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Abstract

In this thesis, I present two complementary frameworks to improve data assimila-
tion in Earth system models, using the atmosphere-land interface as an exemplary
case. As processes and components in the Earth system are coupled via interfaces,
we would expect that assimilating observations from one Earth system component
into another would improve the initialization of both components. In contrast
to this expectation, it is often found that assimilation of atmospheric boundary
layer observations into the land surface does not improve the analysis of the latter
component. To disentangle the effects on the cross-compartmental assimilation, I
take a step back from operational methods and use the coupled atmosphere-land
modelling platform TerrSysMP in idealized twin experiments. I synthesize hourly
and sparsely-distributed 2-metre-temperature observations from a single "nature"
run. I subsequently assimilate these observations into the soil moisture with dif-
ferent types of data assimilation methods. Based on this experimental structure, I
test advanced data assimilation methods without model errors or biases.

As my first framework, I propose to use localized ensemble Kalman filters for
the unification of coupled data assimilation in Earth system models. To validate
this framework, I conduct comparison experiments with a localized ensemble
transform Kalman filter and a simplified extended Kalman filter, as similarly
used at the ECMWF. Based on my developed environment, I find that we can
assimilate 2-metre-temperature observations to improve the soil moisture analysis.
In addition, hourly-updating the soil moisture with an ensemble Kalman filter
decreases the error within the soil moisture analysis by up to 50 % compared to
a daily-smoothing with a simplified extended Kalman filter. As a consequence,
observations from the atmospheric boundary layer can be directly assimilated
into the land surface model without a need of any intermediate interpolation,
as normally used in land surface data assimilation. The improvement suggests
that the land surface can be updated based on the same hourly cycle as used
for mesoscale data assimilation. My results therefore prove that a unification of
methods for data assimilation across the atmosphere-land interface is possible.

As my second framework, I propose to use feature-based data assimilation to
stabilize cross-compartmental data assimilation. To validate this framework, I use
my implementation of an ensemble Kalman smoother that applies its analysis at
the beginning of an assimilation window and resembles 4DEnVar. This smoother
takes advantage of temporal dependencies in the atmosphere-land interface and
improves the soil moisture analysis compared to the ensemble Kalman filter by
10 %. Subsequently based on this smoother, I introduce fingerprint operators as
observational feature extractor into cross-compartmental data assimilation. These
fingerprint operators take advantage of characteristic fingerprints in the difference
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between observations and model that point towards forecast errors, possibly in
another Earth system component. As main finding, this concept can condense the
information from the diurnal cycle in 2-metre-temperature observations into two
observational features. This condensation makes the soil moisture analysis more
robust against a miss-specified localization radius and errors in the observational
covariance.

Finally, I provide two new theoretical approaches to automatically learn such
observational features with machine learning. In the first approach, I generalize
ensemble Kalman filter with observational features to a novel kernelized ensemble
transform Kalman filter.automatically This kernelized filter automatically con-
structs the feature extractor on the basis of the given ensemble data and a chosen
kernel function. In the second approach, I show that parameters within the data
assimilation can be learned by variational Bayes. In this way, we can find whole
distributions for parameters in data assimilation and, thus, determining their un-
certainties. Furthermore, I prove the ensemble transform Kalman filter as a special
solution of variational Bayes in the linearized-Gaussian case. These results suggest
a possibility to specify the feature extractor as neural network and to train it with
variational Bayes. These two approaches therefore prove that developments in
machine learning can be used to extend data assimilation.

ii



Zusammenfassung

In dieser Arbeit stelle ich zwei unterschiedliche Frameworks vor, um die Ini-
tialisierung in gekoppelten Erdsystemmodellen für die Wettervorhersage zu
verbessern. Dabei benutze ich die Schnittstelle zwischen der Atmosphäre und der
Landoberfläche als Beispiel. Diese Schnittstelle bietet mir die Möglichkeit zu unter-
suchen, in wie weit gekoppelte Datenassimilierung möglich ist. Prozesse und Kom-
ponenten des Klimasystems sind über verschiedene Schnittstellen miteinander
verbunden. Von daher würden wir erwarten, dass Beobachtungen aus der atmo-
sphärischen Grenzschicht, auch die Initialisierung von Bodenmodellen verbessern,
allerdings wurde in verschiedenen vorangegangenden Studien gezeigt, dass dies
nicht der Fall ist. Um die Einflüsse von unterschiedlichen Fehler-Faktoren auf die
Datenassimilierung zu reduzieren, benutze ich Experimente, die im Vergleich zur
operationellen Wettervorhersage vereinfacht sind. Hierfür benutze ich das gekop-
pelte Atmosphären-Land Vorhersagemodel TerrSysMP. All diese Experimente
basieren auf einem Lauf ohne Datenassimilierung, den ich als meine "Natur"
definiere. Aus diesem Naturlauf extrahiere ich künstliche 2-Meter-Temperatur
Beobachtungen, welche dann mit unterschiedlichen Datenassimilierungsverfahren
in die Bodenfeuchte assimiliert werden. Mit dieser Art von Experimenten teste ich
fortschrittliche und nicht-lineare Datenassimilierungsverfahren für die Atmosphären-
Land-Schnittstelle.

Als erstes Framework schlage ich vor, einen lokalisierten Ensemble-Kalman-Filter
für eine vereinheitlichte Datenassimilierung in Erdsystemmodellen zu verwenden.
Um dieses Framework zu validieren, mache ich Vergleichsexperimente mit dem
eben erwähnten lokalisierten Ensemble-Kalman-Filter und einem vereinfachten
Extended-Kalman-Filter, der in ähnlicher Form beim Europäischen Zentrum für
mittelfristige Wettervorhersage verwendet wird. Basierend auf meiner entwick-
elten Umgebung zeige ich, dass 2-Meter-Temperatur Beobachtungen dafür ver-
wendet werden können, um die Initialisierung der Bodenfeuchte zu verbessern.
Der lokalisierte Ensemble-Kalman Filter reduziert zusätzlich den Fehler in der Ini-
tialisierung der Bodenfeuchte um bis zu 50 %, im Vergleich zu dem vereinfachten
Extended-Kalman-Filter. Dies zeigt zum ersten Mal, dass Beobachtungen aus der
atmosphärischen Grenzschicht, direkt für die Initialisierung der Bodenfeuchte, ver-
wendet werden können, ohne den Umweg einer Interpolierung zu nehmen, wie
es bei dem vereinfachten Extended-Kalman-Filter der Fall ist. Darüberhinausge-
hend legen diese Verbesserungen nahe, dass die Landoberfläche mit der gleichen
stündlichen Aktualisierungs-Rate, wie die Atmosphäre, initialisiert werden kann.
Deshalb beweisen diese Ergebnisse, dass eine vereinheitlichte Datenassimilierung
über die Atmosphären-Land-Schnittstelle hinweg möglich ist.

Als zweites Framework schlage ich vor, anstatt von Beobachtungen, Merkmale
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dieser Beobachtung zu assimilieren. Dies kann die Assimilierung, über die
Atmosphären-Land Schnittstelle hinweg, verbessern. Um dieses Framework zu
validieren, führe ich einen Ensemble-Kalman-Smoother ein. Dieser Ensemble-
Kalman-Smoother initialisiert die Bodenfeuchte auf Basis eines Assimilierungs-
fensters, ähnlich dem variationsgetriebenem vierdimensionellem Verfahren. Mit
diesem Ensemble-Kalman-Smoother zeige ich, dass es möglich ist, zeitliche Ab-
hängigkeiten innerhalb der Atmospähren-Land-Schnittstelle in der Datenassimi-
lierung zu verwenden. Die Verwendung dieser Abhängigkeiten verbessert hierbei
die Initialisierung der Bodenfeuchte. Auf Basis dieser Methodik, führe ich Oper-
atoren ein, die Fingerabdrücke innerhalb von Beobachtungen ausnutzen. Diese
Fingerabdruck-Operatoren nutze ich dafür, um Vorhersage-Fehler in anderen
Komponenten des Erdsystems zu finden. Für die 2-Meter-Temperatur zeige ich,
dass Informationen aus dem Tagesverlauf der Temperatur in 2 unterschiedliche
Merkmale kondensiert werden können. Diese Kondensation macht die Initial-
isierung der Bodenfeuchte robuster gegen Störungen innerhalb der Lokalisierung
und der Beobachtungskovarianzen. Deshalb beweisen diese Ergebnisse, dass
die eingeführten Fingerabdruck-Operatoren, die Datenassimilierung über die
Atmosphären-Land Schnittstelle hinweg stabilisieren.

Als letzten Punkte führe ich zwei neue, theoretische, Ansätze ein, um solche
Beobachtungsmerkmale automatisch mit maschinellem Lernen zu finden. In
meinem ersten Ansatz zeige ich, dass der merkmal-basierte Ensemble-Kalman-
Filter unter dem Deckmantel des kernbasierten Ensemble-Transform-Kalman-
Filter generalisiert werden kann. Hierbei lernt die Datenassimilierung automa-
tisch die wichtigsten Beobachtungsmerkmale auf Basis der Ensemble Daten und
einem gewählten Kern. In meinem zweiten Ansatz, zeige ich, dass Parameter
des Ensemble-Kalman Filters mit variationsgetriebenen Bayesianischen Meth-
oden erlernt werden können. Mit dieser Bayesianischen Methode kann die
gesamte Wahrscheinlichkeitsverteilung der Parameter herausgefunden und so
Unsicherheiten, innerhalb dieser, dargestellt werden können. Zusätzlich beweise
ich, dass der Ensemble-Kalman-Filters eine spezielle Lösung dieses Ansatze im
linear-Gaussischen Fall ist. Als Konsequenz, deute ich an, dass wir die Beobach-
tungsmerkmale durch neuronale Netzwerke ersetzen können, die mit Hilfe dieses
Ansatze erlernt werden. Von daher beweisen diese beiden Ansätze, dass Entwick-
lungen im maschinellen Lernen dafür genutzt werden können, um Datenassimi-
lierungsmethoden zu erweitern und möglicherweise zu verbessern.
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1
Introduction

On December 26th, 1999, the cyclone Lothar reached France and southern Germany
and left a trail of destruction. One day before, the then newly developed weather
prediction model of the German Weather Service missed its formation, because
observations from a single, restarted, radiosonde at the coast of Newfoundland
were used during the initialization of the model at the wrong time (Wergen and
Buchhold, 2002). This example highlights the importance of correctly initializing
weather prediction models. However, this mistake occurred 20 years ago, and
initialization methods for weather prediction models have significantly improved
since then.

Now, let’s turn to the future of weather prediction in the next ten years. Will
weather prediction improve even more in this time frame? The pragmatic an-
swer is yes, the prediction will steadily improve at the same rate as in the past
decades, and we will gain roughly one day of accuracy in our weather prediction
compared to today (Bauer et al., 2015). The last innovation that led to one day of
accuracy was the introduction of ensemble prediction systems over the course of
the last decade. What will be then the next innovation that provides us with an
additional day of accuracy? Most likely, this next innovation will be the use of
fully-coupled Earth system models for weather prediction together with machine
learning (“ECMWF Strategy 2021-2030” 2021). However, for this innovation, we
do not only have to improve forecast models, but also to take better advantage
of available observations when initializing these models. In this thesis, I make
my contribution to gain the next day of accuracy. I propose two complementary
frameworks to initialize Earth system models for weather prediction by using the
interaction at the interface between the land surface and the atmosphere as an
exemplary case.

As my first framework, I propose to unify and couple the initialization of Earth
system components using data assimilation and localized ensemble Kalman filters.
Such a localized ensemble Kalman filter allows me to use observations from a well-
observed Earth system component to initialize another, less-observed, component.
In my second, subsequent, framework, I build the theoretical foundations for
fingerprint operators based on machine learning and introduce this concept into
coupled data assimilation for Earth system models. These operators condense the
information from observation into observational features and can simplify in such
a way the data assimilation problem across Earth system interface.
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1 Introduction

1.1 Initializing Earth system models
Earth system models contain specialized modules for the representation of each
Earth system component, such as the atmosphere, the ocean, the land, and the
cryosphere. In the Earth system, processes interact with each other across different
interfaces. Hence, in coupled Earth system models, the modules are run inter-
actively during the forecast. In this way, the coupling in these models improves
weather prediction up to seasonal scales (Brunet et al., 2015). However, the quality
of the weather prediction does not only depend on the quality of the model, but
also on the initial conditions. Caused by the chaotic nature of the Earth system,
small errors in the initial conditions can have a large impact on later forecasts
(Lorenz, 1963). As a consequence, the initial conditions with which the model
starts need to be as good as possible too.

Components of the Earth system are differently well observed. The atmosphere,
for example, is one of the better observed components, whereas the land is one of
the less-well observed ones. As processes interact across interfaces, information
is propagated from one component into another component. On this basis, we
could expect that our large amount of observations from the atmosphere also con-
tains information from other components. Nevertheless, this cross-compartmental
information is difficult to disentangle, and one of the main challenges in initializ-
ing Earth system models is the initialization of less-observed components with
observations from the atmosphere.

The initialization problem brings us to the central topic of this thesis – data as-
similation. On the one hand, we have physical knowledge in form of a numerical
model that tells us something about the spatial and temporal connections in the
system, but nothing about the current state. On the other hand, we have obser-
vations that imperfectly represent the current state, but do not cover each point
in space and time. In data assimilation, we want to combine these two sources of
information to distill the full current system state trajectory. As starting point for
this distillation, we use the numerical model to create a short-term forecast, the
so-called prior forecast. Afterwards, we correct this prior based on one given set
of observations to a so-called analysis. The analysis is an average of the prior and
the observations, weighted by their uncertainties (Kalnay, 2003; Law et al., 2015;
Asch et al., 2016). Initialized with this estimated analysis, we run a new short-term
forecast that will again corrected with observations, as schematically shown in
Fig. 1.1. By cycling between short-term forecasts and correction, we ideally nudge
the state trajectory to the true, but usually unknown, conditions of the system.
However, as trivial as it sounds, data assimilation is not straightforward to apply
and many challenges related to the combination of observations and Earth system
models remain.

One of the main problems for data assimilation are the unresolved processes in
Earth system models. This is even the case in recent developments towards a
digital twin of Earth (Bauer et al., 2021a,b). This digital twin should replicate
the state trajectory of our physical world in a simulated, virtual, world. For this
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1.1 Initializing Earth system models

Figure 1.1: A simplified and schematic view on the data assimilation cycle. Data assimilation
creates an analysis as a corrected short-term forecast based on a given observation. This analysis
is the average of the forecast and the observations, taking the uncertainties of both into account.
As a simplification, these uncertainties are not shown in this figure. The analysis is then used to
initialize a new short-term forecast, which is then corrected again by an observation one time step
later.

replication, the digital twin needs a global horizontal resolution of around 1 km
to resolve convection-permitting processes (Palmer and Stevens, 2019; Schär et
al., 2020; Wedi et al., 2020). Nevertheless, many other processes act on scales
below this threshold of 1 km and, hence, remain unresolved. The effects of these
unresolved processes on resolved processes have to be parametrized. These
parametrizations result into approximations and simplifications compared to the
processes in nature, causing model errors and biases. These model biases are
very difficult, if not impossible, to identify, to quantify, and to modify in a data
assimilation system.

To minimize the negative impact of these model biases on the analysis, we have
to simplify the procedure with its two ingredients. First, we have the numerical
model, representing the current physical knowledge of the system. Here, for exam-
ple, we could limit the number of represented processes within the model, or we
could deactivate whole modules that mirror one of the Earth system components.
Secondly, we have the data assimilation method, combining observations with
model forecast. Here, for example, we could reduce the number of assimilated
observations. As weather centers usually want to take advantage of as much
physical knowledge as possible for operational forecasting, they use the approach
where as many processes as possible are represented within the model. Thus, the
data assimilation methods have to be somehow simplified to allow operational
forecasting.

As one of these simplifications for data assimilation, interactions between the
Earth system components are minimized during the initialization of Earth system
models. Every component of the system is initialized by itself, decoupled from
the initialization of the other components, as is schematically shown in Fig. 1.2.
Nevertheless, observations from one Earth system component are also influenced
by other components. This discrepancy between the decoupled initialization and
the coupled nature of observations and forecast models prohibits a physically-
consistent initialization of Earth system models. This means that the forecast
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1 Introduction

models are not initialized with the best method available. As my contribution for
a physically-consistent initialization of Earth system models, I therefore show that
observations from the atmosphere can be assimilated across these interfaces with
an ensemble Kalman filter.

Figure 1.2: A schematic view on the decoupled approach for initializing Earth system models.
In operational numerical weather prediction, every here-shown component of the Earth system
is initialized independently, whereas the models for the components are interactively run for
forecasting.

The interface between atmospheric boundary layer and land surface is one of
the few places with operational cross-compartmental data assimilation (Brunet
et al., 2010). At this interface, the sensible heat flux and evapotranspiration couple
the land surface to the atmospheric boundary layer (Fig. 1.3). These fluxes are
driven by the amount of incoming solar radiation at the surface, and hence they
are also modulated by clouds. Because their representation in modules for the
atmospheric component is inaccurate (Stevens and Bony, 2013; Schär et al., 2020),
clouds are one of the main causes for errors in the coupling between the land
surface and the atmosphere. In addition, important processes at the land surface
act on scales below 1 km and remain unresolved in the current generation of Earth
system models (Dirmeyer et al., 2017; Kauffeldt et al., 2015; Orth et al., 2017; Best
et al., 2015). These unresolved processes lead to systematic errors, so-called biases,
especially in operational land surface models.

To resolve these small-scale processes, recent fully-coupled terrestrial system
models (Fatichi et al., 2016; Prein et al., 2015; Vereecken et al., 2016) apply a
process-based modelling approach for the atmosphere-land interface. Typically,
these models represent the water and energy in layers through a layer-specific soil
moisture and soil temperature, the main variables of interest in such a model. With
their process-based and layered approach, these models can close the water and
energy balance at the land surface and within the soil. As the atmosphere and land
are coupled in these models, they can simulate the full water and heat transport
from the soil and land surface into the atmosphere and vice-versa. Because of
their physical consistency, these models seamlessly scale from continental-scales
(Kollet et al., 2018) up to metre-scales in soil (Gebler et al., 2017). In this thesis,
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1.1 Initializing Earth system models

Figure 1.3: A schematic coupling between atmospheric boundary layer and land surface as
seen by the Terrestrial System Modelling Platform TerrSysMP with its involved models COSMO
and Community Land Model. At this atmosphere-land interface, the sensible heat flux and
evapotranspiration couple the soil moisture and soil temperature to the 2-metre-temperature and
2-metre-humidity.

such a model provides me with an useful tool to simulate the interaction between
atmosphere and land.

The 2-metre-temperature in the atmospheric boundary layer is locally influenced
by the soil moisture (Mahfouf, 1991; Entekhabi et al., 1996; Santanello Jr. et al., 2019;
Liu and Pu, 2019), As the soil moisture regulates the sensible heat flux and surface
temperature during day-time and influences in this way the 2-metre-temperature.
Hence, by observing the 2-metre-temperature, we also indirectly observe the soil
moisture. We would therefore expect that by assimilating 2-metre-temperature
observations into land surface models, we would also improve the soil moisture
analysis.

In reality, the 2-metre-temperature has a negative impact on the soil moisture
analysis in operational forecasting (Hess, 2001; Drusch and Viterbo, 2007; Draper et
al., 2011; Su et al., 2013; Carrera et al., 2019; Muñoz-Sabater et al., 2019). Unresolved
processes and model biases in both, the land surface and the atmospheric boundary
layer, heavily impact the model representation of the 2-metre-temperature. Hence,
forecast errors in the 2-metre-temperature can be completely unrelated to forecast
errors in the soil moisture. Land surface data assimilation nevertheless nudges the
predicted 2-metre-temperature to the observed 2-metre-temperature by updating
the soil moisture. In the case of unrelated errors, the update of the soil moisture is
then simply used as a sink term for errors in the atmospheric boundary layer. Thus,
we often only improve the forecast of the atmospheric boundary layer, whereas
negatively impacting the soil moisture analysis. In contrast to these previous
results, I prove that it is possible to improve the analysis of both components at
the same time when the right tools are available.

In operational data assimilation for the atmosphere, ensemble Kalman filters,
four-dimensional variational data assimilation methods, or hybrid methods are
the state-of-the-art (“IFS Documentation CY47R1 - Part II: Data Assimilation” 2020;
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1 Introduction

Gustafsson et al., 2018; Schraff et al., 2016; Milan et al., 2020; Lorenc and Jardak,
2018; Wang and Lei, 2014; Kwon et al., 2018). These data assimilation methods
take advantage of the full spatio-temporal information during their correction
step, and they can take observations at their observational positions into account.
Contrary to these advanced methods, unresolved processes and model biases at
the land surface force weather centers to still use simplified land surface data
assimilation methods (Duan et al., 2019; Fairbairn et al., 2019; Shahabadi et al.,
2019).

The simplified land surface data assimilation methods are usually based on the
simplified extended Kalman filter (Hess, 2001; Rosnay et al., 2013; Mahfouf et al.,
2009; Gómez et al., 2020; Xia et al., 2019; Dharssi et al., 2011; Mucia et al., 2020)
or on one-dimensional ensemble Kalman filters (Bonan et al., 2020; Fairbairn et
al., 2015; Carrera et al., 2015). Such one-dimensional methods consider only a
vertical information flow between the 2-metre-temperature observations and the
soil moisture during the correction step. As a consequence, the observations need
to be interpolated to the horizontal grid of the land surface model (Shahabadi
et al., 2019; “IFS Documentation CY47R1 - Part II: Data Assimilation” 2020). This
additional step increases uncertainties in the interpolated observations. The caused
noise might overshadow the signal that comes from the soil moisture within the
observations. This would reduce the information content for the soil moisture
analysis.

To correct the soil moisture with 2-metre-temperature observations, we need to
estimate the cross-compartmental sensitivity from the observations to the corrected
state variables. In operational land surface data assimilation, these sensitivities
are estimated with external model forecasts (“IFS Documentation CY47R1 - Part
II: Data Assimilation” 2020; Milbrandt et al., 2016; Gómez et al., 2020) by a finite-
differences’ or an ensemble approach. Because the external model forecasts are
independent from the corrected model forecast, this simplification can lead to
physically-implausible or inconsistent sensitivities. These physically-implausible
or inconsistent sensitivities can lead to a wrong correction of the soil moisture.

These simplifications for land surface models can prevent in such ways a successful
use of 2-metre-temperature observations for the soil moisture analysis. In addition,
different methods are used for data assimilation in the atmosphere, leading to a
discrepancy in the methods between atmosphere and land surface. To initialize
the land surface model together with the atmospheric model, as needed for a
physically-consistent initialization of Earth system models, we would need to use
the methods for data assimilation in the atmosphere and land surface.

In this thesis, I investigate new possibilities for coupled data assimilation in Earth
system models to possibly unify the data assimilation systems. To do so, I use the
example of assimilating 2-metre-temperature observations across the atmosphere-
land interface. Contrary to the approach in operational forecasting, I simplify my
model configuration (see also Chapter 2) to be able to experiment with advanced
data assimilation methods. I conduct my experiments by simulating the interac-
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tions between atmosphere and land with the limited-area Terrestrial Modelling
Platform (TerrSysMP, Shrestha et al. 2014; Gasper et al. 2014). With this model
environment, I generate a nature run, a simulation without data assimilation. I
define this nature run as my reality and synthesize hourly and sparsely-distributed
2-metre-temperature observations based on its trajectory. I assimilate then these
synthetic observations into the soil moisture and atmospheric temperature in
different data assimilation experiments, conducted based on the same model
configuration as for the nature run. By using this approach, I avoid model er-
rors and uncertainties caused by parametrizations within the model. Hence, this
well-controlled environment yields clear indications about the performance of the
considered data assimilation methods for coupled data assimilation in a "perfect
world" case.

In this context, I compare a simplified extended Kalman filter to a localized
ensemble Kalman filter, as similarly used for data assimilation in the atmosphere
(for a derivation of the ensemble Kalman filter see also Chapter 3). This advanced
data assimilation approach together with the coupled terrestrial system model
and idealized experiments provides a unique opportunity for improvements in
land surface data assimilation. For the first time, I show that 2-metre-temperature
observations can be directly assimilated across the atmosphere-land interface
without the need for any intermediate interpolation step (see also Chapter 4). By
assimilating these observations at their original positions, I prove that they have a
previously unclear potential to improve the analysis in both, the atmosphere and
the land surface, at the same time. This allows me to merge the decoupled cycles
for the atmosphere and the land surface into one single data assimilation cycle
with hourly correction steps. As I merge their data assimilation cycles, I initialize
both Earth system components together in a physically-consistent way. Therefore,
I propose as my first framework to unify and couple the data assimilation in Earth
system models with a localized ensemble Kalman filter.

1.2 Ensemble Kalman filtering
As the Earth is a chaotic system, small initial deviations are exponentially am-
plified over time. This error amplification cannot be represented by one single
deterministic forecast. Thus, a popular approach in weather prediction is the
ensemble forecast. Instead of initializing one single forecast, a whole bundle of
forecasts is started, all with their own slightly different initial conditions. Because
of the exponential amplification, the forecasts deviate more and more from each
other over time. In this way, they provide an estimate for the uncertainty in the
system. This uncertainty estimate evolves over time and goes literally with the
flow in the system. It therefore ideally represents the true uncertainties in the
system that dynamically depends on the current state of the system.

This ensemble approach makes ensemble Kalman filters easier to implement than
other popular methods in atmospheric data assimilation (Kalnay et al., 2007a;
Bannister, 2017) such as four-dimensional variational data assimilation. The flow-
dependent uncertainty estimate from the ensemble can be directly used for a
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time-dependent weighting in the data assimilation cycle (Lorenc, 2003; Hamill
and Snyder, 2000). As the coupling strength of cross-compartmental interfaces
in the Earth system depends on the current state of the system, time-dependent
weighting is especially important for coupled data assimilation. Data assimilation
systems with a climatological uncertainty estimate have difficulties to represent
this time-dependency (Lin et al., 2017; Lin and Pu, 2018; Frolov et al., 2016; Smith
et al., 2017). In contrast, the estimate evolves on the basis of the coupled forecasting
models with an ensemble approach. Consequently, the ensemble estimate includes
all important cross-compartmental process that are also represented within the
models.

The ensemble Kalman filter additionally solves the problem of estimating the
sensitivities from the assimilated observations to the state variables (Evensen,
1994; Evensen and Leeuwen, 1996; Burgers et al., 1998; Houtekamer and Mitchell,
1998; Hunt et al., 2007). Normally, the modelled state variables are discretized
on a grid and averaged over a whole grid box. On the opposite, observations are
represented by positions of their observational sites. The assimilated observations
might thus have no direct equivalent among the state variables. For the correction
step, we have nevertheless to estimate the sensitivity of the state variables to the
observations. To estimate the sensitivity, non-linear observation operators are used
to translate the state variables into their observational equivalent. The sensitivity
is then given as way back from the observations to the state variables. A non-linear
sensitivity is difficult to represent in data assimilation and makes an analytical
solution for the analysis nearly impossible.

As one solution, the sensitivity is represented by an additional adjoint model in
variational data assimilation methods. On this basis, the analysis is iteratively
searched as a deterministic and constrained problem. Because the adjoint model
has to be developed and maintained (Bannister, 2017), variational data assimilation
methods are difficult to implement for Earth system models. As another solution,
ensemble Kalman filters represent the current state of the system as the mean
of the ensemble forecast. By linearizing the observation operator around this
ensemble mean, ensemble Kalman filters circumvent the problem of non-linear
sensitivities and analytically solve the analysis based on the prior ensemble. In this
way, we do not have to develop and maintain an adjoint model. Hence, ensemble
Kalman filters are a linearized and approximative solution to the data assimilation
problem with non-linear observation operators.

A challenge for ensemble Kalman filters are temporal-dependencies of observa-
tions to state variables of interest. These temporal dependencies emerge because
Earth system components are temporally dependent on each other. As an exam-
ple, information from the land surface into the atmospheric boundary layer is
propagated by the sensible heat flux and evapotranspiration with a time lag. In an
ensemble Kalman filter, only observations from the same time as the forecast are
assimilated during the correction step, as schematically shown in Fig. 1.4. Thus,
time-dependencies between components are only simulated by the propagation
in the short-term forecast and not considered during the correction step. This

8



1.2 Ensemble Kalman filtering

limitation inhibits observations from unfolding their full assimilation impact for
the cross-compartmental initialization of Earth system models.

To take temporal dependencies into account, it is theoretically advantageous to
assimilate observations not at a single time but in a given assimilation window, as
schematically shown in Fig. 1.4. By assimilating observations within a window, a
smoothing method targets trajectories spanning the whole time period, instead of
filtering a forecast at a single time step. Hence, the ensemble Kalman smoother can
take future observations into account and make use of temporal dependencies be-
tween observations and trajectory that should be corrected. By utilizing temporal
dependencies between components in the Earth system, these smoothing methods
are a promising way to extract more information out of existing observations for
coupled data assimilation. I show with an ensemble Kalman smoother that this
advantage is not only theoretically the case, but also leads to improvements in the
soil moisture analysis.

Figure 1.4: A simplified and schematic view on the difference between ensemble Kalman filters
and ensemble Kalman smoothers. In filtering, a short-term forecast is corrected to an analysis at
each observational time. The filtered analysis is propagated to the next time step. In smoothing,
one longer forecast trajectory is propagated up to the end of the assimilation window. Based on
this forecast, all observations within the window are used to correct the conditions at the beginning
of the window. These conditions are propagated a second time through the assimilation window
to get the corrected and smoothed trajectory.

Another challenge for ensemble Kalman methods is the limited number of ensem-
ble members. Only a limited ensemble size is affordable, because the ensemble-
based short-term forecast is the most expensive step in these methods. The number
of ensemble members upper-bounds the represented degrees of freedom in an
ensemble. As a consequence, the limited number of members causes multiple
problems in ensemble Kalman methods 1) the ensemble approximation induces
spurious correlations between state variables and observations, 2) the sampling of
ensemble members causes sampling errors in the uncertainty estimate. Because of
these sampling errors, the estimated uncertainty is likely too small to represent the
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true uncertainty of the system, leading to an underestimation of the observational
impact on the data assimilation. To tackle these problems, we need techniques
like localizing the influence of observations on the state variables (Houtekamer
and Mitchell, 1998, 2001; Ott et al., 2003; Hunt et al., 2007) or an artificial infla-
tion for the ensemble uncertainties (Anderson and Anderson, 1999; Mitchell and
Houtekamer, 2000). These tricks make ensemble Kalman methods feasible for
operational forecasting.

The limited number of ensemble members also constrains the usable information
from observations (Tsyrulnikov, 2013; Hotta and Ota, 2020). This problem can be
logically understood from a weighting point of view in data assimilation. For each
grid point and observation, we estimate one weighting factor. If more observations
are assimilated, then also more weighting factors are needed. Because the degrees
of freedom are upper-bounded, the ensemble does not provide enough information
content to estimate the weighting factors. Because of their regulative character,
ensemble Kalman methods reduces their weights for single observations. As a
consequence, single observations have a lowered observation impact. To make
more out of the existing observations, we have thus to reduce the assimilated
quantity of information.

To reduce the assimilated quantity of information in operational forecasting, the
assimilated observations can be thinned out (Hamrud et al., 2015). Another
approach is to constrain the number of observations that are considered for the
analysis at a single grid point (Schraff et al., 2016). However, these are only
heuristic tricks to reduce the assimilated quantity of information; they do not solve
the problem in a principle way.

Another concept to reduce the quantity of information is to use features of obser-
vations (Morzfeld et al., 2018). The idea is that observations have less degrees
of freedom than there are observational points. Let’s take for example a satellite
image: the image itself has O(106) pixels, but only 100 different objects are visible
within the image. If we build an object detection algorithm, we can condense
the information from O(106) pixels into O(100) features, representing the objects
and their position. Instead of assimilating the raw pixels, we would then assimi-
late these features. Thus, feature-based data assimilation allows us to reduce the
assimilated information content.

Feature-based data assimilation can also help for data assimilation across inter-
faces. Observations from one Earth system component could have characteristic
fingerprints that point toward errors in another component. To understand this
fingerprint concept, let’s stick again to an exemplary case: during daytime, the soil
moisture modulates the diurnal cycle of the 2-metre-temperature via the sensible
heat flux. However, the 2-metre-temperature is typically measured on an hourly
basis, where it exhibits fluctuations that might be not related to the soil moisture.
If we assimilate the hourly measured 2-metre-temperature into a coupled forecast
model, we would also assimilate noisy fluctuations, which could overshadow the
signal coming from the soil moisture. Instead, we can design features that are
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representative for the diurnal cycle of the 2-metre-temperature. These features
can then filter out unrelated fluctuations such that only the signal related to the
soil moisture remains. In this way, we can make data assimilation more robust
against noise in the ensemble and observations. Feature-based data assimilation
can be therefore a general procedure for coupled data assimilation in Earth system
models.

Building upon my first proposed framework of coupled data assimilation, I assim-
ilate 2-metre-temperature observations with an ensemble Kalman smoother and
a 24 hour window (see also Chapter 5). In my idealized experiments, I compare
the performance of such an ensemble Kalman smoother to two different ensemble
Kalman filters, where the analysis is conditioned to current and past observations.
My results prove that ensemble Kalman smoothers can take temporal dependen-
cies of the atmospheric boundary layer on the land surface into account. As a
result, they further improve the soil moisture analysis compared to ensemble
Kalman filters.

I introduce the novel concept of feature-based data assimilation into data assim-
ilation across interfaces by using fingerprint operators (see also Chapter 5). I
design two fingerprint operators for 2-metre-temperature observations in a 24
hour window to correct errors in the soil moisture forecast. In these fingerprint
operators, I take advantage that the soil moisture modulates the diurnal cycle of 2-
metre-temperature observations. These introduced fingerprint operators condense
the information from 24 2-metre-temperature into two features. By assimilating
these features, I obtain similar results for the soil moisture analysis as using the
raw observations in an ensemble Kalman smoother. Therefore, I propose as my
second framework to use such a feature-based ensemble data assimilation for the
initialization of Earth system models to make more out of the existing observations
across cross-compartmental interfaces.

As it can be time consuming to define such features for every single problem in
Earth system models, I introduce two novel approaches to define these features
based on data-driven methods (see also Chapter 6). In machine learning, linear
regression or linear classification methods are applied on explicitly extracted
features from raw data (Hastie et al., 2009; Murphy, 2012) to improve the linear
methods. Feature-based data assimilation with fingerprint operators can be seen
in the same way. I extract possibly non-linear features with explicitly defined
fingerprint operators from observations in the atmosphere. Afterwards, I linearly
assimilate these features with ensemble Kalman methods into the land surface. In
my two additional approaches, I generalize this idea of feature extraction as first
step and applying a linear data assimilation in a second step.

As first approach, I derive a novel generalization of fingerprint operators in
ensemble Kalman methods by kernel methods. In these kernel methods, the
linear core mechanic of creating similarities between vectors is replaced by a
kernel (Schölkopf and Smola, 2002; Rasmussen and Williams, 2006; Murphy,
2012), which implicitly represents the assimilated feature space in a reproducing
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kernel Hilbert space. In data assimilation terms, I automatically construct the
feature extractor based on the ensemble data by choosing a specific kernel. As
second approach, I bring in deep-learning-based methods (LeCun et al., 2015;
Goodfellow et al., 2016) on the basis of variational Bayes (Jordan et al., 1999;
Beal, 2003; Hinton and van Camp, 1993) as pre-processing step for ensemble
Kalman methods. I prove the ensemble transform Kalman filter (Bishop et al.,
2001; Hunt et al., 2007), used throughout this thesis, as a special solution of
variational Bayes. This allows me to use variational Bayes as general method
to tune parameters in the ensemble Kalman filter in a consistent Bayesian way.
As this general method can fit parameters with stochastic gradient descent and
differentiate through the data assimilation procedure, it can be additionally used
to replace hand-crafted observational features by a multi-layered neural network
and learn the network on the basis of training data. In this case, the neural network
could learn observational features from past data and we could use the network
for non-linear data assimilation with ensemble Kalman methods. Based on these
two approaches, I show in this thesis a way to integrate data-driven learning into
data assimilation methods and especially ensemble Kalman methods.
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2
Idealized twin experiments for the

atmosphere-land interface

In this Chapter, I present my idealized setup that allows me to study the interface
between the atmospheric boundary layer and the land surface. This idealized
setup is based on so-called twin experiments, on which I elaborate more in detail
in Section 2.1. Throughout this thesis, I use the Community Land Model as land
surface model and COSMO as atmospheric model in a Platform called TerrSysMP;
their components, coupling, and configuration are shown in Section 2.2. Addi-
tionally to the explained model configuration, I construct an ensemble of initial
states that are used as initial conditions for my runs. I show how I construct this
ensemble based on a spun-up run in Section 2.3. I define a single model run as
my reality, which is subsequently called nature run. This run and its weather
conditions are presented in Section 2.4. Based on this run, I generate synthetic
2-metre-temperature observations at 99 observational sites, which are unfolded in
Section 2.4.2.

2.1 What are my idealized twin experiments?
In real-world data assimilation, we do not know the true evolution of states in
the system. Our only source of information are disturbed representations of these
unknown true states, in form of observations with an observational error and
model simulations with a model error. Because of these errors, the performance of
data assimilation has to be evaluated against proxy data. This proxy data is often
a non-assimilated set of observations or a different data assimilation product from
another weather center. Because the performance of different data assimilation
methods heavily depends on this proxy data, it is difficult to compare different
data assimilation methods.

Intractable factors and errors influence observations and model. This problem
especially prevails in the atmospheric boundary layer and at the land surface.
Here, processes acting at small-scales have a large impact on the temporal de-
velopment of the cross-compartmental interface. Nevertheless, the resolution
of our model is too coarse to resolve these processes. As a consequence, these
unresolved processes cause model errors that lead to biases in the representation of
the atmospheric boundary layer and the land surface. These small-scale processes
additionally influence observations from the atmospheric boundary layer, like
2-metre-temperature observations. Because these processes are unresolved, it is
difficult to construct a model equivalent of atmospheric boundary layer observa-
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tions. If a model equivalent is found, then its observational errors are often large
so that single boundary layer observations have only a low impact on the data
assimilation.

To circumvent the problems of an unknown true state and intractable errors, I
employ idealized twin experiments. In these twin experiments, I conduct a single,
deterministic model run that I define as my reality, the so-called nature run. Based
on this known reality, I extract synthetic observations with a perfectly-known
observation operator and a pre-defined observational error. Hence, I exactly
know the observational error distribution, which would not be the case for real-
world observations. I additionally use the same model configuration for my
experiments as for my nature run. In this way, I deactivate any kind of model
error that might lower the performance of the data assimilation. As additional
simplification in my experiments, I only perturb the initial conditions for the land
surface model, whereas I use the same initial and lateral boundary conditions for
the atmospheric model. All differences in the experiments are therefore only a
result of the perturbed initial conditions in the land surface. With this strategy, I
can control and backtrack the uncertainties and errors in the experiments.

I can simply compare my experiments against my nature run without the need
of any interpolation or proxy data, because I know the reality on the same grid
as for my experiments. This simple verification, together with a control on the
uncertainties, allows me to get robust results about the performance of my data
assimilation methods on a simulated time period of seven days. On the opposing
side, I simplify my experiments compared to real-world data assimilation exper-
iments. I use a perfect model without any model error in my experiments. As
a consequence, it is difficult to draw conclusions about the performance of my
data assimilation methods in the case of imperfect models. In addition, I perfectly
know the true state and hence also the synthetic observations in these experiments.
Therefore, it is difficult to make general statements about the robustness of my data
assimilation methods in the case of only partial knowledge. All in all, my idealized
twin experiments are a convenient way to compare data assimilation methods
without any external source of noise, but the results with these experiments are in
some sense only proof of concepts. They are not yet validate in real-world data
assimilation.

2.2 TerrSysMP
The Terrestrial System Modelling Platform (TerrSysMP, Gasper et al. 2014; Shrestha
et al. 2014) is a coupled atmosphere-land modelling system. This coupled mod-
elling system simulates in a physically consistent way the transport of water and
energy from the land surface into the atmosphere and vice versa.

TerrSysMP includes three different models: 1) the COnsortium for Small-scale
MOdelling model (COSMO) for the atmosphere, 2) the Community Land Model
(CLM, Oleson et al. 2004; Oleson K. W. et al. 2008) for the land surface, and
3) ParFlow for the sub-surface flow within the soil. In this thesis, I concentrate
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only on the relationship between atmospheric boundary layer and land surface. I
therefore omit ParFlow for my experiments and solely use CLM, Version 3.5, to
simulate processes in the land surface and soil. In this column-based land model,
soil and vegetation processes are represented by vertical fluxes of moisture and
heat in form of the soil moisture and soil temperature.

COSMO (here-used as Version 4.21) as non-hydrostatic mesoscale weather model
evolved out of the non-hydrostatic limited-area model (Steppeler et al., 2003). This
convection-permitting model was operationally used at the Deutscher Wetterdi-
ents (DWD, Germany Meteorological Service, Baldauf et al. (2011)) for many years.
It is continuously used at other weather services (e.g. MeteoSwiss) with horizontal
resolutions of up to 1.1 km. Furthermore, COSMO can model processes in the
atmospheric boundary layer for up to sub-kilometre-scales (Finn et al., 2020).

In my setup, CLM is coupled to COSMO via the OASIS3 coupler (Valcke, 2013)
and acts as lower boundary condition for COSMO. This lower boundary condi-
tion is represented as heat and momentum flux from the land surface into the
atmospheric boundary layer. In addition, the ground temperature and surface
specific humidity in COSMO is replaced by their counterparts from CLM. For
the calculation of the radiative fluxes in COSMO, the direct and diffuse albedo
and the outgoing longwave radiation is transmitted from CLM to COSMO. As
CLM needs atmospheric forcing data, temperature, wind speed, specific humidity,
and pressure from the lowest model level is send from COSMO to CLM. To close
the water balance in CLM, the convective and grid-scale precipitation fields are
gathered from COSMO, whereas the incoming short- and long-wave radiation is
used to close the surface energy balance in CLM.

The horizontal grid in CLM is based on a Cartesian coordinate system, whereas
COSMO uses a rotated pole system. Furthermore, processes at the land surface
act on smaller scales than in the atmosphere. Hence, I use CLM with a horizontal
resolution of 1 km, whereas COSMO has a coarser resolution of 2.8 km. As a
consequence, the fields have to be interpolated before they can be exchanged
between CLM and COSMO. The information coming from CLM and going to
COSMO is interpolated by a distance weighted nearest neighbor interpolation,
whereas a bilinear interpolation method is used for the information flow from
COSMO to CLM, as described by Shrestha et al. (2014).

I use COSMO with 50 full vertical levels. Hence, my configuration of COSMO is
similar to the configuration that was used for the operational COSMO-DE runs at
the DWD until 2018. CLM has a fixed number of 10 vertical soil levels. On every
level, the tendency for water and heat are estimated based on the state in the level
above and below the current level. An additional unconfined aquifer stores the
ground water in CLM and is the lower boundary condition for CLM. In this thesis,
I do not use the 5 additional snow levels in CLM, because my simulations are for a
mid-latitude summer period without any snow and ice. The model orographies for
COSMO and CLM are based on the European digital elevation model (Figure 2.1,
European Environment Agency 2013). The model area has its origin on the Neckar
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Figure 2.1: The model orography, extracted from CLM, is based on the European digital ele-
vation model (European Environment Agency, 2013). The black points are representing the 99
measurement sites, used for synthetic observations of the 2-metre-temperature.

catchment in Baden-Württemberg and spans a region of ∼ 300 km in latitudinal
direction and ∼ 280 km in longitudinal direction.

The main surface type is defined as single surface type per grid point in CLM.
To further simplify the setup, the plant functional types (PFTs) are restricted to a
single PFT per grid point. Over the whole area seen, the land use is restricted to
five different plant types: 1) broad-leaf forests, 2) needle-leaf forests, 3) grassland,
4) cropland, and 5) bare soil. The land use is classified with the CORINE Land
Cover inventory (Keil et al., 2011). Water surfaces, like lakes or rivers, and urban
areas are represented as bare soil. For the four plant types, without bare soil, the
plant leaf area index (LAI) is calculated based on MODIS (Myneni et al., 2002)
and post-processed for bias correction. Based on the LAI, the steam area index is
estimated following Lawrence and Chase (2007) and Zeng et al. (2002). For CLM,
the additionally needed soil types are extracted and interpolated from the soil
map of Germany (’Bodenübersichtskarte’, Bundesanstalt fuer Geowissenschaften
und Rohstoffe 2016).

As time step in COSMO, I use a time step of 10 s. To satisfy the Courant-Friedrich-
Levy criterion (CFL), the wind speed should be as a consequence not faster than
280 m s−1. Since these wind speed values are hardly reached in the atmosphere,
even in the polar jet stream, this time step satisfies the CFL criterion. For CLM and
for the coupling rate in OASIS3, I apply a longer time step of 90 s, representing that
processes within the land surface act on longer time-scales than in the atmosphere.

2.3 An initial ensemble of states
In my experiments, I specifically investigate the sensitivity of the 2-metre-temperature
on perturbations in the soil moisture. For this investigation, I reduce the noise
coming from other possible sources and perturb only the initial soil conditions

16



2.3 An initial ensemble of states

compared to my nature run. All other parameters, like the lateral boundary condi-
tions and the model configuration, are for my ensemble experiments the same as
for my nature run. Differences in 2-metre-temperature between different runs are
therefore only a consequence of these generated perturbations in the initial soil
conditions.

The conditions in the land surface and soil should be synchronized to the climatic
conditions in the atmosphere. In addition, processes in soil act on much longer
time-scales than processes in the atmosphere. I build my ensemble on the basis
of a single, spun-up, run with a similar model configuration and a spin-up of six
years. This spun-up run provides the initial conditions for the atmosphere at 2015-
07-30 00:00 UTC. The needed lateral boundary conditions for the atmosphere are
generated based on one member of the COSMO-DE EPS ensemble from the DWD
with the same horizontal and vertical resolution as my COSMO configuration.

Compared to the initial conditions provided by the spun-up run, I disturb the
initial soil conditions for 2015-07-30 00:00 UTC. Although I am mainly interested
in the relationship between the 2-metre-temperature and the soil moisture, I per-
turb the soil moisture together with the soil temperature, which induces some
additional noise into the atmospheric boundary layer. In initial experiments,
I found that only using soil moisture perturbations can lead to very high and
physically-implausible sensitivities of perturbations in the soil moisture to per-
turbations in the 2-metre-temperature. With these implausible sensitivities, data
assimilation would make too big update steps, which would have a negative
assimilation impact. The additional perturbation of the soil temperature stabilizes
the sensitivities without reducing the signal coming from the soil moisture on the
2-metre-temperature.

For the soil moisture perturbations, I perturb the soil moisture saturation, which
is the volumetric soil moisture scaled by the saturation point that depends among
others on the soil type, whereas I directly perturb the soil temperature. Addi-
tionally, I bound the resulting soil moisture saturation to the physically-plausible
area between 0 and 1. As perturbation strengths, I use Gaussian noises with a
mean of zero and standard deviations of 0.06 for the soil moisture saturation and
a standard deviation of 1 K for the soil temperature, across all layers. For the soil
moisture saturation similar values were applied in (Schraff et al., 2016), and in
an initial experiment, I found that these values generate a reasonable ensemble
spread for the 2-metre-temperature, as shown in Fig. 2.2.

I independently correlate the perturbations for the soil moisture and soil tempera-
ture in horizontal and vertical dimensions on the basis of two different Gaussian
covariance functions. As horizontal covariance function, I use a truncated Gaus-
sian kernel with a scale of 14 grid points, which equals roughly 14 km, whereas the
kernel is truncated after 42 grid points. A similarly truncated covariance function
is used in vertical dimensions with a scale of 0.5 m and a truncation after 1 m.
These correlation scales are again similar to those used in Schraff et al., 2016, and
they generate realistic looking soil moisture patterns.
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Figure 2.2: The root-mean-squared-error of the ensemble mean compared to the nature run and
the ensemble spread, both as the square-root of the area-averaged quadratic statistics, for the 2-
metre-temperature in the ensemble without data assimilation. The grey-shaded area indicates the
spin-up phase, which is not used for the experiments. The soil conditions as solely driving factor
for perturbations in the 2-metre-temperature cause the diurnal cycle in the differences. The shown
2-metre-temperature is a diagnostics quantity in COSMO, interpolated between lowest surface
temperature from CLM and lowest mode layer temperature (10 meters height) from COSMO. As a
consequence, the perturbed surface temperature drives the initial ensemble spread and forecast
error in the 2-metre-temperature.

Based on the Gaussian noise and the Gaussian covariance functions, I generate an
ensemble of 40 different initial soil conditions for my data assimilation experiments
with 40 ensemble members; the same number of members is operationally used
at the DWD for their ensemble data assimilation system, which provides the
initial conditions in their ICON-D2-EPS (Reinert et al., 2021). I use the initial soil
conditions of a hypothetical 41-th ensemble member as the initial conditions for
my nature run. By initializing the nature run in this way, I make the ensemble
spread representative for the forecast error of the ensemble mean compared to
the nature run, as shown in Fig. 2.2. In theory, there should be no difference if I
perturb my nature run or if I center my ensemble around a perturbed ensemble
mean. Nevertheless, the soil moisture is bounded between 0 m3 m−3 and the
saturation point. As a consequence, there would be small differences between
perturbing the nature run or perturbing the ensemble mean. If I recenter my
ensemble around a perturbed ensemble mean, I influence the fields of all 40
ensemble members such that there might be edge cases where the soil moisture in
all ensemble members collapses to 0 m3 m−3 or to the saturation point. To avoid
these edge cases, it is easier for me to perturb the initial conditions of the nature
run instead of perturbing the initial conditions of the ensemble mean.

For all runs, including my nature run, I run the first 36 hours of simulation as
spin-up phase, until 2015-07-31 12:00 UTC. Within this spin-up phase, I expect
that perturbations in the soil conditions near the land surface are propagated into
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2.4 The nature run

the atmospheric boundary layer. This propagation should result in considerable
differences in the 2-metre-temperature. If the ensemble with its 40 ensemble
members is representative for the forecast errors of the ensemble mean, then
the averaged ensemble spread should be similar to the root-mean-squared-error
of the ensemble mean to the nature run. The comparison in Fig. 2.2 shows
that the ensemble is indeed representative for the forecast error. Even more, the
perturbations are already propagated to the 2-metre-temperature within the spin-
up phase. The 2-metre-temperature is estimated as average between the surface
temperature and lowest model layer (in my case 10 metres height) in COSMO,
as I will describe in Section 3.5.1. Caused by the initial surface temperature
perturbations, also the diagnostic 2-metre-temperature has already perturbations
within the initial time step.

After this spin-up phase, starting at 2015-07-31 12:00 UTC, I start with my experi-
ments. Because my data assimilation environment (for more information see also
Section 3.5.3) communicates on a file-basis with TerrSysMP, the model is in some
experiments restarted hourly. This resets processes in the turbulent kinetic energy
schema in COSMO, which can be seen as some kind of model error. To mitigate
this possible model error source in all of my experiments, I restart after 2015-07-31
12:00 UTC all runs hourly, including my nature run.

My nature run is together with the other 40 ensemble members the basis for my
experiments in Chapter 4 and Chapter 5. Because of its importance, I explain more
details about the nature run in the following.

2.4 The nature run
With the previously described configuration, I run my nature run for more than
seven days from 2015-07-31 12:00 UTC to 2015-08-08 00:00 UTC. I define the state
trajectory of this nature run as my reality. In addition, I synthesize out of this
trajectory 2-metre-temperature observations. These synthetic 2-metre-temperature
observations are assimilated into my data assimilation experiments. Furthermore,
I compare my data assimilation experiments with this state trajectory. In the
following, I describe the weather and soil conditions that allow me to do data
assimilation across the atmosphere-land interface. Subsequently, I explain how I
generate my synthetic 2-metre-temperature observations.

2.4.1 Weather and soil conditions
One of the first requirements to do data assimilation across the atmosphere-land
interface is that these two Earth system components are coupled. They are coupled
through the sensible heat flux and evapotranspiration. Since these fluxes are
mainly driven by the incoming solar radiation at the surface, also the coupling
between atmosphere and land is mainly driven by incoming solar radiation.

In addition, perturbations from the soil moisture have their largest impact on the
sensible heat flux for soil conditions that are neither too dry nor too moist. If
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2 Idealized twin experiments for the atmosphere-land interface

the soil moisture is too dry and in the region of the welting point, then plants
cannot transpire. If, on the other side, the soil moisture is too moist and in the
region of the saturation point, then plants have their maximum transpiration.
In both cases, differences in the soil moisture have only a small impact on the
strength of the transpiration. As a consequence, the sensible heat flux is not
influenced by differences in the soil moisture, reducing the sensitivity of the 2-
metre-temperature to soil moisture perturbations. My simulated time period with
its weather conditions satisfies both conditions as I show in the following (Figure
2.3).

Figure 2.3: Mean weather overview over the simulated time period, extracted from the nature run.
The grey-shaded area indicates the spin-up phase, which is not used for the experiments. (a) The
hourly development of the 10 m temperature as area mean, while the blue bars show the fraction
of grid points with precipitation (> 0 kg m−2 h−1) in the previous hour. (b) Hourly soil moisture
saturation, defined as soil moisture divided by the saturation point, in root-dept h (0.21 m depth)
as area mean.

In my simulated nine-day period, the daily mean 2-metre-temperature increases
with time, whereas the soil moisture in root-depth decreases. The amplitude of
the diurnal cycle in the 2-metre-temperature is further quite large. Together with
the soil moisture drying and the temperature increase, this amplitude indicates a
period with strong incoming solar radiation at the land surface and without large
precipitation events. The only larger precipitation event is on 2015-08-01, whereas
a smaller event on 2015-08-04 has the largest impact on the 2-metre-temperature.
In addition, the soil moisture is in a mixed regime, as indicated by saturation
values around 0.5. This mixed regime indicates a strong sensitivity of the 2-metre-
temperature to perturbations in the soil moisture. Based on this weather overview
only, I would expect a coupling between atmospheric boundary layer temperature
and soil moisture in root-depth during day-time.

2.4.2 Synthetic 2-metre-temperature observations
The nature run with all its weather features is the basis for my synthetic 2-metre-
temperature observations that are assimilated into my data assimilation experi-
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ments. In the following, I explain how I synthesize these observations out of my
nature run.

The observational positions should be as near as possible to true measurement
sites to estimate a realistic assimilation impact from 2-metre-temperature obser-
vations on the soil moisture. Thus, I use positions from the surface measurement
network of the DWD. As a result, I obtain 99 measurement sites in my selected
area (marked as black dots in Fig. 2.1). On this basis, I synthesize hourly 2-metre-
temperature observations by using the diagnostic 2-metre-temperature fields,
estimated in COSMO. I hereby select the 2-metre-temperature at the nearest hori-
zontal neighbor grid point to the real measurement sites. To avoid the need for
vertical interpolation in my observation operator, I use the orographic height from
COSMO also as measurement height. As a consequence, the scheme perfectly
describes the observation operator that I use in my data assimilation experiments
to translate the model state into observational space (for more information about
this observation operator see also Section 3.5.1).

The only perturbations arise from initial soil conditions in my experiments. This
limits perturbations in the atmospheric boundary layer significantly. By using
realistic observational errors (O(1 K)), these errors would overshadow the signal
coming from the soil moisture on the 2-metre-temperature observations. I therefore
chose observational errors that are one order of magnitude smaller than realistic
observational errors in the 2-metre-temperature. I generate them as additive
Gaussian white noise with a standard deviation of σo = 0.1 K. Because I have a
constant standard deviation, my resulting observational covariance matrix R for
the data assimilation is a static diagonal matrix with (σo)2 as diagonal elements
R = (σo)2

I.
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3
A localized ensemble Kalman filter
for the atmosphere-land interface

In this Chapter, I elaborate about the principles of ensemble Kalman filtering
for the atmosphere-land interface, setting the general data assimilation method
for the following Chapters. I start with a general derivation of data assimilation
from Bayesian and probabilistic principles in Section 3.1. In this thesis, the data
assimilation methods are mainly based on the ensemble transform Kalman filter.
I therefore derive only this schema in Section 3.2 and Section 3.3, whereas I
describe specific deviations from the schema in Chapter 4 and Chapter 5. To get
the derived ensemble Kalman filter working, I present inflation and localization
in Section 3.4. In addition, an in-deep explanation for my 2-metre-temperature
observation operator and the post-processing of the analysis is shown in Section
3.5. There, I present my implementation of the data assimilation in my own-
developed software package. In the last section of this chapter, I introduce the
concept of offline data assimilation experiments, which I use in the following
Chapters. A general overview of the here-used notation is given in Chapter A.1.

The idea of an ensemble Kalman filter is not new. I use here an implementation
of the localized ensemble transform Kalman filter (LETKF, Hunt et al., 2007). The
derivation therefore mainly resembles the steps in Hunt et al., 2007, where more
details about the LETKF are provided. Many scientific advances in data assimi-
lation were previously needed for this development towards a stable localized
ensemble Kalman filter.

The ensemble Kalman filter is based on the Kalman filter equations (Kalman, 1960).
This Kalman filter gives the optimal solution in the Gaussian-linear case. Geophys-
ical systems have often non-linear dependencies such that states are non-linearly
propagated in forecast models. As a consequence, the Kalman filter equations
are not directly applicable in geophysical forecast models. Hence, two notably
extension of the Kalman filter are the extended Kalman filter (Jazwinski, 1970; An-
derson et al., 1979) and the square-root Kalman filter (Battin, 1964; Bierman, 1977;
Anderson et al., 1979; Maybeck, 1982). On the one hand, the extended Kalman
filter linearizes the non-linearities around a non-linearly propagated Gaussian
mean. With this linearization the Kalman filter equations can be applied. On the
other hand, the square-root Kalman filter decomposes the involved covariances
into their square-roots and propagates these square-roots. The use of square-roots
guarantees that the propagated covariance matrices are always positive-definite
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3 A localized ensemble Kalman filter for the atmosphere-land interface

and increases the conditioning of these matrices. States in geophysical systems are
not only non-linear dependent on each other but also often very high-dimensional.

Hence, the linearization in the extended Kalman filter has high computational
costs (Evensen, 1992, 1993). The ensemble Kalman filter (EnKF, Evensen, 1994)
approximates the linearization by a Monte-Carlo procedure with a limited number
of samples; all samples are propagated with the non-linear forecast model. Based
on the approximated linearizations, the Kalman filter equations are applied to
update the mean and covariance. By updating single ensemble members with
the Kalman filter equations, the ensemble members would be use two times,
once for the estimation of the so-called Kalman gain and once for their update.
This would lead to too small analysis covariances within the ensemble (Burgers
et al., 1998; Houtekamer and Mitchell, 1998). Therefore, the stochastic EnKF
(Burgers et al., 1998) independently draws observations from the observational
probability function for every ensemble member. Nevertheless, randomly drawn
observations causes additional sampling errors (Whitaker and Hamill, 2002). It
can be therefore advantageous to estimate the ensemble Kalman filter based on
a deterministic schema. Notably other deterministic schemata are the ensemble
adjustment Kalman filter (Anderson, 2001) and the ensemble square-root Kalman
filter with serial processing of observations (Whitaker and Hamill, 2002), whereas
the LETKF is based on the ensemble transform Kalman filter (ETKF, (Bishop et al.,
2001)). All of these deterministic methods use a different ensemble transformation
to estimate the ensemble members. Hence, they can be unified under one common
roof, namely, ensemble square-root filters (Tippett et al., 2003).

The ensemble transformation in the ETKF is not uniquely defined. Thus, it was
shown that a symmetric square-root results into better results for high-dimensional
systems with a low number of ensemble members than transformations with a
positive-negative paired centering (Wang et al., 2004). Furthermore, it was shown
that the data assimilation problem can be efficiently split up into smaller and
local sub-problems (Ott et al., 2002, 2003). This allows a parallel evaluation
of the analysis for every grid point in a forecast model independently. These
developments finally evolved into the here-used LETKF.

3.1 Data assimilation from Bayesian principles
In data assimilation, I want to estimate the model-state xt at time t based on
observations yo

1:t from time 1 to time t. The initial state x0 is unknown and has
to be specified in a first step. I specify this initial state as Gaussian distributed
x0 ∼ N(x0,P0) with x0 as initial mean and P0 as initial covariance. The perfectly-
known modelMt−17→t(xt−1) maps then the state from time t− 1 to time t,

xt =Mt−17→t(xt−1). (3.1)

I additionally define an observation operator Ht(xt) that translates a model-state
at time t to an observation at the same time. I assume an additive error εt,
drawn from a Gaussian probability distribution with 0 as mean and R as time-
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3.1 Data assimilation from Bayesian principles

independent covariance,

y
o
t = Ht(xt) + εt, εt ∼ N(0,R). (3.2)

Based on the propagated model-state (3.1) and observation operator (3.2), I define
a transition probability density p(xt | xt−1) and an observational likelihood p(yo

t |

xt), δ(·) is hereby a Dirac delta function,

p(xt | xt−1) = δ(xt −Mt−17→t(xt−1)), (3.3)

p(yo
t | xt) = N(yo

t −Ht(xt),R). (3.4)

With these and the defined initial state p(x0), the filtering solution of state xt,
called posterior or analysis, results then from Bayes’ rule in a two-step procedure:

1. I propagate the distribution of the previous state estimate xa
t−1 ∼ p(xt−1 |

y
o
1:t−1) at time t− 1 to the current step t,

p(xt | y
o
1:t−1) =

∫
p(xt | xt−1)p(xt−1 | y

o
1:t−1)dxt−1.

In the following I will use xb
t = Mt−17→t(x

a
t−1) as short form for the propa-

gated model-state or call it prior forecast.
The uncertainties of the prior distribution p(xt | y

o
1:t−1) are only a product

of the propagated uncertainties from the previous state estimate. Here, I
assume that these propagated uncertainties are additive and independent of
any observational error. In addition, the uncertainties are presumably repre-
sented by a Gaussian distribution with 0 as mean and Pb

t as time-dependent
covariance, leading to

p(xt | y
o
1:t−1) = N(xt − x

b
t ,Pb

t ). (3.5)

2. I update the current state xt based on the observation yo
t and the prior

distribution p(xt | y
o
1:t−1),

p(xt | y
o
1:t) =

p(yo
t | xt)p(xt | y

o
1:t−1)∫

p(yo
t | x

′
t)p(x

′
t | y

o
1:t−1)dx

′
t

. (3.6)

To estimate the best possible current state xa
t , I employ a maximum-a-posterior

(MAP) procedure with the update step (3.6),

x
a
t = argmax

xt

p(xt | y
o
1:t),

∝ argmin
xt

− log(p(yo
t | xt)) − log(p(xt | y

o
1:t−1)). (3.7)
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3 A localized ensemble Kalman filter for the atmosphere-land interface

Together with the Gaussian distribution (3.3) and the Gaussian likelihood (3.4),
MAP results in the minimization of the following cost function L(xt), with [·]T as
transposed and [·]−1 as inverse,

L(xt) =[xt − x
b
t ]
T (Pb

t )
−1[xt − x

b
t ]

+[yo
t −Ht(xt)]

T
R
−1[yo

t −Ht(xt)]. (3.8)

The first term of this cost function constrains the solution to be as close as possible
to the propagated state, and hence to the previous observations, whereas the
second term nudges the translated solution in observational space to the current
observations. This cost function is the basis for variational procedures like 3D-Var
(Lorenc, 1981; Parrish and Derber, 1992; Courtier et al., 1998), where I would
explicitly minimize (3.8) by gradient descent methods. For this minimization, I
would need the tangent linear model of the observations operator Ht(xt), but this
tangent linear model is not provided in my TerrSysMP-based data assimilation
environment.

I can linearize the observation operator H around the current state estimate xt
to find an analytical solution for (3.8) and avoid the need of a tangent linear
model (Hunt et al., 2007). The optimal solution of (3.6) and (3.8) is given as
Gaussian distribution, because the Gaussian prior distribution p(xt | y

o
1:t−1) is

the conjugate prior for another Gaussian distribution, here the observational
likelihood p(yo

t | xt). The resulting Gaussian posterior distribution N(xa
t ,P

a
t) has

then xa
t as mean and Pa

t as covariance (Kalman, 1960),

x
a
t = x

b
t +K(y

o
t −Htx

b
t ), (3.9)

P
a
t = P

b
t −KHtP

b
t

= (I−KHt)P
b
t

= [(Pb
t )

−1 + (Ht)
T
R
−1
Ht]

−1, (3.10)

K = Pb
t (Ht)

T [HtP
b
t (Ht)

T +R]−1

= [(Pb
t )

−1 + (Ht)
T
R
−1
Ht]

−1(Ht)
T
R
−1. (3.11)

This set of Kalman filter equations completely defines the posterior distribution
with its mean (3.9) and covariance (3.10). The Kalman gain K (3.11) has a special
role. On the one hand, it translates the innovation (yo

t −Htx
b
t ) into a correction

term for the estimation of the mean state xa
t . On the other hand, the gain determines

the reduction of the prior covariance Pb
t because of new information given by the

observations.

All data assimilation methods in this dissertation use a form of this set of equations
(3.9)-(3.11) and deviate only in the determination of the linearized observation
operatorHt, prior state xb

t , and prior covariance Pb
t . In the following, I will derive

the ensemble transform Kalman filter from these general principles based on an
ensemble approximation to (3.3) and (3.5).
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3.2 Gaussian ensemble data assimilation
In (3.1) and (3.3), I propagate a single solution from time t− 1 to time t and specify
a temporal-dependent covariance Pb

t to the propagated state xb
t . A common

simplification is to assume a static covariance matrix Pb
t ≈ B, which can be used

in 3D-Var or simplified extended Kalman filters. This simplification of a static
B-matrix can lead to a significant over- or underestimation of the Kalman gain
in (3.11) because of the chaotic nature of the problem in the case of a non-linear
dynamical model.

I approximate p(xt | y
o
1:t−1) in (3.5) by a Monte-Carlo approach to circumvent

these problems and create a dynamical covariance, which depends on the current
information flow in the model. For the Monte-Carlo approximation, I draw k

samples, in the following called ensemble members, from the previously updated
probability density xa(i)

t−1 ∼ p(xt−1 | y
o
1:t−1), here shown for the i-th ensemble

member. To get a sample from the prior state, I propagate every ensemble member
independently with the dynamical model xb(i)

t = M(x
a(i)
t−1). As a consequence, I

approximate the prior distribution p(xt | y
o
1:t−1) from (3.5) and needed in (3.6)

with these samples.

I approximate the prior state xb
t and its covariance Pb

t based on the propagated
ensemble members with xb

t as ensemble mean and δxb(i)
t as i-th perturbation,

x
b
t ≈ x

b
t = k

−1
k∑
i=1

x
b(i)
t , (3.12)

P
b
t ≈ (k− 1)−1

k∑
i=1

(x
b(i)
t − xb

t )(x
b(i)
t − xb

t )
T

= (k− 1)−1
k∑
i=1

δx
b(i)
t (δx

b(i)
t )T . (3.13)

With these first two moments of the empirical distribution, I approximate (3.5)
and use xb

t and Pb
t to update the mean and the covariance with (3.9) and (3.10). To

complete the update step, I need a linearized version of the observation operator
H. In the next section, I show how to derive this linearized version in form of the
ensemble transform Kalman filter.

3.3 Ensemble transform Kalman filter
The ensemble transform Kalman filter (ETKF, Bishop et al., 2001; Hunt et al., 2007)
is an efficient form of an ensemble Kalman filter for large-dimensional geophysical
systems. The ETKF estimates the analysis in a transformed space spanned by the
perturbations of the prior ensemble members. This reduces the computational
costs compared to a naively implemented ensemble-version of the Kalman filter
equations. In addition, the ETKF is a square-root ensemble Kalman filter (Tippett
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et al., 2003) and deterministically estimates the analysis ensemble based on the
ensemble statistics and the Kalman equations.

With the ensemble approximations (3.12) and (3.13), the assimilation increment of
the analyzed model-state ∆xa

t = x
a
t − x

b
t lies in the space spanned by δXb

t (Lorenc,
2003; Hunt et al., 2007) as column-wise matrix of the prior ensemble perturbations
with δxb(i)

t as i-th column. This motivates a linear variable transformation where
the solution xt is explicitly represented by a vector of weightswwith I as k× k-
dimensional identity matrix,

w ∼ N(0, (k− 1)−1
I), (3.14)

xt = x
b
t + δX

b
tw. (3.15)

The specified prior distribution (3.14) ensures that xt equals to the prior ensemble
statistics if we assimilate no observations.

This variable transformation (3.15) affects the variational cost function from (3.8),

L(w) =(k− 1)(w)Tw

+[yo
t −Ht(x

b
t + δX

b
tw)]TR−1[yo

t −Ht(x
b
t + δX

b
tw)]. (3.16)

Thus, the variable transformation changes the problem from searching the optimal
solution in model space to an optimization in weight space.

To derive an analytically tractable form of the posterior in weight space, I have
to linearize the observation operator around the prior ensemble mean. For this
linearization, I transform every ensemble member independently from model
space into observational space yb(i)

t = H(x
b(i)
t ). Based on the transformed en-

semble members, I approximate the prior ensemble mean in observational space
Ht(x

b
t ) ≈ y

b
t = k

−1 ∑k
i=1H(x

b(i)
t ). With this ensemble mean in observational space,

I define a column-wise matrix δYb
t of ensemble perturbations in observational

space with δyb(i)
t = H(x

b(i)
t ) − yb

t as i-th column. This matrix acts as approxi-
mated tangent linear, translating from weight space to observational space. As
linearization, I obtain the following equation,

Ht(x
b
t + δX

b
tw) ≈ yb

t + δY
b
tw. (3.17)

With this linearized observation operator, I simplify the cost function in weight
space (3.16),

L(w) =(k− 1)(w)Tw

+[yo
t −y

b
t − δY

b
tw]TR−1[yo

t −y
b
t − δY

b
tw]. (3.18)

For this cost function, I do not need access to the observation operator any longer if
I have access to the transformed ensemble in observational space. This is important
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for my implementation, because I can simply use the model output from COSMO
without needing an explicit observation operator for the 2-metre-temperature.

Based on this simplified cost function, I derive in analogy to (3.9)-(3.11) a set of
equations to analytically estimate the posterior in weight space withwa as mean
and P̃

a
as covariance,

w
a = [(k− 1)I+ (δYb

t )
T
R
−1
δY

b
t ]
−1(δYb

t )
T
R
−1(yo

t −y
b
t ), (3.19)

P̃
a
= [(k− 1)I+ (δYb

t )
T
R
−1
δY

b
t ]
−1. (3.20)

With this posterior distribution and the variable transformation (3.15), I estimate
the posterior in model space in the following way,

x
a
t = x

b
t + δX

b
tw

a, (3.21)

P
a
t = δX

b
t P̃

a
(δXb

t )
T . (3.22)

To get prior ensemble members for the next update step, I have to reconstruct
the posterior ensemble members at the current update step. I use a symmetric
square-root of Pa

t to define the ensemble perturbations in weight space. With this
symmetric square-root formulation, I guarantee that the perturbations are centered
and have Pa

t from (3.22) as covariance (Wang et al., 2004). For the ensemble
perturbations in weight space, this results in

δW
a = [(k− 1)P̃

a
]

1
2 . (3.23)

This weight perturbation matrix δWa contains column-wise the transformations
needed to construct perturbations for single ensemble members. Furthermore, I
add column-wise the mean weight for a more efficient construction of the ensem-
ble,

x
a(i)
t = xb

t + δX
b
tw

a + δXb
tδw

a(i)

= xb
t + δX

b
t (w

a + δwa(i)). (3.24)

I can propagate these reconstructed posterior ensemble members to get the prior
ensemble members for the next update step. The data assimilation cycle for the
ETKF is therefore completely described by this set of equations (3.19)-(3.24).

3.4 Inflation and Localization
When the dimensionality of state variables is much higher than the number of
ensemble members within the LETKF, the error can evolve into directions that
cannot be represented with the ensemble members. As a consequence, we need
additional techniques to stabilize ensemble data assimilation for high-dimensional
geophysical systems like TerrSysMP, even in idealized twin experiments. In this
section, I present elaborate more on why I need to inflate the prior ensemble co-
variances, and why I need to localize the assimilation impact for high-dimensional
data assimilation. In addition, I specify which type of inflation and localization I
use in Chapter 4 and Chapter 5.
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3 A localized ensemble Kalman filter for the atmosphere-land interface

3.4.1 Multiplicative prior inflation
As I explain in Chapter 2, I use in my idealized twin experiments the same model
configuration for my data assimilation experiments as I use for my nature run. The
data assimilation experiments are model-error free compared to the nature run.
Nevertheless, the ensemble approximation from (3.12) and (3.13) causes sampling
errors. In addition, the observation operator for the 2-metre-temperature is non-
linearly dependent on the soil moisture. This non-linear observation operator can
lead to a non-Gaussian posterior. If I then approximate the posterior distribution
by a Gaussian distribution, I likely underestimate the uncertainties compared to
the forecast error.

To counter-act this underestimation, I use prior multiplicative covariance inflation.
In this inflation, I multiply the prior covariance by a factor ρ > 1. In my experi-
ments, the inflation factor varies between 1.006 and 1.18. This artificially increases
the prior ensemble spread such that the ensemble members cover a larger range
of possibilities. I also increase with this technique the posterior ensemble spread,
but I reduce the trust in the prior distribution. This reduced trust results in an
increased observational impact during the update step.

The need of covariance inflation depends on the used data assimilation technique,
the assimilated observations, and the updated state variables. For every experi-
ment in Chapter 4 and Chapter 5, I therefore have to re-tune manually the inflation
factor so that the ensemble spread matches the root-mean-squared error to my
nature run.

3.4.2 Localization
The number of ensemble members is low compared to the state dimensions, espe-
cially for coupled data assimilation involving multiple Earth system components.
This discrepancy in the dimensionality introduces spurious correlations into the
prior covariances (Miyoshi et al., 2014). These spurious correlations are correla-
tions within the ensemble which are not physically explainable and can degrade
the analysis. To solve the problem of spurious correlations, localization is applied
in ensemble-based data assimilation. In localization, the influence of grid points
to each other is weighted based on the physical distance between two points. The
localized ETKF (LETKF, Hunt et al., 2007) is a observationally localized variant
of the ETKF. In the LETKF, I estimate the ensemble weights for every grid point
independently. The observations for a specific grid point are then weighted by
their physical distance to a considered grid point.

I localize here with Gaspari-Cohn covariance functions (Gaspari and Cohn, 1999).
They are also used for operational data assimilation in the atmosphere (Schraff
et al., 2016). These covariance functions resemble Gaussian covariance functions
and are completely specified by their localization radius l. As a difference to
Gaussian covariance functions, they decay faster and cut observations after 2× l
the radius off.
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For all experiments, I employ the same covariance functions in horizontal and
vertical dimensions, which are always applied together (see also Table 3.1 for the
used radii). I localize in the horizontal with a radius of 15 km, which is quite small
in comparison to operationally used values in the atmosphere (between 50 km and
100 km, Schraff et al. (2016)).

Table 3.1: Chosen localization covariance functions and radii.

Dimension Covariance function Localization radius
Horizontal Gaspari-Cohn 15 km
Vertical / atmosphere Gaspari-Cohn 0.3 ln hPa
Vertical / land surface Gaspari-Cohn 0.7 m

As simplification for the vertical localization, I assume that my 2-metre-temperature
observations are valid at a height of 0 m. The localization radius in the vertical is
different for the atmosphere and the land surface. In the atmosphere, I localize
vertically in terms of logarithmic pressure and use a typical value of 0.3 ln hPa
from operational settings (Schraff et al., 2016). Observations in the atmospheric
boundary layer have their largest impact on soil moisture analysis at root-depth
(Muñoz-Sabater et al., 2019). Afterwards, their physically explainable impact is
negligible. Therefore, I chose my vertical localization radius in soil (0.7 m) so that
the innovations for soil levels below the root-depth (fifth soil layer, 0.21 m) are
dampened.

Figure 3.1: Number of potential observational equivalents per grid point estimated based on the
chosen horizontal and vertical localization radius in soil (see Table 4.1), representative in 0.21m
depth. Blue colors characterize fewer equivalents per grid point compared to a grid-point-based
assimilation (e.g. SEKF), whereas red colors indicate more equivalents.

Based on the chosen localization radii and the position of the 99 measurement sites,
I can estimate a potential observational equivalent. The potential observational
equivalent would be the number of observations that are used for a specific grid
point within the data assimilation if we neglect the influence of the ensemble
covariance. I define this potential observational equivalent as the sum of all
observational weights. For my ensemble Kalman filter, the number of potential
observational equivalents is shown in Fig. 3.1 for the soil moisture in root-depth;
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3 A localized ensemble Kalman filter for the atmosphere-land interface

the mean observational equivalent is 0.566. In vertical data assimilation methods,
like the simplified extended Kalman filter, observations are assimilated on a grid-
point-based level. They assimilate one observation per observational type and
grid point, and they would have a potential observational equivalent of 1. As
a consequence, I have half the number of potential observations per grid-point
relative to a fully-observed field. I therefore have only a limited observability
within my ensemble Kalman filter experiments, and in some areas, I would expect
no assimilation impact at all.

3.5 Implementation for the atmosphere-land inter-
face
In the previous sections, I discussed the theory behind the localized ensemble
transform Kalman filter (LETKF), I outline how I implemented the LETKF for
TerrSysMP. In a first step, I explain my observation operator for the 2-metre-
temperature. In a second step, I describe the post-processing applied to the
posterior gained from the LETKF. I give more technical details about my imple-
mentation of the cycled data assimilation in the end.

3.5.1 Observation operator for the 2-metre-temperature
The only observations that I assimilate are 2-metre-temperature observations. I
synthesize these observations out of my nature run in twin experiments (see also
Section 2.4.2 for more information). For both, the observations and their ensemble
equivalent, I define the same 2-metre-temperature observation operator.

The observation operator is based on the diagnostic 2-metre-temperature output
from COSMO. The diagnostic 2-metre-temperature is estimated as a weighted
average of the ground temperature and temperature at the lowest model level,
here in 10 meters height. The weighting results out of the similarity theory (Monin
and Obukhov, 1954) and depends on the laminar transfer factor for scalars, which
itself is influenced by the surface transfer coefficient for heat. This surface transfer
coefficient for heat is a coupled quantity in TerrSysMP and estimated in CLM.
Therefore, the soil moisture indirectly modulates the 2-metre-temperature via the
surface transfer coefficient for heat and the surface temperature.

I define my own observation operator for the 2-metre-temperature. I simply select
the 2-metre-temperature at the nearest grid point to an existing measurement site
of the DWD. As measurement height, I use the model orographic height at this
selected nearest grid point.

3.5.2 Post-processing of the soil moisture posterior
The LETKF corrects a prior distribution to the posterior distribution with a lin-
ear assumption. Thus, the resulting posterior ensemble can contain physically-
inconsistent states. This could be especially a problem for the soil moisture,
where the quantity is bounded by 0 m3 m−3 and the saturation point. As one
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3.5 Implementation for the atmosphere-land interface

post-processing step, I constrain the soil moisture content to 0 m3 m−3 as a lower
bound to avoid negative values.

Data assimilation can add or subtract water to the soil moisture, so the vertically
integrated water content is possibly not preserved in the update step. In contrast,
the vertically integrated water content in the prior is based on the model propa-
gation with CLM and is in a physical equilibrium. In the update step, I want to
retain the same vertically-integrated equilibrium without the need for additional
optimization steps. To retain the equilibrium, I estimate the residual of the vertical
water content from the posterior to the prior. This residual is afterwards added or
subtracted from the unconfined aquifer to balance the data assimilation increment
in the upper soil moisture layers. Therefore, I rebalance the vertically integrated
water content in the posterior at the cost of water in the unconfined aquifer.

3.5.3 Ensemble-based data assimilation with Torch-Assimilate
The communication between the data assimilation and TerrSysMP is file-based.
Hence, TerrSysMP writes its output- and analysis files, which are then modified
by the data assimilation. The data assimilation is developed as Python packages
(Finn, 2020b,a) and is essentially based on Xarray (Hoyer and Hamman, 2017),
Dask (Dask Development Team, 2016; Rocklin, 2015), PyTorch (Paszke et al., 2019),
and Prefect (PrefectHQ, 2021).

I have developed these packages under an object-oriented and modular approach
in the last two years. The idea behind these packages was to create a generalizable
and efficient data assimilation environment. This environment should be in the
best case independent from any model- and data assimilation method implemen-
tation (the environment is then model- and data assimilation method agnostic).
To gather an approach that is independent from any model implementation, the
package is currently restricted to ensemble data assimilation methods and based
on the variable transformation into ensemble weights as specified in (3.15).

Additionally, I have split the data assimilation into two packages, torch-assimilate
(Finn, 2020b) and PyBacy (Finn, 2020a). I designed torch-assimilate to be model-
agnostic with a common Xarray-based interface, whereas PyBacy couples torch-
assimilate to the models and is therefore method-agnostic. This design approach
results in three different layers:

1. The Core layer where the data assimilation equations are efficiently imple-
mented in PyTorch code. This layer allows a simple and lightweight imple-
mentation of new data assimilation algorithms and concurrently includes
core modules for the ensemble transform Kalman filter (see also Section 3.3
for the equations), the iterative ensemble Kalman smoother (IEnKS, Bocquet
and Sakov (2014), see also Section A.3), and a novel kernelized ensemble
transform Kalman filter (see also Section 6.1 for a derivation) with its kernels.
Because these core modules are all implemented in PyTorch, they natively
support differentiation. In addition, they could be compiled with the just-in-
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3 A localized ensemble Kalman filter for the atmosphere-land interface

time compiler in PyTorch for an additional speed-up. This core layer works
on the level of ensemble weights. It consumes tensors in observational space
and returns ensemble weights.

2. The Interface layer is a convenient higher-level interface to the core modules.
This layer is build upon the capacities of Xarray and Dask. It implements
localization, observation operators, and pre- and post-processing methods
like covariance inflation. I use Dask for an efficient parallelization and taking
advantage of high-performance computing. This allows me to scale my
methods to high-dimensional coupled models like TerrSysMP. In general,
this interface estimates the quantities in Xarray and bridges them to PyTorch
tensors, needed in the core modules. The ensemble weights are then collected
from the core modules and applied to the given ensemble states. This
interface layer therefore works on the level of observational and ensemble
states.

3. The Pipeline is the outer-most layer and specifies the communication of the
data assimilation to the models. By design, this layer is data assimilation
method-agnostic, but depends on the utilized models. The pipeline system is
based on the principles of directed acyclic graphs (DAG) and is implemented
in Prefect. The building blocks for the DAGs are tasks which specify a single
operation, like the read-in of output from CLM. These building blocks allow
a dynamical composition of graphs based on Python-scripts. The tasks are
then pooled together into flows, which specify a composition with a unique
purpose, like implementing the update step or propagation step for data
assimilation. An outer engine is used to cycle these flows with configurations,
specified by YAML-files. This pipeline layer acts as outer-cover and calls the
interface layer and model binaries.

The model-specific parts of the data assimilation are contained in the pipeline
system, whereas the data assimilation equations are implemented in the core layer.
The interface layer acts as transmitter and translates quantities from the model
specific parts into quantities needed for the core methods. A generic information
flow on the basis of the previously derived (localized) ETKF equations is shown in
Appendix A.2. All my experiments in this thesis are based on this data assimilation
environment.

3.6 Offline data assimilation experiments
In online data assimilation experiments (see also Fig. 3.2 (a) for a schematic
overview), I cycle through the propagation step (3.5) and the update step (3.6)
in Section 3.1. The resulting posterior at time t will be then again propagated
to time t+ 1 and acts as prior for this next time step. Thus, the posterior of this
next time step t+ 1 depends not only on the assimilation at t+ 1, but also on
the assimilation at time t. Because of this recursion, I get an accumulated data
assimilation impact. Hence, the posteriors in the experiments are also impacted
by effects of the propagation. This makes it difficult to compare state trajectories
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of online data assimilation experiments. Furthermore, online data assimilation
experiments have high computational costs, because the propagation step is the
most expensive part of a data assimilation cycle. To circumvent these problems, I
utilize, beside online experiments, so-called offline data assimilation experiments.

Figure 3.2: A schematic figure showing the differences between (a) online and (b) offline data
assimilation experiments. In online data assimilation experiments, the posterior is propagated
again to the next time step and acts after the propagation as prior for the next analysis. In offline
data assimilation experiments, the trajectory of the open-loop run without data assimilation is the
prior for every time step. The posterior of offline experiments is only used for diagnostic purposes
without additional propagation runs from the model.

In offline data assimilation experiments (see also Fig. 3.2 (b) for a schematic
overview), I create analyses with the update step without an additional propa-
gation. For this procedure, I reuse an existing trajectory, often an open-loop run
without any data assimilation. The trajectory at a given time t acts as prior for the
update step (3.6), and I assimilate observations into this prior to create a posterior.
This posterior is not propagated to gain the prior at the next time step t+ 1, but
instead I use again the existing trajectory as prior. Therefore, I create in offline
data assimilation experiments a set of independent analyses at different time steps
without a recursion.

In these experiments, the analyses are based on the ensemble statistics of the
existing trajectory. The statistics in the existing trajectory determine the obser-
vational impact in the data assimilation. If I use an open-loop run without any
data assimilation, I do not get the propagated effect on the ensemble covariances.
Since ensemble Kalman filters can only reduce the covariances in an update step,
the ensemble spread in the prior of an offline experiment is likely larger than
in the prior of an online experiment. This would mean that I overestimate the
observational impact compared to online experiments.

Based on the same prior trajectory, I can generate different analyses with different
data assimilation methods. The differences in these analyses are only influenced by
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3 A localized ensemble Kalman filter for the atmosphere-land interface

the update step of the data assimilation methods. This simplifies the comparison
between data assimilation methods, because I do not need to disentangle the
effects of the propagation step from the effects of the update step. In addition, I
skip the propagation step in the data assimilation cycle and only the update step
remains. This makes offline experiments much cheaper than online experiments.
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4
Cross-compartmental ensemble

data assimilation for the
atmosphere-land interface

In this Chapter, I revise the potential of assimilating atmospheric boundary layer
observations into the soil moisture. The evapotranspiration and sensible heat
flux couple the atmospheric boundary layer to the land surface. Nevertheless,
previous studies often stated a negative assimilation impact of boundary layer
observations on the soil moisture analysis. A newly potential of boundary layer
observations for land surface data assimilation emerges from recent developments
in physically-consistent hydrological model systems, like TerrSysMP (see also
Section 2.2), together with ensemble-based data assimilation.

Here, I perform idealized twin experiments for a seven-day period with TerrSysMP,
as they are described in Chapter 2. Based on my nature run, I synthesize sparse
2-metre-temperature observations (see also Section 2.4.2). These observations are
subsequently assimilated into different experiments. I conduct these experiments
with the same model configuration as I use for my nature run (see also Section
2.2). In these experiments, I compare a simplified extended Kalman filter (SEKF)
to a localized ensemble transform Kalman filter (LETKF). Since I use the LETKF
throughout this thesis, I describe its implementation and components in Chapter
3. As I explain in Section 4.2.1, the SEKF can be derived from the Kalman filter
equations (3.9)-(3.11). I describe the comparison experiments in Section 4.3. As
a result in Section 4.4, I show that directly assimilating 2-metre-temperature ob-
servations hourly across the atmosphere-land interface with a localized ensemble
Kalman filter has a positive assimilation impact on the soil moisture analysis. This
proves that observations from the atmospheric boundary layer can be assimilated
across interfaces in the Earth system with an ensemble Kalman filter in a physical-
consistent way. This cross-compartmental data assimilation not only decreases the
forecast error of the observed compartment, but also improves the analysis of the
other compartment that is updated. On the basis of the results in this Chapter, I
therefore propose as my first framework to unify and couple the data assimilation
in Earth system models with a localized ensemble Kalman filter.

In another form, this chapter is partially submitted and currently in review as: Finn, T. S.,
Geppert, G., and Ament, F.: "Ensemble-based data assimilation of atmospheric boundary layer
observations improves the soil moisture analysis", Hydrol. Earth Syst. Sci. Discuss. [preprint],
https://doi.org/10.5194/hess-2020-672, 2021. As this chapter is intended for publication with multiple
authors, I switch in its content to to the first person plural ("we") form.
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4.1 Introduction
Assimilation of atmospheric boundary layer observations into land surface models
primarily improves the coupled forecast of the atmospheric boundary layer. The
sensible heat flux and evapotranspiration couple the land surface to the boundary
layer, and we expect that using boundary layer observations in land surface data
assimilation has an additional positive impact on the soil moisture analysis. In
contrast to this expectation, previous studies often stated a negative impact on
the soil moisture analysis (Hess, 2001; Drusch and Viterbo, 2007; Muñoz-Sabater
et al., 2019; Draper et al., 2011; Su et al., 2013; Carrera et al., 2019). Recent
developments in physically-consistent hydrological models (Fatichi et al., 2016;
Prein et al., 2015; Vereecken et al., 2016) and strongly-coupled ensemble-based
data assimilation (Sluka et al., 2016; Penny and Hamill, 2017) allow us to challenge
this negative assimilation impact. Through the lens of these developments, we
specifically concentrate here on the relationship between the atmospheric 2-metre-
temperature and soil moisture. By focusing on this relationship only, we show in
this study that we can extract information about the soil moisture from boundary
layer observations.

Ensemble-based data assimilation methods, like Ensemble Kalman Filters (EnKF),
are used in data assimilation for the atmosphere. By using a three-dimensional
EnKF, we take horizontal and vertical covariances into account, and observations
at their measurement sites can be assimilated without an additional interpolation
step. In land-surface-only data assimilation with in-situ soil moisture observations,
the additional use of horizontal covariances decreases the soil moisture analy-
sis error compared to one-dimensional methods (Fairbairn et al., 2015; Reichle
et al., 2002), resulting in promising applications on reanalysis problems (Draper
and Reichle, 2019). As being computationally more demanding than simplified
approaches (Reichle and Koster, 2003), EnKFs are nevertheless rarely used for op-
erational data assimilation in land surface models (Carrera et al., 2015; Milbrandt
et al., 2016). One-dimensional Simplified Extended Kalman Filters (SEKF) are
thus implemented for land surface data assimilation (Hess, 2001; Rosnay et al.,
2013; Mahfouf et al., 2009; Dharssi et al., 2011; Bélair et al., 2003; Giard and Bazile,
2000). Moreover, the soil moisture analysis is often estimated in its own daily
assimilation cycle in addition to assimilation cycles for the atmosphere on shorter,
hourly-like, time-scales. To combine these assimilation cycles into one single cycle,
EnKFs are one candidate because of their ensemble-based flow-dependency. We
use here a combined three-dimensional EnKF setup, where we assimilate the
2-metre-temperature at 99 measurement sites. Based on these limited observations,
we jointly update the soil moisture and atmospheric temperature, and compare
this setup to the SEKF. We additionally test with this EnKF setup the hypothesis of
hourly updating the soil moisture based on a flow-dependent coupling between
land surface and atmosphere.

Land surface models are often less advanced compared to currently used numeri-
cal weather prediction models for the atmosphere. Furthermore, the horizontal
resolution is often not fine enough to model soil processes appropriately, leading
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to biases and model errors within land surface schemes (Dirmeyer et al., 2017;
Kauffeldt et al., 2015; Orth et al., 2017; Best et al., 2015). The Terrestrial Systems
Modelling Platform (TerrSysMP, Shrestha et al. 2014; Gasper et al. 2014) is a plat-
form focussed on modelling soil and hydrological processes and can thus scale
from continental scales (Kollet et al., 2018) up to metre-scale resolution in soil
(Gebler et al., 2017). For our experiments, we utilize TerrSysMP to model the cou-
pling between atmosphere and land surface with an advanced hydrology platform.
Together with TerrSysMP, we perform idealized twin experiments, using the same
system configuration for our nature run and our data assimilation experiments.
In addition, we only perturb the initial soil conditions to create an ensemble of
forecasts. With this distilled setup, we are able to isolate the effect of perturbations
within the soil moisture on the 2-metre-temperature without having model errors.

Strongly-coupled data assimilation reduces inconsistencies across different inter-
faces (Sawada et al., 2018; Lin and Pu, 2018, 2019) and is thus a natural approach to
initialize fully-coupled earth system models, like TerrSysMP. Here, the same obser-
vations are assimilated across all compartments within a unified data assimilation
environment. To unify the environment, we would need to integrate land surface
data assimilation into the assimilation cycle for the atmosphere, with updating
frequencies up to an hour. However, the soil moisture analysis is operationally
decoupled from the analysis for the atmosphere, and land surface data assimila-
tion relies on weakly-coupled data assimilation, where only the forecast models
are coupled. We reflect this weakly-coupled approach in a SEKF experiment,
assimilating observations at 12:00 UTC into soil moisture at 00:00 UTC, the night
before. We compare this SEKF experiment to a weakly-coupled localized EnKF
experiment, where we hourly update the soil moisture based on instantaneous
2-metre-temperature observations. By additionally updating the atmospheric
temperature with the same observations, we test one exemplary prototype of a
strongly-coupled EnKF against the other, weakly-coupled, approaches. The results
from the strongly-coupled EnKF experiment are then further analyzed with regard
to the driving factors for the impact of boundary layer observations on the coupled
data assimilation.

4.2 Data assimilation environment
The propagation step in our data assimilation environment is based on the Ter-
restrial System Modeling Platform (TerrSysMP). In TerrSysMP, the atmospheric
model COSMO is coupled to the land surface model CLM by the OASIS3 coupler.
For more information about TerrSysMP and the model configuration, we refer
the reader to Section 2.2. For a description about the theory behind our offline
data assimilation experiments that are additionally used in this study, we refer to
Section 3.6.

In this study, we use two different types of data assimilation. On the one hand, we
use a simplified extended Kalman filter (SEKF) as reference. An implementation
of the SEKF is also operationally used at the ECMWF for land surface data assimi-
lation (“IFS Documentation CY47R1 - Part II: Data Assimilation” 2020). On the
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other hand, we test a localized ensemble transform Kalman filter (LETKF, Bishop
et al. (2001) and Hunt et al. (2007)). This type of ensemble Kalman filter is used
throughout this whole thesis. Therefore, we refer for a technical derivation of the
LETKF to Section 3.3, for the used localization functions and the multiplicative
inflation to Section 3.4, and for the implementation to Section 3.5. In the following,
we describe only the technical details for the simplified extended Kalman filter.

4.2.1 Simplified extended Kalman filter
The simplified extended Kalman filter (SEKF) is a simplified form of an extended
Kalman filter. Its simplifications are based on a deterministic prior state, a fixed
prior covariance matrix, and a finite-differences’ approximation to the tangent
linear model of the observation operator.

Our SEKF updates only the soil moisture as deterministic prior state xb
t , To update

the prior state xb
t and to get a posterior state xa

t , we apply the update equation for
the state mean (3.9) without estimating the posterior state covariance,

x
a
t = x

b
t +P

b
t (Ht)

T [HtP
b
t (Ht)

T +R]−1(yo
t −H(x

b
t )). (3.9)

To ensure consistency in the water balance within a single column, we post-
process the updated soil moisture states by leveraging the updated increments
at the cost of water in the non-updated unconfined aquifer. The updated soil
moisture together with the non-updated other states is propagated with the full
TerrSysMP model system to the next update time at 00:00 UTC, the following day.
We assume a diagonal and static in time prior covariance matrix Pb

t ≈ B = (σb)2
I

with σb = 0.01 m3m−3 as constant standard deviation, as operationally used at the
ECMWF (“IFS Documentation CY47R1 - Part II: Data Assimilation” 2020).

The soil moisture evolves slowly compared to the atmosphere in dry conditions,
as shown in Section 2.4.1. In addition, the incoming solar radiation at the surface
has their maximum during noon. As a consequence, also the coupling between
land surface and atmospheric boundary layer has its maximum at the same time.
Hence, a common strategy in the SEKF is to update the soil moisture once a
day at midnight based on boundary layer observations at daytime (Hess, 2001;
Balsamo et al., 2004). As simplification, we update our prior state at 00:00 UTC
based on 2-metre-temperature observations at 12:00 UTC. Our SEKF implemen-
tation is therefore a type of extended Kalman smoother and takes advantage of
observations ahead of the update time.

The SEKF is a one-dimensional data assimilation method and takes only vertical
covariances between 2-metre-temperature and soil moisture into account. Thus,
we need 2-metre-temperature observations at the every grid-point of the CLM
grid. In operational data assimilation, the 2-metre-temperature observations are
interpolated to the land surface grid with optimal interpolation (Rosnay et al.,
2013; “IFS Documentation CY47R1 - Part II: Data Assimilation” 2020), which can
be seen as Kalman filter with a fixed gain matrix. Compared to this optimal
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interpolation procedure, we use a simplified method to generate the 2-metre-
temperature observations, leveraging that we know the true 2-metre-temperature
field from our nature run. We bilinearly interpolate the true 2-metre-temperature
field from the COSMO grid to the CLM grid, as also done in OASIS3. Afterwards,
we disturb the 2-metre-temperature at every grid point by independent and
identically distributed random noise εo

t ∼ N(0, 0.01 K2). The R-matrix for the
Kalman filter thus contains only one entry for every grid point and is given by
σ

o = 0.1 K2 as observational error standard deviation.

For the estimation of the Kalman gain (3.11), we have to linearize the observation
operator Ht around the prior state xb

t . We employ a finite-differences’ approxi-
mation, as it was operationally used (Hess, 2001; Rosnay et al., 2013). First, we
assume that the effect of soil moisture perturbations on the 2-metre-temperature
remain locally at the grid-point above the soil moisture, and we neglect advection
of these perturbations. Secondly, we update and perturb the soil moisture only in
the first seven layers, up to a depth of 0.62 m, because increments because of data
assimilation below this depth would not be physically explainable. For every layer,
we have to create an additional smoothing run to estimate the finite-differences’
approximation for that specific layer. As perturbation, we add one standard de-
viation of δxb(i)

t = 0.01 m3m−3 to the soil moisture in that i-th layer, as it is done
in (Rosnay et al., 2013). The finite-differences’ approximation to the linearized
observation operator for the i-th layer is then,

H(i)
t =

H(xb
t + δx

b(i)
t ) −H(xb

t )

δx
b(i)
t

. (4.1)

Because we use the 2-metre-temperature field at another time than the update
time for the soil moisture, our observation operator H(·) = (HT2m ◦Mt 7→t+ 1

2
)(·) is

a composition of the 2-metre-temperature observation operator, built-in COSMO,
and TerrSysMP as dynamical model, propagating the state for half a day from
00:00 UTC to 12:00 UTC.

4.3 Experiments
In this section, we shortly explain our experimental strategy. Our experiments
are based on the idealized twin experiment setup, as explained in Chapter 2.
In our experiments, we create an ensemble to investigate interactions between
temperature in the atmospheric boundary layer and soil moisture, as described in
Section 2.3 Our experiments are based on a perfect model assumption such that
we use the same model configuration for every run, as depicted in Table 4.1.

We start the model runs for all of our experiments at 2015-07-30 00:00 UTC. The first
36 hours of simulation are used as spin-up such that perturbations can propagate
from the soil into the atmosphere. After this spin-up phase, starting at 2015-07-31
12:00 UTC, we start with our six different experiments. We simulate a period of
one week (seven days) and finish our experiments at 2017-08-07 18:00 UTC.
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4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

Table 4.1: General environment configuration

Variable Value
Atmospheric model COSMO 4.21
Horizontal resolution ∼ 2.8 km
Grid points Lat: 109, Lon: 99
Vertical levels 50
Soil model CLM 3.5
Horizontal resolution ∼ 1 km
Grid points Lat: 302, Lon: 267
Vertical levels 10
Data assimilation LETKF + SEKF
Inflation Prior mult. inflation (γ = 1.006)
Hori. localization Gaspari-Cohn (15 km)
Vert. localization Atmosphere: GC (0.3 ln hPa)

Soil: GC (0.7 m)
Available observations 99
Observational error 0.1 K

We shortly describe the experiments in the following; their abbreviations are given
in Table 4.2.

We define a single and deterministic run without data assimilation (NATURE),
the so-called nature run, as our reality in this study. From this run, we synthesize
99 2-metre-temperature observations. An open-loop ensemble forecast without
data assimilation (ENS) is used as comparison for the scores in section 4.4 and to
investigate the evolution of the ensemble spread with regard to initial ensemble
perturbations. Starting from this open-loop ensemble at 2015-07-31 12:00 UTC,
we conduct our two LETKF experiments. In the LETKF Soil experiment, we
assimilate the 2-metre-temperature with a LETKF to update the soil moisture only.
This setting can be seen as weakly-coupled data assimilation experiment and is
mainly used as comparison to the SEKF. We expect that most of the soil-generated
perturbations in the atmospheric boundary layer can be found in the atmospheric
boundary layer temperature. Based on this expectation, we additionally update the
atmospheric temperature together with the soil moisture in the LETKF Soil+Temp
experiment. We cast this experiment as baseline experiment for strongly-coupled
data assimilation, and we will extensively evaluate this experiment in the second
part of the results.

In another experiment, we run an open-loop deterministic forecast without data
assimilation (DET). We initialize this deterministic forecast with the same initial
values as the ensemble mean. Hence, we expect that the errors of this deterministic
forecast are comparable to the open-loop ensemble mean. The deterministic run is
the baseline experiment for the SEKF experiment. In this SEKF experiment, we
assimilate grid-point-based the 2-metre-temperature at 12:00 UTC into the soil
moisture at 00:00 UTC, the night before, as described in Section 4.2.1. Because the
SEKF is a smoothing algorithm, we already make use of the pseudo-observations
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4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

at 2015-07-31 12:00 UTC and start our SEKF experiment at 2015-07-31 00:00 UTC.

4.4 Results
We structure this section into two general parts. In the first subsection, we will
compare our experiments and show what we can learn from this comparison.
Afterwards, we analyse the LETKF Soil+Temp experiment more in detail with
regard to driving factors in the assimilation.

We can expect that assimilating the 2-metre-temperature into soil moisture im-
proves the forecast of the atmospheric boundary layer (e.g. Carrera et al. (2019)).
We will analyse in a first step the impact of data assimilation into soil moisture
on the prognostic boundary layer temperature (Figure 4.1) in 10 m height above
ground, the lowest prognostic model level.

Figure 4.1: RMSE and ensemble spread of different experiments for temperature in 10 metres
height as area mean relative to the RMSE of ENS. Different colours denote different experiments.
The red colours indicate LETKF experiments with an ensemble, while the bluish colours represent
experiments based on a deterministic run. All solid lines show the RMSE, while the red dashed
line is the mean ensemble spread over all grid points. The grey-shaded region is the spin-up phase.

Every data assimilation experiment (SEKF; LETKF Soil; LETKF Soil+Temp) has
a substantially lower Root-Mean-Squared-Error (RMSE) to NATURE than their
counterpart without data assimilation (DET; ENS, Table 4.3). Because this result is
found throughout the experiments, this improvement is independent of additional
updates in the atmospheric boundary layer. This result confirms previous studies
that updating the soil moisture with 2-metre-temperature observations has a
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positive assimilation impact on the forecast of the atmospheric boundary layer.

Table 4.3: Spatial and temporal root-mean squared error for depicted experiments compared to
NATURE with hourly data from 2015-07-31 13:00 UTC to 2017-08-07 18:00 UTC, representing the
background trajectory of the experiments.

Name T2m (K) H2O (m3m−3)
ENS 0.158 0.0169
LETKF Soil 0.105 0.0114
LETKF Soil + Temp 0.098 0.0112
DET 0.178 0.0171
SEKF 0.118 0.0145

All experiments have a clearly defined diurnal cycle in the RMSE with the highest
errors during day-time. We find the same diurnal cycle in the data assimilation
impacts with the highest impacts during day-time and only small impacts dur-
ing night. Perturbations within the atmosphere are only a result of initial soil
perturbations or data assimilation, because our lateral boundary conditions are
the same for every run. During day-time, the coupling between land surface
and atmospheric boundary layer propagates perturbations into the atmosphere,
whereas these two compartments are decoupled during night-time. The collapse
of the atmospheric boundary layer in the evening leads to a strong decrease of
the atmospheric perturbations. Due to this process, collected information by data
assimilation from the day before is also partially lost.

The LETKF Soil+Temp experiment has the smallest error of all experiments, indicat-
ing a small positive impact of additionally updating the atmospheric temperature.
Nudging the atmospheric temperature to the observations helps us to reduce error
components related to a drift of trajectories compared to the NATURE run. By con-
struction of the experiment, the largest part of errors are nevertheless soil-induced,
which limits the additional impact of updating the atmospheric temperature. We
additionally have a loss of information due to the collapsing boundary layer, as
discussed before, and the differences between the LETKF Soil and the LETKF
Soil+Temp experiment remain small over the simulation window.

The assimilation impact of the SEKF experiment is similar to the impact of the
LETKF Soil experiment, despite the fact that the latter experiment has a smaller
absolute magnitude of error. Because the same decreased error can be noticed
between the DET and ENS experiment, the smaller errors of the LETKF Soil exper-
iment are mainly accountable to the difference in the type of experiment. Based
on this result, both data assimilation methods, the SEKF and LETKF, are similar
effective in reducing errors in the atmospheric boundary layer temperature by
updating the soil moisture only.

We can expect that the assimilation of 2-metre-temperature observations into
soil moisture has also a positive impact on the soil moisture in root-depth, if we
improve the forecast of the boundary layer temperature based on the coupling be-

45



4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

Figure 4.2: RMSE and ensemble spread of different experiments for soil moisture in root-depth
as area mean. Different colours denote different experiments. The red colours indicate LETKF
experiments with an ensemble, while the bluish colours represent experiments based on a deter-
ministic run. All solid lines show the RMSE, while the red dashed line is the mean ensemble spread
over all grid points. The greyish shaded region is the spin-up phase, where no data assimilation
experiment was run.

tween atmosphere and land. The error of all experiments reduces with time as the
soil dries out in the simulation period (Figure 4.2) Furthermore, data assimilation
decreases the error in the SEKF, LETKF Soil, and LETKF Soil+Temp experiment
compared to their corresponding reference experiments (DET; ENS). The positive
assimilation impact in the LETKF experiment is a result of corrections during day-
time, whereas a neutral assimilation impact prevails at night. This diurnal cycle
in the impact again reflects the relevance of the coupling strength between land
surface and atmosphere, and the flow-dependent background error covariances
of the LETKF can represent the situation- and time-dependent coupling strength.
The LETKF is therefore able to improve the soil moisture analysis by hourly data
assimilation.

The LETKF Soil experiment has a smaller error than the SEKF experiment, but
they have similar impacts on the boundary layer temperature. This increased
impact in soil moisture is a result of filtering instead smoothing, used in the SEKF
experiments. The SEKF can correct foreseeable errors at noon in advance, whereas
we only correct instantaneous errors in the filtering framework. Smoothing has
thus an advantage compared to filtering for correcting errors in the atmospheric
boundary layer based on updates of the soil moisture. For soil moisture, the
information content of a single update step is limited by the coupling strength.
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4.4 Results

Hence, hourly updating the soil moisture with the LETKF is capable to extract
more information from limited observations than the SEKF with a fully-observed
field and a single update step per day.

Additional nudging of the simulated boundary layer temperature towards the
observed temperature results in a positive impact in the LETKF Soil+Temp experi-
ment compared to the LETKF Soil experiment. By updating the boundary layer
temperature, we increase the consistency in the analysis errors, which has also a
positive assimilation impact on later cycles. In soil, this positive assimilation im-
pact is accumulated over time, and the error of the LETKF Soil+Temp experiment
is further reduced in comparison to the LETKF Soil experiment.

Up to this point, we only looked into the error development of either the tempera-
ture at the lowest atmosphere layer or the soil moisture in root-depth as spatial
mean. In the following, we will analyse how the assimilation impact is spatial
distributed (Figure 4.3) in the LETKF Soil and SEKF experiment.

Figure 4.3: Spatial impact of data assimilation in the ensemble and deterministic experiments at
the last time step. The upper panels show the error of the ENS experiment (ensemble mean, a) to
the NATURE run and the increment of the LETKF Soil (ensemble mean, b) to the ENS (ensemble
mean) experiment. The lower panels are the error of the LETKF Soil (ensemble mean, c) and the
SEKF (d) experiment to the NATURE run. Blue colours indicate a positive difference, whereas
brown colours represent a negative difference. The black crosses in (b) indicate the observational
positions as in Figure 2.1.

The spatial distribution of the error in the ENS experiment (Figure 4.3, a) compared
to the NATURE run is caused by the initialization of the experiments. Processes
leading to a change in patterns within the soil moisture act on longer time-scales
than our seven-day simulation time, especially in time periods without large
precipitation events. Our initial errors, induced by correlated Gaussian fields, thus
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4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

determine the amplitude and patch size of the errors in the experiments without
data assimilation.

Data assimilation of the 2-metre-temperature corrects the initial errors, as shown
in the accumulated increment of the LETKF Soil experiment compared to the ENS
experiment (Figure 4.3, b). This increment depends not only on the error size, but
also on the observational positions and chosen localization radius. Nevertheless,
the amplitude and patch size of the increments have a similar order of magnitude
as the errors, showing that the number of observations and horizontal localization
radius are enough and well tuned, respectively.

These increments also influence the remaining error of the LETKF Soil experiment
compared to the NATURE run (Figure 4.3, c). Errors are especially dampened
in this experiment, if observational position and initial condition errors match.
The construction of the ensemble perturbations (Hunt et al., 2007) and spatial
localization in the LETKF lead to a spatial smoother error field than for the SEKF
experiment (Figure 4.3, d). The SEKF experiment has also higher error amplitudes
than the LETKF Soil experiments, showing the effectiveness of the LETKF in this
case. Furthermore, the one-dimensional approximation in the SEKF results in
error fluctuations across a small area, which are not apparent in the errors and
LETKF Soil experiment. The LETKF Soil experiment has thus a spatially more
balanced and higher impact than the SEKF experiment, especially in the eastern
part of the domain.

In the following (Figure 4.4), we will show the RMSE for soil moisture in root-
depth of the offline experiments based on the SEKF trajectory (Figure 4.4, a) and
on the LETKF Soil+Temp trajectory (Figure 4.4, b).

Figure 4.4: RMSE of offline data assimilation experiments for soil moisture in root-depth based
on (a) the SEKF and (b) the LETKF Soil+Temp background trajectory. Blueish colours indicate
an assimilation of 2-metre-temperature observations from the NATURE run with an ensemble
Kalman filter and without observation error, whereas the soil moisture is directly assimilated in
the salmon-coloured 1D-H2O experiment in b). The original analyses are black and the SEKF
analysis based on perfect NATURE run observations greyish dotted. Only the ensemble mean was
updated in column-based 1D EnKF experiments, whereas a full LETKF was used in the 3D EnKF
experiments.
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The comparison between an experiment with perfect observations, extracted from
the NATURE run, and disturbed observations allows us to get an impact of the
random observational error. For the SEKF base trajectory (Figure 4.4, a), the
difference between an offline experiment with observations from the NATURE
run, denoted SEKF-nature, and the original analyses is small. Based on these
marginal differences, random observational errors have only a negligible impact
on the errors of the SEKF trajectory.

In the SEKF-ENS experiment, we replace the finite-differences’ approximation for
the Jacobians in Eq. (4.1) by an ensemble approximation from the ENS experiment.
We make here the assumption that the ENS experiment is like an external ensemble
data assimilation cycle with constrained perturbations in the atmosphere, since
we use the same lateral boundary conditions in all experiments. This offline
experiment thus resembles the current SEKF implementation at the ECMWF
(ECMWF, 2019), except the fact that we do not restart the trajectory within this
offline experiment. The error compared to SEKF-nature is reduced, indicating
that the ensemble approximation stabilizes the Jacobians in comparison to the
finite-differences’ approximation.

We take dynamic background covariances from the ENS experiment into account
in the SEKF-1D-EnKF experiment, where we use an EnKF instead of a SEKF. In
this experiment, we further reduce the error compared to the SEKF-ENS exper-
iment. This error reduction has two reasons: On one hand, we have dynamic
covariances, which resemble the flow-dependent uncertainties. On the other hand,
the ensemble spread of ENS experiment is larger than the analysis error of the
SEKF experiment and the static background covariances for the SEKF. We thus
overestimate the assimilation impact in the SEKF-1D-EnKF experiment, which is
then a lower bound for the SEKF error.

We replace the column-based data assimilation with a LETKF-based assimilation
of 99 discrete observation points in the SEKF-3D-EnKF experiment. Here, we
assimilate with a LETKF, based on the perturbations from the ENS experiment,
observations from the NATURE run at 12:00 UTC into the background trajectory
of the SEKF experiment at 00:00 UTC. This increases the analysis error compared
to the SEKF-1D-EnKF experiment, because we have only limited observations
compared to a fully observed field. Nevertheless, the error of the SEKF-3D-EnKF
experiment is smaller than the SEKF-nature, showing that the ensemble-based
assimilation is preferable to a finite-differences-based SEKF.

Similar results can be seen in the offline data assimilation experiments based
on the LETKF Soil+Temp experiment (Figure 4.4, b). Replacing the disturbed
observations with perfect observations in the LETKF-3D-nature analyses has
almost no impact on the analyses error. Using a fully-observed field in the LETKF-
1D-nature reduces the error compared to the LETKF-3D-nature experiment, similar
to the error reduction in the SEKF experiments. Nevertheless, the impact of a
fully-observed field is low compared to the accumulated error reduction in the
LETKF Soil+Temp experiment. The LETKF thus assimilates effectively limited
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4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

boundary layer observations across the atmosphere-land inferface.

We directly assimilate the soil moisture in root-depth in the LETKF-1D-H2O exper-
iment. With this direct assimilation, we deactivate the source of uncertainty within
the vertical covariances, translating from 2-metre-temperature to soil moisture
in root-depth. The margin between LETKF-1D-H2O and LETKF-1D-nature is
thus representative for the assimilation impact associated to the coupling between
atmosphere and land. Based on this margin, the coupling between the 2-metre-
temperature and soil moisture dominantly controls the assimilation impact on soil
moisture, also during day-time.

The sensible heat flux acts as main coupler between soil moisture and 2-metre-
temperature, whereas the evapotranspiration has a bigger impact on humidity in
the atmosphere. Based on these physical considerations, we will now show the
dependency of the sensible heat flux on the soil moisture (Figure 4.5).

Figure 4.5: The sensible heat flux in dependence on the root-depth soil moisture saturation at
14:00 UTC. All values are estimated based on all ensemble members in the LETKF Soil+Temp
experiment, all grid points and all days between 2015-07-31 to 2015-08-07 for 14:00 UTC. The black
line is the median over the binarized heat flux (∆SAT = 0.05), whereas the dotted lines shown the
5. and 95. percentile.

Based on the non-linear dependency of the sensible heat flux on the soil mois-
ture (Figure 4.5), we can expect different assimilation impacts for different soil
moisture regimes. The sensible heat flux reaches its maximum values in the dry
regime, where the ensemble mean soil moisture saturation is below 0.2. Here,
near the wilting point, changes in soil moisture have only a small impact on the
sensible heat flux, because there is nevertheless to little moisture for plants and
their evapotranspiration. The same insensitivity can be found in the moist regime,
where the ensemble mean saturation is above 0.5. Plants have in this regime
enough water for transpiration and the sensible heat flux is almost insensitive to
changes in soil moisture. Hence, the sensible heat flux value is more influenced
by other factor, as indicated by higher variances across a soil moisture bin, and
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we expect here the smallest assimilation impact. In the mixed regime, where the
saturation is between 0.2 and 0.5, plants regulate their transpiration based on the
soil moisture, leading to higher sensitivities in the sensible heat flux to changes
in the soil moisture. We would therefore expect that most available information
from the 2-metre-temperature for the soil moisture is encoded within this mixed
regime.

In Figure 4.6, we classify the soil moisture with these three regimes to show its
influence on the potential assimilation impact in soil moisture itself. Based on
the LETKF-1D-nature experiment from Figure 4.4, we use a potential assimilation
impact, which would be the assimilation impact on the soil moisture in root-depth,
if we would observe the whole 2-metre-temperature NATURE field. We define
here the potential assimilation impact as the difference in the area mean RMSE
to the NATURE run from the analysis of the LETKF-1D-nature experiment to the
background of the LETKF Soil+Temp experiment for soil moisture.

Figure 4.6: Area mean diurnal cycles for the potential assimilation impact, valid from 2015-07-31
19:00 UTC to 2015-08-07 18:00 UTC. We have a positive assimilation impact for negative values
and vice versa. The grid point are classified based on the soil moisture saturation classes in Figure
4.5 and the background ensemble mean soil moisture saturation.

The soil moisture saturation clearly determines the potential assimilation impact
(Figure 4.6), as previously expected. We find the highest potential impact in grid
points with mixed regime, where the sensible heat flux has the highest sensitivity
to changes in the soil moisture. The assimilation has its lowest impact in the moist
regime, because the sensible heat flux has here its least sensitivity to changes in soil
moisture and is mostly influenced by other factors. For our seven-day simulation,
we conclude that the soil moisture itself is a main factor to explain variabilities in
the assimilation impact across grid points.

In all regimes, we have a positive assimilation impact during day-time, whereas
a negligible impact during night. The solar irradiance is the main driver for the
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4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

coupling between atmospheric boundary layer and land surface and shapes also
the diurnal cycle of the assimilation impact. Nevertheless, in the late afternoon
the potential impact deviates from its expected diurnal cycle, which cannot be
explained by solar irradiance alone. This potential impact deviation indicates a
mechanism, which reinforces the positive assimilation impact in the late afternoon.

In the following, we will reveal that the coupling is additionally controlled by the
temporal development of the atmospheric boundary layer (Figure 4.7), leading to
the deviation in the late afternoon. We analyse this temporal development within
the LETKF Soil+Temp experiment.

Figure 4.7: Area mean diurnal cycles for: a) the ensemble correlations for different variables
(sensible heat flux, water vapour heat content in humidity in 2 metre height, and soil moisture)
to the 2-metre-temperature in the LETKF Soil+Temp experiment; b) Change of the heat content
relative to 23:00 UTC for the heat content in humidity, and the sensible heat flux, in the LETKF
Soil+Temp experiment as average over all ensemble members, valid for 2015-07-31 19:00 UTC to
2015-08-07 18:00 UTC. The water vapour heat content is estimated based on a constant latent heat
of vaporization λvap = 2.501× 106 J kg−1 and the specific humidity in 2 metre height.

As main driver for the assimilation impact, the coupling between land surface and
atmosphere correlates the soil moisture to the 2-metre-temperature (Figure 4.7,
a). Driven by this coupling, perturbations in the 2-metre-temperature accumulate
during day-time. This accumulation decreases the impact of the coupler – the
sensible heat flux – on the 2-metre-temperature perturbations, which decorrelates
the sensible heat flux and the 2-metre-temperature with time. The water vapour
content in the lower boundary layer is mainly controlled by evapotranspiration,
and thus, negatively correlated to the 2-metre-temperature during day-time. At
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night, an increased water vapour content in the atmosphere decreases the radiative
cooling of the land surface (Harrison, 1981), which results in a positive correla-
tion to the 2-metre-temperature. After sunrise, and before perturbations in the
boundary layer are accumulated, the sensible heat flux has a direct impact on the
2-metre-temperature.

The same reinforcement mechanism, as in the potential assimilation impact, can
be found in the correlations of the sensible heat flux and soil moisture to the
2-metre-temperature. The sensible heat flux follows nevertheless a diurnal cycle
without any additional peak (Figure 4.7, b). In contrast to this diurnal cycle, the
reinforcement mechanism also heavily influences the diurnal cycle of the water
vapour content. Based on this fact, we can trace the reason of the reinforcement
mechanism back to the growth and collapse of the boundary layer. The land
surface heats up with increasing solar irradiance in the morning. With time, the
sensible heat flux and evapotranspiration transport the heat into the boundary
layer (Stull, 1988), causing an increase in the heat content of the boundary layer.
In the afternoon, the solar irradiance decreases again with time such that also
differences between boundary layer and land surface decrease, resulting in lower
heat fluxes. Together with a growth of the mixed boundary layer, these lower heat
fluxes cause a decrease in the heat content few meters above the surface, as seen
in the water vapour content. As a consequence of the strong decrease in solar
irradiance, the near-surface boundary layer collapses into a thin strongly-stratified
boundary layer. Propagated heat is now stored within this thin layer, leading
to a rapid increase in the heat content. This rapidly increased heat content then
also strengthens the atmosphere-land coupling above the land surface in the late
afternoon.

The atmosphere-land coupling controls the information content encoded within
the vertical covariances. In the following, we will also take horizontal covari-
ances and the impact of localization into account and take a deeper look into
the dependence of the diagonal covariance on the horizontal distance between
2-metre-temperature and soil moisture (Figure 4.8).

As previously stated, we have negative error covariances during day-time, whereas
we have slightly positive error covariances in the evening and night. The ensemble
covariances at 2015-08-01 12:00 UTC and 2015-08-03 06:00 UTC resemble the error
covariances for local areas. Nevertheless, the ensemble covariances show in both
cases too wide horizontal covariances compared to the error covariances, and here,
horizontal localization helps to reduce the impact of these spurious correlations.
The chosen localization radius of 15 km is too small for 2015-08-01 12:00 UTC and
reduces the impact of horizontal covariances too strongly compared to the error
covariances, whereas the radius is well-tuned for 2015-08-03 06:00 UTC. At 2015-
08-01 19:00 UTC, the ensemble cannot represent the positive error covariances, and
we would expect a negative assimilation impact. In this case, the best localization
would be 0 km, indicating that a deactivation of the assimilation would be the best
choice. The correct localization radius for cross-compartmental data assimilation
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Figure 4.8: Covariances between 2-metre-temperature and soil moisture in root-depth as function
of the distance between observation and grid point for the LETKF Soil+Temp experiment. The
error covariances are estimated based on the ensemble mean errors with the covariance statistics
estimated over the corresponding bin.s The ensemble covariances are a binned mean of the
ensemble covariances, whereas the covariances are multiplied by the localization factor for the
localized ensemble gain. The covariances are estimated based on randomly sampled 2000000 pairs
of grid points.

is therefore highly dependent on the governing processes.

4.5 Discussion and Summary
In this study, we investigate how we can use an ensemble Kalman filter (EnKF) to
assimilate sparse 2-metre-temperature observations across the atmosphere-land
interface. Because we focus on the coupling between temperature in the atmo-
spheric boundary layer and soil moisture, we perturb only initial soil conditions
to generate an ensemble of forecasts. All resulting deviations within the ensemble
and between different experiments are therefore only a consequence of these initial
soil conditions or due to data assimilation. With this idealized experimentation
framework, we are able to prove that the soil moisture analysis can be improved
by assimilating boundary layer observations.

The coupling of the land surface to the boundary layer drives this positive assim-
ilation impact during day-time, whereas we have a neutral impact at night. An
EnKF with hourly filtering can exploit this coupling, if the ensemble covariances
are representative for the error covariances. To shape the ensemble covariances, a
well-tuned horizontal localization is crucial for the cross-compartmental assimila-
tion. In the case of representative ensemble covariances, additional updates of the
boundary layer temperature increase the consistency of the analysis increments,
which has an additional positive assimilation impact on subsequent soil moisture
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analyses. This additional assimilation impact hints at a positive consequence of
strongly-coupled data assimilation at the atmosphere-land interface.

The EnKF has smaller errors than the simplified extended Kalman filter (SEKF)
to our nature run in both, the soil moisture and boundary layer temperature.
The EnKF improves hereby the soil moisture analysis by a larger amount than
the boundary layer forecast compared to the SEKF. Our offline data assimilation
experiments reveal that this is related to the finite-differences’ approximation
within the SEKF, which can be stabilized by using ensemble-based covariances.
We further improve the soil moisture analysis with hourly-based filtering, as it is
commonly used for data assimilation in the atmosphere. This improvement by
filtering indicates that we can include land surface variables in the ensemble-based
analysis cycles of the atmosphere.

With a localized EnKF, we can skip the optimal interpolation step to create a
2-metre-temperature analysis. We find with our offline data assimilation ex-
periments that the additional assimilation impact of a fully-observed 2-metre-
temperature field is small compared to the general assimilation impact with
coarsely-distributed observations. Furthermore, the additional optimal inter-
polation step creates uncertainties in the temperature observations, which we
have not taken into account in our offline data assimilation experiment. Three-
dimensional ensemble-based data assimilation of boundary layer observations for
the soil moisture is thus possible with localization.

We have a non-linear coupling between atmospheric boundary layer and land
surface, because the strength of the coupling depends on the soil moisture itself.
We only make a local linear assumption around the ensemble mean in the ensemble
Kalman filter, and these non-linearities do not have a large impact on the results.
The global non-linear structure nevertheless constrains the coupling between
the atmosphere and land, and above very dry and humid soils, only limited
information content is encoded in observations, which is extractable by direct
assimilation of the observations.

Beside this dependence of the assimilation on the coupling and on the soil moisture,
we also show that the temporal development of the boundary layer has an impact.
This impact leads to a peak in information content around noon, whereas we
have a decrease in the afternoon. A partial collapse of the boundary layer into a
thin layer above the land surface initiates a reinforcement of the atmosphere-land
coupling. We can more easily use the temporal development with hourly-filtering,
whereas we might have problems with daily-smoothing as done within the SEKF,
because we would have to select representative observation times.

We can further exploit the temporal development of the boundary layer with
hourly-smoothing instead of hourly-filtering. Because land surface perturbations
need some time to propagate into the atmosphere, one possibility would be to
assimilate future observations within a given assimilation window and a 4D-
LETKF (Harlim and Hunt, 2007; Kalnay et al., 2007b), which would be similar
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4 Cross-compartmental ensemble data assimilation for the atmosphere-land interface

to an iterative ensemble Kalman smoothing scheme (Kalnay and Yang, 2010;
Sakov et al., 2012; Bocquet and Sakov, 2014). Together with smoothing, we could
additionally introduce time-dependent localization to tackle problems related to
errors by the ensemble approximation of the covariances.

All in all, our results support the view that assimilation of boundary layer observa-
tions has a positive impact on the soil moisture, if the model system can adequately
represent the governing processes in the boundary layer and land surface. We can
therefore see this study as first step towards the goal of assimilating a unified set
of observations across the atmosphere-land interface to improve the analysis for
both compartments.
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4.6 Conclusions
In this study, we assimilate synthetic 2-metre-temperature observations into soil
moisture in a fully-coupled limited-area model system for a seven-day period in
Summer 2015. Based on our results in idealized twin experiments, we conclude
the following:

1. Assimilation of boundary layer observations improves the soil moisture
analysis during day-time and has no impact during night; boundary layer
observations yield the highest information content for land surface data
assimilation above soil moisture saturations between 0.2 and 0.5.

2. Hourly-updating the soil moisture with a Localized Ensemble Transform
Kalman filter results in a smaller error for the soil moisture analysis than
daily-smoothing with a Simplified Extended Kalman filter, and in addition,
we can directly assimilate sparse boundary layer observations across the
atmosphere-land interface without an intermediate optimal interpolation
step.

3. Ensemble-based approximations of the background covariances and Jaco-
bians stabilizes the analysis increments in a Simplified Extended Kalman
filter.

4. Updating the atmospheric temperature together with the soil moisture in-
creases the physical consistency in the analysis for the boundary layer and
land surface, which in fact reduces additional errors in the soil moisture
analysis.

5. We can merge the decoupled data assimilation cycles – one for the land sur-
face and one for numerical weather prediction – into one strongly-coupled
cycle with updates across the atmosphere-land interface and hour-like cy-
cling lengths of the faster atmospheric compartment.
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5
Fingerprint operators to stabilize

cross-compartmental data
assimilation

In this Chapter, I investigate how I can take advantage of the temporal devel-
opment of observations in the atmospheric boundary layer to improve the soil
moisture analysis. Because Earth system components are temporally dependent
on each other, observations from the atmosphere are informed about the state
conditions in a neighboring Earth system component with a time lag. During
their update step, ensemble Kalman filters cannot take advantage of such an asyn-
chronous information flow, because the analysis is only conditioned on previous
and current observations. Contrarily, four-dimensional data assimilation methods
are additionally conditioned on future observations. Hence, they are an alternative
to take these temporal dependencies into account.

After setting the scene in Section 5.1, I derive an ensemble Kalman smoother
based on the ETKF from Chapter 3 in Section 5.2 that creates an analysis at the
beginning of an assimilation window, similar to 4DEnVar. To compare this derived
smoother with my implementation of a LETKF for the atmosphere-land interface,
I conduct similar idealized twin experiments as in Chapter 4, which are described
in Section 5.3. As results in Section 5.4, I prove that this smoother with a 24 hour
assimilation window can take advantage of cross-compartmental temporal de-
pendencies. To reduce the risk of the smoother to get overconfidence towards the
observations, I additionally introduce fingerprint operators using characteristic
fingerprints in the 2-metre-temperature that point towards forecast errors in the
soil moisture. These fingerprint operators condense the information content from
the 2-metre-temperature observations into two observational features. Though,
smoothing with my two designed fingerprint operators is more robust against
miss-specifications in the localization radius and observational error covariance.
On the basis of the results in this Chapter, I therefore propose as my second frame-
work to use fingerprint operators to make cross-compartmental data assimilation

This chapter will be submitted in another form as: Finn, T. S., Geppert, G., and Ament, F.:
"Fingerprint operators of atmospheric boundary layer observations to stabilize land surface data
assimilation", to be submitted to Quarterly Journal of Royal Meteorological Society. As this chapter is
intended for publication with multiple authors, I switch in its content to the first person plural
("we") form.
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more robust against noise.

5.1 Introduction
The sensible heat flux and evapotranspiration gradually propagate information
from the land surface into the atmospheric boundary layer. As the fluxes are
mainly driven by the sun, they additionally have a diurnal cycle. Consequently,
also the strength of the coupling between the land surface and the atmospheric
boundary layer depends on the time of the day. Because the heat fluxes are the
main driver for the temporal development of heat and moisture in the atmospheric
boundary layer, they constrain in this way the information content of instanta-
neous atmospheric boundary layer observations about the soil conditions. Despite
this constrain, we can instantaneously assimilate boundary layer observations to
improve the soil moisture analysis in idealized experiments, as seen in Chapter
4. Because of the existing temporal dependency, we nevertheless expect that
boundary layer observations at a different time than the assimilation time have
a higher information content than instantaneous observations. In this study, we
investigate how we can squeeze more information about the soil conditions out of
atmospheric boundary layer observations by taking their temporal development
into account.

One way to utilize temporal covariances is to use ensemble Kalman smoothers
(EnKS, Leeuwen and Evensen, 1996; Evensen and Leeuwen, 2000; Cosme et al.,
2012) instead of ensemble Kalman filters (EnKF, Evensen, 1994; Burgers et al.,
1998; Anderson and Anderson, 1999). EnKFs are conditioned on past and current
observations only, whereas smoother take also advantage of observations ahead
of the update time. In an EnKS, we use observations in an assimilation window
ahead of the update time. By using observations in an assimilation window, we
model non-instantaneous dependencies between observations and state, which
cannot be otherwise used in EnKFs. We use here an Ensemble Transform Kalman
filter (ETKF, Bishop et al., 2001; Hunt et al., 2007) and smoother (ETKS), where the
analysis is estimated based on ensemble weights. The ensemble weights can be
then applied anywhere in the assimilation window (Yang et al., 2009; Kalnay and
Yang, 2010) such that also the smoothing solution can be found without the need
of any tangent linear model. If we apply the weights at the end of the assimilation
window, this procedure leads to a 4D-ETKF (Hunt et al., 2004; Harlim and Hunt,
2007), also operationally used for atmospheric data assimilation (Schraff et al.,
2016). By applying the weights at the beginning of the assimilation window, we
need to propagate the ensemble a second time through the window to get the
filtering solution at the end of the assimilation window. This procedure resembles
4D-Var and specific its ensemble equivalent 4DEnVar (Liu et al., 2008). The
application of the ensemble weights at the beginning of the assimilation window
is also the linearized variant of the iterative ensemble Kalman smoother (IEnKS,
Bocquet and Sakov, 2014) and shows promising results in toy models. However,
an open question is if such an ensemble Kalman smoother with weights at the
beginning of the assimilation window can improve land surface data assimilation.
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The EnKS explicitly makes a linear assumption and models the relationship be-
tween 2-metre-temperature and soil moisture based on covariances. As previously
seen in Chapter 4, the soil moisture non-linearly influences the sensible heat flux
and, hence, also the 2-metre-temperature. Consequently, 2-metre-temperature
observations might have a non-linear error fingerprint from the soil moisture. In
machine learning, this linear assumption is often relaxed by extracting features
out of the observations and regressing these possibly non-linear features to the
target variable (Hastie et al., 2009; Rasmussen and Williams, 2006; Murphy, 2012).
Until recently in Morzfeld et al., 2018; Rosenthal et al., 2017; Haario et al., 2015,
this paradigm of feature engineering was not used in data assimilation. We intro-
duce here this concept for coupled data assimilation across the atmosphere-land
interface. The here so-called fingerprint operators explicitly transform the 2-metre-
temperature observations into a new feature space. This way, they take advantage
of characteristic fingerprints in the 2-metre-temperature that point towards errors
in the soil moisture. Since this is a novel methodology for cross-compartmental
data assimilation, the effect of these fingerprint operators is unclear.

Coupled land-atmosphere model platforms are often biased compared to the real
development of the land-atmosphere system. In this study, we want to show how
we can improve the assimilation of 2-metre-temperature observations into land
surface models without having to care about model biases and errors. Hence,
we use idealized twin experiments together with TerrSysMP (Gasper et al., 2014;
Shrestha et al., 2014); a limited-area terrestrial system modelling platform that
couples COSMO as model for the atmosphere and CLM as model for the land
surface by the OASIS3 coupler. In these experiments, we define a deterministic
run, the so-called nature run, as our reality. We conduct this run with the same
model configuration as for our data assimilation experiments. On the basis of this
reality, we synthesize sparse 2-metre-temperature observations. We assimilate
these synthetic 2-metre-temperature observations into the soil moisture. With
this idealized modelling setup, we only concentrate on the relationship between
2-metre-temperature and soil moisture.

In our experiments, we compare ensemble Kalman smoother with different as-
similation window lengths to ensemble Kalman filters. We elaborate also the
question of how an ensemble Kalman smoother might be more successful than an
ensemble Kalman filter. A positive assimilation impact would imply that we can
take advantage of temporal dependencies with an ensemble Kalman smoother. For
possible fingerprint operators, we concentrate on features from the diurnal cycle
in the 2-metre-temperature. We start with a feature screening and show which
features in the 2-metre-temperature might be suited for cross-compartmental data
assimilation. In addition, we do offline data assimilation experiments to compare
the effect of data assimilation with fingerprint operators to assimilation without
these operators on the update step. In six experiments, we test different assump-
tions and combinations of fingerprint operators. These last experiments help us
to quantify the direct and propagated impact of fingerprint operators on the data
assimilation.
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We describe the theory of our implemented EnKS and the fingerprint operators
in Section 5.2. We elucidate our experimental setup in Section 5.3, where we
additionally present the used fingerprint operators for the atmosphere-land inter-
face. In Section 5.4, we show our results for the ensemble Kalman smoothers and
fingerprint operators, whereas we summarize and conclude our study in Section
5.5 and 5.6

5.2 Four-dimensional DataAssimilation Environment
In our four-dimensional data assimilation, we take not only vertical and horizontal
covariances into account but also temporal covariances. This four-dimensional
formulation allows us to assimilate observations in an assimilation window. To
assimilate observations in an assimilation window, we have to propagate the state
at the beginning of the window throughout the assimilation window. For this
propagation step, we use the Terrestrial System Modelling Platform (TerrSysMP,
Gasper et al. (2014) and Shrestha et al. (2014)); COSMO (Baldauf et al., 2011) as
model for the atmosphere is coupled to the Community Land Model as model for
the land surface. Because this model configuration is used throughout the thesis,
we refer the reader for more information about the modelling system and setup to
Chapter 2.

In this study, the general data assimilation method is based on the localized
ensemble transform Kalman filter (LETKF), derived and explained in Chapter
3. In the following, we therefore derive only our ensemble Kalman smoother
from a four-dimensional variational cost function. Our derivation closely follows
the derivation of the linearized iterative ensemble Kalman smoother in Bocquet
and Sakov (2014). Afterwards, we explain the computational costs of the here-
considered data assimilation methods. In the end of this section, we introduce the
concept of fingerprint operators for cross-compartmental data assimilation and
show how their observational covariance can be derived.

5.2.1 ETKS
As explained in Chapter 3, in data assimilation, we are interested in the filtering
solution p(xT | y

o
1:T ). Instead of sequentially cycling through a propagation

step and an update step, we can also update the trajectory once based on all
observations within an assimilation window from time 1 to time T . In this study,
we specifically investigate the impact of an ensemble Kalman smoother, where
we update the initial state at the beginning of the window to get the smoothing
solution p(x0 | y

o
1:T ). We can propagate this smoothing solution throughout the

window to obtain a filtering solution at the end of the assimilation,

p(xT | y
o
1:T ) =

∫
p(xT | x0,yo

1:T )p(x0 | y
o
1:T )dx0.

For this smoothing solution, we want to estimate the state of our model system
x0 at time 0 based on a background forecast xb

0 at the same time and given ob-
servations yo

1:T within an assimilation window from time 1 to time T . Both, the
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background forecast and observations, are presumably Gaussian distributed with
zero mean and Pb

0 and Rt, respectively, as time-dependent covariances. In addition,
the forecast and observations have an associated dynamical modelM07→t(xt), map-
ping a state from time 0 to time t, and an observation operator H(xt), translating
from state space to observational space. Given the Gaussian distributions of the
background and observations and Bayes’ theorem, we can formulate a cost func-
tion J(x0) to optimize our model state, corresponding to the strong-constrained
four-dimensional variational data assimilation (4D-Var) cost function (Dimet and
Talagrand, 1986; Talagrand and Courtier, 1987),

J(x0) =(xb
0 − x0)

T (Pb
0)

−1(xb
0 − x0) (5.1)

+

T∑
t=1

(yo
t −H(M07→t(x0)))

TR−1
t (yo

t −H(M07→t(x0))).

In ensemble-based data assimilation, we approximate the background forecast and
the background covariances by a Monte-Carlo approximation with k ensemble
members and δδδxb(i)

0 as ensemble perturbation of the i-th ensemble member at time
0,

xb
0 =

1
n

k∑
i=1

xb(i)
0 , (5.2)

Pb
0 =

1
n− 1

k∑
i=1

(xb(i)
0 − xb

0)(x
b(i)
0 − xb

0)
T (5.3)

=
1

n− 1

n∑
i=1

δδδxb(i)
0 (δδδxb(i)

0 )T .

Using these approximations, the assimilation increment of the analyzed model
state ∆x0 = x0 − xb

0 lies in the space spanned by the ensemble perturbations
(Lorenc, 2003; Hunt et al., 2007). Therefore, we can explicitly state the increment
as weighted linear combination of the ensemble perturbations with a column-wise
matrix of all background perturbations δδδXb and weights w,

x0 = xb
0 +δδδX

b
0w, w ∼ N(0, (k− 1)−1I). (5.4)

We can express the four-dimensional cost function (5.1) in ensemble space based
on this transformation,

J̃(w) =(k− 1)wTw (5.5)

+

T∑
t=1

(yo
t −H(M07→t(x

b
0 +δδδX

b
0w)))TR−1

t (yo
t −H(M07→t(x

b
0 +δδδX

b
0w))).
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To estimate the minimum of J̃(w) and find the solution for our model state, we
can descent the gradient with respect to the weights,

∂J̃(w)

∂w
= (k− 1)w −

T∑
t=1

YTtR−1
t [yo

t −H(M07→t(x
b
0 +δδδX

b
0w))] (5.6)

The first part of the gradient constrains the weights towards 0, whereas the second
part is observational-depending and punishes a strong deviation from the obser-
vations within the given window between 1 and T . The adjoint YTt is a short-form
for the partial derivative of the propagated state in observational space wrt. to the

current weights ∂H(M0 7→t(x
b
0+δδδX

b
0w))

∂w and translates the observational innovations at
time t to weights at time 0. We use here a purely ensemble-based approximations
to these partial derivatives with a four-dimensional ensemble transform Kalman
smoother (ETKS).

The ETKS is based on an approximated linear mapping from weight space into
propagated observational space. To estimate the linear mapping, we apply the
propagation model and observation operator to every ensemble member indepen-
dently, here for the i-th ensemble member, yb(i)

t = H(M07→t(x
b(i)
0 )). Afterwards, we

linearize the observational operator around the ensemble mean in observational
space yb

t =
∑k
i=0 yb(i)

t ,

H(M07→t(x
b
0 +δδδX

b
0w)) ≈ yb

t +δδδY
b
tw. (5.7)

The linearized observation operator δδδYb
t is a column-wise matrix, consisting of all

ensemble perturbations in observational space δδδyb(i)
t = yb(i)

t − yb
t . Furthermore,

this linearized observation operator acts in the ETKS as approximated adjoint
(δδδYb

t )
T ≈ YTt . Based on this approximated adjoint, (5.5) simplifies to a linear least-

squares cost function. We can therefore set the gradient (5.6) to zero and gain an
analytical solution for the mean weights w and covariance P̃a in weight space,

(P̃a)−1 = (k− 1)I +
T∑
t=1

(δδδYb
t )
TR−1

t δδδY
b
t , (5.8)

w = P̃a
T∑
t=1

(δδδYb
t )
TR−1

t (yo
t − yb

t ). (5.9)

To generate a new ensemble based on the found solution w, the ETKS determinis-
tically estimate the i-th ensemble member with an additional weight perturbation
δδδw(i),

x(i)0 = xb
0 +δδδX

b
0(w +δδδw(i)).

The weight perturbations are calculated based on the analysis covariance in en-
semble space P̃a, with T as column-wise transformation matrix of all ensemble
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perturbations in ensemble space,

[δδδw(0),δδδw(1), . . . ,δδδw(k)] = T = [(k− 1)P̃a]
1
2 .

This constructed ensemble represents then the smoothing solution at the begin-
ning of the assimilation window. To get the filtering solution at the end of the
assimilation window p(xT | y

o
1:T ), we have to propagate the smoothed ensemble

throughout the assimilation window with the dynamical model.

This derivation of an ETKS follows closely the derivation of an iterative ensem-
ble Kalman smoother in Bocquet and Sakov, 2014. Hence, the ETKS used-here
corresponds to their linearized iterative ensemble Kalman smoother, whereas the
adjoint is estimated with the transform variant (Bocquet and Sakov, 2012; Sakov
et al., 2012). We derive this ETKS based on the marginal smoothing solution
and the variational four-dimensional cost function. This ETKS can be therefore
seen as 4DEnVar (Liu et al., 2008; Desroziers et al., 2014; Bannister, 2017) with
some modifications. Instead of updating a deterministic run based on ensemble
statistics, we update the ensemble mean (5.9) and center the analysis perturbations
around this mean. As a consequence, we do not scale the ensemble to estimate
the ensemble approximation to the adjoint YTt and use a simple propagation of the
full ensemble. Furthermore, the ensemble is often externally updated in 4DEnVar,
whereas we update the ensemble perturbations based on the inverse Hessian (5.8).

Our formulation of the ETKS with its four-dimensional variational cost function
can be seen as variant of a marginal fixed-interval ensemble Kalman smoother
(Ménard and Daley, 1996; Li and Navon, 2001). In comparison to classical ensem-
ble Kalman smoother (Leeuwen and Evensen, 1996; Evensen and Leeuwen, 2000;
Cosme et al., 2012), we do not apply the ensemble weights to update the trajectory
in the whole assimilation window, but at the beginning of the window. From
there, the ensemble is again propagated throughout the window. This doubled
propagation increases the computational costs of our smoother compared to a
classical ensemble Kalman smoother, but we expect an advantage in the case of
non-linear propagations in the window (Bocquet and Sakov, 2014).

If we restrict our assimilation window to T = 0, we assimilate only instantaneous
observations at the same time as the estimated state, which equals filtering that
was derived in Chapter 3. Such an ensemble transform Kalman filter (ETKF) is one
baseline in our experiments, as it was previously used in Chapter 4. Furthermore,
we can linearize the first ensemble propagation around the ensemble mean. This
allows us to apply the estimated ensemble weights at time t = 0 anywhere in the
assimilation window (Hunt et al., 2007; Kalnay et al., 2007b; Kalnay and Yang,
2010). Specifically, we consider an application of the ensemble weights at the
end of the assimilation window at time t = T . In this case, the ETKS equals a
four-dimensional ETKF (4D-ETKF, Hunt et al. (2004) and Harlim and Hunt (2007)).
The 4D-ETKF smoothes over an assimilation window with past observations and
gives a filtering solution.

All three algorithms, the ETKF, the 4D-ETKF, and the ETKS, take the sensitivity of
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the model state xT at time T to observations from a previous time t differently into
account. The normal ETKF estimates a filtering solution at time t and propagates
this filtering solution to time T with the full dynamical model, as shown in Fig. 5.1,
(a). Hence, in the ETKF, the state at T is non-linearly dependent on a previous time.
Nevertheless, the ETKF takes temporal dependencies only during the propagation
step into account, whereas the update step is restricted to a single time. In contrast,
the 4D-ETKF linearizes the sensitivity around the ensemble mean and updates the
state at the end of the assimilation window, as shown in Fig. 5.1, (b). The 4D-ETKF
takes in this linearized way temporal dependencies during the update step into
account, but neglects the non-linear propagation as in the normal ETKF. Our ETKS
combines the ETKF and 4D-ETKF in some sense. During the update step of the
state at time 0, the ETKS linearizes the sensitivity of the state to the observations
ahead of the update time. Again, we can take advantage of temporal dependencies
during the update step. Resembling the ETKF, the solution is propagated non-
linearly through the assimilation window, as shown in Fig. 5.1, (c). Therefore, we
also make use of temporal dependencies during the propagation step.

Figure 5.1: An illustrative figure showing the differences between (a) the ETKF, (b) the 4D-ETKF,
and (c) the ETKS. The ETKF updates its trajectory at every observation time based on instantaneous
observations. The 4D-ETKF collects observations within an assimilation window, linearly projects
these observations to the end of the window and updates the trajectory once at this end. The ETKS
uses future observations and projects them linearly to the beginning of the assimilation window,
where the trajectory is updated once.

From these considerations, we expect that our ETKS combines the strength of
the ETKF and 4D-ETKF. In theory, this should lead to an increased assimilation
impact in the soil moisture. In the case of a linear model, the solutions of the
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normal ETKF, the 4D-ETKF, and the ETKS should be the same, but all with another
computational costs, as we show in the following.

5.2.2 Computational Costs
The propagation of the ensemble has the highest computational costs in four-
dimensional ensemble-based data assimilation. The costs of weight estimation
within the ETKF and ETKS are small compared to the costs for the propagation.
Here, we assume that the weight estimation has the same order of magnitude for
the computational cost Ω, independent of the number of assimilated observations.
We will denote the computational costs for a propagation of one single ensemble
member for one single simulation hour as P, whereas k is again the number of
ensemble members. In the following, we will derive the computational costs for a
T -hours long assimilation window, where we want to get the solution at the end
of the assimilation window.

• In the ETKF, we hourly update the soil moisture based on instantaneous
observations. The costs result into T × (P× k+Ω), because we have T times
the costs of a complete ensemble propagation for one hour.

• In the 4D-ETKF, we assimilate all observations within the window once and
apply the weights at the end of the assimilation window. Therefore, the
resulting costs T × P× k+Ω are lower than for the ETKF.

• In the ETKS, we update the state at the beginning of the assimilation window
based on all observations within the window. To get the solution at the end of
the window, we have to propagate the ensemble two times, which increases
the costs compared to the 4D-ETKF, resulting into 2× T × P× k+Ω.

As a result of linearized trajectories within the assimilation window, the costs for
the 4D-ETKF are (T − 1)×Ω smaller than for the ETKF. The ETKS is roughly two
times more expensive than the 4D-ETKF but has the advantage of a non-linearly
propagated filtering solution at the end of the assimilation window. To stabilize
land surface data assimilation with our smoothing setup, we introduce fingerprint
operators for data assimilation across the atmosphere-land interface.

5.2.3 Fingerprint operators
Our fingerprint operators are a form of feature extractor, acting on top of the
observations. As a consequence, data assimilation with fingerprint operators are
a form of feature-based data assimilation. Therefore, our derived methods are
similar to Morzfeld et al., 2018.

In fingerprint operators, we replace the T × l-dimensional observational vector
y1:T by am-dimensional feature vector ϕ(y1:T ), where the feature map φ translates
from observational space into feature space ϕ : R

T×l 7→ R
m. To perform data

assimilation based on this new feature space, we have also to transform the
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observational covariance, which will be denoted as R̃ for a transformed covariance.
The fingerprint operators change thus the likelihood from (5.5), where combined
the observation operator and dynamical model into one operator H1:T (·) which
maps a state at time 0 to observational states from time 1 to time T ,

J̃(w) =(k− 1)wTw+ (5.10)

+[ϕ(yo
1:T ) −ϕ(H1:T (x

b
0 +δδδX

b
0w))]T R̃−1[ϕ(yo

1:T ) −ϕ(H1:T (x
b
0 +δδδX

b
0w))].

Based on this new cost function, we can derive the equations for a feature-based
ETKS, where we linearize the fingerprint operator around the ensemble mean as
similarly done in (5.7),

ϕ(H1:T (x
b
0 +δδδX

b
0w) ≈ ϕϕϕb0 +δδδΦΦΦb0w. (5.11)

The ensemble mean in feature spaceϕϕϕb0 and linearized observation operator δδδΦΦΦb0
are again constructed based on independently propagated ensemble members.
This results into the following solution,

(P̃a)−1 = (k− 1)I + (δδδΦΦΦb0)
T R̃−1

δδδΦΦΦ
b
0 , (5.12)

w = P̃a(δδδΦΦΦb0)
T R̃−1(ϕ(yo

1:T ) −ϕϕϕ
b
0). (5.13)

If we compare (5.9) and (5.13), we can see that the form of the ETKS equations
remains the same, independent of any feature transformation. This also mean that
the computational costs of the fingerprint operators are almost the same as the
for ETKS. In the following, we show how the observational covariance in feature
space R̃ can be constructed.

5.2.4 Error covariance for fingerprint operators
The error covariance in feature space should reflect the expected difference be-
tween an actual observation in feature space and the unknown truth transformed
into feature space. Formally, we define that the error made in feature space is
additive and distributed according to an unknown Gaussian distribution around
the true state in feature space with an error covariance of R̃,

ϕ(yot ) = ϕ(H(xt)) + εφ,t, εφ,t ∼ N(000, R̃). (5.14)

Normally, we do not know the true state xt, but often we know the error covari-
ance in observational space R beforehand. Based on this, we can transform the
observational covariance from observational space to feature space. We can explic-
itly estimate the feature covariance for some expressions like linear combinations
of features, but often this explicit transformation cannot be used. Thus, we have to
approximate the transformation of the observational error covariance. We propose
here to use parametric bootstrapping, similar to Morzfeld et al., 2018. If we know
the observational covariance and the true observation without any observational

68



5.3 Experiments

error, then we can draw n observations from this Gaussian distribution and in-
dependently transform each observation into feature space ϕ(H(xt) + ε

o(j)
t ). In

practice, we do not know the true state in observational space. Instead, we can
approximate it by the actual observation H(xt) ≈ yot . The feature covariance
is then given as expected squared-error between the mean of the observations
φφφ
o
= n−1 ∑n

j=1ϕ(H(xt) + ε
o(j)
t ) and the j-th observation,

R̃t =(n− 1)−1
n∑
j=1

(ϕ(H(xt)) −ϕ(y
o
t ))(ϕ(H(xt)) −ϕ(y

o
t ))

T (5.15)

≈(n− 1)−1
n∑
j=1

(ϕ(H(xt) + ε
o(j)
t ) −φφφ

o
)(ϕ(H(xt) + ε

o(j)
t ) −φφφ

o
)T , ε

o(j)
t ∼ N(000, R)

This approximated error covariance converges to the true error covariance in the
limit of infinite draws lim

n→∞ and if the error in observational space is Gaussian
distributed. This approximation of the observational covariance in feature space
can be used to update the ensemble states with (5.13).

5.3 Experiments
In the following, we elucidate which specific fingerprints for the atmosphere-land
interface are used. Afterwards, we explain our experimental setup.

5.3.1 Specific fingerprint operators for land surface data assimi-
lation
In the following, we describe the mean day time temperature and the ampli-
tude of the diurnal cycle as specific fingerprints for data assimilation of 2-metre-
temperature observations to update the soil moisture. The 2-metre-temperature is
not only shaped by the soil moisture, but also influenced by other factors as the
incoming solar radiation, cloudiness, and precipitation (Stull, 1988). We want to
filter out these factors and establish fingerprint operators which robustly point
towards errors within the soil moisture. These fingerprint operators are related to
the diurnal cycle in the 2-metre-temperature within a 24 hour window, because
the soil moisture has a major influence on this diurnal cycle, whereas the informa-
tion content of an instantaneous observations is subject to the coupling strength
between boundary layer and land surface.

For our first fingerprint operator, we use the mean daytime temperature. The
atmosphere-land interface has its strongest coupling during daytime. At the same
time, model errors within the incoming solar radiation especially influence the
forecast of instantaneous daytime temperatures. To filter out these variations, we
can utilize an averaged quantity over our 24 hour window. We later compare the
mean daytime temperature and the median daytime temperature. We see that
the mean temperature is higher correlated to the soil moisture than the median
daytime temperature. We define here the temperature between 06:00 UTC and
18:00 UTC as daytime temperature.
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As second error fingerprint, we use the amplitude of the diurnal cycle fitted with
a sine function. The amplitude of the diurnal cycle inthe 2-metre-temperature
highly depends on the soil moisture (Idso et al., 1975). Furthermore, the amplitude
of the diurnal cycle is a relative fingerprint operator comparing different values
within the 2-metre-temperature and thus, robust against model errors which
influence the absolute value of the 2-metre-temperature. There are a various
number of proxies for the amplitude of diurnal cycle like the standard deviation
of the 2-metre-temperature within a 24 hour window or the daily maximum
temperature compared to the daily minimum temperature. We find a more robust
representation for land surface data assimilation, if we fit a wave function to the
2-metre-temperature measurements and directly use the amplitude of this fitted
wave function. We independently fit a wave function to the 2-metre-temperature
time series within a 24 hour window and a least-squares approach.

To estimate the covariance of these fingerprints, we use parametric bootstrapping,
as explained in Section 5.2.4. For the parametric bootstrapping, we draw 10000
observations from the observational equivalent of the nature run. We additionally
utilize prior knowledge. Errors of the amplitude (Breger et al., 1999) and mean
daytime temperature directly depend on errors within the 2-metre-temperature.
Additionally, we could derive the analytical expression for the covariance between
amplitude, mean daytime temperature, and instantaneous 2-metre-temperature,
but the covariances related to the amplitude are depending on the phase of the
fitted sine wave. Therefore, we use approximated covariances averaged over all
99 observational positions and all simulated days. The approximated covariances
for the mean daytime temperature and amplitude are denoted in Table 5.1.

Table 5.1: Estimated fingerprint error covariances based on parametric bootstrapping with the
fingerprint equivalent of 10000 generated observations, averaged over 13 days and all 99 observa-
tional points.

Name Variance (K2)
Mean daytime temperature 0.000833
Sine Amplitude 0.000833
Cross-covariance 0.000412

5.3.2 Experimental description
For our experiments, we use the same idealized twin experiment structure as
described in Chapter 2 and Chapter 4. In the following, we therefore only describe
shortly the experiments and their goals.

We define a single, deterministic Nature run without data assimilation as our
reality. Based on this Nature run, we synthesize 99 observations and an initial
ensemble of 40 ensemble members, as described in Chapter 2. We use this initial
ensemble to conduct an open-loop run without data assimilation. With this experi-
ment, we want to see the behavior of the generated ensemble members without
any data assimilation. This open-loop run is our first baseline experiment; the
following data assimilation experiments should have a smaller error to the nature
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5 Fingerprint operators to stabilize cross-compartmental data assimilation

run to have a positive assimilation impact. Additionally, this open-loop run is used
for offline data assimilation experiments (see also Section 3.6 for more information
about offline data assimilation experiments) to test different hypotheses regarding
the proposed methods and their parameters.

In all of our data assimilation experiments, we use the same horizontal and
vertical localization, specified by Gaspari-Cohn covariance functions with a 15 km
radius and 0.7 m radius in horizontal and vertical dimensions, respectively. We
manually tuned the prior multiplicative inflation for all experiments based on
their performance in the first day from 2015-07-31 12:00 UTC to 2015-08-01 12:00
UTC, the tuned inflation factor is shown as additional column in Table 5.2.

As baseline experiment, we assimilate instantaneous 2-metre-temperature obser-
vations hourly into the soil moisture with a LETKF (LETKF experiment). We
compare this LETKF with a four-dimensional-LETKF (4D-LETKF). There, we
assimilate observations once every 24 hours into the soil moisture and use all
observations within the previous 24 hours. In this four-dimensional filter, the
estimated ensemble weights are applied at the end of the assimilation window.

In the two LETKS experiments, we assimilate observations ahead of the update
time and vary the length of the assimilation window and update cycle. In the
LETKS (24 h) experiment, we update the soil moisture once a day with observa-
tions in a 24 hour window ahead of the update time. This experiment allows us
to infer the impact of smoothing trajectories instead of filtering states at single
points in time. In the LETKS (6 h) experiment, the soil moisture is corrected
every six hours with observations in a 6 hour window ahead of the update time.
This shortened LETKS experiment can be seen as compromise between a LETKF
and a LETKS with daily updates. These two smoothers are similar to the oper-
ationally used methods at the ECMWF (“IFS Documentation CY47R1 - Part II:
Data Assimilation” 2020). We replace the simplified extended Kalman filter by a
fully localized ensemble Kalman smoother with hourly observations. Our LETKS
therefore resembles more ensemble data assimilation methods for the atmosphere.

In all experiments with fingerprint operators, we assimilate features from observa-
tions ahead of the update time within a 24 hour window. In addition, we update
the soil moisture once a day as in the LETKS (24 h) experiment. To see the impact
of single fingerprint operators on the data assimilation, we use the sine amplitude
and mean daytime temperature independently in two experiments. We combine
the fingerprint operators and assimilate them together in the Sine+Mean exper-
iments. Here, we differentiate between the use of only diagonal observational
error covariances and the full covariance matrix with cross-covariances. In the
two Sine+Mean+Raw experiments, we assimilate the raw 2-metre-temperature
together with the two fingerprint operators to check if we gain more information
about the soil moisture by using additionally the fingerprint operators. As in
the Sine+Mean experiments, we conduct two different experiments, either with
correlated or uncorrelated observational errors.
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5.4 Results

In contrast to Chapter 4, our experiments were conducted at the super-computing
facilities of the DKRZ (German Climate Computing Center) in Hamburg. In
preliminary experiments, we saw that there are differences if we either perform
the experiments in Hamburg or in Juelich, as in Chapter 4. We therefore decided
to rerun the nature run, the open-loop experiment, and the ETKF experiment. As
a consequence, their results are slightly different compared to these in Chapter 4.

5.4 Results
This results section has two different parts. In the first part, we analyze the perfor-
mance of our ensemble Kalman smoother compared to ensemble Kalman filtering
for cross-compartmental data assimilation. In the second part, we investigate the
increased stability of using fingerprint operators for land surface data assimilation.

5.4.1 Smoothing
As first step, we compare the ensemble Kalman smoother experiments with the
ensemble Kalman filter experiment and open-loop run. For this comparison, we
use the area-averaged root-mean-squared error of the experiments compared to
the nature run (Figure 5.2).

Figure 5.2: Root-mean-squared-error of the smoothing experiments compared to the nature within
the simulation window as area average. The light-black dotted line and grey solid line are the
baseline experiments with the open-loop run and the LETKF run, respectively. The dashed dotted
light-blue line represents the 4D-LETKF experiment with a 24 hour assimilation window, whereas
the dashed blue line and solid blue line show the LETKS with a 6 hour and 24 hour assimilation
window, respectively.
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5 Fingerprint operators to stabilize cross-compartmental data assimilation

Data assimilation of the 2-metre-temperature into the soil moisture decreases the
analysis error in all experiments compared to the open-loop run (see also Table
5.3). Hence, updating the soil moisture based on the 2-metre-temperature has a
positive assimilation impact. Among all data assimilation experiments, the LETKF
experiment has the highest RMSE. Hence, ensemble Kalman smoothing reduces
the analysis error in the soil moisture.

Table 5.3: Temporal and area-averaged root-mean-squared of the LEKTF and LETKS experiments
to the nature run for hourly data from 2015-07-31 13:00 UTC to 2015-08-07 12:00 UTC .

Experiment RMSE (m3 m−3)
Open-loop 0.0170
LETKF 0.0115
4D-LETKF 0.0111
LETKS (6 h) 0.0111
LETKS (24 h) 0.0104

By hourly updating, the LETKF experiment non-linearly propagates assimilation
increments over time, whereas the 4D-LETKF experiment linearly smooths the
increments within a 24 hour window. Despite this linear assumption, data assim-
ilation with the 4D-LETKF has a small positive impact compared to the LETKF.
Therefore, the linear assumption has only a negligible impact on the analysis
result. The LETKF updates its trajectory based on instantaneous observations,
whereas the 4D-LETKF has to wait for 24 hours, before it sees again observations
from the previous assimilation window, leading to some inertia. The effect of
this inertia can be seen at 2015-08-07, where the 4D-LETKF has the highest er-
ror among all data assimilation experiments. At this data, observations have a
high assimilation impact on the soil moisture, because of an increased coupling
between atmospheric boundary layer and land surface. The LETKF and LETKS
already start to incorporate these observations, whereas the 4D-LETKF has to wait
to 2015-08-07 12:00 to make use of these observations. As a consequence, The
4D-LETKF has slower response times than the LETKS.

In both LETKS experiments, the LETKS (6 h) experiment and the LETKS (24 h)
experiment, we use observations ahead of the analysis time. The increased assim-
ilation window of the LETKF (24 h) experiment results in a decreased analysis
error. It seems that within a 24 hour window, the non-linearities in the atmo-
spheric boundary layer have almost no negative impact on the land surface data
assimilation. This again confirms that data assimilation of 2-metre-temperature
observations from a 24 hour window is almost a linear problem.

In contrast to the 4D-LETKF experiment, the LETKS (24 h) experiment uses obser-
vations ahead of the analysis time within the 24 hour window. Using observations
ahead of the analysis time additionally reduces the analysis error. As a result, the
LETKS (24 h) experiment has the lowest analysis error among all experiments.
We can therefore take advantage of temporal dependencies between atmospheric
boundary layer and land surface with an ensemble Kalman smoother and a 24
hour assimilation window.

74
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To compared the LETKF and LETKS in the following, we show the increments of
the LETKF and LETKS (24 h) experiment compared to the open-loop run in Fig.
5.3 (a & b). We analyze the difference of the prior ensemble mean in the LETKF
and LETKS (24 h) experiment to the open-loop run at the end of the simulation
time at 2015-08-07 12:00, where the same number of observations were assimilated
in both experiments.

Figure 5.3: Spatial difference in soil moisture of the mean state at 2015-08-07 12:00 UTC compared
to the open-loop run for a) the LETKF experiment and b) the LETKS (24 h) experiment.

We find that both data assimilation method have a similar assimilation impact
on the soil moisture with a root-mean-squared increment of ∼ 0.013m3

m
−3. In

general, both experiments exhibit the same spatial increment structures with only
few deviations within the experiments. The assimilation impact is mainly driven
by the coupling between the atmospheric boundary layer and the land surface
and the position of the 2-metre-temperature observations. In this setting, it might
be advantageous to increase the number of observations.

The LETKS (24 h) experiment has nevertheless a lower error than the LETKF
experiment. In the following, we analyze why our ensemble Kalman smoother
has an advantage compared to the ensemble Kalman filter by showing the area-
averaged Kalman gain (Fig. 5.4). This averaged Kalman gain is estimated based
on offline data assimilation experiments with a LETKF, where we assimilate 2-
metre-temperature observations at the shown observational time into the soil
moisture. To see differences in the temporal dependencies, we conduct three
different experiments. In these experiments, we shift the soil moisture state by
+24 hours, by 0 hours, and by −24 hours.

The Kalman gain is mainly driven by the coupling strength between land surface
and atmospheric boundary layer. Because the coupling strength has a diurnal
cycle, as shown in Section 4.4, also the Kalman gain exhibits a diurnal cycle with
its peaked minimum before noon. Around the same time, we find the largest
differences in the mean gain between different time shifts of the soil moisture field
compared to the 2-metre-temperature field.

Assimilating the 2-metre-temperature into the soil moisture 24 hours before the
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5 Fingerprint operators to stabilize cross-compartmental data assimilation

Figure 5.4: The area-averaged Kalman gain from the 2-metre-temperature to the soil moisture for
three different shifts in the soil moisture time compared to the shown observational times.

observational time increases the amplitude of the Kalman gain compared to the
instantaneous assimilation of the field. On this basis, we would also expect an
increased assimilation impact for assimilating observations that are 24 hours ahead
of the update time. In contrast, using observations to update the soil moisture 24
hours after the observational time decreases the Kalman gain amplitude. They
would hence also decrease the assimilation impact. Because our ensemble Kalman
smoother updates the soil moisture based on observations ahead of the update
time, we would expect that the Kalman gain of the LETKS (24 h) experiment is
increased compared to the LETKF experiment.

Table 5.4: Comparison between the LETKF, the 4D-LETKF, and the LETKS as table for the averaged
gains. The gain is averaged over all grid, observational, and time points. Both are averaged over
all 168 hours between 2015-07-31 12:00 UTC and 2015-08-07 11:00 UTC.

Experiment Gain (m3 K−1)
LETKF -0.00075
4D-LETKF -0.00071
LETKS (24 h) -0.00077

We compare the averaged gain between the LETKF, the 4D-LETKF, and the LETKS
(24 h) experiment in Table 5.4. Again, we conduct offline experiments based
on the open-loop run, because the data assimilation would otherwise influence
the state trajectory so that the gains would be incomparable. The amplitude
of the averaged gain in the LETKS (24 h) experiment is increased compared to
the LETKF experiment, whereas the gain of the LETKF is larger than for the
4D-LETKF. Hence, smoothing increases the Kalman gain by taking temporal
dependencies into account. This explains why the error of the LETKS (24 h)
experiment is reduced compared to the other data assimilation experiments (Table
5.3). Furthermore, these results prove again that an assimilation window ahead of
the update time improves the soil moisture analysis. Nevertheless, the 4D-LEKTF
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has a slightly decreased error compared to the LETKF in online data assimilation
experiments (Table 5.3). We do not know if this is by chance, or if there is another
cause for this phenomena, which might be related to updating the trajectory only
once per day in the 4D-LETKF.

At initialization of the experiments, 2015-07-31 12:00 UTC, all data assimilation
experiments have the same initial soil moisture forecast and we would expect
the highest assimilation impact. For this single time, we investigate the effect
of varying the length of the assimilation window. Specifically, we compare the
resulting area-averaged ensemble spread and RMSE of the ensemble mean to the
nature run for various assimilation window lengths (Fig. 5.5). On the one hand,
an increased window length should result into a decreased analysis error, because
we assimilate more observations at once. On the other hand, the relationship
between soil moisture and 2-metre-temperature gets more non-linear with an
increasing window length, which might have a negative assimilation impact on
longer windows.

Figure 5.5: Root-mean-squared error as area average at 2015-07-31 12:00 UTC and various assimila-
tion windows compared to the nature run at the same time for a) the soil moisture in root-depth
and b) the 2-metre-temperature. The black dotted line represents the static background given
by the open-loop ensemble at 2015-07-31 12:00 UTC. The analysis error and spread is shown in
dark-blue and light-blue, respectively. The analyses are estimated without any multiplicative
inflation.

As we increase the assimilation window , we decrease the analysis error for the
soil moisture (Fig. 5.5, a). As a consequence, the analysis with longest assimilation
window of 168 hours has the lowest RMSE. Nevertheless, after an assimilation
window of 24 hours, the improvement by increasing the assimilation window is
small compared to the improvements beforehand. Additionally, the discrepancy
between analysis error and analysis spread increases with increasing assimila-
tion window, showing that we would need larger inflation factors for longer
assimilation windows. This can be also observed for our online data assimilation
experiments, where we needed an increased inflation factor for longer assimilation
windows. The inflation factor encounters the effect of non-linearities and, hence,
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5 Fingerprint operators to stabilize cross-compartmental data assimilation

non-Gaussianities on the analysis. Based on these results, we conclude that an
assimilation window of 24 hours seems to be appropriate, if we additionally take
computational expenses into account.

If we compare the behavior of the RMSE for the 2-metre-temperature (Fig. 5.5, b) to
the soil moisture, we can observe possible problems with strongly-coupled data as-
similation for ensemble Kalman smoothers. Whereas the error for the soil moisture
decreases with increasing window length, the error for the 2-metre-temperature
increases for longer assimilation windows than 24 hours. This is related to the
non-linear development of the atmospheric boundary layer. The relationship
between 2-metre-temperature and soil moisture seems to have another intrinsic
time-scale than the autocorrelative relationship in the 2-metre-temperature. As a
result, ensemble Kalman smoothers are more difficult to tune for strongly-coupled
data assimilation across the atmosphere-land interface than ensemble Kalman
filters.

5.4.2 Fingerprint operators
Hereafter, we step-wise establish that fingerprint operators stabilize the data
assimilation of 2-metre-temperature observations for the soil moisture. We start
with a feature screening of some possible fingerprint operators based on the
ensemble in the open-loop run. For the feature screening, we analyze how much
the variance in the soil moisture would be reduced, if we would assimilate 2-
metre-temperature observations with the given fingerprint operator into the soil
moisture,

KtHtP
b
t . (5.16)

To calculate the Kalman gain Kt, we estimate the observational standard deviation
in feature space for every fingerprint operator independently with parametric
bootstrapping, as described in Section 5.2.4. The estimated standard deviations
are denoted in Table 5.5.

Table 5.5: The estimated feature standard deviations based on 1000 drawn observations from the
nature run.

Name σ (K)
Raw observations 0.100
Daytime-mean 0.029
Daytime-median 0.068
Maximum 0.095
Max-Min-difference 0.132
Standard-deviation 0.021
Sine-amplitude 0.029

To simplify the analysis, we bilinearly interpolate the 2-metre-temperature field
from COSMO to the CLM grid, as also done in OASIS3. As an additional simplifi-
cation, we estimate the variance reduction for every grid point independently. We
analyze the grid-point-based variance reduction of different fingerprint operators
as temporal and spatial average in Table 5.6. In correspondence to the Kalman filer
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and Kalman smoother, we call the instantaneous use of 2-metre-temperature obser-
vations filtering operator and the use of observations within a 24 hour assimilation
window ahead of the update time smoothing operator.

The filtering operator has a variance reduction of 0.40, whereas the smoothing
operator reduces variances in the soil moisture by 0.78. Hence, the smoothing
operator expects that the error in the soil moisture is in average reduced in every
assimilation step by 78 % and overestimates very likely the assimilation impact of
2-metre-temperature observations. This overestimation can be seen of some sort
of overfitting and is normally counteracted by covariance inflation.

Table 5.6: Variance reduction in soil moisture for grid-point-based covariances from different
fingerprint operators to the soil moisture in root-depth averaged over all grid points and times
between 2015-07-31 12:00 UTC and 2015-08-07 11:00 UTC in the open-loop run. The amplitude
and daytime mean temperature are used in our fingerprint operator experiments. For the filtering
operator, we averaged the covariances over the observations at 12:00 UTC. The smoothing operator
is the only observational feature where we use more than one observation.

Operator Variance reduction (m3 m−3)2

Filtering 0.000126
Smoothing 0.000243
Daytime-mean 0.000207
Daytime-median 0.000157
Maximum 0.000146
Sine-amplitude 0.000166
Standard-deviation 0.000171
Max-Min-difference 0.000116

All fingerprint operators act on the 24 raw observations that are also used in the
smoothing operator. They combine these raw observations into a single pseudo-
observation. This pseudo-observation is then assimilated instead of the 24 raw
observations. Almost all fingerprint operators, except the difference between
the maximum and minimum temperature, have an increase variance reduction
compared to the filtering operator, where also a single observation is assimilated.
The fingerprint operators can therefore condense information from the 24 raw
observations into a single pseudo-observations.

Among all fingerprint operators the daytime-mean temperature has the highest
variance reduction. This variance reduction is higher than for the daytime-median
temperature, which is robust to outliers in the temperature values. Hence, outliers
in the 2-metre-temperature might contain information about the soil moisture. To
see the effect of outliers, we additionally screen the maximum temperature, which
has a slightly increased variance reduction compared to the filtering operator. The
maximum temperature very likely influences also the daytime-mean temperature,
and we expect that these two fingerprint operators have overlapping information.
Thus, we stick to the daytime-mean temperature as our first fingerprint operator.

The amplitude of the diurnal cycle represents differences in the 2-metre-temperature,
whereas absolute values are used in the daytime-mean temperature. Hence, we
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would expect that the amplitude of the diurnal cycle has additional information
about the soil moisture. The difference in the maximum temperature to the mini-
mum temperature acts as proxy of the amplitude but is highly influenced by other
processes than the soil moisture, because only two temperature values affect this
proxy. These external influences constrain the variance reduction to smaller values
than for the filtering operator. The standard deviation of the 2-metre-temperature
is a stabilized proxy of the amplitude, because all 24 observations influence the
standard deviation. Interestingly, this stabilized proxy is the second moment of
the 2-metre-temperature observations. As such, it is only a statistical measure and
lacks a physical representation. In contrast, we can fit a sine wave to the diurnal
cycle inthe 2-metre-temperature and use the amplitude of this fitted sine wave as
direct proxy. This direct proxy is based on physical considerations and has almost
the same variance reduction as the standard-deviation operator. We therefore
use the sine-amplitude as second fingerprint operator beside the daytime-mean
temperature.

In addition to our feature screening, we analyze the impact of the fingerprint
operators on the innovations. We use here the normalized innovations in feature
space and define them as difference between observation and ensemble mean,
normalized by the observational standard deviation in feature space,

∆φ̃φφ
o
= R̃− 1

2 [ϕ(yo
t ) −φφφ

b
t ]. (5.17)

These normalized innovations are also used within the LETKS to build the product
of ensemble perturbations to observational perturbations and tell us something
about the impact of the observations on the data assimilation.

Table 5.7: The normalized root-mean-squared innovations over all observational positions between
2015-07-31 12:00 and 2015-08-08 11:00. The innovations are normalized by the fingerprint operator
standard deviations from Table 5.5. The amplitude and daytime mean temperature are used in our
fingerprint operator experiments.

Name Innovation (K)
Raw observations 1.940
Daytime-mean 4.387
Daytime-median 2.399
Maximum 2.499
Max-Min-difference 1.984
Standard-deviation 3.224
Sine-amplitude 3.124

All fingerprint operators have higher root-mean-squared innovations than the
raw observations. The normalized innovations of the daytime-mean operator are
2.2 times as large as for the raw observations, showing that observations from
the daytime-mean operator have a larger impact. The observational errors of
the daytime-mean operator are hereby also smaller than for the daytime-median
operator and maximum-temperature operator, which explains their lower nor-
malized innovation values. In terms of observational errors and normalized
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innovations, the standard-deviation and sine-amplitude operator dominate the
max-min-difference operator with 1.6 as large innovations. These normalized
innovations show again that the daytime-mean operator and the sine-amplitude
operator are suitable as fingerprint operators.

In the following, we present spatial maps for the variance reduction (5.16) by
considering the assimilation of a single observational point at 2015-07-31 12:00
UTC (Fig. 5.6); we use hereby the nearest COSMO and CLM grid point to the
selected observational site to estimate the Kalman gain. The variance reduction
is normalized by the background variance for every grid point independently to
make the values dimensionless. These spatial maps reveal correlation patterns
that would be normally suppressed by localization.

Figure 5.6: Variance reduction from the black crossed point to the soil moisture field at 2015-07-31
12:00 with raw observations (a–c) and fingerprint operators (d–f). Shown are a) a single soil
moisture point (observational uncertainty σo = 0.01m3

m
−3 as in Fig. 4.4), b) a single 2-metre-

temperature point, c) 2-metre-temperature points within the 24 hour window ahead of the soil
moisture state (2015-07-31 12:00 – 2015-08-01 11:00), d) the fitted sine amplitude in the same window,
e) the daytime mean temperature in the same window, and f) the combined sine amplitude and
daytime mean temperature. The ellipsoids symbolize the single and double localization radius,
after which an observation shown with the black cross has no influence on grid points.

Assimilating an soil moisture observations from the observational point to the soil
moisture field (Fig. 5.6, a) results in an elliptic-shaped pattern of increased variance
reduction around the observational point. The pattern corresponds to the selected
localization radius in the LETKF, as shown by the black circles, and is shaped by
initial soil moisture perturbations in the ensemble. This elliptic pattern is shifted
and smeared out to the north-eastern part of the observational site for the ETKF
with a single 2-metre-temperature observation at 2015-07-31 12:00 (Fig. 5.6, b). The
shifted and smeared out pattern is very likely a result of advected information.
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Some of this advected information would be lost in our data assimilation, because
of our chosen localization radius of 15 km. For this advected information, the
localization radius is too small and constrains the covariance too much (see also
Fig. 4.8 for a discussion of this problem).

The assimilation of 2-metre-temperature observations with an ensemble Kalman
smoother in a 24 hour window would lead to spurious correlations (Fig. 5.6, c),
because of the previously-discussed overfitting problem. This spurious correlation
is not physically explainable, and we would need to employ heavy localization. In
contrast, the fingerprint operators (Fig. 5.6, d–f) reduce the problem of spurious
correlations. The pattern of the combined fingerprint operator (Fig. 5.6, f) within
the localization radius hereby resembles the pattern of the smoothing operator,
whereas the maximum variance reduction is decreased by 0.18. This shows the
efficiency of the fingerprint operators to condense the information within the
assimilation window and to reduce the overfitting problem of the smoothing
operator.

We show two specific examples of how the daytime-mean temperature and sine-
amplitude operators stabilize land surface data assimilation (Fig. 5.7). For this, we
use offline experiments (see also Section 3.6 for more information) in the open-loop
run, one for the LETKS with a 24 hour window, and one for the combined finger-
print operators. We combine these fingerprint operators neglecting correlations in
their errors and using a diagonal error covariance matrix. As measure, we estimate
the root-mean-squared error of these experiments to the nature run for the soil
moisture in root-depth.

The localization radius shapes and constrains the background covariance matrix
P

b
t . In Fig. 5.7, (a), we vary the localization radius. The R-matrix should represent

the true error covariance in the observations. In Fig. 5.7, (b), we multiply this
R-matrix by a factor, while we keep the observational error constant. In this way,
we analyze the robustness of the data assimilation methods in the specification of
the Pb

t -matrix and the R-matrix.

For the localization radius, the minimum RMSE is at wider localization radii than
the normally used radius (Fig. 5.7, a). On the one hand, this is a result of the
offline experiments where we overestimate the ensemble spread, which leads to
an increased stability compared to full experiments. On the other hand, we have
chosen the localization radius on the basis of the results for the LETKF experiment,
and we kept the radius constant across all data assimilation experiments to increase
the comparability between the experiments.

We find that the experiment with the fingerprint operators has its minimum in
the RMSE at a 4000 m wider radius than the experiment with the LETKS. In
addition, the RMSE for the fingerprint operators is more stable for a wider range
of localization radii. This illustrates that the smoothing with fingerprint operators
is more stable against miss-specified horizontal covariances in the ensemble than
smoothing without fingerprint operators.
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Figure 5.7: The effect of miss-specifications in the covariances on the RMSE of the LETKS and
fingerprint operators for offline experiments in the open-loop run with (a) varying the localization
radius and b) the miss-specification of the R-matrix. The root-mean-squared error is estimated
as square-root of the temporally and spatially averaged squared error of the ensemble mean
compared to the nature run. In (a), the vertical lines represent the used localization radius in
all other experiments, the minimum in the LETKS (24 h) experiment, and the minimum in the
Sine+Mean Uncorrelated experiment. In (b), the vertical lines represent a correctly specified
magnitude of the R-matrix, the minimum in the LETKS (24 h) experiment, and the minimum in
the Sine+Mean Uncorrelated experiment.

The amplitude of the R-matrix is proportional to the strength of the regulariza-
tion in the data assimilation. Hence, an increased amplitude corresponds to an
increased regularization. This decreases the assimilation impact and increases
the RMSE compared to a correctly specified covariance matrix. In contrast, a
decreased amplitude corresponds to a decreased regularization. This increases the
overfitting to the observations and increases the RMSE compared to a correctly
specified covariance matrix.

For all localization radii and correctly specified observational covariances, the
LETKS (24 h) experiment has a lower RMSE than the fingerprint operators. The
fingerprint operators reduce the information content in favor for an increased
robustness against miss-specifications. If the R-matrix is more then 10× miss-
specified compared to a correctly chosen covariance, then assimilation with the
fingerprint operators has a lower error than the direct assimilation of the observa-
tions in the LETKS experiment. Therefore, the fingerprint operators make land
surface data assimilation more against miss-specification in both, the background
covariance matrix and the observational error covariance matrix.

Based on these encouraging results, we perform full data assimilation experiments
with the daytime-mean temperature and sine-amplitude operator and compare
these experiments with the LETKS (Tab. 5.8 and Fig. 5.8). We use these fingerprint
operators independently in two separated experiments. In other experiments,
we combine the fingerprint operators. We further differentiate between two
observational error covariance settings, where we either assimilate the features
with or without their cross-covariances. As last experiment, we assimilate the
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features together with the 2-metre-temperature observations.

Figure 5.8: The root-mean-squared error of the fingerprint experiments compared to the nature
run. The open-loop run and LETKS (24 h) experiment are here shown as baseline experiments. We
display here only v the Amplitude+Mean uncorrelated experiment and Amplitude+Mean+Raw
uncorrelated experiment, because there is no difference to the correlated experiments in the RMSE
(Tab 5.8).

The daytime-mean operator has a higher information content about the soil mois-
ture than the sine-amplitude operator and decreases the error by 9 %. In both
experiments with the fingerprint operator and the LETKS experiment, we assim-
ilate observations from a 24 hour assimilation window. The direct use of the
observations decreases the assimilation error further by 10 % compared to the
assimilation with the daytime-mean operator. Thus, the use of a single finger-
print operator cannot compete with the direct use of the observations in terms of
assimilation errors in our case.

By combining the fingerprint operators, we also combine their information content,
and we improve the soil moisture analysis by 5 % compared to the experiment
with the daytime-mean operator only. We can also combine the observations with
the fingerprint operators and assimilate both information together. Together, they
decrease the error compared to the LETKS by 2 %. Thus, the fingerprint operators
hardly extract more information than the direct use of the 2-metre-temperature
observations. But, we can condense the information from the 24 observations into
two observational features and retain a similar assimilation impact. In addition, the
information extracted by the fingerprint operators is in some way complementary
to each other so that they have together a higher assimilation impact.

We find no differences in the RMSE if we either use uncorrelated or correlated
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Table 5.8: Temporal and area-averaged root-mean-squared of the experiments to the nature run for
hourly data from 2015-07-31 13:00 UTC to 2015-08-07 12:00 UTC.

Experiment RMSE (m3 m−3)
Open-loop 0.0170
LETKF 0.0115
LETKS (24 h) 0.0104
Sine amplitude 0.0128
Daytime mean 0.0116
Sine+Mean uncorrelated 0.0110
Sine+Mean correlated 0.0111
Sine+Mean+Raw uncorrelated 0.0102
Sine+Mean+Raw correlated 0.0102

observational error; in theory, the fingerprint operators with correlated errors
should give better results. This confirms the result that the combined fingerprint
operators make land surface data assimilation more robust against miss-specified
observational error covariances, as we have already seen in Fig. 5.7. The finger-
print operators are therefore a possible way to condense information from multiple
observations into a few features. At the cost of assimilation impact, this informa-
tion condensation robustifies land surface data assimilation against miss-specified
covariances.

5.5 Discussion and Summary
We investigate how land surface data assimilation can make use of additional
information encoded in the temporal development of the 2-metre-temperature.
For this, we compare ensemble Kalman filters to ensemble Kalman smoothers
in idealized experiments. Our results show that ensemble Kalman smoothers
improve the soil moisture analysis based on 2-metre-temperature observations up
to 10 % compared to a three-dimensional ensemble Kalman filter with instanta-
neous observations. We find that this improvement is related to a higher Kalman
gain in the smoothing case, and thus related to an enriched representativeness
of the 2-metre-temperature observations for the soil moisture. In addition, our
analysis of the first analysis step indicates that there is only a small gain in longer
assimilation windows than 24 hours.

Our implementation of the ensemble Kalman smoother is based on the Localized
Ensemble Transform Kalman filter (LETKF) and equals to the transform variant
of the linearized Iterative Ensemble Kalman smoother (Bocquet and Sakov, 2014,
2012); we had no success in using Iterative Ensemble Kalman smoothers with
more than one update iterations, as shown in Appendix A.3). As such it belongs
to the family of 4DEnVar algorithms, indicating that there might additional gains
in idealized experiments by treating cross-compartmental data assimilation as
variational problem, as originally proposed by Mahfouf, 1991; Hess, 2001. Our
experiments underline that data assimilation of 2-metre-temperature observations
into the soil moisture is an almost linear problem in a 24 hour window. As a con-
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sequence, we would expect that variational procedures would benefit from more
much longer assimilation windows, on a weekly-like time-scale. This would put
cross-compartmental data assimilation out of the window needed for numerical
weather prediction and move it more into the window for reanalysis and seasonal
prediction problems.

In Chapter 4, we show that ensemble Kalman filters for land surface data assimila-
tion benefit from strongly-coupled data assimilation. There, 2-metre-temperature
observations are not only assimilated into the soil moisture, but also assimilated
into the atmospheric temperature with the same hourly cycle. For ensemble
Kalman smoothers, strongly-coupled data assimilation is much more difficult
to implement, because the land surface has another intrinsic time-scale than the
atmosphere. As a consequence of these different intrinsic time-scales, we would
also need different assimilation windows, one for the land surface and one for
the atmospheric boundary layer. In addition, ensemble Kalman smoothers with
application of the analysis at the beginning of the assimilation window are compu-
tationally more demanding than ensemble Kalman filters, because the ensemble
has to be propagated a second time through the window. This would especially
be a burden in coupled data assimilation with many involved sub-modules.

We find that the ensemble Kalman smoother tends to overfit towards the obser-
vations; this causes spurious correlations. Because of these spurious correlations,
the ensemble Kalman smoother is much more dependent on correctly specified
covariances than the ensemble Kalman filter. In real-world data assimilation, it is
much more difficult to tune the localization radius, the inflation factor, and the
observational error covariance than in our idealized settings. Therefore, ensemble
Kalman smoothers might be too difficult to tune and handle in real-world data
assimilation.

As one way forward, we introduce novel fingerprint operators into the land surface
data assimilation. Data assimilation with these fingerprint operators are a form
of feature-based data assimilation (Morzfeld et al., 2018). As features of 2-metre-
temperature observations, we design them to extract characteristic fingerprints
that point towards errors in the soil moisture. We show that the daytime-mean-
temperature and the amplitude of a fitted sine wave are physically-plausible
fingerprint operators to condense the information from 2-metre-temperature ob-
servations in a 24 hour window into fewer features. We found that the use of
these operators decrease the problem of curious correlations and overfitting to the
observations. As a consequence, they make land surface data assimilation more
robust against miss-specifications in the localization radius and observational
covariance compared to a standard Ensemble Kalman smoother.

We can combine the two fingerprint operators to decrease the error compared
to a standard ensemble Kalman filter. Although we assimilate two different
features, we have an information loss compared to the raw use of the 2-metre-
temperature observations within a 24 hour window, resulting in an increase error
of 5 % compared to our ensemble Kalman smoother. Nevertheless, these results
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indicate that fingerprint operators are one possible way to increase the stability of
ensemble Kalman smoother for land surface data assimilation.

In addition, fingerprint operators open the possibility to use a purely data-driven
approach for the discovery of observational features. A generalization of the
fingerprint operators would lead us to the so-called kernel and its reproducing
kernel Hilbert space (Schölkopf and Smola, 2002). These kernels are a popular trick
in machine learning to implicitly embed the observational space into a possibly
infinite-dimensional feature space with a specified covariance function. In the
case of kernel methods, one could also show that the ensemble transform Kalman
filter as dual form definition of an ensemble Kalman filter equals a Gaussian
process regression (Rasmussen and Williams, 2006), which is also called Kriging
in geostatistics. One of the main problems for this methodology is the high-
dimensionality of data assimilation and how to construct kernels specific for data
assimilation. Through kernels, we would also introduce other parameter into data
assimilation that have to be tuned, which might be tricky in real-world problems.
This tuning problem is also evident for localization, which can be seen as one type
of specific kernel dealing with high-dimensional data, not acting in data space
but in spatial space. Another possibility for a purely data-driven approach would
be to use neural networks and deep learning (LeCun et al., 2015; Goodfellow
et al., 2016). One could specify the observational features as multi-layered neural
network and optimize the variational cost function (5.5) with stochastic gradient
descent over a given training dataset. In this construction the ensemble Kalman
filter can be seen as last linear layer, performing the regression and implementing
a flow-dependency into the network.

All in all, our results support the hypothesis that there is information hidden in the
temporal development of the 2-metre-temperature about the soil moisture, which
can be extracted by data assimilation. Fingerprint operators can hereby help to
decode the information and to stabilize the data assimilation.
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5.6 Conclusions
In this study, we investigate how information encoded in the temporal develop-
ment of the 2-metre-temperature can be used for land surface data assimilation in
a limited-area terrestrial system platform and a seven-day period. Based on our
results in idealized experiments, we conclude the following:

1. Ensemble Kalman smoothing improves the soil moisture analysis compared
to ensemble Kalman filtering. By targeting trajectories instead of single states,
we increase the representativeness of 2-metre-temperature observations for
the soil moisture.

2. The update of the soil moisture based on 2-metre-temperature observations
in a 24 hour window is an almost linear problem.

3. We can apply a LETKS with the analysis weights at the beginning of a
24 hour assimilation window to improve the soil moisture analysis by up
to 10 % compared to a 3D-LETKF with hourly updates. Hence, we can
take advantage of temporal dependencies between the land surface and the
atmospheric boundary layer at the expense of increased computational costs.

4. We find that the daytime mean temperature and amplitude of a fitted sine
are fingerprint operators that condense the information content of 2-metre-
temperature observations from a 24 hour window into fewer observational
features.

5. The fingerprint operators make land surface data assimilation more robust
against miss-specifications in the background and observational covariances.

6. We can combine both fingerprint operators time to increase the assimilation
impact on the soil moisture analysis by 5 % compared to a 3D-LETKF with
hourly updates.
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6
Machine learning points of view on

the ETKF

In this Chapter, I provide additional theoretical points of view on the ensemble
transform Kalman filter (ETKF), beside the standard derivation as done in Chapter
3. These additional points of view are related to machine learning and possibly
a way to enable automatic data-driven learning for data assimilation. In the
following, I talk more about the principles of these additional points of view.

Let’s remind, how I derive the ETKF equations in Chapter 3. Based on Bayes’ the-
orem and an ensemble approximation, I establish a variational cost function with
a possibly non-linear observation operator Ht(xt). To solve the variational cost
function, I translate the ensemble members to observational space. Afterwards, I
linearize the observation operator around the ensemble mean to get a sensitivity
of the observation operator, as schematically shown in Fig. 6.1, (a). On the basis of
this sensitivity, I make one big update step. Although I translate the ensemble with
the full observation operator, I estimate an inverse solution only with a linearized
version of the operator. This discrepancy between observation operator and its
linearized equivalent can lead to a negative assimilation impact on the model-state
within the update step. The negative impact can especially occur if assumptions
are violated in the data assimilation procedure; the assumptions of the ensemble
Kalman filter are violated, if the prior distribution or observational likelihood are
non-Gaussian, or if the observation operator is very non-linear. In these cases, the
data assimilation problem is very difficult to solve (Bocquet et al., 2010).

An idea is to facilitate the data assimilation with feature-based data assimilation
(Morzfeld et al., 2018). In feature-based data assimilation, I transform the observa-
tions into a new feature spaceφt with an additional feature operator or extractor
ϕt(yt), as shown in Fig. 6.1, (b). For feature-based data assimilation, I am flexible
in the choice of the feature space. Hence, I can assist data assimilation by selecting
the right features for the problem that I am interested in.

For the update step in feature-based data assimilation, I have to find a linearized
operator that includes both, the feature operator and the observation operator.
In ensemble Kalman filters, I can easily find this linearized operator, because I
only need to transform the ensemble members to feature space, and I can linearize
the combined operator around the ensemble mean. In such sense, the ensemble
approximation makes feature-based data assimilation feasible.
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Figure 6.1: Schematic difference between classical data assimilation and feature-based data assimi-
lation. A possibly non-linear and pre-defined observation operator Ht(xt) translates a model-state
xt into an observational equivalent yt. In (a) classical data assimilation, this operator is linearized
around the current model-state xt to get the sensitivity ∂yt

∂xt
. In (b) feature-based data assimilation,

the observational equivalent is further translated into a feature stateφt by another possibly non-
linear operator ϕt(yt). This feature operator is unknown and has to be defined. Then, I only need
a sensitivity from feature space into model space ∂φt

∂xt
, which can be a much easier task in data

assimilation.

The feature extractor ϕt(yt) is still undefined. In Chapter 5, I explicitly define this
feature extractor on the basis of physical considerations. There, I take advantage of
characteristic fingerprints in 2-metre-temperature observations to correct forecast
errors in the soil moisture. Another possibility is to use a Gaussian anamorphosis
function in observational space (Bertino et al., 2003; Amezcua and Leeuwen, 2014;
Geppert, 2015). In a Gaussian anamorphosis, an explicitly defined feature extractor
transforms the observations such that their observational error is more Gaussian
distributed.

In the following sections, I show two more principle ways to define this feature
extractor. With the kernel trick (Murphy, 2012), I define the feature extractor
by an implicitly spanned feature space, as shown in Section 6.1. The kernelized
ETKF is related to other methods like Gaussian process regression (Rasmussen
and Williams, 2006) or particle filters. As another option, I can also define the
feature extractor as neural network, which can be learned by variational Bayes.
I introduce variational Bayes as a general way for optimizing parameters of the
ETKF together with a small example in Section 6.2.
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6.1 A kernel view on feature-based data assimila-
tion
In Chapter 5, I introduce fingerprint operators as features of observations based
on a feature extraction function ϕt(yt). This feature function maps from a l-
dimensional observational space to am-dimensional feature space ϕt : R

l 7→ R
m.

In the following, I show how this introduced feature function is related to kernels
in machine learning.

For the fingerprint operators, I derive a variational cost function, working analo-
gous to the linearized cost function for the ETKF. I additionally transform every
ensemble member independently into feature spaceφb(i)

t = ϕt(Ht(x
b(i)
t )). Based

on these transformed ensemble members, I create an ensemble mean in feature
spaceφb

t = k
−1 ∑k

i=0ϕt(Ht(x
b(i)
t )) and a column-wise matrix δΦb

t of all ensemble

perturbations δφb(i)
t = ϕt(Ht(x

b(i)
t )) −φ

b
t , here for the i-th column. Then, the

variational cost function for fingerprint operators (5.10) results into

L̃(w) =(k− 1)(w)Tw (6.1)

+[ϕt(y
o
t ) −φ

b
t − δΦ

b
tw]T R̃

−1
[ϕt(y

o
t ) −φ

b
t − δΦ

b
tw].

The feature space term in (6.1) depends on the error covariance in feature space R̃.
This error covariance is the observational error covariance propagated into feature
space. In the following, I incorporate this covariance into the feature function
ϕt (Rasmussen and Williams, 2006). Since the covariance is positive definite, I

can define a matrix square root of the covariance such that (R̃
− 1

2 )2 = R̃
−1

holds.

By multiplying the result of the original feature function with R̃
− 1

2 , I can simply
define a new feature function, which incorporates the error covariance. In the
following, I drop the dependency on the error covariance and assume that ϕt is
a normalized feature function. In addition, I denote δφo

t = ϕt(y
o
t ) −φ

b
t as the

difference between the observations in feature space and the ensemble mean in
feature space. With the dropped error covariance and this difference, (6.1) shortens
to

L̃(w) = (k− 1)(w)Tw+ [δφo
t − δΦ

b
tw]T [δφo

t − δΦ
b
tw]. (6.2)

This cost function and its solution is solely defined by inner products, either
as (δΦb

t )
T
δΦ

b
t , (δΦ

b
t )
T
δφ

o
t , or (δφo

t )
T
δφ

o
t . I replace these inner products by a

positive-definite kernel function K(y,y′) = 〈ϕt(y),ϕt(y
′)〉. This positive-definite

kernel function K : R
l×R

l −→ R has a corresponding reproducing kernel Hilbert
space H (RKHS, Schölkopf and Smola (2002)); in the following, I will call this
positive-definite kernel function simply kernel. As a result, the kernel has a
reproducing property such that f(y) = 〈f(·),K(y, ·)〉H ∀f ∈ H. Especially, this
property allows me to replace the feature function by a positive-definite kernel.
The kernel is defined for inner products of vectors, whereas the solution of (6.2)
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involves also inner products of column-wise matrices. I can replace these inner
products by a positive-definite gram matrix K, whose entries are given by K(i,j) =

K(y(i),y′(j)). For simplicity, I apply the kernel also on column-wise matrices, e.g.
K(Y ,Y ′), which then represents the gram matrix. For more information about
kernels and their RKHS, I refer to a recent review in Muandet et al. (2017).

Resulting from (6.2), the inner products are centered by the prior ensemble mean
in feature space. In contrast, the kernel K(y,y′) is possibly uncentered wrt. to
the ensemble mean in feature space. In this uncentered case, I would not use the
difference between observation and ensemble mean to update the state. Thus,
I would not recover the ensemble Kalman filter. I can formulate the centering
operation solely based on kernels (Schölkopf et al., 1997, 1998); I show a derivation
of this centering operation in Appendix A.4. In the following, I simply denote
the centered kernel as K̃(y,y′). Neglecting terms that are not dependent on the
weight vectorw, the centered kernel allows me to rephrase (6.2) into

L̃(w) ∝ (k− 1)(w)Tw− 2(w)T K̃(Yb
t ,yo

t ) + (w)T K̃(Yb
t ,Yb

t )w. (6.3)

As solution to (6.3), I get a kernelized form of the ETKF

w
a = [(k− 1)I+ K̃(Yb

t ,Yb
t )]

−1
K̃(Yb

t ,yo
t ), (6.4)

P̃
a = [(k− 1)I+ K̃(Yb

t ,Yb
t )]

−1. (6.5)
(6.6)

The inner products in the solution of the ETKF are simply replaced by a kernel
function which measures the similarity between the ensemble members in ob-
servational space and the observations. In these solutions, the feature space is
implicitly spanned by the kernel function K̃(y,y′), instead of explicitly translating
the observations into feature space by a feature function ϕt(yt). Furthermore, I
interestingly assimilate absolute values in observational space, instead of normal-
ized differences to the ensemble mean, because the centering operation is defined
in feature space. This could be an advantage in cases where the observational
error is non-Gaussian distributed. By varying the kernel function, I also vary the
feature space. I therefore define the main properties of this kernelized ETKF by
the kernel function.

Because of this central importance of the kernel functions, I show some kernel
functions in the next section. As example, these kernel functions can recover the
original ETKF or an ETKF with an infinite-dimensional feature space. For more
examples of kernels, I refer to Rasmussen and Williams (2006) and Murphy (2012).

6.1.1 Kernel functions
The linear kernel is defined as inner product between given two vectors y and
y
′. I incorporate the observational error covariance R−1 as modifier of this inner
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product,
Klin(y,y′) = (y)TR−1

y
′. (6.7)

If I plug this kernel together with the centering operation into (6.5) and (6.4), I
recover the original ETKF in (3.19) and (3.20). Hence, the ETKF is a linearized
operation to update the ensemble by data assimilation.

Another kernel that includes the linear kernel is the polynomial kernel. The
polynomial kernel is defined by its polynomial degree p and a constant shifting
factor c. Again, I incorporate the observational error covariance into the inner
product,

Kpoly(y,y′) = ((y)TR−1
y
′ + c)p. (6.8)

The polynomial degree and constant shifting factor are additional parameters of
this kernel that have to be tuned. The polynomial degree determines the maximum
order of products between different observations. Furthermore, the polynomial
kernel is one of the kernels, where the feature space can be explicitly build by
feature functions with the same order of interactions. If I set the degree to p = 1, I
recover the linear kernel up to a constant. Similarly to the linear kernel, the kernel
is unbounded and has the property that its value increases if the input vectors
are dissimilar. The polynomial kernel is additionally non-stationary; its value
depends on the absolute value of the input vectors.

In contrast, the Gaussian kernel (also known as radial basis function kernel) is
a stationary kernel, defined by the relative difference between the input tensors.
The Gaussian kernel resembles a Gaussian function in the following way,

Kgauss(y,y′) = σ2
gauss exp(−

1
2
(y−y′)TΓ(y−y′)). (6.9)

In this kernel, I parametrize the precision as Γ = l
−2
R
−1 with l as characteristic

lengthscale of the kernel, specifying the general smoothness of the kernel, whereas
R non-dimensionalizes the distances. Since the Gaussian kernel is defined by
y− y′, the kernel is translation invariant and bounded by 0 and σ2

gauss, which
determines the amplitude of the kernel. Furthermore, the Gaussian kernel specifies
an infinite-dimensional feature space and is a characteristic kernel such that all
higher moments of the data are captured (Muandet et al., 2017). In theory, this
kernel allows me to model any smooth target function, because it is additionally a
universal kernel (Micchelli et al., 2006; Sriperumbudur et al., 2011). The Gaussian
kernel shows that it is possible to specify an infinite-dimensional feature space
with the kernelized ETKF.

The polynomial and Gaussian kernels both specify non-linear interactions between
different observations. Therefore, they differ if I apply the kernelized ETKF on
all observations simultaneously or independently one after another. In contrast,
the linear kernel is independent, because it has an associative property. This
associative property is quite important to avoid an overfitting to observations that
are independent of each other. For non-linear kernels, I can apply a kernel for
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each dimension independently, because the sum of kernels is again a valid kernel.
Thus, I can use specific kernels for observations and dimensions, and I can bring
structure into my kernels (Duvenaud, 2014) to make use of specific properties of
my observations.

The shown reformulation of the ETKF into a kernelized ETKF is only possible
because the ETKF is formulated in a dual form of an ensemble Kalman filter. This
kernel formulation as theoretical approach allows me to draw similarities of the
ensemble Kalman filter to different methods like Gaussian process regression or
particle filters.

6.1.2 Relation to other methods
The used kernels in the kernelized ETKF are related to the RKHS. On this basis,
I connect the kernelized ETKF to other methods in machine learning and data
assimilation.

Instead of specifying the update step of the ETKF from Bayes’ theorem (3.6),
I can try to fit an inference function f(y). As replacement of the update step,
the inference function f : R

l 7→ R
s maps from the l-dimensional observational

space to the s-dimensional model-state space. Hence, the inference function
predicts based on given observations the model-state. In some sense, the inference
function inverts the observation operator and is often also called inverse function.
I can condition the inference function on current observations to get one single
estimate for the posterior p(xt | y1:t). Instead of searching for a single best
function, I can also specify a distribution of functions p(f | y1:t−1), conditioned
on previous observations. I can then marginalize over the functions to get the
posterior distribution (Murphy, 2012, Chapter 15),

p(xt | y1:t) =

∫
p(xt | f,yt)p(f | y1:t−1)df. (6.10)

Based on this posterior, the function should be fitted based on all information from
previous observations. In the ensemble Kalman filter, we model the inference func-
tion by prior samples in model and observational space (Anderson, 2003; Geppert,
2015). As seen in Chapter 3, the prior samples encode previous observations. They
can be therefore used to fit the inference function f(y).

To fit a single best inference function, I consider a regularized least-square loss
and a RKHS H as hypothesis space. This results into the following cost function
with the regularization parameter λ,

argmin
f∈H

1
2

k∑
i=1

‖δxb(i)
t − f(y

b(i)
t )‖2 + λ‖f‖2

H. (6.11)

The regularization λ‖f‖2
H is similar to a Tikhonov regularization in standard data

assimilation and smooths here the considered functions. As a consequence of the
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representer theorem (Kimeldorf and Wahba, 1970; Schölkopf et al., 2001), the kernel
ridge regression (6.11) has a unique solution for λ > 0. For this unique solution, I
can recover the solution of the kernelized ETKF mean (6.4) by setting λ = k− 1
and using centered kernels, as I show in Appendix A.5. The kernelized ETKF
therefore solves in its mean update a regularized kernel least-square loss, mapping
from observational space into the space spanned by the ensemble perturbations.

Sætrom and Omre (2011) and Yang (2020) are the only references I am aware
of that show a generalization of the ensemble Kalman filter based on kernel
ridge regression. In both references, the generalization is solely based on fitting
the inference function with kernel ridge regression. In contrast, I derive the
kernelized ETKF from feature-based data assimilation and, hence, in a more
general way. Because feature-based data assimilation changes the likelihood of
the data assimilation (Morzfeld et al., 2018), this also means that I am not solving
the original ensemble Kalman filter problem.

The solution of the regularized kernel least-square loss shares the same solution of
the mean for Gaussian process regression (Rasmussen and Williams, 2006; Murphy,
2012), and both creates their similarity matrices in data space. Kriging (Cressie,
1993) contrarily acts on spatial distances, but shares otherwise the same solution
of Gaussian process regression. Since observational localization in the LETKF can
be seen as an additional kernel, using spatial distances between observations and
a considered grid point, the LETKF combines information from Gaussian process
regression and Kriging. The weighting of the observations is hereby like Kriging,
whereas the estimation of the analysis resembles Gaussian process regression.

The (kernelized) ETKF estimates its analysis as linear combination of ensemble
member perturbations, which resembles particle filtering. Particle filtering (Doucet
et al., 2001) is based on Bayes’ theorem and estimates its weights based on the
observational likelihood of the ensemble members. Because the weights are af-
terwards normalized to 1 and the observational likelihood is always positive, the
particle filter uses a convex combination of the ensemble member perturbations
for the analysis. In contrast, the weights of the kernelized ETKF are often negative
and do not necessarily sum up to 1. Nevertheless, the kernelized ETKF with a
Gaussian kernel resembles a particle filter with a Gaussian observational likeli-
hood. Contrary to a particle filter, the kernelized ETKF normalizes its weights
based on Pa

t = [(k− 1)I+ K̃(Yb
t ,Yb

t )]
−1, which leads to a different behavior in the

weights. I exemplify the impact of this normalization in the next subsection.

To make data assimilation more expressive, often the model-state space is trans-
formed with kernels or feature functions, e.g. in Pulido and van Leeuwen, 2019;
Luo, 2019; Spantini et al., 2019; Pulido et al., 2019; Stordal et al., 2021. Often
the model-state space is higher-dimensional than the observational space. This
high-dimensionality can lead to problems with defining the right kernel func-
tions for the problem. It might be therefore advantageous to featurize instead the
observational space, as done in the kernelized ETKF.
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6.1.3 Wind speed example
I shortly visualize the weights of the kernelized ETKF with a simple example that
is inspired by Lorenc (2003). The state vector in this example are the wind direction
u and v, x = (u, v) with a prior distribution of p(x) = N((3, 1), (1, 1)), from where
I draw k = 2000 ensemble members. The observation operator is the wind speed

H(x) = (u2 + v2)
1
2 and the observational distribution p(y | x) = N(1.5, 0.05). The

observational likelihood and the posterior are non-Gaussian distributed, because
the observation operator is non-linear wrt. the model-state space.

For this example, I compare in Fig. 6.2 the linear ETKF, a kernelized ETKF and
a simple particle filter (Doucet et al., 2001). The particle filter directly solves
the Bayesian inference problem and, hence, is the gold standard in some sense.
As kernel in the kernelized ETKF, I utilize the Gaussian kernel (6.9) which has
additional parameters in comparison to the linear kernel. For the amplitude factor,
I choose σ2

gauss = n = 1000, whereas I use the median heuristic (Garreau et al.,
2018) for the lengthscale, resulting in l = 2.93. Before I evaluate the kernel, I
subtract the ensemble mean in observational space such that the kernel acts on
observational perturbations.

Figure 6.2: The mean ensemble weights in model space (a)–(c), where model space 1 represents
the u-wind component and model space 2 the v-wind component, and observational space (d)–(f)
for (a) & (d) the linear ETKF, (b) & (e) the kernelized ETKF with a Gaussian kernel, and (c) & (f)
the bootstrap particle filter. The dots represent the drawn prior samples either in model space or
observational space, whereas the circle and vertical line, respectively, symbolize the observation.
The colors in (a)–(c) show the weight for the i-th sample with red colors for positive weights and
blue colors for negative weights. Ensemble members with gray colors have almost no weight in
the data assimilation.

In model space (Fig. 6.2, (a)–(c)), the mean ensemble weights of the ETKF, kernel-
ized ETKF, and particle filter are all non-linear because of the non-linear observa-
tion operator. The kernelized ETKF and particle filter (Fig. 6.2, (b) & (c)) select
a few prior members with high ensemble weights. In contrast, the linearity in
the ETKF (Fig. 6.2, (a)) causes that whole areas have similar weights. This linear
assumption can be especially seen in observational space (Fig. 6.2, (d)–(f)). Here,
the ETKF (Fig. 6.2, (d)) fits simply a linear regression so that the ensemble member
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with the lowest observational equivalent has the highest weight. In contrast, the
weights of the kernelized ETKF (Fig. 6.2, (e)) resembles the Gaussian distribution
of the particle filter weights (Fig. 6.2, (f)) such that ensemble members around the
observational value have the highest weights. As a consequence of its normaliza-
tion (Sollich and Williams, 2004; Rasmussen and Williams, 2006), the Gaussian
kernel in the kernelized ETKF leads to an oscillatory behavior compared to the
weights from the Gaussian observational likelihood in the particle filter.

This example shows potential for the kernelized ETKF. This potential can be
especially seen from a theoretical point of view, since the kernelized ETKF a
generalization of the fingerprint operators that I have introduced in Chapter 5.
These kernels increase the flexibility of the ensemble Kalman filtering toolbox
at the cost of additional parameters that have to be tuned within the ensemble
Kalman filter; in the case of the Gaussian kernel, the amplitude and the lengthscale.
In the next section, I present a possible way to optimize the parameters in the
ETKF by variational Bayes.

6.2 Optimizing the ETKF with variational Bayes
In the previously derived kernelized ETKF, I introduced additional parameters
into the data assimilation, which have to be optimized in a general way. Here,
I show that parameters of the ETKF can be optimized by variational Bayes. I
start with a short derivation of variational Bayes (Jordan et al., 1999; Beal, 2003;
Hinton and van Camp, 1993) and will logically argument why the ETKF is an
optimal solution in the linear-Gaussian case. In addition, I explain how variational
Bayes can help us to optimize parameters of the ETKF in the non-linear and non-
Gaussian case. As last step, I exemplify the use of variational Bayes in an offline
experiment for the atmosphere-land interface, where I optimize the observational
error variance based on a fitted inverse gamma distribution. A schematic overview
over variational Bayes is shown in Fig. 6.3.

I want to estimate the unknown posterior p(xt | y
o
1:t) in data assimilation, as shown

in Section 3.1. Instead of directly optimizing the posterior based on Bayesian prin-
ciples via maximum-a-posterior as in variational data assimilation, I consider here
an approximated posterior distribution qθ(xt). This distribution has as variational
parameters θ, which could represent for example the mean and covariance in
model-state space. Ideally, the approximated posterior should be as close as pos-
sible to the unknown posterior. I use the reverse Kullback-Leibler divergence
(KL-divergence, Kullback and Leibler (1951)) as closeness criterion, where Eqθ(xt)
is the expectation over the approximated posterior,

DKL(qθ(xt) ‖ p(xt | y
o
1:t)) = Eqθ(xt)

log
qθ(xt)

p(xt | y
o
1:t)

. (6.12)

The KL-divergence is zero if and only if qθ(xt) equals p(xt | y
o
1:t) and measures

the closeness between two known distributions. Because p(xt | y
o
1:t) is unknown, I

have to use a proxy for the criterion. Based on Bayes’ theorem, I can reformulate
the KL-divergence to get this proxy criterion. As a result, the KL-divergence is
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Figure 6.3: A schematic overview over the components of variational Bayes in (a) model space
and (b) observational space. In model space, the prior distribution p(xt | y

o
1:t−1) is compared

to the red posterior distribution qθ(xt), generated with its variational parameters θ, by the KL-
divergence. The posterior is reparameterized with a drawn random vector ζt to a posterior sample
x

a
t. This posterior sample is translated with the observation operatorH(xa

t) to the red observational
distribution p(yt | x

a
t), conditioned on the posterior sample. The observation operator has a central

role and its arrow is therefore thickened. The observation yo
t is then compared to this conditional

distribution, resulting into the negative log-likelihood.

proportional to the variational free energy J(θ),

(6.12) = Eqθ(xt)
log

qθ(xt)p(y
o
t | y

o
1:t−1)

p(yo
t | xt)p(xt | y

o
1:t−1)

= Eqθ(xt)
[logqθ(xt) − log(p(yo

t | xt)p(xt | y
o
1:t−1)) +C] (6.13)

∝ −Eqθ(xt)
[logp(yo

t | xt) + logqθ(xt) − logp(xt | y
o
1:t−1)], (6.14)

J(θ) = −Eqθ(xt)
logp(yo

t | xt) +DKL(qθ(xt) ‖ p(xt | y
o
1:t−1)). (6.15)

In (6.13), I move p(yo
t | y

o
1:t−1) into the constant C, because the observational

evidence is constant with respect to the parameters θ, which allows me to drop
the constant in (6.14). In (6.15), I combine Eqθ(xt)

[logqθ(xt) − logp(xt | y
o
1:t−1)]

into DKL(qθ(xt) ‖ p(xt | y
o
1:t−1)).

The variational free energy J(θ) in (6.15) depends on the expected negative log-
likelihood of the observations −Eqθ(xt)

logp(yo
t | xt) given the current posterior.

This term translates the current posterior into observational space and compares
in the observational space the posterior to the observations. As a consequence,
this term nudges the posterior to the observations. The second term is the KL-
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divergence from the current posterior to the prior DKL(qθ(xt) ‖ p(xt | y
o
1:t−1)).

This term constrain the posterior to stay in the surrounding of the prior. Com-
pared to the maximum-a-posterior derivation in (3.7), I additionally minimize the
entropy of the posterior Eqθ(xt)

logqθ(xt) in this term. With the variational free
energy, I therefore optimize not only the mode of a distribution but the whole
distribution.

Additionally, I lower bound the model evidence (Murphy, 2012) with the negative
of the variational free energy −J(θ) 6 p(yo

t | y
o
1:t−1); the model evidence describes

how much information is stored within the posterior. Therefore, the negative of
the variational free energy is also called evidence lower bound (ELBO). In the
following, I use the term negative evidence lower bound (NELBO) interchangebly
for the variational free energy. Thus, minimizing (6.15) do not only optimizes the
KL-divergence, but also tightens the evidence lower bound.

To optimize J(θ) from (6.15), I can simply use Monte-Carlo sampling, draw sam-
ples from the current posterior xt ∼ qθ(xt), and use gradient descent. In addition, I
can analytically evaluate the KL-divergence between the posterior distribution and
prior distribution p(yo

t | y
o
1:t−1) for certain distributions, like Gaussians, reducing

the approximation error for the KL-divergence. Nevertheless, uncertainties caused
by the Monte-Carlo sampling of the observational likelihood remain (Gal, 2016,
Chapter 3.1). To reduce the uncertainties from the observational likelihood, I can
use the reparametrization trick (Kingma and Welling, 2013; Rezende et al., 2014)
for the propagation of the signal coming from the observational log-likelihood
to the inference. The reparametrization trick further decreases the variance of
sampling approximation. Instead of directly sampling from the posterior distribu-
tion, I reparametrize the sampling procedure by introducing an auxiliary noise ζ.
The randomness of the sampling in the posterior is then moved to this auxiliary
noise. I express the sampled random variable xt as the result of a deterministic
function xt = g(θ, ζ), which gets as input the variational parameters θ and the
auxiliary noise. For a Gaussian posterior, the variational parameters θ = (xt,Σt)
are given by the mean xt and the covariance Σt, and the reparametrization could

look like the following equation, where Σ
1
2
t corresponds to the square-root of the

covariance,

xt = xt +Σ
1
2
t ζ, ζ ∼ N(0, I). (6.16)

For certain distributions, I can therefore reduce the approximation error of the
Monte-Carlo sampling by using the analytical form of the KL-divergence and the
reparametrization trick for the observational likelihood.

In the following, I argue why the ETKF reduces (6.15) for a posterior in weight
space. In the ETKF, we optimize the posterior in weight space (3.15) based on a
Gaussian assumption on the prior distribution,

xt = x
b
t + δX

b
tw. (3.15)
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Thus, it is natural to define the approximated posterior as Gaussian distribution
withwa as mean and P̃

a
as covariance, qθ(w) = N(wa, P̃

a
). It is known that the

Kalman filter optimizes the variational free energy (or often called "maximum
relative entropy" principle) in the linear-Gaussian case (Mitter and Newton, 2005;
Giffin and Urniezius, 2014), whereas also the variational cost function (3.8) can
be recovered (Bocquet, 2008) from the free energy. In addition, the ETKF opti-
mizes the linearized variational cost function (3.18), if I linearize the observation
operator around the ensemble mean in model space. Therefore, the solution of
the ETKF (3.19) and (3.20) is also the maximum relative entropy solution for the
approximated posterior. In Appendix A.6, I rigorously prove that the ETKF update
equations corresponds to the solution of a full Gaussian posterior distribution
in the linearized-Gaussian case. Hence, the ETKF can be used as last layer in an
inference chain, giving always the optimal solution in a linearized-Gaussian case.

Since I know that the ETKF optimizes the variational free energy (6.15) in the
linearized-Gaussian case and the ETKF is fully differentiable, I can use the varia-
tional Bayes to optimize parameters in the ETKF with gradient descent. Compared
to expectation maximization (for example used in Pulido et al. (2018)), variational
Bayes does not discriminate between state variables and parameters. Hence, I
can optimize the full distribution of a parameter and include priors to constrain
their solution. In addition, I can optimize the ETKF and parameters in the same
update step based on the same cost function. In ensemble Kalman filtering, an
approach for parameter estimation is to simply augment the model-state space
by the parameters such that they are updated at the same time as the model-state.
Therefore, the variational Bayes approach is similar to this augmentation approach,
except that I analyze the state with an ETKF, whereas I optimize the parameters
on the basis of the variational free energy.

Variational Bayes and the reparametrization trick allows me to optimize data
assimilation with the ETKF as core inference method, translating current obser-
vations yo

t and additional parameters θ into a Gaussian posterior distribution.
From the perspective of the parameters, the ETKF belongs to the estimation of
the observational log-likelihood, whereas the ETKF sees the parameter estimation
as pre-processing step, needed for its weights estimation. By this procedure, I
am able to optimize parameters without the need of analytical expectations, and
I can utilize tools developed for neural networks like PyTorch or TensorFlow.
In the following, I outline an example where I optimize the observational error
covariance based on an offline experiment for the atmosphere-land interface from
Chapter 5.

Exemplary tuning of observational error covariance with varia-
tional Bayes
I show here that I can optimize the observational error covariance with the pre-
viously introduced approach, resulting in an approximation of the full error
distribution. In this example, I use an offline experiment (see also Section 3.6),
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where I assimilate 2-metre-temperature observations into the open-loop run of
Chapter 5 with a non-localized ETKF on an hourly basis from 2015-07-31 12:00
UTC to 2015-08-07 11:00 UTC. I assume that the mapping between weightswt at
time t to the observations yo

t is linear. Hence, I can use the static approximated
sensitivity δYb

t . As a consequence, I rely completely on the imposed covariances
of the open-loop run.

I know from Chapter 2 that the observational error is an independent and iden-
tically distributed Gaussian N(0, 0.01K2). Thus, I simultaneously optimize the
same variance posterior distribution for all 99 observations and all 168 time steps,
which gives me l = 16632 samples. I use for the prior and posterior distribution of
the observational error variance the inverse gamma distribution IG(α,β), because
the inverse gamma is one of the conjugated priors for the variance of a Gaussian
distribution (Bishop, 2006). Since I want to show the ability to recover the correct
observational error variance, I use here IGprior = IG(2.1269, 0.1269) as prior, which
results in a wrong mode of (σo)2 =0.0406 K2.

I optimize α and β for 500 iterations with the Adam optimizer (Kingma and
Ba, 2017) and a learning rate of 0.01. To ensure the positiveness of α and β,
I specify their latent equivalent. I translate as one step this latent equivalent
by the softplus function (Dugas et al., 2001) into the parameters needed for the
inverse gamma distribution. For the stochastic optimization, I use r = 4 samples
from the variance posterior and s = 64 samples from the ETKF posterior. I
implemented the optimization in PyTorch (Paszke et al., 2019) together with the
ETKF implementation from Chapter 3 (Finn, 2020b). The looped steps for the
optimization are the following:

1. Sample r variances from the current variance posterior (σo(i))2
∼ IG(α,β),

here for the i-th sample, with the reparametrization trick (6.16).

2. Based on all observations, their ensemble equivalent, and the drawn observa-
tional variances, estimate with the ETKF for all r samples the mean weights

w
a(i)
t and weight covariances P̃

a(i)
t .

3. Sample s samples from the current ETKF posterior w(i,j)
t ∼ N(w

a(i)
t , P̃

a(i)
t ),

here i, j describes the i-th sample from the variance posterior and the j
sample from the ETKF posterior, with the reparametrization trick (6.16).

4. Propagate the sampled weights with the approximated sensitivity δYb
t and

ensemble mean in observational space yb
t to observations

y
a(i,j)
t = yb

t + δY
b
tw

(i,j)
t . (6.17)

5. Evaluate the variational free energy (6.15) based on a factorized posterior for
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the variance and ETKF here written as q,

J(α,β) =− Eq logp(yo
t | wt,σ

o) +DKL(N(wa, P̃
a
) ‖ N(0, (k− 1)−1

I))

+DKL(IG(α,β) ‖ IGprior).

6. Make a gradient descent step ∂J(θ)
∂θ with θ = (α,β) to optimize the variance

posterior IG(α,β).

For additional reference purpose, I optimize the observational error variance
based on Desroziers et al. (2005). In this approach, the observational variance
is determined by the deviation of the posterior ensemble mean in observational
space to the observations ∆ya and the deviation of the prior ensemble mean to the
observations ∆yb. Since I know that the observational errors are not correlated,
I can simply estimate the product of both quantities (σo)2 = l

−1 ∑l
i∆y

a
l∆y

b
l ,

averaged over all l = 16632 samples with all time steps and observations. This
estimated observational variance is iteratively used to determine a new analysis in
observational space with the same observation operator (6.17) as for the variational
Bayes procedure. As initial guess, I start with the mode of the IGprior distribution
(σo)2 = 0.0406 K2, and Desroziers’s method converges within 5 iterations.

Figure 6.4: The (a) observational error standard deviation and (b) loss functions in dependence on
the optimization steps. In (b), KL ETKF is the KL-divergence of the weights posterior to the weights
prior from the ETKF inference, whereas KL Variance specifies the KL-divergence of the standard
deviation posterior to prior. The negative log-likelihood − log p(y | x) and the variational free
energy (NELBO, negative evidence lower bound) are for visualization shifted by 60 nats, whereas
all loss values are smoothed over 10 iterations. One nat is the natural unit of information, similar
to one bit, but to the basis e.

The 4 samples from the variance posterior for each iteration are shown in Fig. 6.4,
(a). As specified by the prior, the sampled standard deviations are miss-placed at
early iterations and converge after around 100 iterations to an almost stationary
distribution. This distribution is in most cases larger than the true observational
error standard deviation of 0.1 K. Most of the samples are also larger than the
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estimated standard deviations with Desroziers’s method, caused by the shape of
the inverse gamma distribution. The losses (Fig. 6.4, (b)) converge at a similar
rate as the standard deviation. In the beginning, the loss is dominated by the
observational likelihood because of the wrongly-specified standard deviations.
In later iterations, the observational likelihood is reduced at the cost of the KL-
divergence for the posteriors of the ETKF and of the observational error variance.
Variational Bayes is therefore able to optimize the state variables and parameters
at the same time.

Figure 6.5: The optimized inverse gamma distributions for the observational error standard
deviation in dependence on the iteration number. Optimization with E[∆ya(∆yb)T ] (Desroziers
et al., 2005) is shown in blue as Desroziers.

The posterior of the variance converges within 300 iterations to its almost station-
ary distribution (Fig. 6.5). For this stationary distribution, the correct observational
error standard deviation is within a possible range of values, whereas the initial
prior was miss-specified in terms of the probability for the correct value. The mode
of the posterior distribution (σo =0.125 K) almost equals the solution gained with
Desroziers et al. (2005) (σo =0.131 K) and both are larger than the correct standard
deviation. In this offline experiment, I use a static and linearized observation
operator, which is not influenced by the optimized parameters. Hence, the overes-
timation of the observational standard deviations is most likely a consequence of
this static observation operator.

In Fig. 6.6, I specify the observational error standard deviation instead of α and
β in the inverse gamma distribution. The Kullback-Leibler term of the inverse
gamma distribution is therefore not shown in Fig. 6.6. The optimization is a
convex problem for a linearized observation operator such that there is only one
global minimum in the losses. This optimum of the variational free energy is
almost the same solution as with Desroziers’s method or the full inverse gamma
distribution. Based on this result, I would expect that the full variational problem
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Figure 6.6: The negative evidence lower bound (NELBO) as loss function in dependence on the
observational error standard deviation. The negative log-likelihood − log p(y | x) and the NELBO
are for visualization shifted by 60 nats.

is also a convex problem with a global optimum, where the shape α and scale β
are constrained to remain similar to their prior values.

This example shows that I can optimize parameters in the ETKF with variational
Bayes. By using a prior distribution on the parameters, I can constrain a physical
plausible area and nudge the solution towards this area. Furthermore, I get a
full probability distribution, which is not possible if I would use expectation-
maximization or a degenerated point estimate as posterior.

6.3 Discussion and Outlook
In this Chapter, I introduce two new theoretical approaches into data assimilation,
which are especially related to the ETKF. I show that it is possible to use the kernel
trick for feature-based data assimilation. By using a linear kernel, I recover the
classical linear ETKF, but by choosing other kernels I can increase the flexibility
of the ETKF. This increased flexibility can be also seen from a regression point
of view. Instead of using a linear regression from observational space to model
space, I use a kernel-based non-linear regression. In a simple wind speed example,
I show the similarities of the kernelized ETKF to particle filters. The increased
flexibility but comes also at a cost, because the kernel and its parameters have to
be chosen and tuned.

To solve this optimization problem, I propose a second theoretical framework, the
variational Bayes. In the variational Bayes framework, an approximated posterior
is optimized based on its Kullback-Leibler divergence to the prior and the negative
observational log-likelihood. I reveal that the ETKF is a specific solution to the
variational free energy cost function such that parameters of the ETKF can be
optimized, even if their analytical expression is not available. Because variational
Bayes makes no difference between state and parameter, I can optimize the states
and parameters at the same time. In an offline experiment based on the open-
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loop run of Chapter 5, I present that this approach can be used to optimize the
probability distribution of the observational error variance, here parametrized as
inverse gamma distribution.

In my example, I completely rely on linearized ensemble statistics, including the
sensitivity, mapping from weight or model space to observational space. This
can be seen as if I optimize the observational error variance solely based on inner
loops without an updated sensitivity. Hence, the variational Bayes procedure
can be improved if I would also use outer loops, where the sensitivity is updated
based on updated ensemble statistics. For this, I would need additional ensemble
propagations, which would significantly increase the computational costs. Because
variational Bayes and the reparametrization allows me to use any gradient descent
algorithm, the approach is especially suited for online updates of the parameters,
where the posterior at time t could be the next prior at time t+ 1. If I restrict the
optimization to one single iteration per time step, this could be a way to reduce
the computational costs, but to keep the updated sensitivity of the next time step.

With the same variational Bayes framework, it would be also possible to optimize
the kernel parameters of the kernelized ETKF. Because a sum of scaled kernels
is again a kernel, it would be also possible to optimize the kernel composition,
which would allow a optimization of the importance of single kernels. These
two approaches together have the possibility to automatize the finding of kernel
functions for the kernelized ETKF.

The observational term in the kernelized cost function of the ETKF (6.2) allows
me to draw another point of view on the kernelized ETKF. Since the observations
y

o
t and the observational equivalent of the ensemble members Yb

t are both sam-
ples from their corresponding probability distributions, the kernel embeds these
distributions. Hence, the observational term corresponds to the so-called maxi-
mum mean discrepancy (MMD, Gretton et al. (2012, 2006)). In this distributional
embedding, the kernel determines how many moments of the distributions are
compared to each other. Therefore, the kernelized ETKF is in line with current
research on how to use maximum mean discrepancy as an alternative criterion to
maximum likelihood for inference procedures (Arbel et al., 2019; Briol et al., 2019;
Cherief-Abdellatif and Alquier, 2020).

Since kernel methods belong the state-of-the-art methods for years in machine
learning, one can speculate why kernel methods are not more often used in data
assimilation. One cause might be the high-dimensionality in geoscience, which
can lead to the curse of dimensionality for more flexible schemata than linear
regression. The solution to this problem can be the use of additive kernels. They
act only on specific dimensions (Duvenaud et al., 2011) and can avoid the curse of
dimensionality in this way. Another cause might be the ever-increasing number
of observations that have to be assimilated. As a consequence, it can be more
important to increase the number of observations than to increase the efficiency
of the assimilation for existing observations. In ensemble Kalman filters without
B-matrix localization or inflation, the degrees of freedom for signal are bounded
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by the number of ensemble members (Hotta and Ota, 2020). This bound can lead
to a sub-optimal posterior ensemble if more observations than ensemble members
are assimilated. Here, increased robustness of kernel methods and fingerprint
operators can help us to use observations more efficiently.

Instead of specifying a kernel for feature extraction, I can also use neural networks
(LeCun et al., 2015; Goodfellow et al., 2016). For a dynamical adaption of the
neural network to the ensemble members, the ETKF can be used as last layer. In
this way, the neural network as static function would then extract features based
on their previous performance. The neural networks can be learned based on
variational Bayes in a procedure that resembles variational autoencoders (Kingma
and Welling, 2013). The neural network together with the ETKF would resemble
an encoder, mapping from the observational data space to the latent model space,
where as the observation operator acts as decoder, the other way around. This can
be especially an advantage in cases, where the assumptions of linear observation
operators and Gaussian distributions are violated. Here, variational Bayes could
help us to move the non-linear and non-Gaussian parts of the inference problem
to the feature extraction network.

All in all, these two additional theoretical approaches open a wide range of possi-
bilities for ensemble Kalman filters. On one hand, they increase the flexibility of
ensemble Kalman filters for non-linear data assimilation and provide parameter
optimization within the ensemble Kalman filter. On the other hand, they offer
another point of view, allowing a shift towards a more data-centric data assimila-
tion, where features of observations are used to increase the efficiency of existing
observations. This increased efficiency might be especially important in the case
of coupled data assimilation across different Earth system components. Therefore,
this chapter proves that recent developments in machine learning can be used to
extend data assimilation.
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Summary and Outlook

7.1 Summary
As I indicate in the introduction, I think that fully-coupled Earth system models
together with machine learning are the most likely answer providing us another
day of predictability for numerical weather prediction. As numerical weather
prediction is an initial value problem, cross-compartmental initialization of Earth
system models is therefore crucial but remains an unanswered question. This is
a problem for simulations that should be as close as possible to the reality such
as the project of a digital twin Earth. In this thesis, I propose two complementary
frameworks as my contribution to gain the next day of predictability.

As proof of concept, I investigate the exemplary case of the atmosphere-land
interface, where cross-compartmental data assimilation has been used for years.
Currently, observations from the atmospheric boundary layer are assimilated
across this interface into the soil moisture to primarily improve the forecast of
the atmospheric boundary layer. One would expect that the coupling via the
sensible heat flux and evapotranspiration between atmospheric boundary layer
and land surface allows us to additionally improve the analysis of soil conditions.
In contrast to this expectation, previous studies often found a negative assimilation
impact such that data assimilation of boundary layer observations increased the
analysis error for the soil moisture. It is quite difficult to disentangle the effects
of different elements in the numerical weather prediction chain on this negative
impact. Here, I take a step back from operational methods and use idealized
experiments with a limited-area terrestrial model system. In these idealized
experiments, I create a nature run with the same model configuration as for my
data assimilation runs. This nature run acts as my reality to which I compare the
results of my experiments. I synthesize 99 2-metre-temperature observations from
this nature run, which are subsequently assimilated into the soil moisture with
different types of data assimilation. Based on these idealized experiments, I am
able to show that 2-metre-temperature observations can be used to improve the
soil moisture analysis.

As my first framework, I propose to unify and couple the data assimilation with
a localized ensemble Kalman filter for the initialization of Earth system models.
In observational localization, every grid point is independently updated based
on observations in the surrounding, weighted by their distance to the consid-
ered grid point. This observational localization allows me to assimilate 2-metre-
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temperature observations without the need for an intermediate interpolation step
as used in operational data assimilation for the soil moisture. By assimilating 2-
metre-temperature observations at their observational sites, I also take horizontal
dependencies between the 2-metre-temperature and soil moisture into account.

This framework is additionally based on the ensemble approach, where the model
is run multiple times for the same time period, each time with slightly perturbed
initial conditions. For a given time, I get an estimate for the uncertainty of the
conditions, which can be then used in the data assimilation to weight the fore-
cast against the observations. To update the soil moisture based on 2-metre-
temperature observations, I have to estimate the sensitivities of perturbations in
the 2-metre-temperature to perturbations in soil moisture, but the ensemble esti-
mates these sensitivities automatically. Hence, I do not need additional methods
like a tangent linear model or additional finite-differences’ runs to update the soil
moisture.

In my experiments, I reveal that the ensemble approach together with the observa-
tional localization decreases the analysis error in the soil moisture by up to 50 %
compared to an implementation of the simplified extended Kalman filter, used in
operational data assimilation. In addition, I discover that it is possible to update
the soil moisture based on instantaneous 2-metre-temperature observations with
this framework and an hourly cycle, as operationally used for numerical weather
prediction with limited-area models in the atmosphere. This result suggests that
the updated variables in the data assimilation for numerical weather prediction
can be simply augmented by the soil moisture. This therefore proves that I can
unify and couple the data assimilation for the atmosphere-land interfaces with a
localized ensemble Kalman filter.

Perturbations in one component of the Earth system often have an effect on the
forecast of another component with some delay. Especially in data assimilation
for Earth system models, it is important to take these temporal dependencies into
account. Hence, my second proposed framework is based on the efficient use
of temporal dependencies by assimilating observations within a time window.
I found that using 2-metre-temperature observations within a 24 hour window
ahead of the update time improves the soil moisture analysis by around 10 %.
Alternatively assimilating observations in a 24 hour window preceding the update
time only decreases the analysis error by around 3 %. This discrepancy reveals that
temporal dependencies can be better taken into account for Earth system models
if observations ahead of the update time are used.

The sensitivity of 2-metre-temperature perturbations to soil moisture perturbations
at update time decreases with increasing time difference. In addition, I introduce
noise into the sensitivities because of the ensemble approximation. An increased
assimilation window also increases the chance that the additional noise is larger
than the additional signal. This would subsequently have a negative assimilation
impact. I found in my experiments that using 2-metre-temperature observations
at longer time windows than 24 hours have almost no additional gain for the soil
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moisture analysis. This confirms an afterwards increased change of this so-called
overfitting to the observations. In real-world data assimilation, the noise is much
higher than in my idealized experiments, and overfitting would be a much larger
problem.

As a novel solution, I introduce fingerprint operators. In fingerprint operators, I
assimilate features of observations instead of the raw observations. With these
observational features, I exploit specific fingerprints in observations that point
towards errors in another component of the Earth system. In a feature screening, I
show that the mean daytime temperature and the amplitude of a sine wave, both
fitted within a 24 hour window, are physical-plausible fingerprint operators for
the atmosphere-land interface. By using only these two features instead of 24
hourly raw observations, I increase the analysis error by only 6 %, but I increase
the robustness against miss-specified observational and background covariance
matrices. Furthermore, if I consider these two features as either uncorrelated
or correlated, as they are in theory, I get almost the same analysis error. This
additionally confirms the robustness against miss-specifications in the covariance
matrices. As a consequence, the fingerprint operators stabilize coupled data
assimilation across the atmosphere-land interface. I therefore propose as my
second framework to use fingerprint operators to stabilize the initialization of
Earth system models and make more out of the available observations.

I further generalize the approach of feature-based data assimilation with kernel-
based data assimilation. In kernel-based data assimilation, I take advantage that
the ensemble transform Kalman filter (ETKF) is formulated in weight space. I cast
the dot product as similarity measure, which can be replaced by a positive-definite
kernel. The kernel then specifies the moments and features of the data that are
matched between the observation and their ensemble equivalent in observational
space. In addition, I relate the ETKF to kernel least-squares, regressing from obser-
vational space to model space. The normal ETKF as a special case corresponds to
a linear kernel and a linear regression. Therefore, the kernelized ETKF equals a
non-linear regression from observational space to model space.

To tune parameters in the data assimilation, including additional parameters
from the kernelized ETKF, I propose variational Bayes as a general approach. In
variational Bayes, I optimize an approximated posterior based on an observational
likelihood and its divergence to a specified prior. This general approach allows
me to find the whole posterior distribution, whereas other methods only estimate
a point estimate. Furthermore, variational Bayes does not differentiate between
state variables and parameters. As a result, I can optimize both together in the
same update step. I additionally prove that the ETKF is the optimal solution for
the linearized-Gaussian special case. Hence, I can back-propagate the gradient
through the ETKF by treating the ETKF as black box solver. In a simple example, I
show that this procedure can be used to find an inverse gamma posterior of the
error variance for my 2-metre-temperature observations in the atmosphere-land
interface, despite a miss-specified prior.
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These two theoretical approaches extend the data assimilation toolbox and increase
the flexibility of data assimilation. On the one hand, the kernelized ETKF allows a
wide range of kernels, including localization kernels. On the other hand, varia-
tional Bayes enables data-driven tuning of parameters and assimilation schemata.
Together with the kernelized ETKF, variational Bayes can enable data-driven
learning for the assimilation.

All in all, I show that coupled data assimilation across the atmosphere-land in-
terface is possible and improves the soil moisture analysis. I further decrease the
analysis error for the soil moisture by taking temporal dependencies up to 24
hours into account. To stabilize the cross-compartmental data assimilation, I take
advantage of fingerprints in atmospheric boundary layer observations, pointing
towards errors in the land surface.

7.2 Outlook
This thesis is in many ways a proof of concept for coupled data assimilation
across the atmosphere-land interface. For these proofs of concept, I simplify my
experiments in comparison to operational data assimilation, and coming directly
back to operational data assimilation seems to be a too big leap to take at once.
Hence, we would need smaller steps towards the big goal of strongly-coupled
data assimilation in Earth system models. One of the smaller steps can be the use
of a virtual reality (Schalge et al., 2020).

I would replace my nature run with such a virtual reality, which would have a
higher resolution and another model configuration than used for my data assimi-
lation experiments. In this way, model errors and biases can be simulated, a step
that I have omitted in this thesis. As a consequence of this virtual reality, also
observations would be on another grid than used for the experiments, causing
possibly errors within the observation operator. Nevertheless, similar to my nature
run, the virtual reality provides the possibility to define which observations are
available, how densely these observations are distributed, and additionally, what
observational error is used. On this basis, a virtual reality can be seen as next
logical step between my idealized experiments and operational data assimilation.

Together with a modification of the reality and observations, the ensemble has to
be altered as next step. In my ensemble, I concentrate only on the relationship
between 2-metre-temperature and soil moisture. As a consequence, my only per-
turbations within the ensemble stem from initial perturbations in the soil moisture
and in the soil temperature. I would need much more perturbations to represent
the deviations of the ensemble to nature in more realistic experiments. These
deviations can be introduced at the lateral boundary conditions, as operationally
done in ICON-D2 (Reinert et al., 2021). This would result in an increased ensemble
spread within the atmosphere, which could also propagate into the land surface.
Another option is to perturb the model parameters so that, as a consequence, the
ensemble members would cover a wider range of possible conditions. This last
option would be possible in either the atmosphere or the land surface.
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As third pillar, also the data assimilation has to be modified. Because of my ideal-
ized experiments, I only use prior multiplicative inflation to artificially increase
the ensemble spread. It is likely that this inflation is too weak to counter-act errors
and violations of assumptions in operational data assimilation. Therefore, other
methods like relaxation-to-prior-perturbations (Zhang et al., 2004; Whitaker and
Hamill, 2012) or stochastic perturbations (Palmer et al., 2009; Cardinali et al., 2014)
might be needed. In addition, I perfectly know the covariance for the observational
likelihood, which would be not the case in more realistic settings. To estimate such
parameters more general methods than I use here are needed, e.g. Pulido et al.
(2018) and Tandeo et al. (2020). My second approach for data-driven features is
variational Bayes that is designed for exactly this problem of parameter estimation.
Therefore, this might be a way forward for parameter estimation.

Another step towards a higher realism can be to extend the number of represented
processes in the terrestrial system. Such an extension would represent ParFlow
(Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet Stefan J. and Maxwell
Reed M., 2008; Kollet and Maxwell, 2006; Maxwell, 2013; Maxwell and Miller,
2005) within the Terrestrial Modelling System Platform (TerrSysMP). ParFlow is
a watershed model that allows a three-dimensional water flow and can simulate
heterogeneous energy and water transports, which would then partially replace
CLM for the representation of the soil moisture. In this way, TerrSysMP could
simulate complex interactions and processes below the land surface. With this
extension, TerrSysMP could represent hydrological processes within the Earth
system more realistically. This might reduce model errors and biases in the land
surface schema.

Throughout the thesis, I ignore the big elephant in the room for data assimila-
tion – satellite observations. These satellite observations are especially relevant for
data-sparse regions, where conventional observations such as 2-metre-temperature
observations are only available to a limited extend (Duan et al., 2019). Furthermore,
satellite observations provide a global picture about the soil moisture, whereas
2-metre-temperature observations have only a local picture. Nevertheless, this
global picture makes it so difficult to assimilate these observations into a LETKF
(Campbell et al., 2010; Miyoshi et al., 2010; Tsyrulnikov, 2013; Bonavita et al.,
2015), because it is unclear how to assimilate the vertical correlation structure of
satellite observations in an ensemble Kalman filter with observational localization.
To avoid such problems, the ensemble is typically modulated in ensemble space
(Bishop and Hodyss, 2009a,b; Bocquet, 2016; Bishop et al., 2017; Lei et al., 2018;
Huang et al., 2019), but this modulation comes at higher computational costs and
the LETKF would loss its simplistic form. It was previously suggested (Tsyrul-
nikov, 2013; Hotta and Ota, 2020) that the problems of the LETKF with satellite
observations are related to the limited number of degrees of freedom within the
ensemble. This problem is addressed by feature-based data assimilation. As
feature-based data assimilation can condense the information from multiple obser-
vations into a few observational features, the problem with the limited number of
degrees of freedom is circumvented. Furthermore, observational features make the
data assimilation more robust against miss-specifications in the background and
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observational covariance, as I show in my experiments. Feature-based ensemble
Kalman filtering has therefore the chance to elegantly solve problems with satellite
observations in the LETKF.

As I have written earlier, this thesis is first and foremost a proof of concept of
initializing Earth system models. Here, I solely concentrate on the relationship
between 2-metre-temperature and soil moisture and the atmosphere-land interface.
As a consequence, it is difficult to generalize my results to other Earth system
components. Nevertheless, I would expect similar result with similarly idealized
experiments for other interfaces in the Earth system. This could then provide
us with the possibility of coupled data assimilation in Earth system models, as
schematically shown in Fig. 7.1.

Figure 7.1: A schematic view on the coupled approach of initializing Earth system models. In
the future, we might be able to initialize every here-shown component of the Earth together in a
unified and coupled approach.

As I find in this thesis, the localized ensemble Kalman filter can be a general basis
for the initialization of Earth system models. With their localization, they can
assimilate observations across interfaces without the need of additional interpo-
lation steps, and, with their ensemble approach, they can dynamically represent
the background covariance, depending on the current conditions in the system.
Furthermore, with their condensation of information, I would expect that finger-
print operators are also applicable for other interfaces, because they seem to be a
general principle to improve and stabilize cross-compartmental data assimilation.
Together, localized ensemble Kalman filters and fingerprint operators can be a
cornerstone for future developments of the cross-compartmental initialization in
Earth system models.

The aforementioned cyclone Lothar was a so-called extratropical "bomb" cyclone –
its central pressure decreased by more than 24 hPa within 24 hours (Sanders and
Gyakum, 1980; Black and Pezza, 2013). So, would it be possible to predicted such
a cyclone by our forecast systems in 10 years? Studies show that extratropical
"bomb" cyclones are also related to the coupling between the atmosphere and
the ocean (Gómara et al., 2016; Kuwano-Yoshida and Minobe, 2017; Domingues
et al., 2019), similar to tropical cyclones, although other processes are involved
in their formation. This means that the forecast of these extratropical cyclones
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would benefit from a coupled Earth system forecasting approach. Since I have
proven in this thesis that a coupled initialization of the atmosphere-land interface
is possible, I would expect that the same holds for the atmosphere-ocean interface.
As a consequence, I expect that the forecast of such a extratropical "bomb" cyclones
would be much better in this bright future, after the next innovation.
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8
Conclusions

In this thesis, I present two complementary frameworks for the initialization of
Earth system models, using the atmosphere-land interface as an exemplary case.
As my first framework, I propose to use localized ensemble Kalman filtering
for the unification of coupled data assimilation in Earth system models. As my
second framework, I propose to use feature-based data assimilation to stabilize
cross-compartmental data assimilation. Based on my results with idealized twin
experiments, I conclude the following:

1. The soil moisture analysis can be improved by assimilating atmospheric bound-
ary layer observations.

2. Because of its flow-dependency in the background covariance and in the sensi-
tivities from the observations to the soil moisture, a ensemble Kalman filter is
better suited for data assimilation across the atmosphere-land interface than a
simplified extended Kalman filter.

3. By using observational localization, observations from the atmospheric bound-
ary layer can be directly assimilated into the land surface without needing an
intermediate interpolation step.

4. The soil moisture can be hourly updated on the basis of atmospheric boundary
layer observations. This implies that the state vector for atmospheric data
assimilation can be extended by the soil moisture.

5. Ensemble Kalman smoother with an assimilation window ahead of the update
time can take advantage of temporal covariances across the atmosphere-land
interface.

6. Fingerprint operators that take advantage of characteristic error fingerprints in
observations stabilize data assimilation across the atmosphere-land interface.

7. By fingerprint operators, features of the diurnal cycle in the 2-metre-tempereature
can be assimilated to improve the soil moisture analysis.

8. An ensemble transform Kalman filter with observational features can be gener-
alized into a kernelized ensemble transform Kalman filter.

9. Variational Bayes can be used to learn parameters within the ensemble Kalman
filter.

10. Developments in machine learning can be used to extend data assimilation.
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A
Appendix

A.1 Notation
Vectors and Matrices

Symbol Meaning

w A vector of weights

x A vector of model states

y A vector of observational states

W A column-wise matrix of weights for all ensemble members

X A column-wise matrix of model states for all ensemble members

Y A column-wise matrix of observational states for all ensemble
members

δw A vector of weight perturbations compared to the ensemble
mean

δx A vector of model state perturbations compared to the ensemble
mean

δy A vector of obsevational state perturbations compared to the
ensemble mean

δW A column-wise matrix of weight perturbations for all ensemble
members

δX A column-wise matrix of model state perturbations for all en-
semble members

δY A column-wise matrix of obsevational state perturbations for
all ensemble members

C A matrix with constant values

B An approximated and static covariance matrix, independent
from the ensemble

H The linearized observation operator, mapping from model space
to observaitonal space

I The identity matrix with its shape given by the context
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K The Kalman gain

M The linearized model for one time step

P A covariance matrix in model space, often estimated with the
ensemble

P̃ A covariance matrix in weight space, often estimated for the
ensemble

R The observational error covariance matrix

R̃ The observational error covariance matrix, transformed into
feature space

α An auxillary vector or matrix from the representer theorem for
kernels

ε A vector-valued random variable in observational space

ζ A vector-valued random variable in model space

θ A vector of variational parameters in variational Bayes

λ A vector of ordered eigenvalues

φ A vector of states in feature space

Φ A column-wise matrix of state in feature space for all ensemble
members

Σ An approximated covariance matrix for the posterior in varia-
tional Bayes

δφ A vector of perturbations in feature space compared to the
ensemble mean in feature space

δΦ A column-wise matrix of perturbations in feature space for all
ensemble members

0 A vector of zeros with its shape given by the context

1 A vector of ones with its shape given by the context

Other notations

Symbol Meaning

x
a An analysis / posterior vector

x
b A background / prior vector

x
o A vector of observations

x
(i) The i-th element of the matrix X, often denoting the i-th ensem-

ble member
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A.1 Notation

xt A vector valid at time t

y1:t A vector with entries from time 1 to time t

y:t A vector with entries from the beginning to time t

Ht(xt) The observation operator valid at time t applied on the model
state from the same time

Mt 7→t+1(xt) The dynamical model mapping the model state from time t to
time t+ 1

Y
T
t The adjoint of the dynamical model and observation operator,

mapping from time t to time 0 in Chapter 5

ϕt(yt) The feature extractor function valid at time t applied on the
observational state from the same time

f(yt) The inverse function applied on the observational state from
time t

L(x) The variational data assimilation cost function in model space,
evaluated with vector x

L̃(w) The variational data assimilation cost function in weight space,
evaluated with vectorw

J(θ) The variational Bayes cost function with respect to parameters
θ

K(y,y′) A matrix-valued kernel function, applied on y and y′

K̃(y,y′) A matrix-valued and centered kernel function, applied on y
and y′

x
T A transposed vector

X
T A transposed matrix

x
2 A squared vector

X
1
2 The square-root of a matrix

X
−1 The inverse of a matrix

logX The logarithm of a matrix

trX The trace of a matrix

x The ensemble mean in the same space of the given vector

Ep(xt)
(x) The expectation of a vector with respect to a probability density

function

‖x‖ The norm of a vector

p(xt) The probability density function of a vector
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p(xt | yt) The probability density function of a vector conditioned on
another vector

qθ(xt) An approximated probability density function of a vector with
variational parameters θ

N(µ,Σ) The Gaussian distribution with µ as mean and Σ as covariance

IG(α,β) The inverse gamma distribution with α and β as parameters

DKL(q ‖ p) The Kullback-Leibler divergence from probability density func-
tion q to probability density function p

R
n A n-dimensional real vector space

H A reproducing kernel Hilbert space

O(1) An order of magnitude

A.2 A recipe to implement the LETKF from Torch-
Assimilate
In the following, I show how a generic data assimilation schema would work
within the core, the interface, and the pipeline layer of my data assimilation envi-
ronment "torch-assimilate" (see also Section 3.5.3), based on the implementation of
the LETKF:

1. Read-in of output files that can be again used to restart the model into a
dataset.

2. Transformation of the read-in dataset into a generic state format, needed for
torch-assimilate, this will be then Xb

t .

3. Read-in of observations that will be assimilated into an observational dataset,
this will be then yo

t .

4. Read-in of the 2-metre-temperature output from COSMO into a pseudo ob-
servational dataset, which will then act as basis for the ensemble equivalent
of the observations.

5. Transformation of the pseudo observational dataset into a valid state X̃b
t .

6. (Possible) pre-processing of all datasets that are used within the data assimi-
lation.

7. Apply the observation operator to X̃b
t , resulting in Yb

t = H(X̃
b
t ).

8. Estimate global quantities of the ensemble mean in observational space
y

b
t , the mean innovations δyo

t = yo
t − y

b
t , and ensemble perturbations in
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observational space δYb
t = Y

b
t −y

b
t .

9. Multiply the global innovations and ensemble perturbations with the inverse

of the cholesky decomposition R− 1
2 of the observational error covariance,

resulting in δ̃y
o
t = R

− 1
2δy

o
t and δ̃Y

b
t = R

− 1
2δY

b
t .

The following steps are parallelized looped with Dask to gather localized weights
for every grid point independently, here shown for the i-th grid point.

10. Based on the specified localization covariance functions, the current grid
point and the observational positions, estimate the localization weights li.

11. Multiply the globally normalized innovation and ensemble perturbations by
the square-root of the localization weights to gather their localized equiva-

lents δ̃y
o
t,i = l

1
2
i δ̃y

o
t and δ̃Y

b
t,i = l

1
2
i δ̃Y

b
t .

12. Convert δ̃y
o
t,i and δ̃Y

b
t,i from Xarray DataArray to PyTorch Tensor.

The steps until this point were all data assimilation method-agnostic, the following
few steps are specific for the implementation of the LETKF.

13. Calculate the dot product between the localized ensemble perturbations in

observational space Ki = (δ̃Y
b
t,i)

T
δ̃Y

b
t,i.

14. Perform an eigenvalue decomposition to Ki, resulting into λi as vector of
ordered eigenvalues and Vi as matrix of the corresponding eigenvectors.

15. Add (k−1)
ρ to the eigenvalues λi as part of the prior covariance, with k the

number of ensemble members and ρ as prior.

16. Estimate the posterior covariance in weight space as P̃
a
t,i = ViΛ

−1
i (Vi)

T ,
whereΛ−1

i specifies a diagonal matrix with λ−1
i as elements on the diagonal.

17. Calculate the dot product between the localized ensemble perturbations in

observational space and the localized innovation ko
t,i = (δ̃Y

b
t,i)

T
δ̃y

o
t,i.

18. Estimate the mean weights aswa
t,i = P̃

a
t,ik

o
i .

19. Estimate the weight perturbations with the eigenvalues and eigenvectors as

δW
a
t,i = Vi[(k− 1) ∗ λi]

− 1
2 (Vi)

T .

The following steps are now again data assimilation method-agnostic such that
they are applied in all implemented algorithms.

20. Add the mean weights column-wise to the weight perturbation to get the
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combined weightsWt,i = w
a
t,i + δW

a
t,i.

21. Conversion ofWt,i from PyTorch Tensor to Xarray DataArray.

22. Apply the ensemble weights to the ensemble perturbations in model space
for the same grid point to get a localized posterior ensemble Xa

t,i = x
b
t,i +

δX
b
t,iWt,i.

The steps afterwards are again done globally outside of the parallelized loop to
get restart files for the model.

23. Collect the localized posterior ensemble into a global posterior ensemble Xa
t .

24. (Possible) post-processing of the global posterior ensemble.

25. Transformation of the global posterior state into a valid restart dataset.

26. Writing of valid restart dataset to an analysis files from which the model
could be restarted.

A.3 The iterative ensemble Kalman smoother
In the following, I describe my implementation of an iterative ensemble Kalman
smoother (IEnKS) that follows closely the derivation of Bocquet and Sakov (2014).
I iteratively optimize Eq. (5.5) with Eq. (5.6) in the IEnKS, here with a Gauss-
Newton scheme. To compare the IEnKS to the ETKS, I use the transform version of
the IEnKS, where the ensemble transformation (5.4) is applied after every iteration.

Similarly to the ETKS, I independently propagate every ensemble member into ob-
servational space based on the current solution of their weights y(i)

t = H(M07→t(x
b
0 +

δδδXb
0(w + δδδw(i)))). The ensemble mean in observational space yt =

∑k
i=0 y(i)

t acts
as approximated propagation of the current weight solutionH(M07→t(x

b
0 +δδδX

b
0w)).

For the estimation of the approximated adjoint YTt , I use again the column-wise ma-
trix of the ensemble perturbations in observational space δδδYt, with δδδy(i)

t = y(i)
t − yt

for the i-th column. In the IEnKS, I have now to account for changed state pertur-
bations which were modified by T,

YTt ≈ (T−1
δδδYt)

T . (A.1)

Based on this approximated adjoint, I estimate the inverse of the updated ensemble
covariance in ensemble space [P̃a

new]
−1, approximating the Hessian of J(w) at the

solution w. I use an additional learning rate 0 < τ 6 1, which can reduce the
length of one update step to improve the convergence of the algorithm and to
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stabilize the estimation of the Hessian (Khan et al., 2018),

[P̃a
new]

−1 = (1 − τ)[P̃a]−1 + τ

T∑
t=0

YTtR−1
t Yt, (A.2)

wnew = w − τP̃a
new[(k− 1)w −

T∑
t=0

YTtR−1
t (yo

t − yt)]. (A.3)

The schema is iterated between the ensemble propagation and update of the
weights until a fixed number of iterations N is reached. Afterwards, I propagate
the estimated state again throughout the assimilation window as in the ETKS.

The computational costs for the IEnKS depend heavily on the number of update
iterations N. I get as total computational costs for the IEnKS the following, N×
(T × P × k+Ω) + T × P × k. This shows that the IEnKS is the most expensive
algorithm in this thesis. Because of these computational costs, I will restrict in the
following experiment the number of iterations for the IEnKS to two.

I use the same localization schema and radii as in the ETKS experiments in Chapter
5 based on the assumption that advection can be neglected in the case of land
surface data assimilation. I multiplicatively inflate the ensemble before I estimate
the ensemble weights with an inflation factor of γ = 1.15. In the propagation of the
IEnKS, I use the background ensemble for all variables, except the soil moisture.

Result
In the following, I analyze the performance of our IEnKS implementation with
two iterations. I compare the propagated solutions of the IEnKS to our LETKS (24
h) experiment (here, differently called LETKS Fwd 24h) for the soil moisture in
root-depth as RMSE based on the nature run (Fig. A.1).

Although the IEnKS decreases the analysis error to the nature run compared to
its background error, the LETKS experiment has a lower error than the IEnKS
experiment, especially after 2015-08-02. This increased error is caused by the
second loop of the IEnKS, which harms the performance of the IEnKS, especially
after 2015-08-01 12:00 UTC. In the first analysis step at 2015-07-31 12:00 UTC, the
IEnKS has a lowered error compared to the LETKS, indicating a possible gain by
the IEnKS in sub-optimal cases, where the model and nature differ more. In my
case, the problem of assimilating the 2-metre-temperature for the soil moisture
seems to be linear enough such that the explicit linearization within the LETKS
has almost no impact on the assimilation.

A.4 Centering in feature space
Here, I show how I can center the feature space solely based on kernels. This
derivation closely follows Schölkopf et al., 1998. The solution for the kernelized
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Figure A.1: Root-mean-squared-error of the Iterative Ensemble Kalman smoother compared to
the nature within the simulation window as area average for the soil moisture in root-depth.
The light-black dotted line and dark-blue line are the the open-loop run and the LETKS Fwd
24h experiment, respectively. The violet lines are different loops of the IEnKS with a 24 hour
assimilation window. The first loop corresponds to the propagated state after the first update,
whereas the second loop is the propagated state after the second and final update.

ETKF involves two centered kernel products K̃(Yb
t ,Yb

t ) and K̃(Yb
t ,yo

t ); both repre-
sent hereby a gram matrix and vector, respectively. In the following I derive the
centered kernel for both products independently.

Let’s start the derivation with a theorem of how the kernel matrix represents the
feature space by data (the theorem closely follows Murphy, 2012). Following
Mercer’s theorem (Mercer and Forsyth, 1909), a positive-definite gram matrix
K with its corresponding positive-definite kernel entries k(i,j) = K(y(i)t ,y(j)t ) can
be decomposed by eigendecomposition. The eigendecomposition results into a
matrix with the eigenvectors U and a vector with the eigenvalues λ, where Λ
represent a diagonal matrix with the eigenvalues on its diagonal,

K = UTΛU.

As a consequence, I can represent the i, j-entry of this kernel matrix as product of

the scaled eigenvectors k(i,j) = (Λ
1
2u

(i))TΛ
1
2u

(i). By denoting ϕt(y
(i)
t ) = Λ

1
2u

(i), I
can introduce the feature operator,

k
(i,j) = (ϕt(y

(i)
t ))Tϕt(y

(j)
t ) = K(y

(i)
t ,y(j)t ).

This way, the entries of every positive-definite gram matrix can be represented by
an inner product of feature vectors. These feature vectors are hereby implicitly
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defined by the scaled eigenvectors of the gram matrix. Hence, every positive-
definite kernel function has a corresponding feature vector that depends on the
input data.

Now, I can take advantage of Mercer’s theorem and derive the centered kernel
functions. All kernel functions are centered by the prior ensemble mean in feature
space. To simplify the derivation, I define 1 as all-ones vector, its length is given
by the context, andΦb

t as column-wise matrix, where the i-column is given as i-th
prior ensemble member in feature spaceφb(i)

t = ϕt(y
b(i)
t ),

φ
b
t = n

−1
n∑
i=1

ϕt(y
b(i)
t )

= n−11Φb
t

= n−11K(Yb
t , ·).

The last equality results out of the reproducing property of kernels. I start with
the derivation of the centering operation for K̃(yb(i)

t ,yb(j)
t ). I additionally define

δφ
b(i)
t = φ

b(i)
t −φ

b
t as i-th perturbation in feature space and Kb as gram matrix

with kb(i,j) = K(y
b(i)
t ,yb(j)

t ) as i, j-th entry,

K̃(y
b(i)
t ,yb(j)

t ) = (δφ
b(i)
t )Tδφ

b(j)
t

= (φ
b(i)
t −φ

b
t )
T (φ

b(j)
t −φ

b
t )

= (φ
b(i)
t )Tφ

b(j)
t − (φ

b(i)
t )Tφ

b
t − (φ

b
t )
T
φ

b(j)
t + (φ

b
t )
T
φ

b
t

= K(y
b(i)
t ,yb(j)

t ) −n−1
K(y

b(i)
t ,Yb

t )1 −n−11K(Yb
t ,yb(j)

t ) +n−21K(Yb
t ,Yb

t )

= kb(i,j) −n−1
k

b(i)1 −n−11kb(j) +n−21Kb1.

Hence, I can describe the centering of K̃(yb(i)
t ,yb(j)

t ) solely based on kernels. I con-
tinue with the derivation of the centering operation for K̃(yb(i)

t ,yo
t ). I additionally

define δφo
t = φ

o
t −φ

b
t as observational perturbation in feature space and ko as

gram vector with ko(i) = K(y
b(i)
t ,yo

t ) as i-th entry,

K̃(y
b(i)
t ,yo

t ) = (δφ
b(i)
t )Tδφo

t

= (φ
b(i)
t −φ

b
t )
T (φo

t −φ
b
t )

= (φ
b(i)
t )Tφo

t − (φ
b(i)
t )Tφ

b
t − (φ

b
t )
T
φ

o
t + (φ

b
t )
T
φ

b
t

= K(y
b(i)
t ,φo

t ) −n
−1
K(y

b(i)
t ,Yb

t )1 −n−11K(Yb
t ,φo

t ) +n
−21K(Yb

t ,Yb
t )

= ko(i) −n−1
k

b(i)1 −n−11ko +n−21Kb1.

The centering of K̃(yb(i)
t ,yo

t ) is here a combination of ko and Kb as gram vector
and matrix and, thus, solely based on kernels.
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I have proved here that the centering operations for feature-based data assimilation
can be described solely on kernels. As a consequence, I do not need access to an
explicit feature function for the kernelized ETKF. The kernelized ETKF therefore
relies completely on the properties of the chosen kernel.

A.5 The kernelized ETKF as kernel ridge regression
In the following, I show that the kernelized ETKF has the same solution as kernel
ridge regression for data assimilation (Sætrom and Omre, 2011; Yang, 2020). As
data basis for the kernel ridge regression, I independently transform every prior
ensemble member from model space into observational space yb(i)

t = Ht(x
b(i)
t ).

These ensemble members are then the inputs for my function during the training.
As output, I simply use the ensemble members in model space. The function
f(y) is therefore trained on the training dataset D = {(y

b(i)
t , xb(i)

t , i = 1 : k} with k
samples.

To fit the inference function, I consider a regularized least-square loss and a
RKHS H as hypothesis space. I am interested in the data assimilation increment
∆x

a
t = xa

t − x
b
t . I therefore reduce the empirical risk with f(y) to the ensemble

perturbations δxb(i)
t = x

b(i)
t − xb

t as difference of the ensemble members to the
ensemble mean xb

t =
∑k
i=1 x

b(i)
t . With λ as regularization parameter, this results

into

argmin
f∈H

1
2

k∑
i=1

‖δxb(i)
t − f(y

b(i)
t )‖2 + λ‖f‖2

H. (6.11)

The regularization controls the smoothness of the function f(yb(i)
t ) and is connected

to the strength of the prior belief (Kanagawa et al., 2018). The representer theorem
(Kimeldorf and Wahba, 1970; Schölkopf et al., 2001) defines that the optimal
function must have the following form,

f(·) =
k∑
i=1

αiK(y
b(i)
t , ·). (A.4)

As a result from this representer theorem, I can reformulate (6.11) into

min
α

1
2
(α)TK(Yb

t ,Yb
t )

2
α− (α)TK(Yb

t ,Yb
t )δX

b
t +

λ

2
(α)TK(Yb

t ,Yb
t )α (A.5)

Set the gradient of (A.5) with respect to α to 0, I get the following unique solution
for α,

α = δXb
t [K(Y

b
t ,Yb

t ) + λI]
−1. (A.6)

From this solution, I can recover the kernelized ETKF solution by setting λ = k− 1
and using centered kernels. For the ensemble mean, the kernelized ETKF therefore
solves a kernelized least-square problem, mapping from observational space into
the space spanned by the ensemble perturbations.

148



A.6 The ETKF from the Variational free energy

A.6 The ETKF from the Variational free energy
Here, I prove that the ETKF is the optimal solution to the variational free energy
in the linear-Gaussian case. In Section 6.2, I introduce the variational free energy
as proxy for the reverse KL-divergence between the approximated posterior and
the unknown but true posterior,

DKL(qθ(xt) ‖ p(xt | y
o
1:t)) ∝ J(θ) =− Eqθ(xt)

logp(yo
t | xt) (6.15)

+DKL(qθ(xt) ‖ p(xt | y
o
1:t−1)).

In the ETKF, the analysis is estimated in weight space. In this weight space, the
prior distribution is presumably given as Gaussian distribution p(xt | y

o
1:t−1) =

N(0, (k− 1)−1
I) with 0 as mean and (k− 1)−1

I as covariance. Additionally, the
posterior is also presumably a Gaussian distribution qθ(xt) = N(wa

t , P̃
a
t) withwa

t

as mean and P̃
a
t as covariance. As for the LETKF, I express the covariance as sym-

metric square-root P̃
a
t = (k− 1)−1

δW
a
t(δW

a
t)
T with δWa

t as posterior perturbation
in weight space. The mean and the perturbations are therefore the variational
parameters that are optimized in the ETKF; in the following, I use for the approxi-
mated posterior qθ(xt) interchangeably q̂. With the reparametrization trick (6.16),
I can sample from this posteriorwt ∼ N(wa

t , P̃
a
t). Furthermore, I assume that these

samples from the weight space can be translated into observational space by a
linearized observation operator,

yt = y
b
t + δY

b
twt. (3.17)

As last assumption, the observational likelihood is Gaussian distributed p(yo
t |

xt) = N(yo
t −yt, (σ

o)2
I) with yo

t −y
b
t − δY

b
twt as mean and (σo)2

I as covariance.
In this assumption, I simplify for convenience that the covariance of the obser-
vational likelihood is a diagonal matrix with (σo)2 on its diagonal. Nevertheless,
the following proof is also valid for a full observational covariance Rwith cross-
correlations. With these assumptions in mind, I prove that the ETKF equations
(3.19), (3.20), and (3.23) are the optimal solution for the variational Bayes problem
(6.15). This proof is inspired by the proof that a linearized variational autoencoder
equals a probabilistic principal components analysis in Dai et al., 2017, Lemma 1.

In a first step, I reform the negative log-likelihood as expectation of the approxi-
mated posterior. Following the Gaussian distribution of the approximated poste-
rior and the observational likelihood, the expectation of the negative log-likelihood
results into

−Eq̂ logp(yo
t | xt) ∝

1
2

Eq̂[(y
o
t −y

b
t − δY

b
twt)

T (σo)−2
I(yo

t −y
b
t − δY

b
twt)] +C

=
1
2
(σo)−2

Eq̂[(y
o
t −y

b
t )
T (yo

t −y
b
t ) − 2(yo

t −y
b
t )
T
δY

b
twt

+ (δYb
twt)

T (δYb
twt)] +C.

The constant C includes here all terms that are constant with respect to the op-
timized posterior. I can additionally state the Gaussian distribution of δYb

tw
a
t
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with the Gaussian distribution of the approximated posterior qθ(xt) and the linear
observation operator δYb

t ,

δY
b
twt ∼ N(δYb

tw
a
t , (k− 1)−1

δY
b
tδW

a
t(δY

b
tδW

a
t)
T ).

This allows me to an analytical formulation of the negative observational log-
likelihood,

−Eq̂ logp(yo
t | xt) ∝

1
2
(σo)−2[ − 2(yo

t −y
b
t )
T
δY

b
tw

a
t

+ (k− 1)−1 tr((δYb
tδW

a
t)
T
δY

b
tδW

a
t)

+ (δYb
tw

a
t)
T
δY

b
tw

a
t ] +C. (A.7)

In a second step, I reformulate the KL-divergence between the approximated
posterior and the prior distribution in weight space,

DKL(qθ(xt) ‖ p(xt | y
o
1:t−1)) =

1
2
[(k− 1)(wa

t)
T
w

a
t + (k− 1) tr(P̃

a
t)

− log(det(P̃
a
t))] +C

=
1
2
[(k− 1)(wa

t)
T
w

a
t + tr(δWa

t(δW
a
t)
T )

− log(det(δWa
t(δW

a
t)
T ))] +C. (A.8)

To find its minimum, I have to take the derivative of J(θ) (6.15) with respect to the
mean weight vectorwa

t and the weight perturbations δWa
t and set this derivative

to 0,

∂J(θ)

∂w
a
t

= (σo)−2[−(δYb
t )
T (yo

t −y
b
t ) + (δYb

tw
a
t)
T
δY

b
t ] + [(k− 1)(wa

t)
T ] = 0, (A.9)

∂J(θ)

∂δW
a
t

= (σo)−2[(k− 1)−1(δYb
tδW

a
t)
T
δY

b
t ] + [δWa

t − ((δWa
t)

−1)T ]

= (k− 1)−1[(k− 1)I+ (σo)−2(δYb
t )
T
δY

b
t ]δW

a
t(δW

a
t)
T = 0. (A.10)

The optimal solution for the mean weights can be derived from (A.9), whereas the
solution for the weight perturbations results from (A.10),

w
a
t = σ

−2[(k− 1)I+ σ−2(δYb
t )
T
δY

b
t ]
−1(δYb

t )
T (yo

t −y
b
t ), (A.11)

δW
a
t =

√
(k− 1)[(k− 1)I+ σ−2(δYb

t )
T
δY

b
t ]
− 1

2 . (A.12)

These solutions forwa
t and δWa

t correspond to (3.19) and (3.23) in the case of a di-
agonal observational covariance matrix. Under the previously stated assumptions
of Gaussian distributions and a linearized observation operator, the variational
free energy (6.15) has (A.11) and (A.12) as unique solutions. These unique solutions
are therefore the global optimum. This completes the proof. �
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This shows that the ETKF is the global optimum of the variational free energy in the
Gaussian-linearized case. The ETKF is the linearized version of the MLEF/IEnKF
(Zupanski, 2005; Sakov et al., 2012) if only observations at the same time as the
update step are considered. This therefore also means that the MLEF reduces
the variational free energy in the case of a non-linear observation operator and
a Gaussian assumption in weight and observational space. In this generalized
case, the variational free energy can have multiple minima. As a consequence, the
solution of the MLEF is not unique. Nevertheless, this relates the MLEF to the
Variational Online-Newton method from Khan et al., 2018, Appendix D.
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vorliegende Arbeit auch so nicht geben.
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