
ErzeugendeGegnerischeNetzwerke (GANs) für
Inverses Design von RuO2 Ober�ächen
Generative Adversarial Networks (GANs) for Inverse Design
of RuO2 Surfaces

Wissenschaftliche Arbeit zur Erlangung des Grades
Master of Science
an der Fakultät für Chemie der Technischen Universität München.

Betreut von Prof. Dr. Heiz

Lehrstuhl für Theoretische Chemie

Technische Universität München

Prof. Dr. Reuter

Theorie Abteilung am Fritz-Haber-Institut

Max-Planck-Gesellschaft

Dr. Christoph Scheurer

Gruppenleiter am Fritz-Haber-Institut

Max-Planck-Gesellschaft

Eingereicht von Patricia König

12249 Berlin

Eingereicht am Berlin, den 30.05.2022

i

Anhang I

Erklärung

Ich versichere hiermit, dass ich die von mir eingereichte Abschlussarbeit selbstständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Berlin, 30.05.2022, Unterschrift

ii

Abstract
Solving the longstanding puzzle of catalytically active RuO2 structures in the oxidation of CO,
has the potential to enable an e�cient catalyst design for the conversion of CO exhausts in
combustion processes. Reasons for the ongoing debate about catalytically active surface ter-
minations of RuO2 are that the experimental outcomes are strongly dependent on the catalyst
pretreatment and the reaction conditions, as well as the limited computational resources in
theoretical studies for the exploration of the RuO2 potential energy surface. In recent theoret-
ical studies, generative models have proven to be powerful tools for structure prediction of
complex crystalline materials.

To tackle the vast chemical space of possible surface terminations, we present a Generative
Adversarial Network (GAN) that is capable of cheaply generating diverse structural guesses
for novel RuO2 surface structures. Two training sets, one with 28,903 and the other with 18,944
RuO2 surface terminations, were created with a grand-canonical basin hopping method and a
Gaussian Approximated Potential, respectively. The atomic positions of these structures were
mapped as Gaussian densities to a three-dimensional grid for the GAN input.

We demonstrate how two-dimensional images of RuO2 structures with inferred lattice
lengths and energy conditioning can be created in a two-dimensional Deep Convolutional
Wasserstein-GAN (2D-DCWGAN) framework as a �rst step to realistic three-dimensional
surface structures. The lattice lengths were predicted on-the-�y with two auxiliary networks
in our GAN framework and the energy was ingrained in our latent space design. Addition-
ally, the generation of realistic three-dimensional RuO2 structures is incorporated in a three-
dimensional Deep Convolutional Wasserstein-GAN (3D-DCWGAN) framework. These ad-
vances build the foundation which enables the implementation of realistic lattice lengths and
an e�ective latent space design for the structure-energy-relationship in our 3D-DCWGAN
framework in the future. Ultimately, these developments are necessary to produce reliable
structural guesses for catalytically active surface terminations in the CO oxidation reaction.

iii

Zusammenfassung
Das langwährende Rätsel der möglichen katalytisch aktiven RuO2 Strukturen in der CO ox-
idation zu lösen, hat das Potential, ein e�zientes Katalysatordesign für die Umwandlung
von CO in Verbrennungsprozessen zu ermöglichen. Gründe für die fortwährende Diskussion
um die katalytisch aktiven Ober�ächenstrukturen von RuO2 sind, dass die experimentellen
Ergebnisse stark von der Katalysatorvorbehandlung und den Reaktionsbedingungen abhän-
gen, sowie die limitierten Rechenkapazitäten in theoretischen Studien für die Erkundung
der Potentialenergiehyper�ächen von RuO2. In kürzlichen theoretischen Studien, haben sich
generative Modelle als leistungsfähige Werkzeuge für Strukturvorhersagen von kristallinen
Materialien bewiesen. Wir haben deshalb ein gegnerisches generatives Netzwerk (Generative
Adversarial Network) trainiert, das in der Lage ist, günstig vielfältige Strukturvorschläge für
RuO2 Ober�ächenstrukturen zu generieren.

Um die volle Breite der möglichen Ober�ächenstrukturen anzugehen, präsentieren wir ein
gegnerisches generatives Netzwerk, das in der Lage ist, vielfältige Strukturvorschläge für RuO2
Ober�ächenstrukturen zu generieren. Zwei Trainingssets, eines mit 28.903 und das andere mit
18.944 RuO2 Ober�ächenstrukturen wurden jeweils mit einer großkanonischen Beckenhüpfen-
methode (basin hopping) und einem Gauß approximierten Potential (Gaussian Approximated
Potential) kreiert. Die Atompositionen dieser Strukturen wurden als Gaußdichten auf ein
dreidimensionales Gitter für den Netzwerkinput abgebildet.

Wir zeigen, wie als erster Schritt zu realistischen dreidimensionalen Strukturen zweidimen-
sionale Bilder von RuO2 Strukturen mit erschlossenen Gitterlängen und Energiekondition-
ierung in einem zweidimensionalen tief gefalteten generierenden gegnerischen Wasserstein
Netzwerk (2D-DCWGAN) erzeugt werden können. Die Gitterlängen wurden durch zwei Hilf-
snetzwerke in unserem GAN Framework vorhergesagt und die Energy wurde die Gestaltung
unseres latenten Raumes mitaufgenommen. Zusätzlich wurde die Generierung von realistis-
chen dreidimensionalen RuO2 Strukturen in unser dreidimensionales tief gefaltetes generieren-
des gegnerisches Wasserstein Netzwerk (3D-DCWGAN) eingebaut. Diese Fortschritte legen
den Grundstein, der uns realistische Gitterlängen und eine e�ektive Gestaltung des latenten
Raumes für die Struktur-Energie-Beziehung in unserem 3D-DCWGAN Framework ermöglicht.
Desweiteren sind diese Entwicklungen notwendig, um verlässliche Strukturvorschläge für kat-
alytisch aktive Ober�ächenstrukturen in der CO Oxidationsreaktion erzeugen zu können.

iv

Acknowledgements
First of all, thanks to Prof. Dr. Karsten Reuter for the opportunity to do my master thesis in his
group. I greatly appreciated the opportunity to join the group seminar and therefore get an
overview of the research done in the whole group, which was super insightful. Thanks to Dr.
Christoph Scheurer for welcoming me in his subgroups and for the very helpful, constructive
and fruitful discussions on my thesis and many thanks to Dr. Christoph Scheurer for not
only being an extremely competent subgroup leader but also an understanding and empathic
person. Thanks to Hanna Türk for being the best supervisor I could have asked for, patiently
answering all my questions, giving me a lot of freedom in the meantime, and always having
her o�ce door open for me. Furthermore, I would like to thank Hanna Türk, Dr. Christoph
Scheurer, Sina Stegmaier, Yonghyuk Lee and Simeon Beinlich for providing me with IT support
and useful scripts during my thesis. A special thanks goes to Chiara Panosetti who created the
basin hopping dataset for me which was the decisive factor for the convergence of my multi-
GPU code. Many thanks to Hanna Türk, Konstantin Jakob, Yonghyuk Lee, Chiara Panosetti
and Ryan Yang for reading my thesis, patiently correcting unnecessary errors, and their super
helpful remarks! Finally, I want to express my gratitude for the endless support from my
family and my friends.

v

Contents
1 Introduction 1

2 Theoretical Framework 3
2.1 RuO2 . 3

2.1.1 Rutile . 3
2.1.2 Catalytically active species for the CO oxidation reaction 5

2.2 Neural Networks . 10
2.2.1 Forward Propagation . 11
2.2.2 Backward Propagation . 14
2.2.3 Convolutional Neural Networks . 16
2.2.4 Generative Adversarial Networks . 19

3 Computational Methodology 26
3.1 Dataset design . 26

3.1.1 GAP dataset . 26
3.1.2 Basin hopping dataset . 30

3.2 Atom density-based structural GAN input . 34
3.2.1 2D Sampling . 34
3.2.2 3D Sampling . 37

3.3 WGAN Implementation in PyTorch . 37
3.3.1 Vanilla 2D-DCWGAN . 38
3.3.2 Energy encoding in 2D-DCWGAN . 41
3.3.3 Lattice regression in 2D-DCWGAN . 46
3.3.4 Vanilla 3D-DCWGAN . 50

4 Results and Discussion 51
4.1 2D-DCWGAN . 51

4.1.1 Vanilla 2D-DCWGAN . 51
4.1.2 Integer-Based Conditioning Vectors 60
4.1.3 One Hot Encoding Vectors . 64
4.1.4 Energy Embedding . 67
4.1.5 Lattice Regressor 2D-DCWGAN . 75

4.2 3D-DCWGAN . 80
4.2.1 Vanilla 3D-DCWGAN . 80

5 Conclusion and Outlook 84

Bibliography 87

vi

List of Figures
2.1 Unit cell of rutile. 3
2.2 Three di�erent surface terminations of rutile (110). 5
2.3 Timeline of the most relevant discoveries of RuO2 structures for the CO oxidation. 6
2.4 Overview of catalytically active RuO2 structures. 7
2.5 Novel, stable surface structure of RuO2(010) for the oxygen-poor termination

as discovered by Timmermann et al. in [18]. 8
2.6 Multilayer perceptron with one input layer, two hidden layers and one output

layer. 10
2.7 Two activation functions and their derivatives. 13
2.8 Plot of the binary cross entropy loss function if label y = 1. 15
2.9 Illustration of a convolutional neural network layer. 17
2.10 Scheme of a transposed convolutional operation. 18
2.11 Step-wise explanation of a transposed convolutional network layer. 18
2.12 Scheme of a deep generative model gθ. 19
2.13 Scheme of a GAN. 20

3.1 Two examples for non-physical structures contained in the �rst GAP dataset. . 28
3.2 Energy histogram showing the amount of structures in each energy class for

both GAP subsets. 29
3.3 Demonstration of the second modi�cation step of the GAP dataset. The orig-

inal cell (left) is multiplied in x and y cell direction to obtain a quadratic cell
(right). The height of the vacuum layer is reduced to 12 Å. Ru atoms are drawn
as grey spheres and O atoms as red spheres. 30

3.4 Energy histogram showing the amount of structures in each energy class for
the basin hopping dataset. 32

3.5 One example structure of the dataset created with basin hopping. 33
3.6 Extra Info GAN . 35
3.7 Two-dimensional slices of the RuO2 structures from Fig. 3.3 after the Gaussian

mapping to density-based structures. a) and b) show slices of the original
structure in the xz- and yz-plane, respectively. c) and d) are slices in the
corresponding xz- and yz-plane after the cell extension in x- and y-direction. 35

3.8 a) and b) show the randomly translated cell from Sub�gs. 3.7c and 3.7d in the
xz- and yz-plane, respectively. 36

3.9 Three-dimensional plot of the extended structure from Fig. 3.3 after the Gaus-
sian mapping of atomic positions. Ru atoms are drawn as yellow spheres and
O atoms as red spheres. 37

3.10 Code �owchart of the Vanilla WGAN training process. 38
3.11 Computational architecture of the Vanilla 2D-DCWGAN. 40

vii

3.12 Code scheme for the encoding of energy information in the 2DWGAN. 41
3.13 Computational architecture of 2D-DCWGAN with either integer-based energy

conditioning or one hot encoding. 43
3.14 Computational architecture of 2D-DCWGAN with energy embedding. 45
3.15 Code scheme for the lattice regression in the 2D-DCWGAN. 47
3.16 Computational architecture of the critic for the lattice predicting 2D-DCWGAN. 48
3.17 Computational architecture of the generator for the lattice predicting 2D-

DCWGAN. 49
3.18 Computational architecture of the Vanilla 3D-DCWGAN. 50

4.1 Generated structures from the training process of the Vanilla 2D-DCWGAN
with the non-extended 148 structure GAP dataset at di�erent epochs. 52

4.2 Generated structures from the training process of the Vanilla 2D-DCWGAN
with extended GAP dataset based on 148 structures at di�erent epochs. 53

4.3 Generated structures from the training process of the Vanilla 2D-DCWGAN
with extended GAP dataset based on 91 structures at di�erent epochs. 54

4.4 Generated structures from the multi-GPU training process of the Vanilla 2D-
DCWGAN with basin hopping dataset and a batchsize of 512 at di�erent epochs. 55

4.5 Losses during the training process of the Vanilla 2D-DCWGAN with basin
hopping dataset and batchsize 512. 56

4.6 Generated structures from the multi-GPU training process of the Vanilla 2D-
DCWGAN with basin hopping dataset and a batchsize of 1024 at di�erent
epochs. 57

4.7 Losses during the training process of the Vanilla 2D-DCWGAN with basin
hopping dataset and batchsize 1024. 58

4.8 Comparison of generated training structures (fake structures) with dataset
structures (real structures) to check for over�tting in the multi-GPU training
process of the Vanilla 2D-DCWGAN with basin hopping dataset and batchsize
1024. The real structures were assigned to the fake structures based on their
SSIM79 value. 60

4.9 Two 2D slices from one structure of the 148 GAP dataset with energy class
label 7. 61

4.10 Generated structures from the multi-GPU training process of the integer-based
conditioning 2D-DCWGAN with extended 148 structure GAP dataset, batch-
size 32 and conditioning vector size 206. 62

4.11 Generated structures from the multi-GPU training process of the integer-based
conditioning 2D-DCWGAN with extended 91 structure GAP dataset, batchsize
32 and conditioning vector size 206. 62

4.12 Generated structures produced with �xed labels by the until Epoch 450 trained
generator of the integer-based conditioning 2D-DCWGAN with extended 148
structure GAP dataset, batchsize 32 and conditioning size 206. 63

4.13 Generated structures produced with �xed labels by the until Epoch 740 trained
generator of the integer-based conditioning 2D-DCWGAN with extended 91
structure GAP dataset, batchsize 32 and conditioning size 206. 64

viii

4.14 Generated structures from the multi-GPU training process of the one hot en-
coded 2D-DCWGAN with extended 148 structure GAP dataset, batchsize 32
and conditioning vector size 200. 65

4.15 Generated structures from the multi-GPU training process of the one hot en-
coded 2D-DCWGAN with extended 91 structure GAP dataset, batchsize 32 and
conditioning vector size 200. 66

4.16 Generated structures produced with �xed labels by the until Epoch 440 trained
generator of the one hot encoded 2D-DCWGAN with extended 148 structure
GAP dataset, batchsize 32 and conditioning size 200. 66

4.17 Generated structures produced with �xed labels by the until Epoch 730 trained
generator of the one hot encoded 2D-DCWGAN with extended 91 structure
GAP dataset, batchsize 32 and conditioning size 200. 66

4.18 Generated structures from the multi-GPU training process of the energy em-
bedding 2D-DCWGAN with basin hopping dataset, batchsize 2048 and em-
bedding layer size 50. 68

4.19 Generated structures from the multi-GPU training process of the energy em-
bedding 2D-DCWGAN with basin hopping dataset, batchsize 2048 and em-
bedding layer size 100. 69

4.20 Losses during the training process of the energy embedding 2D-DCWGAN
with basin hopping dataset, batchsize 2048 and embedding layer size 50. . . . 70

4.21 Losses during the training process of the energy embedding 2D-DCWGAN
with basin hopping dataset, batchsize 2048 and embedding layer size 100. . . . 70

4.22 Generated structures produced with �xed labels by the until Epoch 5240 trained
generator of the energy embedding 2D-DCWGAN with basin hopping dataset,
batchsize 2048 and embedding layer size 50. 71

4.23 Generated structures produced with �xed labels by the until Epoch 5240 trained
generator of the energy embedding 2D-DCWGAN with basin hopping dataset,
batchsize 2048 and embedding layer size 100. 72

4.24 Comparison of generated training structures (fake structures) with dataset
structures (real structures) to check for over�tting in the multi-GPU Training
process of the energy embedding 2D-DCWGAN with basin hopping dataset,
batchsize 2048 and embedding layer size 50. The real structures were assigned
to the fake structures based on their SSIM79 value. 74

4.25 Comparison of generated training structures (fake structures) with dataset
structures (real structures) to check for over�tting in the multi-GPU Training
process of the energy embedding 2D-DCWGAN with basin hopping dataset,
batchsize 2048 and embedding layer size 100. The real structures were assigned
to the fake structures based on their SSIM79 value. 75

4.26 Generated structures from the single-GPU training process of the lattice re-
gressor 2D-DCWGAN with non-extended GAP dataset and batchsize 32 at
di�erent epochs. 76

4.27 Generated structures from the multi-GPU training process of the lattice re-
gressor 2D-DCWGAN with extended 148 structure GAP dataset and batchsize
32 at di�erent epochs. 77

ix

4.28 Generated structures from the multi-GPU training process of the lattice re-
gressor 2D-DCWGAN with extended 91 structure GAP dataset and batchsize
32 at di�erent epochs. 77

4.29 Generated structures from the multi-GPU training process of the lattice regres-
sor 2D-DCWGAN with basin hopping dataset and batchsize 1024 at di�erent
epochs. The lattice images were rescaled using the predicted lattice length ratios. 78

4.30 Losses during the training process of the lattice regressor 2D-DCWGAN with
basin hopping dataset and batchsize 1024. 79

4.31 Three-dimensional density-based structure output during the training process
of the Vanilla 3D-DCWGAN with the basin hopping data set and batchsize 32
at di�erent epochs. 81

4.32 Losses during the training process of the Vanilla 3D-DCWGAN with basin
hopping dataset and batchsize 32. 82

4.33 Three-dimensional density-based structure output during the training process
of the Vanilla 3D-DCWGAN with the basin hopping data set and batchsize 32
at di�erent epochs. 82

4.34 2D slices of three-dimensional structures from the multi-GPU training process
of the Vanilla 3D-DCWGAN with basin hopping dataset and batchsize 32 at
di�erent epochs. 83

x

List of Tables
2.1 Batch and Layer Normalizing Transforms, applied to an activation xi over a

mini-batch B or over the features K , respectively.37,38 13

3.1 The energy range per atom for each energy class label is listed. This classi�-
cation is applied to both GAP datasets. 27

3.2 The energy range per atom for each energy class label is listed. This classi�-
cation was applied to both GAP datasets. 31

3.3 One hot encoding of the labels 0 to 9 with a one hot vector size of 10. 44

xi

List of Abbreviations
2D Two-dimensional

3D Three-dimensional

AI Arti�cial intelligence

ADAM Adaptive moment estimation
optimizer

ASE Atomic Simulation Environment

BCE Binary cross entropy loss

CE Cross entropy loss

CFD Computational Fluid Dynamics

CNN Convolutional Neural Network

CO Carbon monoxide

DCGAN Deep convolutional GAN

DDP DistributedDataParallel Package

DFT Density Functional Theory

DGM Deep generative modeling

DIC Delocalized internal coordinates

DP DataParallel Package

EMD Earth Mover’s Distance

FGAN Fisher GAN

GAP Gaussian Approximation
Potential

GAN Generative Adversarial Network

GPR Gaussian Process Regression

GPU Graphics processing unit

INFOGAN Information Maximizing GAN

JS Jensen-Shannon divergence

KL Kullback-Leibner divergence

LSGAN Least squares GAN

ML Machine learning

MLSM MultiLabelSoftMargin Loss

MNIST Modi�ed National Institute of
Standards and Technology
database

MSE Mean squared error

NN Neural network

PES Potential Energy Surface

RELU Recti�ed linear units

SGD Stochastic-gradient descent
optimizer

SOAP Smooth Overlap of Atomic
Positions

TOF Turnover frequency

WGAN Wasserstein GAN

XRD X-Ray Di�raction Spectroscopy

XRS X-Ray Spectroscopy

xii

1 Introduction
In most combustion processes of fossil fuels, carbon monoxide (CO), a toxic gas, forms as an
unwanted by-product.1 To reduce air pollution and avoid a threat to public health, gaseous
exhausts must be converted to non-hazardous molecules before being released into the envi-
ronment. As fossil fuels are still used as supports for the current energy supply, it is of utmost
importance to design the disarming catalysts to act in the most e�cient and environmentally-
friendly manner as possible.2 Two crucial factors for an e�cient catalyst for the CO oxidation
reaction are a high reactivity and selectivity towards CO.3 In the past, three classes of CO
oxidation catalysts have emerged. The �rst class consists of pure noble metals like Pt, Pd or
Rh which ful�ll the desired properties, but are on the other hand very expensive and limited
in abundance.3 As supported gold nanoparticles break and form bonds with oxygen easily,4
they exhibit a high reactivity for the CO oxidation and form the second class of potential
catalysts.3 However, there are some challenges in the synthesis, pretreatment and activation
of the nanoparticles to overcome.4 The third class is represented by metal oxides.3 Here, RuO2
has proven as an e�cient catalyst for the oxidation of CO5–7. Namely its low reaction barriers
for the CO oxidation in oxidizing conditions make RuO2 superior to Pt or Pd catalyst sys-
tems. However, due to the great number of relevant reaction parameters, the functionality of
the RuO2 catalyst is still illusive and its active surface conformation is still heavily debated.5,8–17

As an oxidic catalyst, the surface morphology of RuO2 strongly depends on the reaction
conditions, as well as its pretreatment.5,8–17 This dependence led to two common problems
in the early years of research on RuO2: the materials gap and the pressure or temperature
gap, as both, experimental and theoretical approaches, struggled to con�dently introduce real-
istic pressure and temperature conditions to the catalytic system. On the experimental side,
most analytic techniques were performed in ultra-high vacuum such as Scanning Electron
Microscopy (SEM).5 More recent approaches try to bridge the pressure gap by monitoring
reaction characteristics with in-situ techniques, e.g. in-situ X-Ray Spectroscopy (XRS) or in-
situ X-Ray Di�raction Spectra (XRD).8,9 On the theoretical side, mainly density functional
theory-based (DFT) structure computations were employed, which are usually performed at
zero-temperature and zero-pressure. Reuter et al.15–17 overcame this challenge by combin-
ing DFT with ab initio thermodynamics to e�ciently compute equilibrium particle shapes
of RuO2 in both a pure-oxygen environment15 and in a mixed oxygen and carbon monoxide
environment.16 The development of these methods that enable the access to the RuO2 catalyst
structures under operation conditions is of high importance as it links directly to the catalytic
activity.

While the bulk structure of RuO2 under reaction conditions has been identi�ed and con-
�rmed to be rutile early on,17 heated discussions about the relevant surface terminations under
realistic oxidation conditions continue.7,8,15,18 Four crystal directions appear to be the most

1

relevant for catalysis and are thus discussed in the majority of studies.5,7–18 Depending on the
size of the unit cell and the slab thickness, each crystal direction can exist in di�erent degrees
of oxygen saturation which leads to hundreds of structure possibilities. In [18], Timmermann
et al. performed a large-scale search for RuO2 surface structures and discovered a variety of sta-
ble and novel surface terminations for RuO2 in an O-poor environment. This study shows the
potential of applying a suitable machine-learned, data-based approach to solve the question
about the nature of the RuO2 catalyst under reaction conditions. Timmermann et al. trained a
Gaussian Approximated Potential (GAP) to build a surrogate model for the potential energy
surface (PES) on the subspace of p(1× 1) surface structures.18 Due to the restricted structural
possibilities of the investigated (1× 1) surface unit cells, we believe that more metastable and
novel stable surface terminations can be found using larger structural motifs to elucidate on
the reaction mechanism.

In recent studies, Generative adversarial networks (GANs) have successfully been used for
the exploration of chemical spaces and for the generation of novel crystalline materials with
tailored properties.19,20 For example in a theoretical study, Kim et al. created a GAN frame-
work to predict 121 novel zeolite structures with distinct methane heat absorption values.20

In general, GANs are a data-driven deep learning approach19 that can speed up large-scale
material development by identifying patterns in a database of already con�rmed structures.21

On top of generating new compositions or polymorphs, the output of a GAN can be tuned
by additional input data, e.g. energetical information of structures, which makes user-desired
properties in the generation of data accessible.19,20

In this thesis, a data-driven approach is developed to unravel the catalytically active struc-
tures of the CO oxidation on RuO2 by training a GAN and to facilitate the search for more
e�cient catalysts in the future. For the training process, two di�erent databases are created
- one based on the GAP structures from Timmermann et al. in [18] and one based on the
grand-canonical basin hopping method in Delocalized Internal Coordinates, as developed by
Panosetti et al. in [22, 23] - and are used to explore the potential of generative adversarial
networks (GANs) by learning the underlying probability distribution of the RuO2 data space.
Ideally, after a converged training process the output of the generative model can be converted
to Cartesian coordinates and geometry optimized to verify whether a new basin on the PES
of RuO2 is reached. In the context of the structural surface exploration on RuO2, the GAN can
thus serve as an e�ective supplier of new structural guesses based on the data input. With
tailored dataset design and a subsequent structure optimization, we aim to use a GAN as a
powerful tool to bridge the materials gap in theoretical studies.

2

2 Theoretical Framework
RuO2 catalysts have proven to be e�cient in the oxidation reaction of CO and methanol on
RuO2.5–7,24,25 However, the surface morphology of the active catalyst strongly depends on the
environmental conditions during the reaction as well as its pretreatment and is subject to an
ongoing debate.5,8 In the following, an overview of existing research on the RuO2 catalyst
system and its surface morphology will be given. The aim of this thesis is to develop a GAN
that contains the features of a RuO2 dataspace, for which basic and more advanced concepts
of neural networks will be explained afterwards.

2.1 RuO2

The exploration of the crystal structure of RuO2 is based on an interplay of experimental and
theoretical approaches.5,8–18 In the following, RuO2 in the form of rutile is introduced and
di�erent proposed, catalytically active surface terminations exposed to various atmospheres
and reaction conditions are discussed in context of the CO oxidation.

2.1.1 Rutile
At ambient conditions, RuO2 crystallizes in the rutile structure. Fig. 2.1 illustrates a unit cell
of a rutile crystal, in which each Ru atoms has six O neighbors and each O atoms has three
Ru neighbors. The O atoms form a slightly distorted octahedron with four basal (bond length
2.00 Å) and two apical (bond length 1.96 Å) O atoms.17

Figure 2.1: Unit cell of rutile RuO2. Ru atoms are drawn as grey spheres and O atoms as red spheres.

Di�erent surface orientations can be created by cutting a crystal along a certain direction,
de�ned by lattice planes. These lattice planes are characterized by the Miller indices (hkl) and
denote where the lattice vectors ~a1, ~a2 and ~a3 of the cell are cut at positions 1

h
~a1, 1

k
~a2 and 1

l
~a3.

3

A set of symmetry equivalent lattice planes is denoted as {hkl}.26 Additional atoms on top of
the regular monomeric unit of a surface structure can form an superimposed structure termed
as a superstructure. In case, the superstructure forms a primitive rectangle of cell dimensions
2~a1, 2~a2, the superstructure of the (hkl) lattice plane is denoted as a p(2× 2)(hkl). In case, this
superstructure is aligned as a rectangle with an additional atom in the center, it is termed as
c(2× 2)(hkl). For a detailed instruction on Wood’s nomenclature for surface superstructures,
the reader is referred to [27].

One systematic approach to obtain the subspace of p(1× 1)RuO2–cells is to cut the rutile
crystal along the (001), (100), (101), (110) and (111) directions.15 For all of these �ve surface
orientations, O-poor, stoichiometric and O-rich terminations can be found.18 These surface
terminations have been identi�ed to be the most relevant for catalysis.5,7–18 One exception is
the (111) surface, where an additional super-O-rich termination was found to be catalytically
relevant.15 In general, for any surface structure, additional super-O-rich or super-O-poor ter-
mination can be build that contain more or less O atoms than the O-rich or O-poor structure,
respectively which gives rise to hundreds of possible surface con�gurations. In theoretical
studies, the structures are normally limited to p(1× 1)–cells or small (2× 1)–supercells.18

Fig. 2.2 illustrates three exemplary cuts along the (110) direction of rutile, resulting in an
O-poor, a stoichiometric and an O-rich termination. After every cut in (110) direction, the
repeating structural motif of O – RuO – O trilayers is found.17 Consequently, depending on
the truncation of the atom type, three di�erent surface terminations can be obtained for
RuO2(110).17

RuO2(110)–Obridge (see Sub�g. 2.2a) is a stoichiometric termination where the ratio between
terminating Ru and O atoms is 1:2, like the bulk ratio of RuO2. The sixfold coordinated Ru
atoms are saturated in terms of their coordination number whereas the �vefold coordinated
Ru atoms lack one O atom on top and are thus termed coordinatively unsaturated (cus) sites.
The coordinatively saturated sites are termed as bridge sites because the O-adsorbate at this
site is bridging two adjacent Ru atoms. This termination contains no charge and is thus also
considered as the most stable termination.17 In contrast to RuO2(110)–Obridge, RuO2(110)–Ocus

(see Sub�g. 2.2b) forms a polar surface.
Here, all Ru atoms are coordinatively saturated (cas). The onefold coordinated O atoms on

top of the formerly Rucus,6f sites (now Rucas,6f) are termed as Ocus sites. Due to the excess
of oxygen atoms, this surface termination is referred to as O-rich surface structure. The last
termination - RuO2(110)-Ru - consists of a RuO plane with only four- and �vefold coordinated
Ru atoms and forms a polar surface as well. Remaining O atoms lie in the plane and are
threefold coordinated.17 Since in this termination the number of Ru atoms larger than twice
the number of O atoms, it is termed as metal-rich or O-poor surface.

4

a) RuO2(110)–Obridge surface termination with alternating �vefold and
sixfold coordinated Ru atoms on cus and bridge sites, respectively. One-
fold coordinated O atoms are located on top of the sixfold coordinated Ru
atoms forming bridge sites.17

b) RuO2(110)–Ocus with additional onefold coordinated O atoms. The
onefold coordinated O atoms on top of the former Rucus,6f sites (now
Rucas,6f) are termed as Ocus sites. All Ru atoms are sixfold coordinated
and thus coordinatively saturated.17

c) RuO2(110)–Ru termination with O atoms and four- and �vefold coordi-
nated Ru atoms.

Figure 2.2: Di�erent surface terminations of rutile (110). Ru atoms are drawn as grey spheres and O
atoms as red spheres. Structures recreated from [17].

2.1.2 Catalytically active species for the CO oxidation reaction
In the following, we will focus on the main historical steps of unravelling the reaction mecha-
nism of the CO oxidation (RuO2 + 2 CO −−→ Ru + 2 CO2). An overview of the timeline of the
following studies is provided in Fig. 2.3. Back in 1975, it was falsely assumed that the active
species during the CO oxidation is the Ru(0001) surface.28 However, it was soon discovered that
an ultra thin RuO2 layer forms during the reaction and is responsible for the catalytic activity.5
This misinterpretation of data in [28] originated as chemisorbed oxygen was not accessible in

5

ultra-high vaccuum conditions, which is now known as the pressure-gap in experiments.8 In
1986, (1x1) chemisorbed oxygen on Ru was �rst proposed.12 About ten years later, a di�erent
study10,14 found that subsurface oxygen dissolved in ruthenium and surface oxides drive the re-
action. In 2005, another model was proposed in [13] where a 1 nm thick RuO2 layer covering a
metallic Ru core is assumed to be the catalytic species. Therein, the RuO2(110) and (100) facets
form as layers under oxygen exposure and render undercoordinated Ru atoms responsible for
the catalytic activity.11 In 2009 and 2011, two subsequent studies investigated the in�uence of
di�erent CO- and O-gas ratios during the catalyst preparation and, concomitantly, RuO2(101)
and (111) were identi�ed as additional possible active facets.8,9

Experimental studies

1975:
Ru metal

as
catalyst28

1986:
Chemisorbed

oxygen(
on Ru12

1997/99:
Dissolved oxygen

in Ru(0001)
surfaces10,14

2005:
RuO2 on Ru
shell-core

particles5,11

2011:
RuO2(111),
RuO2(101)

as active facets8

2009:
CO-feed

over precalcined
RuO2

9

Theoretical studies

2003:
Phase diagram
of RuO2(110)

under O/
CO-pressure16

2001:
RuO2(110) stability
under O-pressure17

2013:
Equilibrium

particle shapes
of

RuO2(110),
RuO2(100),
RuO2(111)15

2018:
Reactor

modeling
of RuO2(110)
RuO2(111)7

2021:
GAP

surface
structures18

Figure 2.3: Timeline of the most relevant discoveries of RuO2 structures for the CO oxidation.

Adjusting theoretical models to the experimental reality poses a challenge for theorists.15–18

In 2001, Reuter et al. �rst computed the stability of the three surface terminations of RuO2(110)
(see Fig. 2.2) under variation of oxygen pressure.17 In a follow-up study, they calculated the
phase diagram for the same RuO2(110) model in an O and CO environment and proposed pos-
sible reaction pathways.16 Computing �rst-principles atomistic thermodynamic surface free

6

energy constructions of RuO2 in oxygen environments, Reuter et al. explored the pretreatment-
morphology relationships and discovered a strong structure dependence of the CO oxidation
activity.15 In 2018, a �rst-principles kinetic Monte Carlo approach was coupled with Com-
putational Fluid Dynamics (CFD) to study the reactivity of RuO2(110) and (111) facets in a
reactor.7 Contrary to previous models, Timmermann et al. developed a data-driven approach
towards surface exploration of RuO2 and discovered a variety of novel surface terminations
in an O-poor environment.18

Based on these theoretical and experimental studies, we will discuss possible catalytically
active structures of RuO2 in the following. As shown in Fig. 2.4, not all three surface termina-
tions of all �ve possible lattice planes were found to be of importance for the CO oxidation
reaction.

RuO2
rutile
bulk

RuO2
(110)

active Ocus–rich
(1x1) surface15

high O-

poten
tial

17

Obridge

stoichiometric
surface17

UHV
+ low O–

postdosing17

Ru
termination15

not stable

in O-pressure 17

RuO2
(100)

inactive
c(2x2)

supercell13

oxidizing
conditions13

CO:O< 2

RuO2
(101)

calc
ined

RuO 2

in CO–rich

fee
d8

Ru
(0001)

reducing
conditions13

CO:O> 2
H2–�ow5

Ru core with
RuO2 (110)/(100)

mild reoxidation13

RuO2
(111)

calcined RuO2
in CO–rich

feed8

active
super–O–rich

high O-
potential15

long O2
induction8

Figure 2.4: Overview of the most relevant surface terminations and structures of RuO2 and transitions
in-between. Results from theoretical studies are highlighted in blue and experimental outcomes in
red.8,13,15,17

In several experiments, the RuO2(110) and (100) were found to be reactive surface termina-
tions that form under oxygen exposure and render undercoordinated Ru atoms responsible
for the catalytic activity.5,8,11,13 In [13], bulk RuO2 is converted to Ru(0001) under reducing con-
ditions and then reoxidized under mild conditions (T < 500K). Upon this pretreatment, thin
RuO2(110) and (100) layers form around Ru particles. In theoretical studies, the formation of
RuO2 facets is investigated with respect to their thermodynamic stability and proposed as an al-

7

ternative to the experimentally introduced core-shell model.15–17 In [17], the RuO2(110)–Obridge

surface termination from Sub�g. 2.2a was found to be stable in UHV whereas RuO2(110)–Ocus

in Sub�g. 2.2b becomes stable under high oxygen pressure.17 Upon formation of RuO2(110)–
Ocus, up to 10% vacancies can be introduced,17 which poses the question of further existing
catalytic structures that might not have been discovered yet. As already written above, the
RuO2(110)–Ocus surface termination has an inherent dipole moment due to the Ocus additional
atoms. This leads to a relaxation of bonds in proximity to the surface and thus to properties dif-
ferent from the bulk structure.17 In the same study, they also introduced an O-poor limit for the
minimal oxygen pressure at which metallic Ru would be formed and an O-rich pressure limit
at which oxygen would start to condense on the surface.17 Both con�gurations, RuO2(110)–
Obridge and RuO2(110)-Ocus, are considered active. For the RuO2(110)–Ocus, a higher catalytic
activity is expected due to single-coordinated oxygen atoms on the surface. In this ab-initio
thermodynamic approach, the RuO2(110)–Ru is not predicted as a stable con�guration in oxy-
gen environment. Later however, in the subsequent study in 2003, they introduced a multi-gas
environment for the investigation of a RuO2(110) surface with respect to O2 and CO pressures
in which they also computed the phase diagram for prominent absorption structures and dis-
cussed possible reaction mechanisms. They predict high turnover numbers at gas conditions
that enable regions of phase coexistence where the reactions of COcus + Ocus → CO2 and
COcus + Obridge → CO2 are assumed to be the most active. Furthermore, they estimated a limit
for the CO pressure, at which RuO2 would be reduced to Ru.16

Figure 2.5: Novel, stable surface structure of RuO2(010) for the oxygen-poor termination as discovered
by Timmermann et al. in [18].

In experiments, catalyst pretreatment has a signi�cant in�uence on the catalytic reactiv-
ity and thus the turnover frequencies (TOFs). A preparation in O2-rich atmosphere led to an
initially inactive RuO2 catalyst towards CO oxidation whereas a preparation in a CO-rich atmo-
sphere resulted in RuO2(111) and RuO2(101) as active catalytic species.8 These two structures
were coined as potentially novel, catalytically active surfaces. The study assumes that upon a
longer oxygen induction period on RuO2(111), the super–O–rich termination is formed. This
is in good agreement with the computed equilibrium particle shape for high oxygen chemi-

8

cal potentials on RuO2(111).15 The formation of RuO2(101), however, is contradictory to the
thermodynamically expected particle shape. Reuter et al. interpreted its discovery as a kinetic
artefact due to the experimental conditions.15 In general, di�erent pretreatments - such as
di�erent calcination temperatures of RuO2 - resulted in di�erent catalytic activities measured
in a variety of experiments.5,8,9 It is thus important to understand the involved facets and
structure systems to tune the catalyst pretreatment with respect to the most e�cient catalytic
outcome. A further example why the structural knowledge of a catalyst is important is the
formation of the c(2x2)RuO2(100) facet. This facet was found to be inactive towards oxygen
dissociation, thus inhibiting the CO oxidation once formed.5,15 In experiments, it was recorded
to form under oxidizing conditions of the RuO2(100) facet. Further, the presence of moisture is
believed to inhibit the dissipative adsorption of oxygen because coordinatively unsaturated Ru
sites were blocked by water molecules.5 In this spirit, the relationship between the structural
and catalytic characteristics can not only be used to improve a catalyst’s e�ciency but also to
prevent deactivation of the catalyst.

The latest approach from Timmermann et al. used a GAP to approximate the PES of RuO2
by a data-e�cient protocol which led to a variety of novel and metastable surface terminations
in an O-poor environment.18 One of those structures is illustrated in Fig. 2.5. As summarized
above, there is a plethora of presumed active structures and this list might not even cover the
full chemical space of involved structural possibilities yet. Thus, this study aims to train a
generative model to explore the PES in a more thorough manner.

9

2.2 Neural Networks
In this section, the basics of neural networks in particular with convolutional layers will be
introduced to then explain the concept of generative adversarial networks and speci�cally the
Wasserstein-GAN as an improvement of vanilla GANs.

Historically, the term machine learning was �rst used by Arthur Samuel to describe the
learning process of a program that produces unexpected and bene�cial outcomes to solve a
problem it was not explicitly designed for in the �rst place.29 During this process, the program
learns to extract basic patterns from a training data set. The prediction error between the
program’s output and a test data set is quanti�ed with a metric or cost function.30 This
prediction error then helps the program to improve its performance by adjusting internal
parameters accordingly.29

One main goal of arti�cial intelligence (AI) is to classify and cluster data. AI explores hidden
patterns within data sets by use of di�erent machine learning algorithms, e.g. multivariable
regression.30 Neural Networks (NNs) constitute a group of machine learning algorithms mim-
icking the cerebral structures of animals with connected processors that are referred to as
neurons. Once successfully trained, neural networks present powerful tools applicable to a
multitude of optimization and prediction problems across all scienti�c �elds. For example, a
very recent study published in 2020 utilizes a neural network-based technique to solve the
electronic Schrödinger equation e�ciently by predicting the related wave function.31 One ex-
emplary structure of a neural network is demonstrated in Fig. 2.6. Colored spheres represent
single neurons that are vertically aligned in layers. The �rst layer is called the input layer
because it is fed the data set. Here, each input entry xi is connected with all other entries (or
neurons h(1)

i) in the next layer.

x1

x2

x3

Input
layer

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

Hidden
layer 1

h
(2)
1

h
(2)
2

h
(2)
3

Hidden
layer 2

y1

y2

Output
layer

Figure 2.6: An example structure for a fully-connected multilayer perceptron with one input layer
(green), two hidden layers (blue) and one output layer (red). The grey arrows show the connectivity of
the neurons and weights tune the signi�cance for each entry in the network.

The signi�cance of neuron h(k)
i is tuned by the weight w(k)

i,j that connects the neuron h(k)
i

with neuron h(k+1)
j . Connectivities between neurons are indicated as grey arrows in Fig. 2.6.

In neural network layers, neurons can be fully connected, meaning that each neuron receives

10

information from all neurons in the previous layer and passes the computed information to
all neurons in the next layer.32 The last layer is termed as output layer as it consists of the
desired output data of the neural network. All layers between input and output layer are
referred to as hidden layers since their entries are normally not accessed by the user. The
amount of neurons and layers that leads to the most accurate results is problem-speci�c and
has to be adjusted during the learning process. A neural network with three di�erent layer
types is called a multilayer perceptron.32,33

As for all machine learning algorithms, the parameters of a neural network are not �ne-
tuned to yield the desired output right from the start. Rather, the performance of the neural
network is optimized during the training process. Input data is passed through the network
in the so-called forward pass in order to compute the output data. The prediction error of the
network output is then quanti�ed with a cost function. In the backward pass, an optimizer
adjusts the weights to achieve better results. In the following subsections, the steps of the
training process are explained in detail.

2.2.1 Forward Propagation
The process of feeding data to the neural network and computing the output is termed forward
propagation. During a training process, the training set is divided into smaller parts, so-called
batches, to update the NN regularly. One cycle over the whole training set is referred to as
an epoch.32,33

In the following, the forward propagation process through a fully-connected neural network
will be exempli�ed for the network shown in Fig. 2.6. All entries of the hidden layer ~h(1) are
computed as a matrix-vector-multiplication of the input vector ~x with the weight matrix W:

~h(1) = W · ~x . (2.1)

In this two-dimensional example, the dimensions of the �rst weight matrix are restricted
to the size of the �rst hidden layer × size of input layer. This consecutive scheme of feeding
the output of the previous layer as an input to the next layer and computing a new output
with a new weight matrix is continued until the output layer is reached. During the training
process of the neural network, the weights and an optional bias term b (~h(1) = W · ~x + b)
are optimized until the error of network output is su�ciently small in comparison to the test
data set. Weights indicate the in�uence of each input feature in predicting the �nal output,
similar to a multivariate regression. Additionally, the bias term can be added to all entries after
each vector-matrix multiplication to shift the outputs in analogy to an intercept in a linear
regression.32

Activation Functions

During the forward propagation, a non-linear activation function R(z) can be applied to
the output of a layer before passing it on to the next layer. The main purpose of an activation
function is to improve the learning behavior of complex non-linear patterns in a data set.

11

Activation functions map the output data of a layer, i.e. W · ~x + b, to a �xed range and
thus facilitate the training of neural networks. As it will be explained in the section on the
backward pass, the derivative of the activation functions must be de�ned at all points and
activation functions must thus be continuously di�erentiable.32,34

Typical activation functions are RELU (recti�ed linear units) or LeakyRELU. LeakyRELU
is de�ned as:35

RLeaky(z) =

{
z z > 0

α · z z ≤ 0
(2.2)

and its derivative as:

R′Leaky(z) =

{
1 z > 0

α z ≤ 0
. (2.3)

An advantage of LeakyRELU over RELU is the small constant slope α (0 < α� 1) which
avoids that the derivatives become zero and allows for negative activations in the network as
shown in Fig. 2.7a.35,36 In RELU, this slope is chosen as α = 0.

A more computationally costly activation function is the Sigmoid activation function:

S(z) =
1

1 + e−z
. (2.4)

Its derivative reads:32

S ′(z) =
1

1 + e−z

(
1− 1

1 + e−z

)
= S(z) · (1− S(z)) . (2.5)

Both, the Sigmoid activation function and its derivative are shown in Fig. 2.7b.

Normalization layers

One possibility to further stabilize the training process in neural networks is o�ered by the
introduction of normalization layers.37,38 Although there exists a variety of di�erent forms,
the two most prominent are batch and layer normalization. Batch Normalization acceler-
ates the convergence of the network by reducing internal covariate shifts inside each batch B
of sizem,37 whereas layer normalization normalizesK features within a single training case i.38

Both techniques compute the mean µB or µi and the variance σ2
B or σ2

i , respectively. In batch
normalization, each scalar entry in the batch xB,i is normalized to zero mean and standard
deviation, whereas in layer normalization all K elements in the sample xi have zero mean
and unit variance. Both transformations are conducted in NNs by two learnable parameters

12

−1 0 1 2

Input values from previous layer

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

O
u
tp
u
t
va
lu
es

of
ac
ti
va
ti
on

la
ye
r

LeakyRELU

Derivative

a) A plot of the LeakyRELU activation function and
its derivative.

−5.0 −2.5 0.0 2.5 5.0

Input values from previous layer

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

O
u
tp
u
t
va
lu
es

of
ac
ti
va
ti
on

la
ye
r

Sigmoid

Derivative

b) A plot of the Sigmoid activation function and its
derivative.

Figure 2.7: Two activation functions and their derivatives.

γ =
√
σ2
B or γ =

√
σ2
i and β = µB or β = µi, respectively. These parameters allow for

reversibility because they can be ’forgotten’ by the network if they are unfavorable for the
training process. Table 2.1 displays the formulas used for the normalizations.37,38

Table 2.1: Batch and Layer Normalizing Transforms, applied to an activation xi over a mini-batch B
or over the features K , respectively.37,38

Batch Normalization Layer Normalization

µB =
1

m

m∑
i=1

xB,i

σ2
B =

1

m

m∑
i=1

(xB,i − µB)

x̂B,i =
xB,i − µB√

σ2
B

yB,i = γ · x̂B,i + β ≡ BNγ,β(xB,i)

µi =
1

K

K∑
k=1

xi,k

σ2
i =

1

K

K∑
k=1

(xi,k − µi)2

x̂i,k =
xi,k − µi√

σ2
i

yi = γ · x̂i + β ≡ LNγ,β(xi)

Put in a nutshell, batch normalization performs a feature-by-feature normalization whereas
in layer normalization the normalization is performed across all di�erent features. As layer
normalization is independent of the batch-sizes, it can lead to a more stable training behavior
for small batch sizes.37,38

13

2.2.2 Backward Propagation
In supervised learning, the predicted output y of a neural network is compared to the ex-
pected output value ŷ of the training data set. During training, the deviation between the
expected value ŷ and the predicted output y is quanti�ed by a cost or loss function after
each forward pass that accumulates the loss of a neural network resulting from the prediction.
During the backward pass, however, the partial derivatives of each NN layer with respect to
their weights are computed and grouped together as layer errors. These layer errors are then
passed on to the previous layer until the input layer is reached. Ultimately, a gradient-based
optimization algorithm uses the computed gradients and updates the weights in order to
improve the NN’s output for the next forward pass and concomitantly reduce the loss of the
neural network.32,39

Loss Functions

The choice of an appropriate loss or cost functions depends on the type of optimization prob-
lem, such as regression or classi�cation of data. In regression problems, a continuous quantity
is predicted, e.g. the salary of a person or the price of a product, whereas in classi�cation
problems a discrete label is predicted for an input sample, e.g. if a person has health insurance
or not or if an outcome is true or false.

A commonly used loss function for regression problems is the mean squared error (MSE):

MSE =
1

n

n∑
i=1

(ŷ − y)2 , (2.6)

where n is the size of the training set while y and ŷ are the predicted and real value of the
continuous output quantity, respectively.32,40

In a binary classi�cation problem, samples are assigned one of two labels in the dataset. To
quantify the prediction error of the discrete output in comparison to the expected labels, the
binary cross entropy loss (BCE) or log loss function is prominently used:39,41

BCE = −(y · log(p)) + (1− y) · log(1− p) . (2.7)

In Eq. (2.7), the network output y is the discrete binary indicator with values being either 0 or
1, and p is the probability to observe the corresponding label in each epoch, i.e. p(y = 0) = ny=0

n

or p(y = 1) = ny=1

n
, where ny=0 and ny=1 count the number of correct outcomes for y = 0

and y = 1, respectively. In Fig. 2.8, the BCE for the label y = 1 is plotted.
It is evident that the log loss of a perfect model (p = 1, y = 1) is zero. BCE thus penalizes

if the predicted probability increases for the wrong label and if the predicted probability de-
creases for the correct label.41

14

Figure 2.8: Plot of the binary cross entropy loss function if label y = 1.

In multi-class classi�cation problems, samples can be assigned to one of n > 2 class labels.
For such a problem, a more general cross entropy loss (CE) for one sample yi,c classi�ed with
the label c can be computed

CE = −
n∑
c=1

yi,c log(pi,c). . (2.8)

CE averages the di�erence between actual and predicted probability distribution over all
possible classes.39

In multi-label classi�cation problems, each sample is assigned zero or more labels as a
function of the input data. Here, a possible loss function is the MultiLabelSoftMarginLoss
(MLSM):

MLSM(x, y) = − 1

C

∑
i

[
yi · log

(
1

1 + exp(−xi)

)
+ (1− yi) · log

(
exp(−xi)

1 + exp(−xi)

)]
,

(2.9)

where input x and target y are of size (N,C).42 MLSM takes an average of the cross entropy
loss (see Eq. (2.8)) across the multiple class labels. An additional sigmoid function (see Eq. (2.4))
is applied to improve the scale of this loss function because the loss increases exponentially
for wrong classi�cation.

Optimizers

As already described, the gradient of the cost function ∇WC(W,xi, yi) at the current system
parameters (weights and bias terms) is computed in the backpropagation. A gradient-based

15

optimization algorithm or short optimizer updates the weights and bias terms in each layer
in order to optimize the NN’s output. Here, the gradient of the cost function indicates the step
direction and the learning rate λ indicates the step size in each optimization step.43

Wnew = W − λ · ∇WC(W, xi, yi) . (2.10)

This optimizer is called stochastic gradient descent (SGD) as samples and weights are drawn
randomly from the whole training set.43

The Adaptive Moment Estimation (Adam) optimizer is an extension to SGD which can
handle sparse gradients on noisy problems and computes adaptive learning rates for each
parameter to improve the learning process.44 At step t, Adam stores exponentially decaying
averages of gradients mt and squared gradients vt:

mt = β1mt−1 + (1− β1)∇WC(W, xi, yi) (2.11)
vt = β2vt−1 + (1− β2)∇WC(W, xi, yi)

2 , (2.12)

with bias values β1 and β2.44 mt and vt are termed as averages on �rst and second moment
of the gradient, respectively. After a bias-correction

m̂t =
mt

1− βt1
(2.13)

v̂t =
vt

1− βt2
, (2.14)

they are used to compute new weights:

Wnew = W − λ√
v̂t + ε

m̂t . (2.15)

ε is an increment for numerical stability.44

2.2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) identify, classify and understand important fea-
tures in the given data input better than fully connected feedforward neural networks.45 CNNs
are based on the convolutional operation of a function f(t) with a weighted average op-
eration w(t) denoted by an asterisk. Due to the the discrete nature of (our) data sets, the
discretized convolution operation is implemented:29,32

16

F (t) = (f ∗ w)(t) = (w ∗ f)(t) =

∫
f(a) · w(t− a)da ≈

∞∑
a=−∞

f(a) · w(t− a) . (2.16)

Here, f(t) is referred to as the input data, the weighted average operation w(t) as kernel
or �lter and the output F (t) as activation or feature map.32,46

Convolutional Layers

An exemplary convolution operation is shown in Fig. 2.9 where a �lter F convolves over an
input volume W , thus producing a two-dimensional feature map. After each step of size or
stride S, the dot product is computed at each spatial position. The number of channels or
the depth of the �lter has to coincide with the depth of the input volume. Further, the depth
of the feature map is equal to the number of applied �lters N . If the input volume is not
padded with an amount of P numbers - e.g. zeroes - the output size O = W−F+2·P

S
+ 1 of the

feature map (assuming quadratic �lters and maps) naturally decreases, which is referred to as
downsampling.46,47

2

32

32
2

5

5

N: Set of filters

28

28

Figure 2.9: A �lter (5× 5× 2) convolves over an input volume (32× 32× 2) and computes a feature
map (28 × 28 ×N = 5). At each position of the kernel, the dot product of its weights and the input
volume is computed. The �ve neurons (blue circles) illustrate �ve distinct weights originating from
�ve di�erent �lters. Image modi�ed from [48].

All neurons in one feature map share the same parameters (weights) at one �lter position.
Moreover, they are only connected with some neurons of the input volume. This local con-
nectivity allows to detect meaningful features while reducing memory requirements. The
perceptive �eld of neurons in one feature map is determined by the �lter size F and the
stride S.46,47

17

Transposed Convolutional Layers

Contrary to convolutional layers, the main idea behind transposed convolutional layers is to
create an output feature map with greater dimensions than the input feature map, as displayed
in Fig. 2.10. This upsampling can for example be used to reconstruct an original image.46

*(S,P)
=

Figure 2.10: Scheme of a transposed convolutional operation. The input feature map (blue) is convolved
by a kernel (red) with trainable weights and an output feature map (green) is created. The parameters
(S,P) determine the transposed convolution.

To upsample the input map, it is modi�ed by padding P and zeroes Z , which is illustrated
step-by-step in Fig. 2.11. Analogously to standard convolutional layers, the kernel slides over
the modi�ed input map with a stride of S ′ = 1 (see Sub�gs 2.11c and 2.11d) and computes
spatially located dot products (see Fig. 2.11). The output dimensionO = (W−1) ·S+F−2 ·P
depends thus on kernel size F , input size W , zeroes Z and padding P .46,49

a) First step: The input feature map (blue) is ex-
panded by Z = S − 1 zeroes (violet.)

b) Second step: P ′ zeroes (grey) are padded around
the modi�ed input feature map (blue and violet).

c) Third step: Computation of the �rst dot product
with the kernel (red) at position one.

d) Fourth step: Computation of second dot product
after stride S′ = 1 of the kernel (red) to position
two.

Figure 2.11: a)+b) Show the modi�cation of the input map and c)+d) the striding of the kernel. Images
recreated from [49].

18

2.2.4 Generative Adversarial Networks
In deep generative modeling (DGM), a complex, high-dimensional probability distribution
PX is approximated by training a deep neural network with a large data set. DGMs can
not only provide a measure for the a�liation of a sample to the original sample space but
also generate new samples that resemble the learned data set.50–52 Generative Adversarial
Networks (GAN) constitute a class of DGMs that have been originally introduced in 2014
by Goodfellow et al.53 and were considered "the most interesting idea in the last 10 years in
machine learning".50 A GAN consists of two submodels. The �rst submodel, known as the
generator gθ with parameters θ, is trained to map sample points z from an easier distribution
PZ , i.e. an uniform or Gaussian noise distribution, to a generative probability distribution
PX′ = gθ(Z) such that gθ(z) = X ′ resembles X :50

g : Rq → Rn (2.17)
z 7→ gθ(z) ≈ x . (2.18)

Each sample x in the sample space belongs to an unknown, high-dimensional, intractable
probability distribution PX . X is a statistical property such as the structural con�guration of
a surface. Since the vectors z are also unknown, they are named as latent variables and the
probability space PZ as latent space with the statistical property Z .50 In GANs, the latent
space can be sampled with noise.52 Normally, the dimension q of the probability space of PZ is
lower than the dimension n of PX . An illustration of this mapping can be seen in Figure 2.12.50

PX PX′ = gθ(Z)

PZ

Figure 2.12: A deep generative model gθ maps the statistical property Z from the easier distribution
PZ to a generative probability distribution PX′ = gθ(Z) which resembles PX . Image recreated from
[50].

The goal is to train the generator gθ such that the generated samples gθ(z) cannot be
distinguished anymore from samples x of the real data space X (gθ(z) ≈ x). To distinguish
whether the sample belongs to the real sample space (x ∼ X) or whether the sample is
generated by the generator (x ∼ gθ(z)), a second neural network, the discriminator dφ with
parameters φ, is introduced as a decision maker:

dφ : Rn → {0, 1} . (2.19)

It functions as a binary classi�er with dφ(x) = 1 for x ∼ X and dφ(x) = 0 for x ∼ gθ(Z).
This decision process is illustrated in Fig. 2.13.

19

Noise z

Generator gθ Data preprocessing

Fake Data
gθ(z) = xfake

Real Data
xreal

Discriminator dφ

Decision

Figure 2.13: A generator gθ (red) maps noise z (orange) to fake data. The discriminator dφ (blue)
distinguishes then between the real data (green) and the generated data (red). Image recreated from
[51].

Since the discriminator performs a binary classi�cation optimization problem, we choose
the binary cross-entropy (see Section 2.2.2) as a loss function:51

min
gθ

max
dφ

CEGAN(θ, φ) = min
gθ

max
dφ

Ex∼X [log(p(dφ(x)))] + Ez∼Z [log(1− p(dφ(gθ(z))))] ,

(2.20)

where p(dφ(x)) denotes the decision probability of the discriminator that the sample was
taken from the real data distribution and p(dφ(gθ(z))) the decision probability of the discrimi-
nator that the sample was generated. The discriminator is trained to maximize the probability
of a correct classi�cation, whereas the generator simultaneously attempts to minimize the
same quantity.52 Hence, these probabilities quantify the training process in which the genera-
tor learns to create more and more realistic fake data and in which the discriminator conversely
has to adapt to better distinguish the fake data from the real data set. The training process can
be interpreted as a two player non-cooperative game or as a Nash equilibrium between
the generator and the discriminator and is the reason why the two networks are termed as
adversarial networks.50

In two successive optimization steps, the parameters of both networks φ and θ are updated
by the SGD optimizer (see Section 2.2.2 or Eq. (2.10)) with the learning rates λφ and λθ in the
k-th step:50

φ(k+1) = φ(k) + λ
(k)
φ

1

s

s∑
i=1

[
∇φ log

(
p(dφ(k)(xi))

)
+∇φ log

(
1− p(dφ(k) (gθ(k)(zi)))

)]
(2.21)

20

and

θ(k+1) = θ(k) + λ
(k)
θ

1

s

s∑
i=1

[
∇θ log

(
1− p(dφ(k+1) (gθ(k)(zi)))

)]
. (2.22)

In Eq. (2.21) and (2.22), the discriminator with parameters φ(k) is optimized in the �rst
optimization step. Consecutively, the generator with parameters θ(k) is trained utilizing the
updated discriminator φ(k+1). In the literature, there are also other approaches that apply
di�erent optimizers (e.g. Adam44, see Section 2.2.2).50 For a perfectly trained generator, the
generated data x ∼ gθ(Z) becomes statistically indistinguishable from the real data space for
the discriminator50 such that the average output of the discriminator would be 1

2
. Determining

the optimal solution for the weights θ and φ is a saddle point problem.50–52

As illustrated in Fig. 2.13, no reference labelling or categorization of the data is required
for the discriminator to perform a classi�cation. GANs are thus an unsupervised learning
algorithm.52 Through the framework of a GAN, it can be avoided to explicitly compute the
probability pX(x) that a sample x belongs to the probability space X :

pX(x) =

∫
pg(x|z)pZ(z)dz , (2.23)

where pZ(z) gives the probability of the vector z inZ and pg(x|z) denotes the probability for
accuracy of the mapping gθ(Z) to the sample space X meaning that one speci�c z ∈ Z results
in one speci�c x ∈ X .50 Instead, a GAN tries to reduce the di�erence between two probability
distributions PX and PX′ during the training loop, which is equivalent to minimizing the
Kullback-Leibner (KL) divergence:

KL(PX‖PX′) =

∫
pX(x)log

pX(x)

p(g(z))
dx (2.24)

between pX(x) and p(g(z)).52 However, the KL divergence is asymmetric and could lead to
unprecedented training behavior. Thus, the Jensen-Shannon (JS) divergence is computed in
standard GANs:51

JS(PX‖PX′) =
1

2
KL

(
PX‖

PX + PX′

2

)
+

1

2
KL

(
pX′‖PX + PX′

2

)
. (2.25)

After a successful training process, the GAN can be used to generate new samples. In inverse
structure design, the outputs of the GAN are used as suggestions for new structures. Since
they are assumed to neither be fully converged nor physically meaningful, these structures
are given as an input to a geometry optimization to determine if a sensible and previously
unexplored structure on the potential energy surface was found19,20

21

Challenges in GAN-Training

An advantage of GANs is that the training process can be parallelized, especially in the case
of large data sets.51 However, the most apparent disadvantage of GANs is the cumbersome,
computationally expensive and volatile training process.50 On top of that, necessary training
hyperparameters like learning rates are highly sensitive to modi�cations of the computational
architecture.54

One common problem during GAN training are vanishing gradients. Arjovsky et al.
proved that if the two probability distributions PX and PX′ lie on low-dimensional manifolds
or have disjoint supports, there always exists a perfect discriminator whose gradients are zero
for any generated sample point gθ(z). Since the generator is trained through a gradient-based
optimization algorithm, vanishing gradients in the discriminator slow down the training pro-
cess and can even prevent the training from converging completely in the worst case.51,54

The strong dependence of GANs on the ratio of the learning rates λφ and λθ goes hand in
hand with the previous problem and beyond. If the discriminator learning rate λφ is too large,
it becomes impossible for the generator to improve because the gradient∇θCEGAN(θ, φ) ≈ 0.
If, however, the learning rate λφ is chosen too small the generator cannot update its weights
properly because inaccurately generated data is falsely accepted by the discriminator.50 The
mathematical reason for this instability is inherent to the approach of optimizing parameters
of neural networks itself. Goodfellow et al. have proven that there exists a unique solution
for the ideal generator gθ and discriminator dφ in function space for any probability distri-
butions PX and PX′ .53 However, this guarantee for convergence does not hold during the
training process of a neural network because it takes place in parameter space.51

As introduced in Eq. (2.21) and (2.22), the networks are updated iteratively. This leads to the
problem that the solutions of a maxmin and a minmax problem are not necessarily equal:51

min
gθ

max
dφ

CEGAN(θ, φ) 6= max
dφ

min
gθ

CEGAN(θ, φ) . (2.26)

To avoid vanishing gradients, the ’− log’-trick is used as an alternative update scheme
for the generator in which the part of Eq. (2.22) log

(
1− p(dφ(k+1) (gθ(k)(zi)))

)
is changed to

− log
(
p(dφ(k+1) (gθ(k)(zi)))

)
.51,54 However, this leads to a loss function that has an extremely

low cost on dropping modes for the generator g. Consequently, this will result in the problem
of mode collapse, where g will most likely not cover the multi modal distribution PX but
rather only modes with the highest acceptance rates are learned.54 Worst case scenario, only
a single output x1 is produced by the generator for any input z:50

gθ(z) = x1 ∀z ∼ Z . (2.27)

The phenomenon of mode collapse is worsened by the fact that the generator g lies in the
inner training loop of the iterative gradient optimizer update (see Eq. (2.21) and (2.22)). Here, g

22

aims to generate data that is likely to be accepted by the updated discriminator. Consequently,
g often only learns a single mode of the data distribution.51 In practice, it is easy to detect a
mode collapse by comparing samples from the generator - which would all be similar or even
identical in the case of a mode collapse.50

Another challenge arises due to an upper limit of the divergences during a GAN training
process, as it is proven by Theorem 2.3 from [54]:

"Let PX and PX′ be two distributions whose support lies in two manifoldsM and P that don’t
have full dimension and don’t perfectly align. We further assume that PX and PX′ are continuous
in their respective manifolds. Then,

JS(PX‖PX′) = log 2

KL(PX‖PX′) = +∞
KL(PX′‖PX) = +∞” .

Therefore, the loss cannot be minimized by means of gradient optimization algorithms.
Arjovsky et al. thus proposed to introduce a softer measure for the distance of two probability
distributions than either JS- or KL-divergence, which will be described in the following.54

Wasserstein-GAN

There is a plethora of GAN variants that try to tackle the di�culties of convergence in the
training process by introducing further measurements for the distance or divergence between
the two probability distributions, e.g. Least squares GAN (LSGAN), Fisher GAN (FGAN) or
Wasserstein GAN (WGAN).51

The latter approximates the Wasserstein Distance or Kantorovich–Rubinstein Metric
which is also known in computer science as the Earth Mover’s Distance (EMD):55

EMD(PX , PX′) = inf
γ∈Π(PX ,PX′)

E(x,z) [‖x− z‖] , (2.28)

where Π(PX , PX′) is the set of all joint distributions γ(x, z) and contains all possible pairs
of the marginal distributions PX and PX′ of the individual random variables X (real data)
and Z (latent space data). The Euclidean norm ‖x − z‖ measures the distance of those two
probability spaces. A vivid depiction of the EMD is that it works as a cost function for a trans-
port optimization problem. In this picture, the probability distribution PX′ can be interpreted
as a pile of soil that shall be transported into a hole that resembles the probability distribution
PX . The joint probability distribution γ(x, z) describes how much dirt has to be transported
from z to x to transform PX′ into PX and the Euclidean norm ‖x− z‖ measures how far the
dirt has to be moved. The EMD, as a product of the mass times transport distance, acts as a
cost function for the transport plan.50,55,56

23

Arjovsky et al. proved in [55] that the EMD provides a continuous loss function for the
parameters θ that is di�erentiable almost everywhere in feedforward neural networks with
pointwise nonlinearities. This ensures that a continuous mapping θ 7→ gθ can be achieved
in which a sequence of parameters θi can converge to θ and thus g(θi) to g(θ). It is found
empirically that this improves the convergence of gradient-based optimization algorithms as
well as the sample quality.55

Computing the in�mum in Eq. (2.28) is tedious because there are in�nitely many trans-
port plans to move the soil. Therefore, an approximation of the EMD using the Kantorovich-
Rubinstein duality57 is typically implemented in WGANs:

EMD1(PX , PX′) = max
f∈Lip(f)≤1

Ez∼PX′ [f(gθ(z))]− Ex∼PX [f(x)] . (2.29)

Here, f denotes all Lipschitz-1 continuous functions.52,55. If f ∈ Lip(f) ≤ 1 is replaced by
f ∈ Lip(f) ≤ K , the set of all K-Lipschitz continuous functions would lead to the EMD up to a
multiplicative constantK (K ·EMD(PX , PX′)).55 In WGANs, f is realized as a neural network -
the so-called critic - which is the adversarial of the generator in the training loop.52 In contrast
to normal GANs, the critic estimates the EMD as parameterized functions {fw}w∈W :

EMD1(PX , PX′) = max
w∈W

Ez∼PX′ [fw(gθ(z))]− Ex∼PX [fw(x)] . (2.30)

The generator attempts to minimize Eq. (2.30) to in turn minimize the EMD between the
real data distribution PX and the fake data distribution PX′ . Hence, the new loss functions
can then be rewritten as:52

EMD = min
gθ

max
w∈W

Ez∼PX′ [fw(gθ(z))]− Ex∼PX [fw(x)] (2.31)

EMDWGAN(θ, φ) = min
gθ

max
dφ

Ez∼PX′ [dφ(gθ(z))]− Ex∼PX [dφ(x)] . (2.32)

In contrast to Eq. (2.20), the new loss function contains no logarithmic dependence and
the critic is obviously no longer a binary classi�er. Additionally, some of the above described
training challenges are resolved as meaningful gradients can be provided at all times for the
training process. This simultaneously reduces the probability for the phenomenon of vanish-
ing gradients and mode dropping.54,55

In the implementation of a WGAN, the parametrized critic dφ is required to be K-Lipschitz
continuous for some K to ensure continuous and meaningful gradients during the whole
training process. One way to enforce this is to clamp the magnitude of each weight in each
layer in a neural network to a �xed interval, e.g. [−0.01, 0.01], such that the parameters φ
lie in a compact space.55 However, this weight clipping has some major drawbacks on the
training process as too large clipping intervals can increase the training duration whereas too
narrow clipping intervals can lead to vanishing gradients.55

24

Therefore, Arjovsky et al. proposed another implementation technique in [56] where they
prove that a function is 1-Lipschitz continuous if its gradient norm is at most 1 everywhere.
To realize this, they introduce a soft version of a gradient penalty gp:56

gp = Exi∼Pgp

[
(‖∇xidθ(gθ(z))‖2 − 1)2

]
. (2.33)

Here, the samples xi are part of the sampling distribution Pgp that is formed by a linear
interpolation between points x of the real probability distribution PX and generated points
g(z) of the generator probability distribution PX′ :

xi = α · x+ (1− α) · g(z) (2.34)

with a random value 0 ≤ α ≤ 1.56 The gradient penalty is added on top of the EMD loss
function multiplied with a constant λgp, thus leading to a new WGAN loss function LWGAN:56

LWGAN = min
gθ

max
dφ

Ez∼PX′ [dφ(gθ(z))]− Ex∼PX [dφ(x)]

= + λgp · Exi∼Pgp
[
(‖∇xidθ(gθ(z))‖2 − 1)2

]
. (2.35)

25

3 Computational Methodology
In this section, we will �rst describe how we created two di�erent RuO2 datasets and how
we designed the input for our WGAN framework. We will then proceed to the di�erent
implementations of the WGAN architectures. Here, four di�erent approaches to encode addi-
tional physical information, such as the energy of the structures or the corresponding lattice
lengths, will be described. Our computational design is created in a similar way to [19, 20],
who developed a GAN framework for the prediction of novel zeolite structures that takes
two input channels: one for an energy grid and one for a materials grid encoding the atomic
positions within the zeolites. The codes for all computational architectures are listed in the
gitlab repository in [58].

3.1 Dataset design
As described above, GANs as a subclass of generative models learn an underlying unknown
probability distribution of a sample space by processing a �nite amount of samples representa-
tive for that sample space. Our objective is to train a GAN to learn the chemical space of RuO2
surface terminations. It is thus crucial for the success of our training process to use tailored
datasets that cover the chemical space of interest and to create a suitable input format to our
neural networks that encodes the desired information. In this thesis, two di�erent datasets
have been used. The di�erence between those two training sets will be highlighted in the
following, as well as some reasoning behind adjustments to the input cell geometries. After-
wards, a description of di�erent approaches to encode physical information like the energy
range of the input structures is given.

3.1.1 GAP dataset
Gaussian approximation potentials (GAPs) are a subclass of interatomic machine learning
potentials of non-�xed form. These GANs are typically trained with a suitable database - con-
sisting of energies and forces from expensive �rst-principles computations - as well as a local
representation of atomic environments.59,60 A common choice for such a representation is the
so-called smooth overlap of atomic positions (SOAP) descriptor.61 Based on the input data,
GAPs are performing a regression task on local quantities analogously to Gaussian Process
Regression (GPR) as they are an application of the latter.59,60 In principle, GAPs model the
potential energy surface as a function of nuclear coordinates without describing the electrons
explicitly and predict this local quantity, i.e. the energy of a con�guration, based on its sim-
ilarity to other con�gurations in the database.18,60 For a detailed introduction on GAPs und
GPR, the interested reader is referred to [60] and [59].

26

In [18], Timmermann et al. used an iterative training protocol to train a GAP with low-index
rutile (1 × 1) RuO2 facets. Computational details on the setup of the GAP, e.g. interatomic
potential, loss function, kernels and representations, and the iterative training protocol can
be found in [18]. Based on this trained GAP, a dataset of 148 (1× 1) RuO2 surface structures
containing all �ve crystal facets (001), (100), (101), (110) and (111) was created. All �ve crystal
truncation lead to one oxygen-poor, one stoichiometric and one oxygen-rich surface termi-
nation as described above. For the (111) surface, an additional super-O-rich termination and
an additional stoichiometric termination were sampled.18 The structures were stored as atom
objects from the Atomic Simulation Environment (ASE) containing additional information
such as potential energies obtained by DFT.62

To map the structures on a suitable grid as input to our GAN, non-orthogonal cells were
extended to orthogonal supercells by an in-house code (see gitlab repositiory). In this script,
atomic positions within the original cell remain the same, new orthogonal cell vectors are
computed and atom motifs of the original cell are repeated within the newly extended system
size. The DFT potential energy is adjusted to the increasing number of atoms in the newly
expanded cell. To verify that the DFT potential energy of the newly created supercells scales
proportionally to the number of added atoms, two single point DFT computations of three
randomly picked samples were computed (settings chosen as in [18]) and only lead to small
numeric deviations of 20 meV. In our GAN framework, we aimed to encode the energy for our
structures. For this purpose, we did not use absolute energy values but rather energy ranges.
Based on the small numeric deviations, we thus assumed that the energies of the expanded
cells scale accurately enough to the system size. The energy ranges for the energy encoding
were de�ned as listed in Table 3.1. The DFT energies of the samples were grouped in ten
intervals and each interval was then assigned a class label from 0 to 9 which we will refer to
as the energy class label.

Table 3.1: The energy range per atom for each energy class label is listed. This classi�cation is applied
to both GAP datasets.

Range of energy per atom [meV] Class label
[−1220.2,−1201.4] 0
[−1201.3,−1182.6] 1
[−1182.5,−1163.7] 2
[−1163.6,−1144.8] 3
[−1144.7,−1125.9] 4
[−1125.8,−1107.0] 5
[−1106.9,−1088.1] 6
[−1088.0,−1069.3] 7
[−1069.2,−1050.4] 8
[−1050.3,−1031.4] 9

By visual inspection of the dataset, we found 51 structures containing a broken layer struc-
ture with gaps between di�erent RuO2 layers that had either peroxide groups associated with

27

the surface or single oxygen atoms �oating in the cell, as demonstrated in Fig. 3.1. To inspect
the training results in dependence on the structural variety of the dataset, we split the GAP
dataset in two subsets, one containing all 148 structures and one only containing 91 structures
free of any defects.

Figure 3.1: Two examples for non-physical structures contained in the �rst GAP dataset. The left
structure contains multiple �oating single oxygen atoms. Additionally, the upper structure fragment
starts to detach. The right structure has a broken slab structure with disconnected layers. Ru atoms
are drawn as grey spheres and O atoms as red spheres.

To highlight the impact of the structure removal from 148 to 91 structures, both sample
distributions are plotted in the energy histogram in Fig. 3.2. Even though 51 structures were
removed, the full range of the energy spectrum is still covered in the reduced training set.

In a second step, both sets of (1 × 1) RuO2 surface cells were extended in x and y direc-
tion to obtain a more quadratic cell appearance, ultimately improving the data sampling in
2D (see below). Concomitantly, the vacuum layer was reduced from 20 Å to 12 Å to reduce
the compression of the cell in z direction in our mapping process for the data sampling, as
the z cell vector was roughly twice the length as the x or y cell vectors for all cells. In the
supporting information of [18], the numerical stability of the vacuum layer reduction was
explored for RuO2 and can thus be performed safely. As we want to process the GAN output

28

Figure 3.2: Energy histogram showing the amount of structures in each energy class for both GAP
subsets.

29

in later geometry optimizations based on GAP energetics, we aim to directly include a realistic
vacuum-slab-layer ratio within a stable numerical range. For one structure, this cell increase
and concomitant vacuum layer decrease is illustrated in Fig. 3.3. All extended cells still contain
> 2000 atoms.

Figure 3.3: Demonstration of the second modi�cation step of the GAP dataset. The original cell (left)
is multiplied in x and y cell direction to obtain a quadratic cell (right). The height of the vacuum layer
is reduced to 12Å. Ru atoms are drawn as grey spheres and O atoms as red spheres.

3.1.2 Basin hopping dataset
The second dataset was created with a grand-canonical basin hopping method in Delocalized
Internal Coordinates (DICs, also often referred to as curvilinear coordinates) as developed
by Panosetti et al. in [22, 23] using the trained GAP from [18] for the energetics. DICs are
linear combinations of internal coordinates constructed as singular value decomposition of the

30

redundant Cartesian-internal transformation matrix. It has been shown that the application of
displacements in DICs generates more chemically meaningful trial structures than Cartesian
displacements, especially for covalent systems, by facilitating the preservation of favourable
bonding patterns throughout the sampling. The starting points were a (1×1) RuO2(100) surface
with oxygen-poor and oxygen-terminated stoichiometric termination and a c(2×2) RuO2(100)
surface with oxygen-poor and oxygen-rich termination, both appropriately repeated to obtain
a roughly cubic supercell with dimension of ca. 18 Å. Lattice parameters were taken from
the DFT computations of [18]. All cells contained about 2000 atoms and were divided into
a displacement layer, a bulk layer and a bu�er layer. Both the displacement and the bu�er
layer cover two Ru layers and and connected oxygen atoms. The DIC displacement was only
applied to the displacement layer while the bu�er layers is not involved in the displacement
but allowed to relax. Atoms in the bulk layer were kept �xed. Displacements of 1.20 Å were
constructed using 25 % of the available curvilinear modes. Moreover, the removal or insertion
probability for oxygen was also 25 %. Oxygen potentials ∆µO2 of−1.0 eV,−0.5 eV,−0.25 eV
and 0.0 eV were sampled. A Metropolis criterion with a pseudo-temperature of 1000 K was
used. An additional criterion was implemented to reject structures with molecular oxygen
or clustered oxygen atoms. The geometry of each trial move was locally optimized using
the FIRE algorithm.63 Each structure and snapshot of the optimization was saved leading to a
database of 28, 903 structures. One example for a structure in this dataset is shown in Fig. 3.5.
All structures in this dataset are orthorhombic due to the chosen initial cell geometry.

The energy of each structure was computed with the GAP from [18]. Similar to the GAP
dataset, all structures were assigned an energy class label from 0 to 9, as shown in Table 3.2.
Histogram 3.4 shows the energy distribution over these samples. Since the probability for
acceptance was only 25 %, a majority of the structures is located in two energy classes (6 &
7). However, a few hundred samples were located in other energy classes which ensures that
the GAN also processed structures from other energy classes during the training process and
learned to extract their speci�c features.

Table 3.2: The energy range per atom for each energy class label is listed. This classi�cation was
applied to both GAP datasets.

Energy range [eV] Class label
[−520021.6,−519387.3] 0
[−519387.2,−518753.0] 1
[−518752.9,−518118.7] 2
−518118.6,−517484.4] 3
[−517484.3,−516850.0] 4
[−516849.9,−516215.7] 5
[−516215.6,−515581.4] 6
[−515581.3,−514947.0] 7
[−514946.9,−514312.7] 8
[−514312.6,−513678.3] 9

31

Figure 3.4: Energy histogram showing the amount of structures in each energy class for the basin
hopping dataset.

32

Figure 3.5: One example structure of the dataset created with basin hopping. The majority of the
structures is located in two energy classes (6 & 7).

33

3.2 Atom density-based structural GAN input
The previous section was centered around the creation of two RuO2 datasets. In these struc-
tures, each atomic position is characterized as a distinct point in a unit cell represented by
three lattice cell vectors. Here, we describe how this spatial information is converted into a
suitable geometric input to the GAN.
During this approach, the atomic positions were encoded as Gaussian shaped pixel intensities
on a three-dimensional grid. The main idea behind this approach was that discrete spatial
data positions are mapped to a continuous representation. This conversion is crucial because
the generator cannot output discrete data in the general case.52,64 In the learning process, the
generator can adapt the intensity of each voxel on the interval [0, 1] and can thus improve
the sample quality based on feedback from the critic by making small trial steps and thus
adjusting each voxel value individually.
As initial step of the mapping process, we constructed a 32x32x32 grid with orthogonal grid
vectors. To facilitate the mapping from the structural data �les to our density-based input, the
input cells were transformed into orthorhombic cells as described above, in case they were
non-orthorhombic beforehand. Here, each atomic position is represented by a Gaussian func-
tion centered on the original atomic position in the cell. Consecutively, a three-dimensional
stencil was created based on the original atomic position and placed on the 32x32x32 grid. The
intensities of two neighboring Gaussian function accumulate if their stencils overlap. One
advantage of this representation is that we can already encode some structural �exibility on
the atomic positions by adjusting the width of our Gaussian shaped stencils. The width for the
Gaussian stencils was controlled as a hyperparameter α and determined the features of our
input to the GAN. To guarantee an atomic resolution of at least �ve voxels in each direction
for each Gaussian stencil, each unit cell did not contain more than 2000 atoms. For both atom
types (Ru and O atoms), a separate 32x32x32 grid with Gaussians stencils was computed. The
created density-based grids were handed to the GANs as separate channels. The mapping was
performed using an in-house code as found in the gitlab repository.58

3.2.1 2D Sampling
In the �rst step of the GAN implementation, we started by feeding two-dimensional pictures
as input to our network. Since only two-dimensional images are passed through the neural
network structures, the amount of required neurons and computations within the networks
is reduced by the power of three. This saved computing time during tests of computational
architectures and hyperparameters.

To obtain two-dimensional images from the 32x32x32 grid, we sliced the grid along the xz-
and the yz-plane as demonstrated in Fig. 3.6 exemplary for a 4x4x4 grid. For each element,
the separate 32x32x32 grid is created and sliced.

34

Sam
pli

ng

dir
ect

ion

Sampling
direction

z

y

x
Sampling
direction

z

y

x

Figure 3.6: Slicing scheme of the density-based grid in two dimensions. The grid was sliced both along
the xz- and the yz-plane.

a) b)

c) d)

Figure 3.7: Two-dimensional slices of the RuO2 structures from Fig. 3.3 after the Gaussian mapping
to density-based structures. a) and b) show slices of the original structure in the xz- and yz-plane,
respectively. c) and d) are slices in the corresponding xz- and yz-plane after the cell extension in x-
and y-direction.

In Fig. 3.7, some exemplary slices of the structure displayed in Fig. 3.3 are shown before and
after the cell extension in x- and y-direction. One can clearly see that before this extension,
due to the mapping of all three cell dimensions on the same grid distance, the Gaussians in z-
direction are in closer proximity than in x- or y-direction. After the cell extension, the images
contain more Gaussian functions representing atoms. As described in the previous section, the

35

a) b)

Figure 3.8: a) and b) show the randomly translated cell from Sub�gs. 3.7c and 3.7d in the xz- and
yz-plane, respectively.

width of the Gaussians steers the amount of pixels the atomic positions are represented with.
This hyperparameter α was set to α = 2.5 and α = 5.0 for the smaller and enlarged cells, re-
spectively. Concomitantly to the cell extension, the vacuum region was reduced to increase the
resolution of the image area mapping. During the sampling process, empty slices containing no
Gaussians were removed. This �lter only had to be applied in the two-dimensional application.

To further increase the chemical space covered by our dataset, we introduced random trans-
lation and rotation on the three-dimensional grids before the slicing. So far, the vacuum layer
was only placed to the left and right of the structures, however, it can also be located in the
middle of the cell and the slab can be separated, as seen in Fig. 3.8. Including such operations
implicitly taught the GAN periodic boundary conditions in all three cell dimensions. The main
reasoning behind a random translation of the dataset in x, y and z direction, however, was to
vary the positions of the atomic densities in the cell such that GAN rather learns to map the en-
vironment of the atomic densities than to position them at speci�c spatial locations on the grid.

Each structure in the GAP dataset was randomly translated and rotated four times and then
sliced 16 times on even numbered positions on the grid in both x- and y-directions. This
resulted in overall respective training set sizes of 18,944 and 11,648 structures for the 148
structures in the GAP dataset (4 × 16 × 2 × 148) and the 91 structures in the reduced GAP
dataset. The rotations were only executed as multiples of 90° along the z-axis to maintain the
surface orientation of our density-based inputs.

For the basin hopping dataset, each structure was randomly translated once. In order to
recognize over�tting of the GAN, the randomly translated basin hopping dataset was saved
and compared to generated data. For the two-dimensional density-based representation (in
both x- and y-direction), only one slice was taken at position 10. The �nal dataset size thus
resulted in 57,806 structures (28, 903× 2).

36

3.2.2 3D Sampling
As described in the previous section, all computational architectures were tested in two-
dimensions before passing them into a three-dimensional GAN framework. Analogously to
the 2D Sampling, seperate 32x32x32 grids were constructed for Ru and O. Both grids were used
directly as three-dimensional input to the neural network. In Fig. 3.9, the extended structure
from Fig. 3.3 is plotted with an in-house script represented by the density-based 32x32x32 grid.
The GAP datasets were not further used for these computations because they only consists of
148 or 91 structures. Rather, the three-dimensional, once randomly translated basin hopping
dataset with 28,903 was used as an input dataset.

Figure 3.9: Three-dimensional plot of the extended structure from Fig. 3.3 after the Gaussian mapping
of atomic positions. Ru atoms are drawn as yellow spheres and O atoms as red spheres.

3.3 WGAN Implementation in PyTorch
The aim of this thesis is to develop and test a deep convolutional WGAN architecture. In
this section, we will thus give a brief overview of the code routines and present the used
computational architectures to encode energy and lattice information of our chemical systems.
The weights in all simulations were automatically initialized by PyTorch using the Kaiming
Initialization procedure, as it is described in [65]. All computational architectures for the two-
dimensional case were written as single-node single-GPU codes. After increasing our dataset,
we upgraded these codes into single-node multi-GPU codes �rst with the DataParallel66(DP)
PyTorch package and afterwards with the DataDistributedParallel67(DDP) PyTorch package
for e�ciency reasons. The main di�erence between the DP and the DDP package is the
implementation of the GPU usage before and after each training epoch and the resulting
di�erence in runtime. The DP package copies the model and data before and after each epoch
to the GPU and back to compute averaged gradients before the model update is performed.
Contrary to the DP package, the DDP package places a copy of the model to each allocated
GPU in the beginning. Only the batched data is copied between epochs, i.e. the models are
permanently stored on the respective GPUs and are updated using gradient synchronization

37

between the models located on di�erent GPUs which leads to a signi�cant speed up. To
ensure reproducibility, the CUDA torch.manual seed was set to 100 in all DDP codes. The
computations were performed on Nvidia A100 NVlink GPUs with 40 GB HBM2 and a CUDA
compute capability 8.0/Ampere on the Raven cluster of the Max-Planck computing and data
facility (MPCDF).

3.3.1 Vanilla 2D-DCWGAN
As described in Section 2.2.4, the Wasserstein-GAN (WGAN) o�ers an elegant solution to
stabilize the volatile GAN training process by introducing a softer measure for the loss func-
tion: the Earth mover distance. Hence, we implemented a WGAN in our PyTorch68 code.58 As
explained in Section 2.2.3, CNNs are better at extracting distinctive and important features
than fully-connected layers and have furthermore proven to speed up the convergence in the
GAN training process as Deep Convolutional GANs (DCGANs).19,20,69 In DCGANs, the gen-
erator is built with transposed convolutional layers for upsampling (see Section 2.2.3) and the
discriminator with convolutional layers for downsampling (see Section 2.2.3). Analogously to
Kim et al. in [20], we implemented a DCWGAN framework combining the advantages of the
EMD as a weaker, converging metric and a computational architectures based on (transposed)
convolutional layers facilitating the training process. We used the hyperparameters from Kim
et al. as starting points for our hyperparameter searches.20

In the following, the general code scheme and computational architecture are introduced for
the training process of the DCWGAN that aimed at creating two-dimensional images which
either resemble the GAP or the basin hopping dataset. As we only passed our density-based
images as inputs to the WGAN and no supplementary information was encoded in further
channels or layers, this architecture is referred to as a Vanilla WGAN.

The general programming scheme for the Vanilla WGAN training process is demonstrated
in Fig. 3.10. In our PyTorch code, there is an inner and an outer training loop. First, we will
describe how the critic is updated �ve times in the inner loop and then proceed to the genera-
tor update in the outer training loop.

Critic

Fake
structures

Real
structures Generator Noise z

Generator
loss

Critic
loss

Optimizer
update

Optimizer
update

Figure 3.10: Flowchart of the code routine for one iteration of the Vanilla WGAN training process.

38

In the beginning of the inner training loop, the generator is fed randomly sampled noise vec-
tors and produces fake data output, as described in Section 2.2.4. The critic then processes both
real and fake structures and computes a loss for both, the decisions on the real dkφ(x) and the de-
cisions on the fake structures dkφ(gθ(z)). Since we implemented a WGAN, the gradient penalty
gp was computed on top for some linearly interpolated samples xi (see Eq. (2.34)) as described
in Eq. (2.33). The value α was chosen randomly in each epoch using the numpy.random.rand
function. No speci�c numpy seed was set. The parameter λgp of the WGAN loss LWGAN (see
Eq. (2.35)) was set to 10 (value from [55, 56]) for all simulations in this thesis. The WGAN
loss LWGAN and the critic gradients after backpropagating were passed to the optimizer to
update the critic’s parameters. For all simulations, the ADAM optimizer (see Section 2.2.2)
was initialized for the critic with the bias values β1 = 0.5 and β2 = 0.9.44 The critic learning
rate λdφ was varied between 0.001 and 0.0001 throughout the simulations. This training step
was repeated �ve times before the outer training loop proceeded.

In the outer training loop, the generator is updated. Analogously to the inner training loop,
noise was sampled and fake structures were generated and passed to the critic to compute
the EMD. Accumulated over a whole batch, these EMDs represent the generator loss which
is passed on to the generator optimizer together with the gradients after backpropagation of
the generator. As for the critic, an ADAM optimizer (see Section 2.2.2) was initialized for the
generator with the same values as the critic.44

The computational architectures for the critic and generator of the code scheme in Fig. 3.10
are illustrated in Fig. 3.11. As already described, transposed convolutional layers were used in
the generator to upsample from the latent space to the 32x32 grid (i.e. to create fake structures).
Contrary to that, convolutional layers were used in the critic to downsample the fake or real
structures to the EMD. Since the input grid was two-dimensional, two-dimensional convolu-
tional and transposed convolutional layers were required. The batchsize B varied depending
on the dataset and the simulation settings between 32, 128, 256, 512, 1024 and 2048.

For the critic, a layer normalization followed by a Leaky-RELU activation function was
applied after each convolution with exception of the last convolution operation. To reduce
over�tting, connections between neurons were randomly omitted with a probability of p = 0.5
after the �rst convolutional layer. By applying this regularization method, a learning interde-
pendence between the neurons was avoided. The kernel size K , the stride S and the periodic
padding P were chosen as depicted in Fig. 3.11 for all simulations.

For the generator, batch normalization was applied to the output of every transposed con-
volutional layer. Afterwards, a LeakyRELU activation function utilized, with the exception of
the last transposed convolutional layer where a sigmoid activation function was employed
after the batch normalization. The kernel size K and the stride S were chosen as depicted in
Fig. 3.11 for all simulations. No padding was employed. The dimension N of the latent space
was either chosen as 512 or 1024.

The Vanilla 2D-DCWGAN architecture was tested with the GAP and basin hopping datasets

39

and computations were performed in the single GPU, the DP multi GPU and the DDP multi
GPU code version.

Real or fake structures

+ dropout

EMD

[B,2,32,32]

[B,32,32,32]K=(1,1), S=(1,1), P=0te

[B,64,16,16]K=(5,5), S=(2,2), P=2te

[B,128,8,8]K=(5,5), S=(2,2), P=2te

[B,256,4,4]K=(5,5), S=(2,2), P=2 te

[B,1,1,1]K=(4,4), S=(1,1), P=0te

L

L

L

L

Noise

Fake structures

Generator

[B,N,1,1]

[B,256,4,4]K=(4,4), S=(2,2)te

[B,128,8,8]K=(5,5), S=(1,1)te

[B,64,16,16]K=(2,2), S=(2,2)te

[B,32,32,32]K=(2,2), S=(2,2)te

[B,2,32,32]K=(1,1), S=(1,1)te

L

L

L

L

S

Critic

Input/ Output Data
2D Conv + Layernorm
2D Conv
2D TranspConv + BatchNorm

K: 2D Kernel
S: 2D Stride
P: 2D Periodic padding
B: Batch size
N: Noise dimension

L LeakyRelu

S Sigmoid

Figure 3.11:Computational architecture and computational details of the implementation of the Vanilla
2D-DCWGAN.

40

3.3.2 Energy encoding in 2D-DCWGAN
In the previous simulation, computational details were presented of a 2D-DCWGAN that is
able to learn solely the geometric information of the density-based structures. In this section,
however, we want to introduce energy information in our WGAN via data labels. Labels are
widely used for data classi�cation[70, 71], for example in the Information Maximizing Genera-
tive Adversarial Network (INFOGAN).72 Here, a DCGAN with structured latent variables was
proposed that was trained on the MNIST database - a database of 2D images of handwritten
numbers 0 to 9. In addition to the noise vector z, a latent code c consisting of labels 0 to 9 rep-
resenting the numbers on the pictures was provided as an additional input for the generator.72

After a successful training process, the generator was then capable to selectively output hand-
written numbers from 0 to 9 depending on the concatenated label that was appended to the
noise vectors z.72

We want to use this idea to encode the energy classes of the structures in our latent space
design. For this, the energy labels from Table 3.1 were used for the GAP dataset and the energy
labels from Table 3.2 for the basin hopping data set. Thus, the energy labels were 0-9 in both
cases. To ensure convergence in the training process, the INFOGAN introduced an additional
regularization term in the loss function which is implemented as an auxiliary network.72 We,
however, sought to include the additional latent code in the training process by showing the
critic the energy information in a third channel. The code scheme in Fig. 3.12 illustrates how
the latent code was provided to the generator and to the critic. Apart from this additional
information, the training routine was the same as for the Vanilla DCWGAN, as depicted in
Fig. 3.10. To access the best energy labels for our problem, the energy information was once
encoded as one hot vectors, once as integer-based conditioning vectors and once as an energy
embedding. The computational details of each approach are explained in the following.

Critic

+
Energy labels / one hot encoding

Fake
structures

Real
structures Generator Noise z

+
Energy labels

/one hot encoding

Generator
loss

Critic
loss

Optimizer
update

Optimizer
update

Figure 3.12:Code scheme for the encoding of additional energy information during the training process
either in the form of labels or one hot encoded vectors in a 2D-WGAN.

41

Integer-Based Conditioning Vectors

The idea of energy conditioning is to use the labels 0 to 9 and map them to a conditioning
vector of size C that consists of a repetition of the corresponding class label. The size of
this integer-based conditioning vector C is thus a new hyperparameter for the simulation.
In Fig. 3.13, the computational details are illustrated. Basic computational architectures of
Fig. 3.11 and all entailed hyperparameters remain identical. The only deviation is the input to
both neural networks.

As described above, the conditioning vector is concatenated to the randomly sampled noise
vector z of size N such that the input to generator is of dimension [B,N+C,1,1]. C was varied
between 100, 206 and 512 for the generator input. We sampled C in the ratio of 1 : 4, 1 : 2
and 1 : 1 to the size of the noise vectorN to explore the impact of the latent code on the latent
space design. For the critic input, however, the dimension of the integer-based conditioning
vector has to be �xed to [B,1,32,32], such that we can concatenate it as an separate channel to
the �rst convolutional layer.

Computations for the computational architecture of the 2D-DCWGAN with integer-based
energy conditioning were only performed with both GAP datasets in the DP multi GPU code
version.

42

Energy conditioning
or one hot encoding

Real or
fake structures

+ dropout

EMD

Critic

[B,1,32,32][B,2,32,32]

[B,3,32,32]

[B,32,32,32]K=(1,1), S=(1,1), P=0te

[B,64,16,16]K=(5,5), S=(2,2), P=2te

[B,128,8,8]K=(5,5), S=(2,2), P=2te

[B,256,4,4]K=(5,5), S=(2,2), P=2 te

[B,1,1,1]K=(4,4), S=(1,1), P=0te

L

L

L

L

Energy conditioning
or one hot encoding

Real or
fake structures

Fake structures

Generator

[B,C,1,1][B,N,1,1]

[B,N+C,1,1]

[B,256,4,4]K=(4,4), S=(2,2)te

[B,128,8,8]K=(5,5), S=(1,1)te

[B,64,16,16]K=(2,2), S=(2,2)te

[B,32,32,32]K=(2,2), S=(2,2)te

[B,2,32,32]K=(1,1), S=(1,1)te

L

L

L

L

S

Input/ Output Data
2D Conv + Layernorm
2D Conv
2D TranspConv + BatchNorm

K: 2D Kernel
S: 2D Stride
P: 2D Periodic padding
B: Batch size
N: Noise dimension

L LeakyRelu

S Sigmoid
C: Conditioning/one hot size

Figure 3.13: Computational architecture and computational details of the implementation of the 2D-
DCWGAN with integer-based energy conditioning or one hot encoding.

One Hot Encoding Vectors

The energy information is encoded in one hot encoded vectors of the class labels 0 to 9 in
binary representations. An example of a one hot encoding of the labels 0 to 9 for a one hot
vector size of 10 is illustrated in Table 3.3. An identical computational architecture as in
Fig. 3.13 and identical concomitant hyperparameters were used for these simulations. One
hot vectors of size 100, 200 and 500 were concatenated with the noise vector of size N and
then provided as input for the generator. Similarly to the previous simulation, the size of
the one hot encoding vector was sampled in comparison to the noise dimension N , however,
the one hot vector size was given in multiples of 10 due to the choice of 10 class labels. The
input size of the one hot vector for the critic was �xed to 32x32 and then resized to [B,1,32,32],
similar to the conditioning vector. Computations for the computational architecture of the

43

2D-DCWGAN with one hot encoded energy conditioning were only performed with both
GAP datasets in the DP multi GPU code version.

Table 3.3: One hot encoding of the labels 0 to 9 with a one hot vector size of 10.

Class label One hot encoding
0 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
1 (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
2 (0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
3 (0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
4 (0, 0, 0, 0, 1, 0, 0, 0, 0, 0)
5 (0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
6 (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)
7 (0, 0, 0, 0, 0, 0, 0, 1, 0, 0)
8 (0, 0, 0, 0, 0, 0, 0, 0, 1, 0)
9 (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

Energy Embedding

Energy embedding presents an additional network layer that is augmented on both the critic
and the generator to encode the integer labels 0 to 9, as demonstrated in Fig. 3.14. The addi-
tional layer constituted of an embedding layer for the generator and of an embedding layer
followed by a linear, fully-connected layer for the critic to reshape the input accordingly.

The concept of an embedding layer is to embed the given labels in a larger vector space
of dimension E with an amount of Ne embedding classes and to simultaneously create an
accessible reference table. This entails that each vector is assigned an index. In the beginning,
the embedding matrix was created with random entries. During the course of the training, the
embedding layer was updated to learn similarities between the samples.73

As for the previous energy conditionings, all hyperparameters were kept the same. Since
we have ten class labels, Ne was set to 10 and the size of embedding layer E was sampled as
50, 100, 206 and 512.

The 2D-DCWGAN energy embedding simulations were performed with the GAP and basin
hopping datasets in the single GPU, multi GPU DP and multi GPU DDP code version.

44

Energy LabelsReal or
fake structures

+ dropout

EMD

Critic

Energy Labels
[B,1,1,1]

[B,1,E,E]Ne=10, O=E

[B,1024]I=E, O=1024

[B,2,32,32]

[B,3,32,32]

[B,32,32,32]K=(1,1), S=(1,1), P=0te

[B,64,16,16]K=(5,5), S=(2,2), P=2te

[B,128,8,8]K=(5,5), S=(2,2), P=2te

[B,256,4,4]K=(5,5), S=(2,2), P=2 te

[B,1,1,1]K=(4,4), S=(1,1), P=0te

L

L

L

L

Energy LabelsNoise

Fake structures

Generator

[B,1,1,1]

[B,E,1,1]Ne=10, O=E
[B,N,1,1]

[B,N+E,1,1]

[B,256,4,4]K=(4,4), S=(2,2)te

[B,128,8,8]K=(5,5), S=(1,1)te

[B,64,16,16]K=(2,2), S=(2,2)te

[B,32,32,32]K=(2,2), S=(2,2)te

[B,2,32,32]K=(1,1), S=(1,1)te

L

L

L

L

S

Input/ Output Data
2D Conv + Layernorm
2D Conv
2D TranspConv + BatchNorm
Embedding layer
Dense layer

K: 2D Kernel
S: 2D Stride
P: 2D Periodic padding
B: Batch size
N: Noise dimension
E: Embedding dimension

Ne: Number embedding classes

L LeakyRelu

S Sigmoid

I: Input size
O: Output size

Figure 3.14: Computational architecture and computational details of the implementation of the 2D-
DCWGAN with energy embedding.

45

3.3.3 La�ice regression in 2D-DCWGAN
In a similar fashion to [20], we added two auxiliary networks in our DCWGAN framework to
predict the corresponding lattice lengths of our density-based structure inputs. The WGAN
basically learns a conditional probability distribution P (X|L) for the relationship between
the chemical structures X and the lattice lengths L. The interested reader is referred to [72],
where the mathematical background on the mutual information maximization is derived. Here,
INFOGAN learns a conditional probability distribution by introducing an additional loss term
for two auxiliary networks.

The computational architectures for the critic and the generator are illustrated in Fig. 3.16
and 3.17, respectively. To train the auxiliary networks, a new lattice loss function was intro-
duced, analogously to [20]. The framework of [20] was implemented in Tensor�ow Keras
Version 1 utilizing the tf.nn.sigmoid_cross_entropy_with_logits loss function. We used the Py-
Torch analogon, the MultiLabelSoftMarginLoss (see Eq. (2.9)). For this purpose, the logits of the
lattice output were also stored before the sigmoid layer was applied to them. The real lattice
lengths Lreal,i were rescaled to [0, 1] according to the minimum value Lreal,min,i and maximum
value Lreal,max,i of the respective lattice orientation i = x, y, z:

Lreal,scaled,i =
Lreal,i − Lreal,min,i

Lreal,max,i · 1.1− Lreal,min,i

. (3.1)

The �owchart in Fig. 3.15 shows the new training routine. Similar to the Vanilla 2D-
DCWGAN, the real and fake structures were provided as an input for the critic, and for
both the generator and critic the EMD-based WGAN loss is computed. As before, the gradient
penalty gp was included in the critic loss. Again, the critic was updated �ve times in the inner
loop, before the generator training begins in the outer loop. In both loops, an additional lattice
loss was computed before the respective optimizer updated the critic or the generator. As seen,
both the lattice lengths and logits were created on-the-�y during a forward pass through a
neural network and can be easily integrated in the training routine.

As depicted in Fig. 3.16, the critic infers a lattice length for each structure in the inner
training loop. The inferred lattice lengths of the real structures were then compared to the
real lattice lengths. The MLSM loss was computed with the inferred lattice logits Lreallog and
the real lattice lengths Lreal

MLSM(Lreallog, Lreal) = −
∑
i

Lreal,i · log

(
1

1 + exp(−Lreallog,i)

)
= + (1− Lreal,i) · log

(
exp(−Lreallog,i)

1 + exp(−Lreallog,i)

)
, (3.2)

and is added on top of the critic loss

46

Real structures

Fake structures

Critic

Fake lattice

Generator

Real lattice

Inferred
real lattice

Lattice loss

Inferred
fake lattice

Lattice loss

Critic
loss

Generator
loss

Optimizer
update

Optimizer
update

Noise z

Figure 3.15: Code scheme for the encoding of the lattice lengths during the training process in a
2D-DCWGAN.

LWGANlat,critic = min
gθ

max
dφ

Ez∼PX′ [dφ(gθ(z))]− Ex∼PX [dφ(x)]

= + λgp · Exi∼Pgp
[
(‖∇xidθ(gθ(z))‖2 − 1)2

]
= + MLSM(Lreallog, Lreal) . (3.3)

In two dimensions, the lattice losses for either the x,z or y,z lattice lengths can be computed
simultaneously. After backpropagation, the gradients and the combined losses LWGANlat,critic

were passed to the ADAM optimizer for the parameter update.

In the outer training loop, the generator was trained in a similar fashion. The critic infers a
lattice length for the fake lattice lengths and as seen in Fig. 3.17 while the generator creates
a fake lattice length concomitantly to the fake structures. The logit of the fake lattice length
Lfakelog and the inferred fake lattice length Linf,fake were inserted into the MLSM:

MLSM(Lfakelog, Linf,fake) = −
∑
i

Linf,fake,i · log

(
1

1 + exp(−Lfakelog,i)

)
= + (1− Linf,fake,i) · log

(
exp(−Lfakelog,i)

1 + exp(−Lfakelog,i)

)
, (3.4)

and added on top of the generator loss

LWGANlat,gen = min
gθ

max
dφ

Ez∼PX′ [dφ(gθ(z))] + γ ·MLSM(Lfakelog, Linf,fake) (3.5)

47

with hyperparameter γ= 0.1 for all simulations.20 The backpropagated gradients and the
combined LWGANlat,gen loss were handed to the ADAM optimizer which then updates the
generator in the last step of one training epoch.

The computational details of the critic and the generator are listed in Fig. 3.16 and 3.17,
respectively. The hyperparameters were kept the same as in the previous simulations.

Real or fake structures

+ dropout

EMD
+ bias

LogitsLattice
vectors

Critic

[B,2,32,32]

[B,32,32,32]K=(1,1), S=(1,1), P=0te

[B,64,16,16]K=(5,5), S=(2,2), P=2te

[B,128,8,8]K=(5,5), S=(2,2), P=2te

[B,256,4,4]K=(5,5), S=(2,2), P=2 te

[B,1,1,1]K=(4,4), S=(1,1), P=0te

[B,4096]

[B,512]I=4096, O=512te

[B,2]I=512, O=2te

L

L

L

L

L

S

Input/ Output Data
2D Conv + Layernorm
2D Conv
Dense layer

K: 2D Kernel
S: 2D Stride
P: 2D Periodic padding
B: Batch size
I: Input size

O: Output size

L LeakyRelu

S Sigmoid

Figure 3.16: Computational architecture and computational details of the implementation of the critic
in the 2D-DCWGAN with lattice prediction.

48

Noise

Fake structures

Generator

+ bias

LogitsLattice
vectors

[B,N,1,1]

[B,256,4,4]K=(4,4), S=(2,2)te

[B,256,4,4]K=(4,4), S=(2,2)te

[B,128,8,8]K=(5,5), S=(1,1)te

[B,64,16,16]K=(2,2), S=(2,2)te

[B,32,32,32]K=(2,2), S=(2,2)te

[B,2,32,32]K=(1,1), S=(1,1)te

[B,4096]

[B,512]I=4096, O=512te

[B,2]I=512, O=2te

L

L

L

L

S

L

S

Input/ Output Data
Dense layer
2D TranspConv
+ BatchNorm

K: 2D Kernel
S: 2D Stride
N: Noise dimension
B: Batch size
I: Input size

O: Output size

L LeakyRelu

S Sigmoid

Figure 3.17: Computational architecture and computational details of the implementation of the gen-
erator in the 2D-DCWGAN with lattice prediction.

49

3.3.4 Vanilla 3D-DCWGAN
The aim of this work is to predict realistic three-dimensional structures for the RuO2 catalyst
system. Thus, in this �nal step, the unsliced, three-dimensional density-based input was
imposed with three-dimensional convolutional and transposed convolutional layers. The same
code routine as for the Vanilla 2D-DCWGAN (see Fig. 3.10) is executed. The computational
architecture of theVanilla 3D-DCWGAN is illustrated in Fig. 3.18. Generator and critic learning
rates were both set to 0.001, the noise dimension was �xed to 512 and a maximum batchsize
of 32 was set due to the limited space of 40 GB on the GPUs. The remaining hyperparmaters
were adopted from above. The three-dimensional WGAN code was only implemented as a
multi GPU DDP version with the basin hopping dataset.

Real or fake structures

+ dropout

EMD

[B,2,32,32,32]

[B,32,32,32,32]K=(1,1,1), S=(1,1,1), P=0tt

[B,64,16,16,16]K=(5,5,5), S=(2,2,2), P=2tt

[B,128,8,8,8]K=(5,5,5), S=(2,2,2), P=2tt

[B,256,4,4,4]K=(5,5,5), S=(2,2,2), P=2 t

[B,1,1,1,1]K=(4,4,4), S=(1,1,1), P=0tt

L

L

L

L

Noise

Fake structures

Generator

[B,N,1,1,1]

[B,256,4,4,4]K=(4,4,4), S=(2,2,2)te

[B,128,8,8,8]K=(5,5,5), S=(1,1,1)te

[B,64,16,16,16]K=(2,2,2), S=(2,2,2)te

[B,32,32,32,32]K=(2,2,2), S=(2,2,2)te

[B,2,32,32,32]K=(1,1,1), S=(1,1,1)te

L

L

L

L

S

Critic

Input/ Output Data
3D Conv + Layernorm
3D Conv
3D TranspConv + BatchNorm

K: 3D Kernel
S: 3D Stride
P: 3D Periodic padding
B: Batch size
N: Noise dimension

L LeakyRelu

S Sigmoid

Figure 3.18:Computational architecture and computational details of the implementation of the Vanilla
3D-DCWGAN.

50

4 Results and Discussion
In this section, we will present the generated structures of the training for the in Section 3
listed computational architectures and discuss these results with respect to the quality of the
density-based geometric output, the convergence of the loss functions, and explore how well
di�erent additional network features succeed in encoding structural energies or lattice lengths
in our WGAN framework.

4.1 2D-DCWGAN
The initial model is a WGAN that takes two-dimensional density-based images as input. In
the following, the results for the Vanilla 2D-DCWGAN are discussed, followed by the three dif-
ferent approaches to encode the energy - integer-based conditioning vectors, one hot encoded
vectors and embedding layers - and by the lattice regression auxiliary network.

4.1.1 Vanilla 2D-DCWGAN
In this section, the learning process for the Vanilla 2D-DCWGAN is discussed with respect to
the dataset designs from Section 3.1. The computational architecture from Section 3.3.1 and
the concomitant hyperparameters are used for all following simulations.

Single-GPU Code with the non-extended GAP dataset

In this �rst network implementation, the non-extended GAP dataset with 148 structures was
inserted as density-based input. The 148 structures were sliced 16 times in xz and yz direction,
as described in Section 3.1. For both, the generator and critic a learning rate of 0.001 was set.
The batchsize was 32.

In Fig. 4.1, the snapshots for one generated training structure in Epoch 0, 10, 50, 2950,
and 3250 are displayed. In the beginning, the network learns to output horizontal stripes
of alternating intensity in the background. As the training continues, the generator start to
map pixels in closer proximity to each other such that the overall image starts to resemble
positions of atom densities. However, compared to the images used as input shown in Fig. 3.7,
the pixels are still quite uncorrelated and do not coincide with the sharp Gaussians in Fig. 3.7
that can be clearly separated from each other. In the generator state from Epoch 50 to 2950,
the learning process of the mapping from the latent space was thus still in progress and the
Gaussian densities started to become sharper more distinct from the background. In spite
of the continued learning process, the image quality started to deteriorate at around Epoch
3200. From Epoch 3260 until the �nal training epoch 4790, the generator outputs only the

51

same horizontal stripe image. This is a clear indicator for the in Section 2.2.4 introduced
phenomenon of a mode collapse, as the generator dropped all the other mode of the data
distribution and outputs only the feature of stripes.

a) Epoch 0 b) Epoch 10

c) Epoch 50 d) Epoch 2950

e) Epoch 3250 f) Epochs 3260 - 4790

Figure 4.1: Generated structures from the training process of the Vanilla 2D-DCWGAN with the non-
extended 148 structure GAP dataset at di�erent epochs.

Single-GPU Code with the extended GAP datasets

As seen above, the training of the non-extended GAP dataset led to a mode collapse. Even
varying the hyperparameters for the simulation, such as the learning rates or the optimizer
parameters did not change the inevitable outcome of a mode collapse. To overcome this obsta-
cle in the training process, we increased amount of atoms in each cell that was mapped to our
32x32 grid, as described in Section 3.1.

52

The results of the extended GAP datasets in the training process are illustrated in Fig. 4.2
for 148 structures and in Fig. 4.3. For these simulations, a batchsize of 32 and a learning rate
of 0.001 was used.

For the training with the GAP dataset based on 148 structures, improvement was already
seen in Epoch 0, as the generated structure does not contain any stripes. In this generated
image, the clear distinction between the grouped pixels and the white, empty background
shows similar to the real density-based input. From Epoch 10 to 280, the pixels in both channels
start to assemble more, but the output is still clearly not converged. After Epoch 290, however,
the generator encounters the problem of the mode collapse again, as seen in Fig. 4.2.

a) Epoch 0 b) Epoch 10

c) Epoch 280 d) Epochs 290-1730

Figure 4.2: Generated structures from the training process of the Vanilla 2D-DCWGAN with extended
GAP dataset based on 148 structures at di�erent epochs.

For the training with the dataset based on 91 structures (see Section 3.1), the outcome is
worse than for our original approach in Fig. 4.1. As seen in Fig. 4.3, the generator starts to
produce single pixels of higher intensity in Epoch 0, they however do not assemble in groups to
from Gaussian density shapes during the course of the training. Additionally, the background
intensity is never close to zero. Thus, the desired property of a distinction between Gaussians
representing atomic positions and a white background representing empty cell spaces is not
covered in the generator. After Epoch 80, the generator is stuck in a mode collapse, as seen in
Fig. 4.3.

From the two simulations with the small (91 structures) and big (148 structures) extended
GAP dataset, we conclude that the increase of the amount of atoms leads to an improvement

53

of the dataset representation. The critic of the network can start to distinguish the geometric
features of the periodically repeating atoms represented as Gaussian densities and the empty
background better and can thus distinguish better the generator output from the real data.
The generator vice versa has then to adapt the improved critic by improving the image quality
of the generated structures.

It is evident that the output quality for the increased cells in the dataset with 91 structures
has signi�cantly decreased. We attribute this deterioration to the fact that the overall dataset
size was reduced 18,944 to 11,648 2D images, as explained in Section 3.1. Since WGANs do not
only depend on the quality of the database, but on the database size as well, we conclude that
the idea to remove non-physical structures is an interesting approach to improve the accuracy
of possibly generated structures, but if the dataset size is reduced too much, it hinders the
data-driven learning process.

a) Epoch 0 b) Epoch 10

c) Epoch 60 d) Epochs 80-5570

Figure 4.3: Generated structures from the training process of the Vanilla 2D-DCWGAN with extended
GAP dataset based on 91 structures at di�erent epochs.

Multi-GPU Code with the basin hopping dataset

In this simulation, we tested the in�uence of the larger basin hopping dataset with 57,806
structures on the training success of our Vanilla 2D-DCWGAN. To have enough computa-
tional capacity to process this amount of data within the epochs, the code was upgraded to
single-node multi-GPU computations DDP package67 package, as described in Section 3.3 and
run on four GPUs at the same time. The learning rates were set to 0.001 and two simulations
of batchsize 512 and 1024 were investigated.

54

In Fig. 4.4, generated structures for batchsize 512 are illustrated. At Epoch 0 single pixels
start to assemble. Starting from Epoch 110 to Epoch 2150, the characteristic Gaussian densities
of the atomic position can be seen. However, the generated images display horizontal stripes
in the background, similar to the ones from the mode collapse in Fig. 4.1. Di�erent to Fig. 4.1,
the stripes in Fig. 4.4 are less intense, smaller and the pixels representing atomic densities are
still switching positions between the images.

a) Epoch 0 b) Epoch 110

c) Epoch 660 d) Epoch 2150

Figure 4.4: Generated structures from the multi-GPU training process of the Vanilla 2D-DCWGAN
with basin hopping dataset and a batchsize of 512 at di�erent epochs.

As described in Section 2.2.4, a mode collapse can in the worst case lead to a generator that
only learns the representation of one single mode (see Eq. (2.27)), as in Fig. 4.1 but it can also
refer to the situation in which the generator learns to represent a few modes of the multi-modal
probability distribution. Since the atomic densities are still being placed at di�erent positions
throughout the training process, we can assume that the generator is currently in a mitigated
form of a mode collapse.

This assumption is supported by an inspection of the generator loss and critic loss over the
training process. As illustrated in Fig. 4.5, the generator and critic loss are in the same order
of magnitude for the �rst hundred epochs. The generator loss even decreases in the beginning
which means that the generator learned a new way to generator fake structures such that
the critic is not capable of distinguish real from fake samples as good as before. Ideally, the
loss curves of the generator and critic would show shifted oscillations indicating that one

55

of the networks learned a new feature and the other network has to adapt its parameters
again. But after around Epoch 100, the generator loss continuously increases, whereas the
critic loss goes to zero for the rest of the training process. This is an indicator that the critic
is already trained well enough to perfectly distinguish between fake and real samples leading
to vanishing gradients in the critic. If the gradients for the critic, however, start to vanish, it
becomes impossible for the generator to improve.

Before the generator runs into a mitigated mode collapse at the end of the training process,
the generator was capable to learn the shape of the Gaussian densities in the �rst hundred
epochs of the training process, as indicated by the small oscillations in the loss function.
Afterwards, it stagnates in a mitigated mode collapse which is veri�ed through the monotonous
increase of the generator loss and the vanished critic loss.

Figure 4.5: Losses during the training process of the Vanilla 2D-DCWGAN with basin hopping dataset
and batchsize 512.

In Fig. 4.6, the training progress of the same simulation with a doubled batchsize - 1024 - is
illustrated. For Epoch 0, the generated structure is relatively similar. Both atomic densities
show the same cluster pattern. Interestingly, the generated images in Fig. 4.6 exhibit no hori-
zontal stripes in contrast to Fig. 4.4.

To understand this, we will brie�y discuss the in�uence of the batchsize on the training pro-
cess. In each epoch, the batched data is passed through the WGAN framework. For both, the
generator and the critic, the loss is computed for each sample in the batch and then averaged
over the whole batch. If some samples strongly deviate, their impact on the overall loss can be

56

mitigated through a larger batchsize. This means that the accuracy falls for larger batchsizes.74

The impact of an increased batchsize on the gradients of the SGD and ADAM optimizers is
thoroughly explored in [74]. The authors argue that an increased batchsize has the same
e�ect as an decreased learning rate on the training process. Both results in a reduction of the
gradient noise on the loss surface, which allows the optimizer to converge faster in the global
minimum without stranding in a local minimum.74

a) Epoch 0 b) Epoch 60

c) Epoch 500 d) Epoch 770

e) Epoch 1150 f) Epoch 2060

Figure 4.6: Generated structures from the multi-GPU training process of the Vanilla 2D-DCWGAN
with basin hopping dataset and a batchsize of 1024 at di�erent epochs.

Based on this argumentation, we deduce that the doubled batchsize allowed the optimizers
to converge faster in the global minimum of our loss function. This conclusion is supported
by the generator and critic loss diagram in Fig. 4.7. In the beginning, the critic loss decreases,
as well as the generator loss. This is the initial phase where the �rst modes of the dataspace

57

are learned. Afterwards, the generator loss increases again and reaches a maximum at around
Epoch 500. One generated structure at Epoch 500 is shown in Fig. 4.6. It is clearly visible that
image quality deteriorated in comparison to previous or later generated structures in Fig. 4.6.
The assembled pixels have a low intensity and the pixels are grouped in a non-systematic way.
After Epoch 500, the generator loss starts to decrease again and already at Epoch 700, the
image quality of the atomic density has signi�cantly improved again, as illustrated in Fig. 4.6.
For Epochs 1000 to 2000, the generator loss consistently oscillates around values of -1 and the
critic loss is close to zero but exhibits small oscillations around 0. Based on the converged loss
curves in Fig. 4.7 and the high sample quality in Fig. 4.6, we assume that this training process
was successful.

Figure 4.7: Losses during the training process of the Vanilla 2D-DCWGAN with basin hopping dataset
and batchsize 1024.

After a successful training process, one of the key questions in machine learning arises:
Is our model over�tted?75–77 Speci�cally to our GAN framework, this question entails if the
generator parameters θ are su�ciently tuned such that PX′ ≈ PX holds and that g(z) creates
a new sample? Or is the generator only capable to memorize our input datasets and is not
capable of producing new samples g(z) that are not part of the �nite training set? The latter
situation corresponds to an over�tted model.78

Hence, to check whether our model is over�tted, we compare each saved generated train-
ing structure against the 57,806 structures from the basin hopping dataset. As a quantitative
measure of the similarity of the images, we use the skiimage-implementation of the Structural
Similarity Index Measure79 (SSIM). SSIM explores the dependencies of spatially proximate
pixels in an image introducing three combined comparison functions for the contrast, the

58

structure and the correlation of the pixels. For more details, the interested reader is referred
to [79]. We chose a window size of 5 for the SSIM, similar to the voxel size for our Gaussian
densities.

The SSIM was computed for the O and Ru channels, separately. The image indexes from our
database that had the most similar SSIM values in comparison to the training data were saved.
From 205 analyzed training structures, SSIM identi�ed 24 similar images from the database
and their comparability was con�rmed by visual inspection. In Fig. 4.8, two of these 24 found
structures are illustrated next to the corresponding structure from the dataset.

Comparing the fake structures and the real structures in Fig. 4.8, they show similar fea-
tures such as similar arrangements and intensity of the pixels and the same positions for the
empty background, aka the vacuum space of our cell. However, the images can clearly be
distinguished because the positions of the main intensities alter especially for the Ru atom
densities and are thus corresponding to di�erent structures. We can con�dently conclude that
the generator did not memorize the dataset. This �nding is in agreement with the literature
since the generator never explicitly sees the real structures, it only improves through the
critic’s feedback.78

But we can use this quantitative similarity measure to prove that some real structures are
similar to the fake structures which is a further indicator for a successful training process of
the computational architecture of our Vanilla 2D-DCWGAN. As we now successfully tuned
the hyperparameters for the Vanilla 2D-DCWGAN and proved that the present computational
architecture is capable to generate new structures that still resemble the original dataset, we
will proceed to explore the three di�erent possibilities - conditioning vectors, one hot vectors
and energy embedding - to introduce energy class labels in our WGAN framework. The results
shall be discussed with respect to the e�ects of the latent space encoding on the generator
output.

59

a) Epoch 0

b) Epoch 110

Figure 4.8: Comparison of generated training structures (fake structures) with dataset structures (real
structures) to check for over�tting in the multi-GPU training process of the Vanilla 2D-DCWGAN with
basin hopping dataset and batchsize 1024. The real structures were assigned to the fake structures
based on their SSIM79 value.

4.1.2 Integer-Based Conditioning Vectors
As described in Section 3.3.2, the integer-based conditioning vectors of size C are constructed
by a repetition of the corresponding class label (0 to 9). The integer-based conditioning vectors
are either concatenated to the noise z for the generator or to the fake or real structures for
the critic. The computational architecture of the conditioning 2D-DCWGAN is illustrated in

60

Fig. 3.13.

Multi-GPU Code with the extended GAP datasets

Three simulations with conditioning length 100, 206 and 512 were started for the two extended
GAP datasets consisting of 91 and 148 original structures. The simulations for the conditioning
lengths 100 and 512 ended after the �rst hundred epochs in mode collapses, whereas condi-
tioning length 206 did not collapse. We thus want to discuss the quality of the density-based
images with respect to the integer-based conditioning vectors of length 206.

Before we can evaluate the e�ect of the latent space encoding, we should �rst analyze which
features we actually expect. In Fig. 4.9, two image slices from the same structure with energy
class label 7 are shown. The slices exhibit inherently di�erent features, with altering number
of atoms and positions. For any two slices, the cell width can vary as well. Nevertheless,
both slices originate from the same structure. The energy of a three-dimensional structure is
determined by its three-dimensional nuclear coordinates. As these structures are then sliced
and presented as separate two-dimensional inputs with the same energy class label to the
neural networks, the whole structure-energy relationship is distorted. It is thus only natural
that our 2D representation will not be capable to connect the class labels with structures of
higher or lower energy. Instead, the WGAN could start to connect random geometric features,
like the position of the cell block and the vacuum layer to the class label or it could show no
connection at all.

Figure 4.9: Two 2D slices from one structure of the 148 GAP dataset with energy class label 7.

Coming to the simulation for conditioning length 206, generated structures from the training
process of an integer-based conditioning 2D-DCWGAN with the 148 structures GAP dataset
for di�erent epochs are illustrated in Fig. 4.10. During the process of the training, no mode
collapse occurred. In these images, there is a clear distinction between pixels of low intensity
that form the empty background and pixels of higher intensity that shall represent atomic
positions. However, the pixels do not form assembled atomic densities yet. In the course of
the training, the pixels of higher intensity start to group closer together and the images start
to exhibit a cell area and a vacuum area. The training process is thus not converged yet but
as elaborated in Section 3.3, the GPU memory allocation of the DP package leads to a poor

61

performance and an optimization of this simulation is not pursued.

a) Epoch 70 b) Epoch 450

Figure 4.10: Generated structures from the multi-GPU training process of the integer-based condition-
ing 2D-DCWGAN with extended 148 structure GAP dataset, batchsize 32 and conditioning vector size
206.

In Fig. 4.11, generated structures from the training process of an integer-based conditioning
2D-DCWGAN with the 91 structures GAP dataset and conditioning length 206 for di�erent
epochs are illustrated. Surprisingly, compared to the previous Vanilla 2D-DCWGAN, the
simulation is not collapsing. We assume that due to the appended conditioning vector, the
representation size of our dataset increased and concomitantly stabilized the training process.
The behavior of the learning process is similar to the one from the conditioning 2D-DCWGAN
trained with the 148 extended GAP dataset (see Fig. 4.10).

a) Epoch 70 b) Epoch 740

Figure 4.11: Generated structures from the multi-GPU training process of the integer-based condition-
ing 2D-DCWGAN with extended 91 structure GAP dataset, batchsize 32 and conditioning vector size
206.

As the simulations for conditioning lengths 100 and 512 stranded already after the �rst hun-
dred epochs in a mode collapse and the conditioning length 206 is not collapsing, we assume
that a ratio of 1:2 between integer-based conditioning and dimension for our latent space is
bene�cial for the training process. With regard to the non-converged outcomes, we have to
be careful with further assumptions but we can already conclude that the conditioning length

62

C is an important hyperparameter.

To examine the e�ect of our latent space design with integer-based conditioning vectors,
we investigate how di�erent labels in�uence the output of the generator. Fig. 4.12 shows two
generated structures, one for label 0 and one for label 9 from the generator that was trained on
the 148 structure GAP database until Epoch 450. Both images show uncorrelated noise and are
two representative examples for the appearance of the majority of randomly generated fake
structures with this generator. Thus, the training process is presumably still in its early stages.
Hence, the latent space encoding is not a feature that the generator was capable of learning
quickly during the training process. In Fig. 4.13, similar images are created by the generator
that was trained on the 91 structures dataset until Epoch 740. For this simulation, we �nd
that for the labels 0 and 9, characteristic geometric feature start to emerge. The high intensity
pixels start to be more located in the middle of the cell for label 9, whereas for label 0, the
pixels rather start to form bands. Both forms are represented by the two examples in Fig. 4.13.
Due to the smaller dataset, the training process run almost twice as many epochs in the same
time as in the previous simulation. This means that the generator had the double amount of
training time and can thus start to connect geometric features in the picture with the latent
space encoding. However, as these computations are not converged, we cannot make further
deductions.

a) Label 0 b) Label 9

Figure 4.12: Generated structures produced with �xed labels by the until Epoch 450 trained generator
of the integer-based conditioning 2D-DCWGAN with extended 148 structure GAP dataset, batchsize
32 and conditioning size 206.

63

a) Label 0 b) Label 9

Figure 4.13: Generated structures produced with �xed labels by the until Epoch 740 trained generator
of the integer-based conditioning 2D-DCWGAN with extended 91 structure GAP dataset, batchsize 32
and conditioning size 206.

The benchmarks we can thus deduct from these simulations refer to the stability of the
training process with respect to the image quality of the geometric output, i.e. the O and
Ru channels, and the question if the generator starts to react sensitive to the latent space
design. When we proceed with energy conditioning vectors for the three-dimensional WGAN
framework, these benchmarks can be used as starting points for the hyperparameter optimiza-
tions. The fact that the computations for both GAP datasets resulted in mode collapses for
image-based conditioning vectors sizes 100 and 512 but not for 206 is a clear indicator, that
the sweet spot for an integer-based conditioning length is located somewhere around 200.

We therefore interpret this simulation as a proof of concept for the latent space design that
de�nitely needs to be more thoroughly investigated in a more e�cient implementation of a
three-dimensional framework with longer runtimes.

4.1.3 One Hot Encoding Vectors
As introduced in Section 3.3.2, the one hot vectors encode the energy class labels in binary rep-
resentations. Similar to the integer-based conditioning vector approach, the three-dimensional
structures from the dataset are sliced and fed as separate two-dimensional inputs to the one
hot encoded WGAN. This leads to a loss of correlation information between the structure
input and the energy label. In the following, we will thus only examine the stability of the
training process with respect to the image quality of the generated structures.

Multi-GPU Code with the extended GAP datasets

For the two extended GAP datasets consisting of 91 and 148 original structures, three simula-
tions of one hot encoding length 100, 200 and 500 were started. The simulations for the one
hot encoding lengths 100 and 500 ended in mode collapses. The computations for 200 digits
long one hot encoded vectors did not collapse and will be discussed in the following.

64

In Figs. 4.14 and 4.15, one generated structure from the beginning and one from the end of
the multi-GPU training process are shown for one hot vector length 200. As in the previous
simulation, the WGAN training process was stopped before convergence was reached and the
pixels do not resemble Gaussian densities or distinct areas for the cell content and the vacuum
layer. Analogously to before, for both trained generators, the output is investigated with
respect to distinct class labels. Random geometric features and pixel shapes and intensities
were found across all class labels in the generator output. Two examples for labels 0 and 9 for
both trained generators are illustrated in Figs. 4.16 and 4.17.

We thus infer that in contrast to the conditioning vector representation, the generator was
not yet capable to connect distinct geometric properties with the one hot encoded class labels.
This raises the question if the one hot representation is not as suitable for our approach as
the conditioning vectors. Furthermore, the training process for the one hot encoded vectors
appears to be less stable. The mode collapse occurred signi�cantly earlier for the one hot vector
lengths 100 and 500 than for their integer-based conditioning counterparts. Additionally, the
generated structures in both Figs. 4.15 and 4.17, show an overall decrease for the pixel intensity.
This is true for all structures that were created with the until Epoch 730 trained generator and
could be an indicator for an incoming mode collapse. The decreasing pixel intensity might
be related to the inherent nature of the binary representation. For a one hot vector length of
200, 180 additional zeros were appended to the latent space and to the real or fake structures
in the training loop. The values for the pixels intensities of the real structures are located on
the interval [0, 1]. We thus assume that the increased amount of zeros can distort the training
process of our density-based data.

a) Epoch 60 b) Epoch 440

Figure 4.14: Generated structures from the multi-GPU training process of the one hot encoded 2D-
DCWGAN with extended 148 structure GAP dataset, batchsize 32 and conditioning vector size 200.

65

a) Epoch 60 b) Epoch 730

Figure 4.15: Generated structures from the multi-GPU training process of the one hot encoded 2D-
DCWGAN with extended 91 structure GAP dataset, batchsize 32 and conditioning vector size 200.

a) Label 0 b) Label 9

Figure 4.16: Generated structures produced with �xed labels by the until Epoch 440 trained generator
of the one hot encoded 2D-DCWGAN with extended 148 structure GAP dataset, batchsize 32 and
conditioning size 200.

a) Label 0 b) Label 9

Figure 4.17: Generated structures produced with �xed labels by the until Epoch 730 trained genera-
tor of the one hot encoded 2D-DCWGAN with extended 91 structure GAP dataset, batchsize 32 and
conditioning size 200.

Concluding, we believe that for the present dataset and investigation, the integer-based

66

conditioning vectors outperform one hot vectors as a representation for the energy class
labels.

4.1.4 Energy Embedding
As described in Section 3.3.2, an additional network layer is augmented on the critic and gen-
erator networks to encode the energy class labels. Therefore, the energy class labels were
inserted into the WGAN framework without further modi�cation. In the following, we will
analyse the image quality of the two atom channels with respect to the dimension of the
embedding layer.

The �rst simulations were run based on the multi-GPU DP Code for both GAP datasets.
Three di�erent embedding layer sizes, i.e. 100, 200 and 500 for the sake of comparability to
the other two simulations were started. Unsuccessfully, all three embedding layer sizes led
to a mode collapse. Additionally, the runtime performance was poor similar to the other DP
codes which was the main reason that this version of the code was not further pursued and
the results will not be further discussed here.

Multi-GPU Code with the basin hopping dataset

In Figs. 4.18 and 4.19, generated structures during the training process of a WGAN with an
embedding space of dimension 50 and 100 using the basin hopping data set are illustrated,
respectively. Looking at both training processes, the generated structures show signi�cant re-
semblance with the real structures because the image areas for the vacuum layer and the atomic
densities can be clearly distinguished. Furthermore, the atomic densities consist of one or two
pixels of high intensity surrounded by a few pixels of smaller intensities. The atomic densities
in both channels start to form regular patterns which indicates an order of the structure. Most
importantly, the O and Ru channel share the same area for the atomic densities but the atomic
densities themselves are placed shifted to each other and do not overlap on the same positions.
This is an important feature indicating how realistic the generated structures are because it
is impossible for two di�erent atoms to be placed at the same spatial location in a real structure.

Previous calculations with similar hyperparameters but with smaller batchsizes resulted in
mode collapses, thus we conclude that here, a larger amount of data that is passed through
the WGAN before each parameter update improves the performance and learning ability
drastically and has the potential to stabilize the training process.

67

a) Epoch 970 b) Epoch 1170

c) Epoch 3580 d) Epoch 5220

Figure 4.18: Generated structures from the multi-GPU training process of the energy embedding
2D-DCWGAN with basin hopping dataset, batchsize 2048 and embedding layer size 50.

Only looking at these features, we could conclude that the training process was successful
with respect to the geometric information in the O and Ru channels. Nevertheless, in some
training structures and in a majority of training structures for the embedding layer size 50 and
100, respectively, we found two horizontal stripes located in the middle of the Ru images. As
mentioned above, we assume that the larger batchsize is the signi�cant factor in stabilizing the
training set. However, as already discussed, a larger batchsize corresponds to a lower learning
rate74 because fewer parameter updates and thus fewer optimizer steps on the loss surface are
performed. Furthermore, the optimizer steps appear less accurate because the single losses of
each structure are averaged over a larger batchsize.

68

a) Epoch 500 b) Epoch 1590

c) Epoch 3690 d) Epoch 4830

Figure 4.19: Generated structures from the multi-GPU training process of the energy embedding
2D-DCWGAN with basin hopping dataset, batchsize 2048 and embedding layer size 100.

The existence of the stripes in both generator outputs during the training process indicates
that the training process is not yet converged. Looking at the generator and critic loss dia-
grams over the epochs in Figs. 4.20 and 4.21 for embedding layer size 50 and 100, respectively,
this assumption is con�rmed. Both generator losses are still oscillating and are still increasing
towards Epoch 5000. The critic loss in both cases shows small oscillations around zero. This
could be problematic because then it leads to the problem of vanishing gradients meaning
that the generator is not capable of improving because of the shrinking feedback from the
critic. Which could be the reason why the horizontal stripes can be found consistently in both
generated sets during the training process.

Another interesting feature in the loss diagrams is the amplitude of the generator loss. For
the embedding layer size of 100 it is twice as large as for the embedding layer size of 50
for both the maximum loss at around Epoch 800 and the average loss between Epoch 4000
and 5000. We thus conclude that the doubled embedding dimension is costly in terms of the
optimization process and could also explain why the mitigated mode collapse consisting of
horizontal stripes for the doubled embedding dimension is stronger.

69

Figure 4.20: Losses during the training process of the energy embedding 2D-DCWGAN with basin
hopping dataset, batchsize 2048 and embedding layer size 50.

Figure 4.21: Losses during the training process of the energy embedding 2D-DCWGAN with basin
hopping dataset, batchsize 2048 and embedding layer size 100.

70

To further investigate the e�ect of the embedding layer size, we want to compare the gen-
erator output for �xed labels. In Fig. 4.22, generated structures are illustrated for labels 0 and
9 for a WGAN with energy embedding layer size 50. Here, similar structures for label 0 and
label 9 for two representative examples of the random generator structures are compared. All
of them show decent geometric quality comparable to the ones in Fig. 4.22, the assignment
to distinct geometric features or patterns, however, is not represented in the dataset meaning.
Hence, all types of structures can be found for all labels at some point.

a) Label 0 b) Label 0

c) Label 9 d) Label 9

Figure 4.22: Generated structures produced with �xed labels by the until Epoch 5240 trained generator
of the energy embedding 2D-DCWGAN with basin hopping dataset, batchsize 2048 and embedding
layer size 50.

This is di�erent for the generated structures for a WGAN with energy embedding layer size
100, illustrated in Fig. 4.23. Without any exceptions, all generated structures with labels 0, 1
and 2 show the horizontal stripes which we interpret as a mitigated mode collapse that the
generator encodes with this part of the latent space. Labels 5 and 6 produced high quality im-
ages, similar to Fig. 4.22. Whereas for labels 8 and 9, the generator outputs uncorrelated pixels
that show no clear or distinct features. The fact that the generator connects these patterns
with labels 8 and 9 is a further proof that the training process is not converged for the larger
embedding dimension at the same number of epochs.

Thus, the question arises if the larger embedding dimension opens the door for the gen-
erator to assign di�erent geometric features better to di�erent latent space encoded vectors
or if this is just a relict coming from training divergency? Looking at the two-dimensional

71

problem, we already analyzed that the information between structures and energy class labels
is distorted upon slicing the three-dimensional structures and feeding them separately to the
WGAN. It is therefore more likely that the trained generator with the smaller embedding
dimension is further converged in the training process than its counterpart. So, its learned
connection between class labels and structures is random because in 2D, there is no proper
structure-energy-relationship.

a) Label 0 b) Label 2

c) Label 5 d) Label 6

e) Label 8 f) Label 9

Figure 4.23: Generated structures produced with �xed labels by the until Epoch 5240 trained generator
of the energy embedding 2D-DCWGAN with basin hopping dataset, batchsize 2048 and embedding
layer size 100.

Both embedding layer sizes output decent geometric images, it is only a question of compu-
tational e�ciency to have a faster converging WGAN. On the other hand, when proceeding
to three-dimensional inputs, the structures exhibit more data points. It is thus to explore

72

whether or not a bigger embedding dimension is required to have the capacity to properly
learn structure-energy-relationships.

Since the generated structures during the training process were of high-quality, the question
of over�tting arises. As for the Vanilla 2D-DCWGAN, we computed the SSIM for all generated
structures and compared them with the database. For the WGAN with embedding layer size
50, we found 24 of 524 generated structures were similar to the database and for an embedding
layer size 100, we only found 21 of 524 generated structures similar. In Fig. 4.24 and 4.25, two
representative examples for similar fake and real structures are illustrated. As before, they
exhibit similar cell arrangement, but the details are di�erent. We can thus con�dently conclude
that our energy embedding 2D-DCWGAN framework is on the hand producing samples that
are close to the real dataset and on the other hand not memorizing the dataset because the
generated samples can still be distinguished from the dataset.

73

a)

b)

Figure 4.24: Comparison of generated training structures (fake structures) with dataset structures (real
structures) to check for over�tting in the multi-GPU Training process of the energy embedding 2D-
DCWGAN with basin hopping dataset, batchsize 2048 and embedding layer size 50. The real structures
were assigned to the fake structures based on their SSIM79 value.

74

a)

b)

Figure 4.25: Comparison of generated training structures (fake structures) with dataset structures
(real structures) to check for over�tting in the multi-GPU Training process of the energy embedding
2D-DCWGAN with basin hopping dataset, batchsize 2048 and embedding layer size 100. The real
structures were assigned to the fake structures based on their SSIM79 value.

4.1.5 La�ice Regressor 2D-DCWGAN
In Section 3.3.3, we introduced two auxiliary networks to our 2D-DCWGAN to predict lattice
lengths. In the following, we will discuss the results of the lattice regressor 2D-DCWGAN
and the evolution of this computational architecture from a single-GPU version, to the DP
multi-GPU and �nally to the DDP multi-GPU version.

75

Single-GPU code with non-extended GAP dataset

Our �rst attempt in the single-GPU code for batchsize 32 and the GAP dataset with non-
extended cells (see Fig. 3.7) resulted in mode collapses. The regressed lattice lengths were
exploding to in�nite values or to zero. In contrast to the previously shown mode collapses,
this mode collapse, as illustrated in Fig. 4.26, consists of three vertical stripes, two of them with
one consistent high intensity and the middle stripe with some rectangular arranged pixels
of weak intensity. As pixels of high intensity correspond to a higher activation of neurons
within the network, we assume that the WGAN here learns predominantly the features of the
cell background rather than the atomic densities. These �ndings were our main motivation to
extend the cells in the GAP dataset.

a) Epoch 1360 b) Epoch 2260

Figure 4.26: Generated structures from the single-GPU training process of the lattice regressor 2D-
DCWGAN with non-extended GAP dataset and batchsize 32 at di�erent epochs.

Multi-GPU with extended GAP dataset

The following two multi-GPU simulations based on the DP package were trained with the ex-
tended cell GAP datasets (see Fig.3.7). As illustrated in Figs. 4.27 and 4.28, the generator output
for both extended GAP datasets improved signi�cantly in contrast to the previous simulation
(see Fig.4.26) for early epochs. In the beginning of the training process, the background is
presented with pixels of low intensity and atomic positions start to be resembled through some
grouped pixels. The overall image quality, however, is still low because the Gaussian density
shape is not yet reached and the positions for the atomic positions is still uncoordinated and no
slab-like structure can be recognized. Interestingly, after about 300 epochs, both simulations
result in a mode collapse. This time, the mode collapse resembles the mode collapses from
other simulations as horizontal stripes. We thus conclude that the dataset design is a crucial
ingredient for a successful training process, especially for more complicated computational
architectures. For these simulations, the other remaining hyperparameters like the batchsize,
learning rates or the overall dataset size still have to be optimized.

No physically meaningful lattice lengths could be deduced from these computations yet.
In the beginning of the training process, the ratio of the lattice lengths was 1:1 meaning
that the generator was yet not capable of extracting information from the generated images.
After the mode collapse, the predicted lattice lengths tend towards zero for a majority of the

76

generated structures. Since the mode collapse prevents the WGAN from extracting sensible
lattice lengths, we cannot deduce the potential of this computational architecture for this code
version.

a) Epoch 110 b) Epoch 260

Figure 4.27: Generated structures from the multi-GPU training process of the lattice regressor 2D-
DCWGAN with extended 148 structure GAP dataset and batchsize 32 at di�erent epochs.

a) Epoch 60 b) Epoch 510

Figure 4.28: Generated structures from the multi-GPU training process of the lattice regressor 2D-
DCWGAN with extended 91 structure GAP dataset and batchsize 32 at di�erent epochs.

Multi-GPU Code with basin hopping dataset

With aid of the DDP code version, simulations incorporating the basin hopping dataset and
batchsizes 512, 1024 and 2048 were started. All three simulations lead to similar geometric
outcomes. The regressed lattice length for batchsize 1024 delivered the best results and will
be thus discussed in the following.

In Fig. 4.29, generated structures from the training process of the lattice regressor 2D-
DCWGAN with batchsize 1024 are illustrated. At �rst sight, all images exhibit horizontal
stripes in the background that we interpret as a mitigated form of a mode collapse. This seems
to be a typical feature emerging in the training process if the simulations are not converged
yet. Apart from the horizontal stripes, all images consist of areas with pixels of high intensity
that resemble the Gaussian shaped atomic densities. These densities are ordered and resemble
the structures from the real dataset, especially for later epochs from 1500 onward. The quality

77

of the geometric output improves over time not only by more de�ned Gaussian densities but
also by a weakening of the horizontal stripes in the background. This trend can be captured in
the corresponding loss diagram in Fig. 4.30. Between Epoch 1200 to 4000, the absolute value of
the generator loss continuously decreases. This can be a sign that the generator slowly learns
to adjust its structures by adjusting the weights such that the horizontal stripe feature has less
in�uence.

a) Epoch 130 b) Epoch 290

c) Epoch 990 d) Epoch 1240

e) Epoch 2060 f) Epoch 3250

Figure 4.29: Generated structures from the multi-GPU training process of the lattice regressor 2D-
DCWGAN with basin hopping dataset and batchsize 1024 at di�erent epochs. The lattice images were
rescaled using the predicted lattice length ratios.

Another special feature of Fig. 4.29 is that we used the predicted lattice length ratios to
scale the images upon plotting. In these images, it is visible that the generator starts to learn a
realistic ratio between the x/y-directions and the z direction which is the aim of this computa-
tional approach. In the beginning of the training process, like in Epoch 130 or 290, the lattice

78

length were even more characteristic. Over the course of the training process, the generator
starts to unlearn this feature again, as seen in Epochs 2060 and 3250 in Fig. 4.29 the ratio of
the lattice lengths start to strive towards 1:1. This is true for most generated samples in this
time range. In this case, we assume that the lattice loss is not weighted strongly enough and
its contributions thus vanishes over the course of the epochs. In Eq. (3.5), we introduced the
hyperparameter γ and set it to 0.1 for all simulations. For future simulations, we want to
increase γ to verify if a larger in�uence of the lattice loss on the overall loss function of the
generator can improve the learning process of the lattice lengths.

Figure 4.30: Losses during the training process of the lattice regressor 2D-DCWGAN with basin
hopping dataset and batchsize 1024.

79

4.2 3D-DCWGAN
Due to the increase of computational runtime for a three-dimensional framework, the main
aim of the simulations on two-dimensional computational architectures was to determine
stable hyperparameters that can now be applied to the three-dimensional computational ar-
chitectures with realistic three-dimensional structures. We will now introduce the Vanilla
3D-DCWGAN.

4.2.1 Vanilla 3D-DCWGAN
The computational architecture of the Vanilla 3D-DCWGAN and the current hyperparmater
settings were introduced in Section 3.3.4. In the following, we will focus on the learning pro-
cess of our Vanilla 3D-DCWGAN.

In Fig. 4.31, four generated density-based structures from the training process of the Vanilla
3D-DCWGAN are illustrated from the beginning of the training process. In Epoch 0, the struc-
ture resembles a three-dimensional version of the mode collapse consisting of vertical planes
for both, the Ru and O channels. In Epoch 5 and 15, the �rst development of the learning pro-
cess is visible in which the solid planes start to dissolve and to rather form assembled groups
of voxels. In Epoch 35, the �rst time a density-based structure emerges with a clear separation
between atomic densities and a vacuum layer area. This learning process is visible in the loss
diagram in Fig. 4.32. The generator loss decreases to -54 and reaches its peak value already in
the �rst few epochs. After Epoch 35, the absolute value of the generator loss starts to decrease.
Over the course of epochs, the critic shows oscillations with a smaller amplitude than the
generator. After Epoch 50, the generator starts to show oscillation of smaller amplitude. This
indication of the progressing learning success is also found in later sampled generated struc-
tures. The sample quality for Epoch 220 and Epoch 280 in Fig. 4.33 has drastically improved
compared to the structures from the training start (see Fig. 4.31).

To further evaluate the sample quality, we sliced the density-based structures from Epoch 35,
220 and 280 in Fig. 4.34. Here, the slices for each epoch were taken in two di�erent directions
at the same position. For Epoch 35, the horizontal stripes are the dominant feature and only
some single pixels of high-intensity are seen that do not resemble Gaussian densities yet. For
Epoch 220, the stripe feature is still present, but the atomic densities in the background of
the cell start to build. For Epoch 280, again, the horizontal stripes are a dominant feature,
however, the atomic densities for three of four channels stand out and start to assemble in a
ordered fashion. Furthermore, distinct areas for the vacuum layer and the cell area emerge.
In combination with the ongoing oscillation in the loss diagram, for both the generator and
the critic, we can con�dently conclude that the Vanilla 3D-DCWGAN is still in the learning
process and improving. As the image quality is not perfect yet and the horizontal stripes are
still present, we will continue to converge this simulation. It can already be interpreted as a
proof of concept that the computational architecture for our Vanilla 3D-DCWGAN is capable
of learning the basic features of our three-dimensional density-based RuO2 input.

80

a) Epoch 0 b) Epoch 5

c) Epoch 15 d) Epoch 35

Figure 4.31: Three-dimensional density-based structure output during the training process of the
Vanilla 3D-DCWGAN with the basin hopping data set at di�erent epochs. Ru atoms are drawn as
yellow spheres and O atoms as red spheres.

81

Figure 4.32: Losses during the training process of the Vanilla 3D-DCWGAN with basin hopping dataset
and batchsize 32.

a) Epoch 220 b) Epoch 280

Figure 4.33: Three-dimensional density-based structure output during the training process of the
Vanilla 3D-DCWGAN with the basin hopping data set at di�erent epochs. Ru atoms are drawn as
yellow spheres and O atoms as red spheres.

82

a) Epoch 35 b) Epoch 35

c) Epoch 220 d) Epoch 220

e) Epoch 280 f) Epoch 280

Figure 4.34: 2D slices of three-dimensional structures from the multi-GPU training process of the
Vanilla 3D-DCWGAN with basin hopping dataset and batchsize 32 at di�erent epochs. The slices are
taken from the xy and yz direction for each epoch.

83

5 Conclusion and Outlook
The main aim of this thesis was to train a generative model based to explore the PES of
RuO2 in a thorough manner and to cheaply generate new structural estimates for possible
surface terminations. To stabilize the network training process, two di�erent training sets,
convolutional network layers and a softer measure for the loss function were implemented
and discussed.

In the �rst part of this study, the training e�ciency was enhanced by a dimension reduction
of the training set size. This enabled to e�ciently perform a hyperparamter search and inves-
tigate three di�erent approaches, one to solely create new structure outputs and two other
approaches to combine structural information together with energy labels or lattice lengths.
For the Vanilla 2D-DCWGAN, our main �nding was that the image quality of the atomic
densities and thus the learning performance strongly depends on the dataset design and the
total amount of input structures in the training set. Since the structure-energy relationship
is distorted for two-dimensional slices from three-dimensional structures, the latent space
encoding for our energy class labels - integer-based or one hot encoded - can only serve as a
proof of principle that has to be addressed in further studies in a three-dimensional framework.
Augmenting two auxiliary networks to embed physical quantities such as the lattice lengths in
our DCWGAN approach has proven potential that has to be further explored with a higher lat-
tice loss penalty during the training process in a three-dimensional framework as well. When
embedding extra information in channels or through latent space encoding, it is important to
�nd the sweet spot such that the additional information is not overwriting the density-based
data but also that its implementation has a signi�cant in�uence on the outcome of the training
process. To avoid mode collapse, tailored input data, tuned learning rates, adjusted batchsizes
and sizes for the latent space encoding vectors were crucial for the training success in all
simulations.

Upgrading our code with the DDP67 package signi�cantly enhanced the training process
and we highly recommend single-node multi-GPU based training with this package in PyTorch
for other scientists handling larger datasets. The unlocked computational speed enabled us
to process all 28,903 structures in the three-dimensional DCWGAN framework such that 80
epochs can run within 24 hours. In this learning process, the Vanilla 3D-DCWGAN started to
converge. Further simulation are needed to converge the three-dimensional generator output
and to tune the hyperparameters required for the mixed three-dimensional architectures. Ulti-
mately, we want to develop a framework that simultaneously generates structures based on a
de�ned energy range and with a realistic lattice length prediction.

With this study, we aimed to create a powerful tool to unravel the longstanding puzzle of
catalytically relevant RuO2 surface structures. The developed two-dimensional DCWGAN
framework forms the �rst steps towards the output of realistic three-dimensional structure

84

outputs that can be used as inputs for a subsequent geometry optimization. With this deep
generative approach, we aim to bridge the materials gap for theoretical studies by enabling
a large scale search on the chemical space of RuO2 surface structures and by �nding novel
structures that can close the knowledge gap for some surface processes. As our framework
was restricted to two-dimensional density-based images, we found novel two-dimensional
structures that showed a strong resemblance with the original dataset while featuring di�er-
ent details for the density distributions. We are thus con�dent that our three-dimensional
DCWGAN framework has similar potential to generate new structures.

The next implementation steps for further studies are thus to optimize the three-dimensional
DCWGAN such that converged structures without mode collapse can be generated. Another
goal for realistic three-dimensional structures is to tune the hyperparameters for the three-
dimensional lattice regressor networks such that realistic structure lengths are available to
permit an accurate backmapping. Once realistic three-dimensional structures are achieved,
we aim to steer the latent space design such that the generated structures corresponds to a
certain energy range by either using integer-based or one hot encoded conditioning vectors or
by embedding the class labels in an additional embedding layer in the network architecture. A
further idea would be to use the class labels not only for the energy range of the structures but
for example for the oxygen chemical potential under which they were sampled. This allows
not only the introduction of energetics into our deep generative model but also to incorporate
thermodynamical information.

Considering the training process of the neural network, a better understanding of the im-
plications of di�erent hyperparameters can be achieved by sampling di�erent latent space
dimensions Z. It has been shown in [54] that the continuity of the GAN mapping and thus
its convergence is signi�cantly in�uenced by the dimension of the easier probability distribu-
tion PZ . In addition, gradual changes of other hyperparameters during the training process
can be introduced to further speed up and stabilize training. Slowly increasing the batchsize
during the learning process was found to have a similar e�ect on the convergence process
as simulated annealing.74 It would be interesting in three dimensions to start with a lower
batchsize and then increase it until the maximum value of 32 and then to compare the con-
vergence behavior of the generated structures. Furthermore, to enlarge the structural variety
of the explored chemical space, the dataset design is crucial. As the basin hopping set only
included (001) surface terminations, we can obtain a more divers database by adding further
terminations. Extensive basin hopping sampling for the dataset generation can become a small
computational bottleneck, however as the algorithm is fully automatized, these computations
can be performed on-the-�y.

When training the WGAN, it is not only important to tune the hyperparameters and the
dataset design, but also to understand the learning process. As neural networks are quite
complex on the level of individual neurons, the application of tools that help to understand the
underlying processes such as distribution statistics or perform gradient analysis during the
learning process can provide relevant insights.71 The GradCAM71 package from Captum o�ers
interesting approaches to link activations in the network to corresponding areas in the data

85

input. This can be crucial to understand the classi�cation criteria for decision-making process
of the critic. It can, on one hand, help to tune the dataset design, by �ltering relevant areas in
the dataset and highlighting features used to distinguish real and fake data. On the other hand,
the obtained evolving of features provides insights on depending on the hyperparameters of
the generator. When it comes to explainable arti�cial intelligence, another point is crucial:
understanding what the generator actually learns from the real data distribution is highly
important. If the generator only learns the features from the bulk or the relaxation layers in
our basin hopping dataset and fails to learn the speci�c features of the inserted oxygen atoms
in the larger supercell, an important part of the chemical space would not be covered. For
this purpose, semantic segmentation networks80 can be used to investigate the relationship
between the input data and the features of the output data. In this approach, the generator
layers are inverted to investigate which data features are learned. This can i.e. provide insights
on dropped modes from the input data.80

After the performance of the training process is improved and our implementation goals
are achieved, we can proceed to the task of backmapping the structures and to investigate the
novelly generated surface terminations. Novel structures can be identi�ed and compared to
existing ones with the kernel similarity measurement method from [18] in which the SOAP61

kernels are used for structural comparison. Once novel structures are obtained, their stability
under reaction conditions can be determined in ab-initio thermodynamic approaches. These
novel structures can then help to understand the catalytically active structures of RuO2 in the
CO oxidation reaction and can potentially help to elucidate on the reaction mechanism.

86

Bibliography

[1] A. Ananth, R. H. Jeong, and J.-H. Boo, “Preparation, characterization and co oxidation
performance of ag2o/γ-al2o3 and (ag2o+ ruo2)/γ-al2o3 catalysts”, Surfaces 3, 251–264
(2020).

[2] D. G. Vlachos and S. Caratzoulas, “The roles of catalysis and reaction engineering in
overcoming the energy and the environment crisis”, Chemical Engineering Science 65,
18–29 (2010).

[3] N. Soliman, “Factors a�ecting co oxidation reaction over nanosized materials: a review”,
Journal of Materials Research and Technology 8, 2395–2407 (2019).

[4] T. Barakat, J. C. Rooke, E. Genty, R. Cousin, S. Si�ert, and B.-L. Su, “Gold catalysts in
environmental remediation and water-gas shift technologies”, Energy & Environmental
Science 6, 371–391 (2013).

[5] V. Narkhede, J. Aßmann, and M. Muhler, “Structure-activity correlations for the oxida-
tion of co over polycrystalline ruo2 powder derived from steady-state and transient
kinetic experiments”, Zeitschrift für Physikalische Chemie 219, 979–995 (2005).

[6] S. Matera, M. Maestri, A. Cuoci, and K. Reuter, “Predictive-quality surface reaction chem-
istry in real reactor models: integrating �rst-principles kinetic monte carlo simulations
into computational �uid dynamics”, Acs Catalysis 4, 4081–4092 (2014).

[7] J. E. Sutton, J. M. Lorenzi, J. T. Krogel, Q. Xiong, S. Pannala, S. Matera, and A. Savara,
“Electrons to reactors multiscale modeling: catalytic co oxidation over ruo2”, ACS Catal-
ysis 8, 5002–5016 (2018).

[8] D. Rosenthal, F. Girgsdies, O. Timpe, G. Weinberg, and R. Schlögl, “Oscillatory behavior
in the co-oxidation over bulk ruthenium dioxide—the e�ect of the co/o2 ratio”, Zeitschrift
für Physikalische Chemie 225, 57–68 (2011).

[9] D. Rosenthal, F. Girgsdies, O. Timpe, R. Blume, G. Weinberg, D. Teschner, and R. Schlögl,
“On the co-oxidation over oxygenated ruthenium”, Zeitschrift für Physikalische Chemie
223, 183–208 (2009).

[10] A. Böttcher, H. Niehus, S. Schwegmann, H. Over, and G. Ertl, “Co oxidation reaction over
oxygen-rich ru (0001) surfaces”, The Journal of Physical Chemistry B 101, 11185–11191
(1997).

[11] H. Over, M. Knapp, E. Lundgren, A. Seitsonen, M. Schmid, and P. Varga, “Visualiza-
tion of atomic processes on ruthenium dioxide using scanning tunneling microscopy”,
ChemPhysChem 5, 167–174 (2004).

[12] C. H. Peden and D. W. Goodman, “Kinetics of carbon monoxide oxidation over ruthenium
(0001)”, The Journal of Physical Chemistry 90, 1360–1365 (1986).

87

[13] J. Aßmann, D. Crihan, M. Knapp, E. Lundgren, E. Lö�er, M. Muhler, V. Narkhede, H.
Over, M. Schmid, A. P. Seitsonen, et al., “Understanding the structural deactivation of
ruthenium catalysts on an atomic scale under both oxidizing and reducing conditions”,
Angewandte Chemie International Edition 44, 917–920 (2005).

[14] A. Böttcher, M. Rogozia, H. Niehus, H. Over, and G. Ertl, “Transient experiments on co2
formation by the co oxidation reaction over oxygen-rich ru (0001) surfaces”, The Journal
of Physical Chemistry B 103, 6267–6271 (1999).

[15] T. Wang, J. Jelic, D. Rosenthal, and K. Reuter, “Exploring pretreatment–morphology rela-
tionships: ab initio wul� construction for ruo2 nanoparticles under oxidising conditions”,
ChemCatChem 5, 3398–3403 (2013).

[16] K. Reuter and M. Sche�er, “Composition and structure of the ruo 2 (110) surface in an o
2 and co environment: implications for the catalytic formation of co 2”, Physical Review
B 68, 045407 (2003).

[17] K. Reuter and M. Sche�er, “Composition, structure, and stability of ruo 2 (110) as a
function of oxygen pressure”, Physical Review B 65, 035406 (2001).

[18] J. Timmermann, Y. Lee, C. G. Staacke, J. T. Margraf, C. Scheurer, and K. Reuter, “Data-
e�cient iterative training of gaussian approximation potentials: application to surface
structure determination of rutile iro2 and ruo2”, The Journal of Chemical Physics 155,
244107 (2021).

[19] J. Noh, J. Kim, H. S. Stein, B. Sanchez-Lengeling, J. M. Gregoire, A. Aspuru-Guzik, and
Y. Jung, “Inverse design of solid-state materials via a continuous representation”, Matter
1, 1370–1384 (2019).

[20] B. Kim, S. Lee, and J. Kim, “Inverse design of porous materials using arti�cial neural
networks”, Science advances 6, eaax9324 (2020).

[21] R. Pollice, G. dos Passos Gomes, M. Aldeghi, R. J. Hickman, M. Krenn, C. Lavigne, M.
Lindner-D’Addario, A. Nigam, C. T. Ser, Z. Yao, and A. Aspuru-Guzik, “Data-driven
strategies for accelerated materials design”, Accounts of Chemical Research 54, PMID:
33528245, 849–860 (2021).

[22] C. Panosetti, K. Krautgasser, D. Palagin, K. Reuter, and R. J. Maurer, “Global materials
structure search with chemically motivated coordinates”, Nano letters 15, 8044–8048
(2015).

[23] K. Krautgasser, C. Panosetti, D. Palagin, K. Reuter, and R. J. Maurer, “Global structure
search for molecules on surfaces: e�cient sampling with curvilinear coordinates”, The
Journal of chemical physics 145, 084117 (2016).

[24] J. J. Pietron, M. B. Pomfret, C. N. Chervin, J. W. Long, and D. R. Rolison, “Direct methanol
oxidation at low overpotentials using pt nanoparticles electrodeposited at ultrathin
conductive ruo2 nanoskins”, Journal of Materials Chemistry 22, 5197–5204 (2012).

[25] H. Yu, K. Zeng, X. Fu, Y. Zhang, F. Peng, H. Wang, and J. Yang, “Ruo2· x h2o supported
on carbon nanotubes as a highly active catalyst for methanol oxidation”, The Journal of
Physical Chemistry C 112, 11875–11880 (2008).

88

https://doi.org/10.1021/acs.accounts.0c00785
https://doi.org/10.1021/acs.accounts.0c00785

[26] E. Riedel and C. Janiak, “Anorganische chemie”, in Anorganische chemie (de Gruyter,
2022).

[27] D. P. Woodru� and T. A. Delchar,Modern techniques of surface science, 2nd ed., Cambridge
Solid State Science Series (Cambridge University Press, 1994).

[28] T. E. Madey, H. A. Engelhardt, and D. Menzel, “Adsorption of oxygen and oxidation of
co on the ruthenium (001) surface”, Surface Science 48, 304–328 (1975).

[29] A. V. Joshi, Machine learning and arti�cial intelligence (Springer, 2020).
[30] F. E. Harrell, “Regression modeling strategies”, Bios 330, 14 (2017).
[31] J. Hermann, Z. Schätzle, and F. Noé, “Deep-neural-network solution of the electronic

schrödinger equation”, Nature Chemistry 12, 891–897 (2020).
[32] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, http://www.deeplearning

book.org (MIT Press, 2016).
[33] J. Schmidhuber, “Deep learning in neural networks: an overview”, Neural networks 61,

85–117 (2015).
[34] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse recti�er neural networks”, in Proceed-

ings of the fourteenth international conference on arti�cial intelligence and statistics,
Vol. 15, edited by G. Gordon, D. Dunson, and M. Dudík, Proceedings of Machine Learning
Research (2011), pp. 315–323.

[35] G. Masetti and F. Di Giandomenico, “Analyzing forward robustness of feedforward deep
neural networks with leakyrelu activation function through symbolic propagation”, in
Joint european conference on machine learning and knowledge discovery in databases
(Springer, 2020), pp. 460–474.

[36] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and improving convolutional
neural networks via concatenated recti�ed linear units”, in International conference on
machine learning (PMLR, 2016), pp. 2217–2225.

[37] S. Io�e and C. Szegedy, “Batch normalization: accelerating deep network training by re-
ducing internal covariate shift”, in International conference on machine learning (PMLR,
2015), pp. 448–456.

[38] J. L. Ba, J. R. Kiros, and G. E. Hinton, Layer normalization, 2016.
[39] K. P. Murphy, Machine learning: a probabilistic perspective (MIT press, 2012).
[40] G. Schay, Introduction to probability with statistical applications (Birkhäuser, 2016).
[41] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in classi�-

cation”, arXiv preprint arXiv:1702.05659 (2017).
[42] Pytorch documentation multilabelsoftmarginloss.
[43] G. Lan, First-order and stochastic optimization methods for machine learning (Springer

Nature, 2020).
[44] D. P. Kingma and J. Ba, Adam: a method for stochastic optimization, 2017.

89

http://www.deeplearningbook.org
http://www.deeplearningbook.org

[45] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural
network”, in 2017 international conference on engineering and technology (icet) (2017),
pp. 1–6.

[46] V. Dumoulin and F. Visin, A guide to convolution arithmetic for deep learning, 2018.
[47] Stanford lecture cs231n: convolutional neural networks for visual recognition, 2021.
[48] Convolutional network �gure, 2021.
[49] A. Anwar, What is transposed convolutional layer?, 2020.
[50] L. Ruthotto and E. Haber, “An introduction to deep generative modeling”, GAMM-

Mitteilungen, e202100008 (2021).
[51] Y. Hong, U. Hwang, J. Yoo, and S. Yoon, “How generative adversarial networks and their

variants work: an overview”, ACM Computing Surveys (CSUR) 52, 1–43 (2019).
[52] J. Gui, Z. Sun, Y. Wen, D. Tao, and J. Ye, “A review on generative adversarial networks:

algorithms, theory, and applications”, CoRR abs/2001.06937 (2020).
[53] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets”, Advances in neural information processing
systems 27 (2014).

[54] M. Arjovsky and L. Bottou, “Towards principled methods for training generative adver-
sarial networks”, arXiv preprint arXiv:1701.04862 (2017).

[55] M. Arjovsky, S. Chintala, and L. Bottou, Wasserstein gan, 2017.
[56] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved train-

ing of wasserstein gans”, Advances in neural information processing systems 30 (2017).
[57] C. Villani, Optimal transport: old and new, Vol. 338 (Springer, 2009).
[58] P. König, “Wgan code framework”, https://thgitlab.rz-berlin.mpg.de/koenig/

gancode_thesisversion.git (2022).
[59] V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and G. Csányi,

“Gaussian process regression for materials and molecules”, Chemical Reviews 121, PMID:
34398616, 10073–10141 (2021).

[60] A. P. Bartök, M. C. Payne, R. Kondor, and G. Csänyi, “Gaussian approximation potentials:
the accuracy of quantum mechanics, without the electrons”, Physical review letters 104,
136403 (2010).

[61] A. P. Bartók, R. Kondor, and G. Csányi, “On representing chemical environments”, Phys.
Rev. B 87, 184115 (2013).

[62] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E. Castelli, R. Christensen, M. Dułak, J.
Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C. Jennings, P. B. Jensen, J.
Kermode, J. R. Kitchin, E. L. Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B. Maronsson,
T. Maxson, T. Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiøtz, O. Schütt, M.
Strange, K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen,
“The atomic simulation environment—a python library for working with atoms”, Journal
of Physics: Condensed Matter 29, 273002 (2017).

90

https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://arxiv.org/abs/2001.06937
https://doi.org/https://thgitlab.rz-berlin.mpg.de/koenig/gancode_thesisversion.git
https://doi.org/https://thgitlab.rz-berlin.mpg.de/koenig/gancode_thesisversion.git
https://doi.org/https://thgitlab.rz-berlin.mpg.de/koenig/gancode_thesisversion.git
https://doi.org/https://thgitlab.rz-berlin.mpg.de/koenig/gancode_thesisversion.git
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1021/acs.chemrev.1c00022
https://doi.org/10.1103/PhysRevB.87.184115
https://doi.org/10.1103/PhysRevB.87.184115
http://stacks.iop.org/0953-8984/29/i=27/a=273002
http://stacks.iop.org/0953-8984/29/i=27/a=273002

[63] J. Guénolé, W. G. Nöhring, A. Vaid, F. Houllé, Z. Xie, A. Prakash, and E. Bitzek, “Assess-
ment and optimization of the fast inertial relaxation engine (�re) for energy minimization
in atomistic simulations and its implementation in lammps”, Computational Materials
Science 175, 109584 (2020).

[64] E. Montahaei, D. Alihosseini, and M. S. Baghshah, “Dgsan: discrete generative self-
adversarial network”, Neurocomputing 448, 364–379 (2021).

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into recti�ers: surpassing human-
level performance on imagenet classi�cation”, in Proceedings of the ieee international
conference on computer vision (2015), pp. 1026–1034.

[66] Pytorch documentation dataparallel package.
[67] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B. Vaughan,

P. Damania, and S. Chintala, Pytorch distributed: experiences on accelerating data parallel
training, 2020.

[68] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: an imperative style,
high-performance deep learning library”, in Advances in neural information processing
systems 32, edited by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox,
and R. Garnett (Curran Associates, Inc., 2019), pp. 8024–8035.

[69] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep
convolutional generative adversarial networks”, arXiv preprint arXiv:1511.06434 (2015).

[70] S. Lee, B. Kim, and J. Kim, “Predicting performance limits of methane gas storage in
zeolites with an arti�cial neural network”, Journal of Materials Chemistry A 7, 2709–
2716 (2019).

[71] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam:
visual explanations from deep networks via gradient-based localization”, in Proceedings
of the ieee international conference on computer vision (2017), pp. 618–626.

[72] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel, “Infogan:
interpretable representation learning by information maximizing generative adversarial
nets”, Advances in neural information processing systems 29 (2016).

[73] A. Sanakoyeu, V. Tschernezki, U. Buchler, and B. Ommer, “Divide and conquer the
embedding space for metric learning”, in Proceedings of the ieee/cvf conference on
computer vision and pattern recognition (2019), pp. 471–480.

[74] S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the learning rate,
increase the batch size”, arXiv preprint arXiv:1711.00489 (2017).

[75] X. Ying, “An overview of over�tting and its solutions”, in Journal of physics: conference
series, Vol. 1168, 2 (IOP Publishing, 2019), p. 022022.

[76] D. M. Hawkins, “The problem of over�tting”, Journal of chemical information and com-
puter sciences 44, 1–12 (2004).

91

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[77] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine-learning prac-
tice and the classical bias–variance trade-o�”, Proceedings of the National Academy of
Sciences 116, 15849–15854 (2019).

[78] Y. Yazici, C.-S. Foo, S. Winkler, K.-H. Yap, and V. Chandrasekhar, “Empirical analysis
of over�tting and mode drop in gan training”, in 2020 ieee international conference on
image processing (icip) (IEEE, 2020), pp. 1651–1655.

[79] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity”, IEEE transactions on image processing 13,
600–612 (2004).

[80] D. Bau, J.-Y. Zhu, J. Wul�, W. Peebles, H. Strobelt, B. Zhou, and A. Torralba, Seeing what
a gan cannot generate, 2019.

92

	Introduction
	Theoretical Framework
	RuO2
	Rutile
	Catalytically active species for the CO oxidation reaction

	Neural Networks
	Forward Propagation
	Backward Propagation
	Convolutional Neural Networks
	Generative Adversarial Networks

	Computational Methodology
	Dataset design
	GAP dataset
	Basin hopping dataset

	Atom density-based structural GAN input
	2D Sampling
	3D Sampling

	WGAN Implementation in PyTorch
	Vanilla 2D-DCWGAN
	Energy encoding in 2D-DCWGAN
	Lattice regression in 2D-DCWGAN
	Vanilla 3D-DCWGAN

	Results and Discussion
	2D-DCWGAN
	Vanilla 2D-DCWGAN
	Integer-Based Conditioning Vectors
	One Hot Encoding Vectors
	Energy Embedding
	Lattice Regressor 2D-DCWGAN

	3D-DCWGAN
	Vanilla 3D-DCWGAN

	Conclusion and Outlook
	Bibliography

