematic departures from complete randomness are generically
present in mid-spectrum eigenstates, and focus on the departure of the entanglement entropy from the random-
state prediction. We show that the departure is (partly) due to spatial correlations and due to orthogonality to the
eigenstates at the spectral edge, which imposes structure on the mid-spectrum eigenstates.

I. INTRODUCTION

Ergodicity and equilibration in the quantum realm remain
imperfectly understood, and the characterization of quantum
ergodicity is now an active research front. One view is that
quantum ergodicity corresponds to eigenstates of many-body
systems being effectively random. This idea is closely con-
nected to the eigenstate thermalization hypothesis (ETH) [1–7],
and to ideas loosely known as (canonical) typicality [7–18].
For a non-integrable (chaotic) many-body Hamiltonian H, it is
expected that a state |ψR〉 with independent Gaussian random
coefficients should be a good model for infinite-temperature
eigenstates, while eigenstates at energy corresponding to tem-
perature 1/β should be well-described by e−

1
2 βH |ψR〉 [17, 19–

22]. This expectation is mirrored by the behavior of the en-
tanglement entropy (EE) in eigenstates of many-body systems
with finite Hilbert spaces: At the spectral edges, EE is low
(“area law”) [23, 24], while in the infinite-temperature (mid-
spectrum) regime, the eigenstates have EE close to the value
expected for random states. As a result, for chaotic many-
body systems, the scatter plot of EE versus eigenenergy takes
the shape of an arch or rainbow, by now familiar from many
numerical examples [25–37].

In this work, we consider the bipartite entanglement entropy
of mid-spectrum eigenstates. For definiteness, we focus on
spin-1/2 chains with L sites with all symmetries broken, so
that the Hilbert space is D = 2L, and consider the entanglement
between two subsystems (A, B) of equal size. In this case, the
random states have an average EE well-approximated by the
Page formula [38, 39], S Page = log DA −

1
2 , where DA = 2L/2

is the size of the reduced Hilbert space of the A subsystem.
Although the mid-spectrum eigenstates are expected to be ran-
dom, numerically calculated mid-spectrum entanglement in
finite-size many-body systems – both in the existing literature
[25, 40, 41] and in this work – systematically fall below the
Page value. The deviation decreases more slowly with system
size than the width of the state-to-state fluctuations of EEs,
which means that the deviation is significant at any finite size.
To the best of our knowledge, the origin of this subtle, system-
atic and seemingly universal effect has not been addressed so
far. In this work, we present a study of this discrepancy, un-
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FIG. 1. Schematic, summarizing main ideas. Lower rainbow shows
block EE against eigenenergies. Upper rainbow is EE between “comb”
partitions. Partitions are shown in the left and right insets, respec-
tively. The difference between the top of the two rainbows is at-
tributed to residual spatial correlation in mid-spectrum eigenstates.
The difference between the Page value (dotted horizontal line) and the
mid-spectrum comb entanglement is attributed to the “orthogonality
blockade” effect — orthogonality to the special spectral edge states.
3D plots are cartoons of distributions of eigenstate intensities, using a
2D space to visualize the Hilbert space. The three cases correspond
to low-entanglement states typical of spectral edges (middle), fully
random or ‘ergodic’ states (right), and mid-spectrum states (left). The
latter demonstrates a depletion of weight in parts of the Hilbert space
where the spectral edges have large weight.

covering the ways in which mid-spectrum eigenstates deviate
from random states.

We find that the locality of the Hamiltonian leads to spa-
tial correlations persisting in mid-spectrum eigenstates of any
finite system; we demonstrate this through the mutual informa-
tion between sites. The mid-spectrum eigenstates thus differ
in an important manner from random states. The presence of
spatial correlations manifests itself strongly in the entangle-
ment between spatially connected blocks (block bipartition) – a
partitioning which is naturally sensitive to spatial correlations
in eigenstates. We show that the departure of mid-spectrum
entanglement from the Page value is smaller for comb parti-
tions that are, of all bipartitions, the least sensitive to spatial
variations of correlations. Nevertheless, even the comb en-
tanglements depart from the Page value. We argue that the
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reason for the departure from Page value of the mid-spectrum
eigenstates is their orthogonality to the eigenstates at spectral
edges. Orthogonality forces the mid-spectrum eigenstates to
live in an effectively lower-dimensional Hilbert space: part of
the physical Hilbert space is blocked off. This Hilbert space
blockade phenomenon manifests itself in the eigenstate coeffi-
cient distribution as an enhanced weight around zero [42–45].
The orthogonality blockade effect exists for any Hamiltonian,
local or not. However, for local Hamiltonians, eigenstates at
the spectral edges have area law entanglement and strong spa-
tial correlations. The blockade effect then forces mid-spectrum
states to have the observed spatial correlations. The depar-
ture from the Page value for comb partitions is thus due to a
correlated Hilbert space blockade, such that certain types of
configurations in the Hilbert space are blocked from appearing
in the mid-spectrum eigenstates. This scenario is illustrated in
Fig. 1 and elaborated in the rest of this paper.

II. MODEL

We focus on the spin- 1
2 chain, with couplings between sites

i, j having the XYZ form hi, j[η,∆] = (1 − η)S x
i S x

j + (1 +

η)S y
i S y

j + ∆S z
i S

z
j. The nearest-neighbor version of this model

is integrable through the algebraic Bethe ansatz [46]. Since
our focus is on non-integrable systems, we add next-nearest
neighbor couplings h j, j+2 and/or magnetic fields:

H = J1

L−1∑
j=1

h j, j+1[η1,∆1] + J2

L−2∑
j=2

h j, j+2[η2,∆2]

+ hz

L∑
j=1

(1 − 1
2δ jL)S z

j + hx

L∑
j=1

(1 − 1
2δ j1)S x

j . (1)

The hx term breaks the parity of total-S z. In addition, the J2, hz
and hx terms are each tweaked at one edge of the chain so that
reflection symmetry is broken. Unless otherwise specified, we
present data for Jα = 1, ηα = 0.5, ∆α = 0.9, hz = 0.8, hx = 0.2.
For parameters that we used, the level spacing statistics of
the model is consistent with that of the Gaussian orthogonal
ensemble (GOE), indicating chaotic behavior.

III. ENTANGLEMENT FOR BLOCK PARTITIONS

In Fig. 2 we consider “block” bipartitioning, i.e., the A (B)
bipartition is the left (right) half of the chain. The spectral
edges and mid-spectrum states scale differently (∼ L0 vs ∼ L1),
resulting in the rainbow/arch shape, Fig. 2(a-c). The largest
EE values are close to the EE values of random states of the
same Hilbert space size, whose average is here the Page value,
S Page = L

2 ln 2 − 1
2 , because we have chosen a spin- 1

2 system
with no symmetries. The EE being close to the Page value
indicates that the mid-spectrum eigenstates are close to being
“random” or “infinite-temperature”. Accordingly, the width
of the distribution of mid-spectrum EE values is expected to
decrease as ∼ D−1/2, like eigenstates of GOE/GUE matrices
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FIG. 2. EE for block bipartition. Parameters listed in text. (a-c) EE
versus energy for different system sizes. Horizontal line: Page value.
(d) Statistics of mid-spectrum eigenstates (D/16 states nearest to
rainbow peak), for L =8,10,12,14,16. The standard deviation has
similar scaling ∼ D−1/2 to the GOE case. The departure from the Page
value falls off much more slowly, possibly even saturating.

[47]. Fig. 2 (d) shows that the mid-spectrum EE widths are
larger than corresponding GOE values, but are consistent with
∼ D−1/2 behavior.

The feature we focus on in this paper is the systematic de-
parture from the Page value even in the middle of the spectrum
(Fig. 2 (c) inset). Fig. 2 (d) shows how the departure of the
mean mid-spectrum EE from the Page value scales with system
size. There is some ambiguity in how to choose the “mid-
spectrum” states. Fig. 2 (d) uses the 1/16th eigenstates closest
to the top of the rainbow, but our observations are insensitive
to the exact procedure [39]. The departure decreases with the
system size remarkably slowly. In fact, the data does not rule
out saturation, i.e., nonzero departure in the thermodynamic
limit. The departure is certainly much larger than the width,
which decreases much faster, ∼ D−1/2. Thus, at any system
size, the Page value lies outside the distribution of EE values.
In this sense, the departure is not “merely a finite size effect.”

IV. SPATIAL CORRELATIONS AND COMB
ENTANGLEMENT

To uncover the reason for the departure from random-matrix
behavior, we first appeal to the best-known case of such de-
partures, namely the spectral edges, for which the volume law
of entanglement is violated [23, 24]. The origin of area law
EE is the spatial locality of the Hamiltonian. This causes cor-
relations to decay rapidly with distance, and ensures that the
block entanglement receives its largest contribution from the
boundary region. We ask whether some degree of locality, in
this sense, also exists in the mid-spectrum eigenstates. We
quantify correlations via the quantum mutual information

I(i, j) ≡ S [i] + S [j] − S [i∪j] (2)

for pairs of spins i and j, as in [48, 49]. Fig. 3(a) shows
I(i, j) against the distance |i − j|, for mid-spectrum eigen-
states, low-energy eigenstates and random states. The distance-
dependence in mid-spectrum eigenstates is much less pro-
nounced than in low-energy eigenstates, as expected. However,
there exists an unmistakable dominance of small-distance cor-
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FIG. 3. Spatial correlations and comb EE. (a) Mutual information
vs. distance. Low-energy and mid-spectrum eigenstates of XYZ
Hamiltonians, compared with eigenstates of full (GOE) and sparse
random matrices. Statistics gathered from 32 eigenstates of each of
40 XYZ Hamiltonians, with parameters drawn from ranges shown.
(b) EE for block and comb bipartitions. (c) Scaling of mid-spectrum
comb EE (both types, filled/open symbols), similar to Fig. 2(d). The
departure from the Page value falls much slower than the width.

relations. Thus, we identify distance-dependence as one reason
for the departure of mid-spectrum EE from the Page value.

To ‘correct’ for this effect, we consider ‘comb’ bipartitions
[50–54] of two types: ‘comb1’ partitions spins as ABABAB...,
i.e., it is a sublattice partition, while ‘comb2’ partitions the
spins as AABBAABB.... For comb2 partitioning, there is some
ambiguity when L is not divisible by 4; we resolve this by set-
ting the last two sites to be in partitions A and B. For example,
for L = 10, the comb2 partitioning is AABBAABBAB.

For such bipartitions, the EE should be insensitive to large-
scale distance-dependence of correlations, as two nearby points
are as likely to be in different partitions as two faraway points.
(The boundary and bulk of partitions are not spatially sepa-
rated.) Fig. 3(b) shows that the mid-spectrum comb EE is
indeed closer to the Page value than the block EE. There is
little difference between comb1 and comb2, which supports
the idea that this reduction of the departure is due to removal
of the effect of distance-dependence. For comb bipartitioning,
there is no notion of ‘area law’, so that the EE for spectral
edges scale as ∼ L instead of ∼ L0. Nevertheless, the comb
EE’s at the spectral edges are significantly smaller than the
mid-spectrum ones, despite having the same scaling. Thus the
comb EE’s are also arranged in an arch/rainbow shape [39].

Remarkably, even for comb partitions, the departure from
the Page value remains much larger than the width of mid-
spectrum EE distributions. As in the block case, the comb EE
departure decreases far slower than the width, Fig. 3(c). (The
available data would even be consistent with a saturation of the

departure in the L→ ∞ limit, as opposed to a slow decrease.)
Thus the departure is a visible effect at any finite size, also
for partitions which (unlike block partitions) do not select
for locality effects. We are thus forced to look for additional
mechanisms – beyond ‘locality’ as discussed above – for the
departure from the random-state behavior.

V. NON-EXPLANATIONS

Sparsity is not responsible — One possible source of the
difference between random states and the eigenstates of local
many-body Hamiltonians is that such Hamiltonians are gen-
erally sparse matrices in common basis choices. To examine
the consequence of sparsity, in Fig. 3(a,b) we include results
(mutual information, EE) for the eigenstates of matrices with
sparsity close to the physical (XYZ) Hamiltonian, and nonzero
elements drawn from a Gaussian distribution. We find only
very slight differences from eigenstates of the usual (full) GOE
ensemble — in Fig. 3(a) the mutual information values for the
GOE case and the sparse random case are very slightly offset
from each other (offset barely visible), while in Fig. 3(b) the
EE values for the sparse random matrix have a distribution
whose center is only very slightly lower than the page value.

Thus, sparsity is not a significant factor in the departure
from the Page value.

Effect of finite measurement window — To obtain sufficient
statistics for the average and width of mid-spectrum entan-
glements, we use the EE values within some energy window,
Emax − ∆E/2 < E < Emax + ∆E/2, containing the energy
Emax where the EE is maximal. Approximating the EE to be a
smooth function of energy, S (E), the average EE within an en-
ergy window ∆E is obtained by Taylor expansion to be smaller
than the maximum by the amount S Taylor = 1

24 |S
′′(Emax)|(∆E)2.

We are of course interested in the limit ∆E → 0, where this ef-
fect plays no role. To ensure that we have reached this limit, we
have carefully checked that our extracted values of departure
are independent of the ∆E value used numerically, and also
that the Taylor correction term is orders of magnitude smaller
than the departure, for the values of ∆E used numerically [39].

In addition, from Fig. 2(c) inset and from Fig. 3(b), it is
visually obvious that the top of the rainbow itself deviates from
the Page value, and that the effect is not due to averaging over
a finite energy window.

VI. ORTHOGONALITY AND BLOCKADE

We now introduce a framework for discussing the devia-
tion of mid-spectrum states from randomness (full ergodicity).
Eigenstates at the spectral edges are well-known to be special –
they have area-law instead of volume-law entanglement, and
this is reflected in the local structure of correlations. These
eigenstates may be seen as occupying a specific tiny part of the
Hilbert space which promotes the special features. Because
mid-spectrum eigenstates need to be orthogonal to these spe-
cial states, they are forced to exclude that part of the Hilbert
space. Thus mid-spectrum eigenstates are distributed in a large
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FIG. 4. Orthogonality blockade, illustrated. (a) Eigenstate coefficient
distribution, showing an excess of small values compared to Gaus-
sian. Excess appears not to scale with system size. (b) Scatter-plot
between eigenstate coefficients. Each point represents one real-space
configuration. Coefficients of a mid-spectrum state against those
of a low-energy (b1) and a high-energy (b2) state. Eigenstates (in
brackets) labeled from 1 to 210 = 1024. (c) EE of states obtained
by orthogonalizing a random state to k lowest-energy and k highest-
energy eigenstates. k = 0 is a random state; k = D

2 − 1 is essentially a
mid-spectrum eigenstate. Inset: EE’s averaged over 30 starting states.
Dashed straight line is a visual guide.

fraction of, but not the complete, Hilbert space: part of the
Hilbert space is blocked off.

This blockade phenomenon is illustrated in the cartoons of
Fig. 1. If we use real-space configurations as the basis, then
these cartoons over-simplify in showing the low-energy states
as having exactly zero coefficients for most basis states. In
reality, the low-energy eigenstates are not completely localized
in configuration space — they have low but nonzero entangle-
ment. In other words, their participation ratios [39] are much
smaller than the random state value of D/3, but are still much
larger than 1 [25].

Aspects of the blockade phenomenon are illustrated in Fig. 4.
The coefficients of mid-spectrum eigenstates, in the basis of
real-space configurations, are not entirely Gaussian (as would
be the case for GOE eigenstates) but have excess weight at
small values [42–45], Fig. 4(a). Some configurations are “over-
represented” in eigenstates at the spectral edges; hence by or-
thogonality they have to be under-represented in mid-spectrum
eigenstates, leading to an excess of small values of coefficients.
This effect is seen more explicitly when coefficient magni-
tudes of different eigenstates are plotted against each other –
Fig. 4(b) shows that low/high-energy eigenstates have anoma-
lously large weights in a few basis states, which have small
weights in mid-spectrum eigenstates [39].

In Fig. 4(c) we show how orthogonality affects entanglement.
Starting from a random state, we successively Gram-Schmidt-
orthogonalize against pairs of eigenstates at the outermost
edges of the spectrum, i.e., first with the lowest and highest
eigenstates, then with the second-lowest and second-highest
eigenstates, and so on. The EE (both block and comb) of the
resulting states, Fig. 4(c), start with zero departure and, after

all but the mid-spectrum eigenstates have been orthogonalized
away, end at roughly the values observed for the EE’s of mid-
spectrum eigenstates. The curve has fluctuations depending
on the initial random state used, but the fluctuations decrease
with increasing system size and the overall picture is valid
for a variety of random states tried [39]. When averaged over
various realizations of the starting random state, one obtains a
relatively smooth curve, as shown in the inset.

For simplicity, we have above described the blockade as
being due to only the eigenstates at the spectral edges. In truth,
the mid-spectrum eigenstates are affected by orthogonality to
all non-mid-spectrum eigenstates, not just those at the spectral
edges. Intuitively, one might expect the spectral edges to
have the strongest effect, as these eigenstates are the least
generic or random-like. Comparing with the straight line in the
inset to Fig. 4(c), we see that the slope of the curve is larger
for small k, i.e., orthogonalizing against the spectral edges
has a stronger effect than orthogonalizing against eigenstates
which are intermediate between the spectral edges and the mid-
spectrum region. This demonstrates that eigenstates closer to
the spectral edges indeed have a stronger role in causing the
mid-spectrum departure [39]. For simplicity, we sometimes
loosely describe the blockade to be due to spectral edge states —
it should be understood that intermediate states also contribute
to the phenomenon, albeit to a weaker degree.

Interestingly, the distribution of coefficients by itself does
not predict the correct mid-spectrum EE. Using a random state
with coefficients drawn from the observed mid-spectrum distri-
bution, Fig. 4(a), we find the resulting EE to have a departure
one order of magnitude smaller than that observed in the comb
cases. Thus, a random state with an effective Hilbert space of
reduced dimension Deff < D (as in [55]) is not sufficient to
model the departure. The orthogonality causes very particular
combinations of configurations to be missing from the mid-
spectrum eigenstates; this “correlated blockade” is necessary
for the observed departure [39].

VII. RAINBOW SHAPE IMPLIES DEPARTURE

The orthogonality mechanism has the following implication.
If the EE versus eigenenergy plot is rainbow- or arch-shaped,
then the correlations in spectral-edge eigenstates which cause
those to have low entanglement will affect the mid-spectrum
eigenstates by orthogonality, causing the mid-spectrum eigen-
states to depart from Gaussian randomness. Thus, a rainbow
shape is necessarily accompanied by a departure in the mid-
spectrum states.

We can thus trace back the departure for comb EE to the
fact that the EE plot is rainbow-shaped for comb bipartitioning.
Unlike block partitioning, there is now no parametric argument
(∼ L0 vs ∼ L1) for the rainbow shape, as the spectral edge EE
now scales as ∼ L (the scaling of the boundary between parti-
tions), the same as the mid-spectrum EE. A general argument
for the rainbow shape is that, because the low-/high-energy
states are more constrained (less like random states) compared
to mid-spectrum eigenstates, the EE at spectral edges has to
be farther from the Page value compared to mid-spectrum EE.
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eigenstate EE’s at all temperatures/energies.

However, this is not obviously related to the spatial structure of
correlations. In fact, in a model without spatial locality, where
all eigenstates have volume-law scaling, the EE is found to
also have a rainbow structure [40]. According to the picture
presented above, orthogonality should then force a departure
of the mid-spectrum EE; indeed this is observed [40].

Our picture is applicable also beyond the context of
many-body physics. In power-law random banded matri-
ces (PLRBMs) [49, 56–66] and ultrametric matrices [61–
64, 67, 68], there is a regime of parameters where the mid-
spectrum eigenstates are “weakly ergodic” in the sense that,
even though the scaling with matrix size matches the ergodic
case, there is deviation from GOE/GUE ensembles at any finite
size [44, 64, 66]. To connect to the present topic: by interpret-
ing the indices of such matrices as spatial configurations (as
discussed in, e.g., [39, 69, 70]), one can evaluate entangle-
ments. For PLRBMs in the weakly ergodic regime, we have
found a rainbow-shaped dependence of EE versus eigenenergy,
with a mid-spectrum departure (Fig. 5(a) and [39]), just as in
the many-body case. The spectral edges are likely power-law-
localized [39], so that the blockade effect is more direct than
in the many-body situation.

VIII. CONTEXT & CONSEQUENCES

The EE of non-extremal eigenstates is now the focus of
considerable attention, both for chaotic systems [22, 25, 26,
40, 71–87] as in this work, and also for integrable systems
[25, 40, 41, 70, 88–102]. The eigenstate EE plays a role in

connecting quantum properties to the thermodynamic entropy
[9, 26, 72–74, 80, 92, 103]. Current theory suggests that the
mid-spectrum states are effectively random. We have shown
that a subleading deviation is present for any finite size, and
have developed concepts (orthogonality blockade, residual
spatial correlations) pertinent to understanding this deviation.
We expect our results to be equally valid for systems with
symmetries (for which the average random-state EE is not
given by the Page formula), and that the presented concepts
will have further applications, e.g., effects of orthogonality to
the extremal eigenstates has been exploited in recent literature
[66, 104–106]. An open question is whether the deviation
saturates or vanishes in the large-size limit.

The idea that the state e−
1
2 βH |ψR〉 (with |ψR〉 a random state)

is a good model for finite-temperature eigenstates [17, 20, 22]
has been fruitful for numerical computations of thermodynamic
properties [107–118]. Our observation, that mid-spectrum
(highest-EE or infinite-temperature) eigenstates show depar-
tures from random state properties, implies that the state
e−

1
2 βH |ψR〉 is an imperfect model for lower-entanglement

(finite-temperature) eigenstates as well. In fact, one can at-
tempt to reproduce the entanglement rainbow by plotting the
EE of the state e−

1
2 βH |ψR〉 against the corresponding energy.

We find that this curve falls systematically above the EE scatter-
plot of actual eigenstates (Fig. 5(b) and [39]).

The departure is a signature of deviation from GOE/GUE
behavior at all finite sizes. Signatures of this deviation also
appear in eigenstate coefficient distributions (Fig. 4(a); also
[42–45]). Mid-spectrum eigenstates have the same scaling
behavior as GOE/GUE, but approach the thermodynamic limit
differently, as also seen in multifractality analysis [44]. This
behavior could justifiably be called “weakly ergodic”, although
the phrase does not yet have a widely accepted definition
[44, 64, 66, 104, 119, 120]. In Ref. [120], weak ergodicity
is associated with breaking of “basis rotation invariance.” Our
finding, that mid-spectrum eigenstates have different block EE
and comb EE, is another type of non-invariance under basis
rotation.

Note added in Proof: After this paper was accepted, we
became aware of Ref. [121], which quantitatively accounts for
part of the departure for block partitions, in the case where the
Hamiltonian is local.
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[52] Ferenc Iglói and Ingo Peschel, “On reduced density matrices
for disjoint subsystems,” EPL (Europhysics Letters) 89, 40001
(2010).

[53] R. Rossignoli, N. Canosa, and J. M. Matera, “Even-odd entan-
glement in boson and spin systems,” Phys. Rev. A 83, 042328
(2011).

[54] Temple He, Javier M. Magán, and Stefan Vandoren, “Entangle-
ment entropy of periodic sublattices,” Phys. Rev. B 95, 035130
(2017).

[55] Giuseppe De Tomasi and Ivan M. Khaymovich, “Multifractality
meets entanglement: Relation for nonergodic extended states,”
Phys. Rev. Lett. 124, 200602 (2020).

[56] Alexander D. Mirlin, Yan V. Fyodorov, Frank-Michael Dittes,
Javier Quezada, and Thomas H. Seligman, “Transition from
localized to extended eigenstates in the ensemble of power-law
random banded matrices,” Phys. Rev. E 54, 3221–3230 (1996).

[57] V. E. Kravtsov and K. A. Muttalib, “New class of random
matrix ensembles with multifractal eigenvectors,” Phys. Rev.
Lett. 79, 1913–1916 (1997).

[58] Imre Varga and Daniel Braun, “Critical statistics in a power-law
random-banded matrix ensemble,” Phys. Rev. B 61, R11859–
R11862 (2000).

[59] A. D. Mirlin and F. Evers, “Multifractality and critical fluctua-
tions at the anderson transition,” Phys. Rev. B 62, 7920–7933
(2000).

[60] Ferdinand Evers and Alexander D. Mirlin, “Anderson transi-
tions,” Rev. Mod. Phys. 80, 1355–1417 (2008).

[61] E. Bogomolny and O. Giraud, “Eigenfunction entropy and
spectral compressibility for critical random matrix ensembles,”
Phys. Rev. Lett. 106, 044101 (2011).

[62] I Rushkin, A Ossipov, and YV Fyodorov, “Universal and non-
universal features of the multifractality exponents of critical
wavefunctions,” Journal of Statistical Mechanics: Theory and
Experiment 2011, L03001 (2011).

[63] JA Mendez-Bermudez, A Alcazar-Lopez, and Imre Varga,
“Multifractal dimensions for critical random matrix ensembles,”
EPL (Europhysics Letters) 98, 37006 (2012).

[64] E. Bogomolny and M. Sieber, “Power-law random banded
matrices and ultrametric matrices: Eigenvector distribution in
the intermediate regime,” Phys. Rev. E 98, 042116 (2018).

[65] Didier A. Vega-Oliveros, J. A. Méndez-Bermúdez, and Fran-
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JK Slingerland, and Masudul Haque, “Dynamics and level
statistics of interacting fermions in the lowest Landau level,”
New Journal of Physics 20, 103036 (2018).

[80] Chaitanya Murthy and Mark Srednicki, “Structure of chaotic
eigenstates and their entanglement entropy,” Phys. Rev. E 100,
022131 (2019).

[81] H. Wilming, M. Goihl, I. Roth, and J. Eisert, “Entanglement-
ergodic quantum systems equilibrate exponentially well,” Phys.
Rev. Lett. 123, 200604 (2019).

[82] Yichen Huang, “Universal eigenstate entanglement of chaotic
local hamiltonians,” Nuclear Physics B 938, 594–604 (2019).

[83] Yichen Huang and Yingfei Gu, “Eigenstate entanglement in the
Sachdev-Ye-Kitaev model,” Phys. Rev. D 100, 041901 (2019).

[84] Tsung-Cheng Lu and Tarun Grover, “Renyi entropy of chaotic
eigenstates,” Phys. Rev. E 99, 032111 (2019).

[85] Qiang Miao and Thomas Barthel, “Eigenstate entanglement:
Crossover from the ground state to volume laws,” Phys. Rev.
Lett. 127, 040603 (2021).

[86] S. C. Morampudi, A. Chandran, and C. R. Laumann, “Uni-
versal entanglement of typical states in constrained systems,”
Phys. Rev. Lett. 124, 050602 (2020).

[87] Kazuya Kaneko, Eiki Iyoda, and Takahiro Sagawa, “Character-

http://dx.doi.org/10.1103/PhysRevE.100.032117
http://dx.doi.org/ 10.21468/SciPostPhysCore.2.2.006
http://dx.doi.org/10.1103/PhysRevE.93.052106
http://dx.doi.org/10.1103/PhysRevLett.118.016804
http://dx.doi.org/10.1103/PhysRevB.99.054204
http://dx.doi.org/10.1103/PhysRevB.99.054204
http://dx.doi.org/10.1103/PhysRevA.74.012311
https://iopscience.iop.org/article/10.1088/1367-2630/8/6/097/meta
https://iopscience.iop.org/article/10.1209/0295-5075/89/40001
https://iopscience.iop.org/article/10.1209/0295-5075/89/40001
http://dx.doi.org/10.1103/PhysRevA.83.042328
http://dx.doi.org/10.1103/PhysRevA.83.042328
http://dx.doi.org/10.1103/PhysRevB.95.035130
http://dx.doi.org/10.1103/PhysRevB.95.035130
http://dx.doi.org/10.1103/PhysRevLett.124.200602
http://dx.doi.org/ 10.1103/PhysRevE.54.3221
http://dx.doi.org/ 10.1103/PhysRevLett.79.1913
http://dx.doi.org/ 10.1103/PhysRevLett.79.1913
http://dx.doi.org/ 10.1103/PhysRevB.61.R11859
http://dx.doi.org/ 10.1103/PhysRevB.61.R11859
http://dx.doi.org/ 10.1103/PhysRevB.62.7920
http://dx.doi.org/ 10.1103/PhysRevB.62.7920
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1103/PhysRevLett.106.044101
https://iopscience.iop.org/article/10.1088/1742-5468/2011/03/L03001
https://iopscience.iop.org/article/10.1088/1742-5468/2011/03/L03001
https://iopscience.iop.org/article/10.1209/0295-5075/98/37006/meta
http://dx.doi.org/10.1103/PhysRevE.98.042116
http://dx.doi.org/10.1103/PhysRevE.99.042303
http://dx.doi.org/10.1103/PhysRevE.99.042303
https://doi.org/10.1103/PhysRevB.99.104203
https://doi.org/10.1103/PhysRevB.99.104203
https://iopscience.iop.org/article/10.1088/1742-5468/2009/12/L12001
https://iopscience.iop.org/article/10.1088/1742-5468/2009/12/L12001
https://arxiv.org/abs/1705.04165
https://arxiv.org/abs/1705.04165
http://dx.doi.org/ 10.1103/PhysRevLett.122.070601
http://dx.doi.org/10.1103/PhysRevLett.125.180604
http://dx.doi.org/10.1103/PhysRevLett.125.180604
http://dx.doi.org/ 10.1103/PhysRevA.71.062324
https://iopscience.iop.org/article/10.1088/1367-2630/12/7/075021
http://dx.doi.org/ 10.1103/PhysRevE.86.010102
http://dx.doi.org/ 10.1103/PhysRevE.86.010102
http://dx.doi.org/ 10.1103/PhysRevE.87.042135
http://dx.doi.org/ 10.1103/PhysRevE.87.042135
http://dx.doi.org/ 10.1103/PhysRevE.91.062128
http://dx.doi.org/ 10.1103/PhysRevE.91.062128
http://dx.doi.org/ 10.1103/PhysRevLett.119.220603
http://dx.doi.org/ 10.1103/PhysRevLett.119.220603
http://dx.doi.org/ 10.1103/PhysRevE.97.012140
http://dx.doi.org/ 10.1103/PhysRevE.97.012140
https://iopscience.iop.org/article/10.1088/1367-2630/aae73f
https://iopscience.iop.org/article/10.1088/1367-2630/aae73f
http://dx.doi.org/10.1103/PhysRevE.100.022131
http://dx.doi.org/10.1103/PhysRevE.100.022131
http://dx.doi.org/10.1103/PhysRevLett.123.200604
http://dx.doi.org/10.1103/PhysRevLett.123.200604
https://doi.org/10.1016/j.nuclphysb.2018.09.013
http://dx.doi.org/ 10.1103/PhysRevD.100.041901
http://dx.doi.org/ 10.1103/PhysRevE.99.032111
http://dx.doi.org/10.1103/PhysRevLett.127.040603
http://dx.doi.org/10.1103/PhysRevLett.127.040603
http://dx.doi.org/ 10.1103/PhysRevLett.124.050602


8

izing complexity of many-body quantum dynamics by higher-
order eigenstate thermalization,” Phys. Rev. A 101, 042126
(2020).

[88] Vincenzo Alba, Maurizio Fagotti, and Pasquale Calabrese,
“Entanglement entropy of excited states,” J. Stat. Mech. 2009,
P10020 (2009).

[89] Francisco Castilho Alcaraz, Miguel Ibáñez Berganza, and
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