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There is neither happiness nor misery in the world; there is only the comparison of one state with
another, nothing more. He who has felt the deepest grief is best able to experience supreme happiness. –
The Count of Montecristo – Alexandre Dumas
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Preface

The focus of this thesis is on ion dynamics in lithium ion batteries, more specifically on graphite, the most
used negative electrode material. This doctoral thesis is not a publication-based dissertation. However,
the main work is going to be published in references 1 and 2 ( B.5), and is adapted to fit the structure of this
manuscript. Additional work that was necessary for the final work was published in reference 3( B.5). It will
be described here just from a theoretical point of view overlapping with the results that provided necessary
methods/tools for the multi-scale approach.
A parallel project, involving another commercial anode material Li4Ti5O12 was conducted, however the
work done in this case is not described here. All the work presented in this thesis was done between
November 2017 and June 2021 in collaboration between the Chair of Theoretical Chemistry of the Tech-
nical University of Munich (TUM) and the Institute of Energy and Climate Research (IEK-9) with focus on
Fundamental Electrochemistry at the Forschungszentrum Jülich (FZJ). Additionally, several stays as a vis-
iting scientist at the Free University of Berlin have been conducted . Aim of these visits was to complement
the work and to profit from the local expertise in the newly developed implementation of charged kinetic
Monte Carlo within the kmos code.

i



ii



Abstract

Lithium ion mobility remains one of the crucial parameters for predicting the performance and the life-time
of a lithium-ion battery (LIB). In this regard, having a reliable diffusion coefficient associated with the re-
spective lithium diffusion process is necessary and mandatory for understanding the correlation of this
property with the failure or with the state of health (SOH) of a LIB over time. However, the scatter of ten
orders of magnitude of those atomistic processes within the measured diffusion coefficients raises the
question what the main reason behind this uncertainty is.
In this thesis, a reference system for the lithium ion mobility of lithium intercalated in Highly Pyrolityc Or-
dered Graphite (HOPG) is investigated from a theoretical and experimental point of view. The focus is on
the upper boundary of the lithium intercalation such as LiC6 which is the most studied phase and can be
considered as the highest state of charge (SOC) of a LIB. Therefore, it can be considered as perfectly
suitable to validate a new method and/or approach.
The right choice and combination of methods is not trivial. The time and length scales (easily) accessible
by theory and experiments are typically different. To match those one need to perform more elaborate
experiments as well as theory.
Nuclear magnetic resonance (NMR) is known to be able to give access to dynamical properties of the
lithium ion, within the solid state diffusion framework. In order to theoretically simulate the ion dynamics at
the same time and length scales as NMR a kinetic Monte Carlo (kMC) approach is mandatory in terms of
computational cost. In classical kMC, the most displaced particle in a process is often treated as an iso-
lated neutral atom. The electrochemistry of LiBs though motivates the decision to use an implementation
of kMC, with an explicit charge treatment framework in combination with input parameters obtained from
the first-principles.
A successful combination of the first principle charged kinetic Monte Carlo (1p-ckMC) with an advanced
analysis through an inverse Laplace transform (ILT) of 7Li Spin-Alignment-Echo-Nuclear magnetic reso-
nance (SAE-NMR) to assess lithium ion mobility is then presented. The novelty of the approach lies within
the combination of those techniques that allow to assess ion mobility independently and the possibility to
further use the power of the simulation to predict mobilities and/or to unravel the mechanism behind it.
At the same time, while preparing the reference system using blind conditions (ambient pressure), the
formation of superdense patterns was observed. Those were then further investigated through ageing
and rationalized with ab initio thermodynamics (AITD) and molecular dynamics (MD). The presence of the
superdense structures at those conditions reopens then the discussion on the actual highest SOC (LiC6).
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Zusamenfassung

Die Mobilität der Lithium-Ionen bleibt einer der entscheidenden Parameter für die Vorhersage der Leistung
und der Lebensdauer einer Lithium-Ionen-Batterie (LIB). In diesem Zusammenhang ist ein zuverlässiger
Wert für den Diffusionskoeffizienten erforderlich, der mit dem jeweiligen Prozess verbunden ist, um die Ko-
rrelation dieser Größe mit dem Ausfall oder dem Gesundheitszustand (SoH) einer LIB in Zusammenhang
zu bringen. Jedoch wirft die beobachtete Streuung, von bis zu zehn Größenordnungen bei der Messung
von Diffusionskoeffizienten, die Frage auf, was der Hauptgrund für diese Abweichungen ist. In dieser
Arbeit wird Lithium, welches in hochgeordnetem pyrolisierten Graphit (HOPG) interkaliert, als Modellsys-
tem für die Lithiumionenmobilität verwendet. Dieses Modellsystem wird dabei unter theoretischen und
experimentellen Gesichtspunkten untersucht. Der Fokus liegt hierbei auf der oberen Grenze der Lithiu-
minterkalation (LiC6), da dies die am meisten untersuchte Phase ist und deshalb herforragend geeignet
ist zur Validierung einer neuen Methode oder eines neuen Ansatzes. Die richtige Wahl und Kombination
der Methoden ist nicht trivial. Die Meso-Zeit- und Längenskala aus Experimenten ist grundsätzlich leicht
zugänglich. Auf der anderen Seite sind aus theoretischer Sicht nicht alle Zeit- und Längenskalen direkt
geeignet, um mit den Experimenten verglichen zu werden. Daher ist entweder die Zeitentwicklung genau,
aber nicht auf der richtigen Längenskala oder umgekehrt. Es ist bekannt, dass die Kernspinresonanz
(NMR) -Spektroskopie innerhalb des Festkörperdiffusionsrahmens Zugang zu den dynamischen Eigen-
schaften des Lithiumions ermöglicht. Theoretisch ist ein kinetischer Monte-Carlo-Ansatz (kMC) günstiger,
um der gleichen Größenordnung für die Ionendynamik zu entsprechen. In derartigen Simulationen wird
die Ladung oft als isoliertes neutrales Atom behandelt. Dies führte zu der Entscheidung, eine Implemen-
tierung von kMC mit explizierter Behandlung von Ladungen zu verwenden. Eine erfogreiche Kombination
aus ab-initio Rechnungen, kinetischem Monte Carlo (1p-ckMC) mit expliziter Ladungsbeschreibung und
von 7 Li Spin-Alignment-Echo Nukleare Magnetresonanz (SAE-NMR) dient in dieser Arbeit der Bewertung
der Lithiumionenmobilität. Für die Auswertung des Spin-Alignment-Echo kommt eine fortschrittliche Anal-
yse durch eine umgekehrte Laplace-Transformation (ILT) zum Einsatz. Die Neuheit des Ansatzes beruht
auf der Kombination von Simulationen und Experimenten, die es ermöglichen, die Ionenmobilität unab-
hängig zu bewerten. Dies eröffnet die Möglichkeit, die experimentell validierten Simulationsmodelle zur
Vorhersage der Ionendynamik zu nutzen und tiefere Einblicke in mechanistische Zusammenhänge zu er-
halten. Gleichzeitig wurde bei der Vorbereitung des Referenzsystems unter Verwendung von Blindzustand
(atmospherische Druck) die Bildung eines Superdense-Musters beobachtet. Diese wurden dann durch
Alterung, ab-initio Thermodynamik (AITD) und Molekulardynamik (MD) weiter untersucht.Das Vorhan-
densein der Superdense-Strukturen unter diesen Bedingungen eröffnet dann die Diskussion über den
tatsächlich höchsten erreichbaren Ladezustand (SOC), der bisher mit LiC6 identifiziert wird.

v



vi



Nomenclature

~ Reduced Planck constant

AITD ab initio thermodynamics

ckMC charged kinetic Monte Carlo

D diffusion coefficient

DFT density functional theory

DFTB density functional tight-biding theory

EFG electric field gradient

EVs Electricle Vehicles

FID free induction decay

HOPG Highly Oriented Pyrolytic Graphite

ILT inverse Laplace transformation

kMC kinetic Monte Carlo

kmos a lattice kinetic Monte-Carlo framework

KS-DFT Kohn-Sham DFT

LIBs lithium ion batteries

MD Molecular Dynamics

NEB nudged elastic band

NMR nuclear magnetic resonance

RF radio-frequency

S/N signal-to-noise-ratio

SAE spin-alignment echo

SCF self consistent field

SEI solid electrolyte interface

SOC state of charge

SOH state of health

SS solid state

TST transition state theory

XC exchange-correlation
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1 Introduction and Overview

This thesis is structured in four main parts. First a general introduction on the battery basics and the actual
state of the art of the lithium ion battery research is given in chapter 1. The theoretical background for
the multi-scale approach, with the focus on the meso-scale level used to bridge to the experimental part
in this work and the experimental foundations, as well as the theory for the Nuclear Magnetic Resonance
(NMR), are presented as separate chapters 2 and 3, forming the second part of the thesis. The choice
and the preparation of the reference system form the third part and are described in chapter 4, with the
resulting concept of overintercalation and its role in Lithium Ion Batteries (LIBs). The fourth part brings
the focus back on the ion dynamics in lithium intercalated graphite, and describes the results of bridging
the gap between experiments and theory at the correct time and length-scale in chapter 5 through the
investigation of the diffusion coefficient of lithium ions. A summary and an outlook are given then at the
end in chapter 6.

1.1 Current State of the Art of Li-ion Battery Technology

Lithium ion batteries, as described briefly below, can be regarded as one of the key components in order to
move towards a fully sustainable society. To pursuit the reduction of the CO2 emissions, the world requires
a complete reevaluation of the transportation sector, such as the replacement of fossil fuel powered vehi-
cles with electric vehicles (EVs). [1] Therefore, a mass-distribution of EVs is mandatory to guarantee the
success of a gasoline-free mobility. Among other energy storage technologies, lithium ion batteries (LIBs)
are one of the systems with the highest energy densities, and equally high or even higher power densi-
ties. An excellent method in order to compare various energy storage devices is the so called Ragone plot,
which is shown in Figure 1.1. It illustrates the different performances by comparing the specific energy den-
sity with the power density of certain materials or battery devices. Depending on the requirement profile of
a specific task, the plot can guide the selection of the electrochemical device depending on the usage EV
(high power) or balance (low power). [2] For example for electric trains, usually one would choose ordinary
capacities because a high power density is required to allow bridging the short time in which a train might
not be connected to the power grid. However, in order to promote a worldwide usage of batteries in every
day vehicles like cars, a high power density and a high energy density are required at the same time. [3–7]
LIBs are electrochemical devices that convert chemical energy into electrical energy. The working princi-

ple of a LIB will be briefly discussed, before focusing on the component which investigated in this thesis.
Due to their capability to store energy, supplied by an external source, they are used as portable electric
power devices. Historically, the term "battery" was used to refer to a group of "cells", however nowadays
they are used interchangeably, as will be the case also in this work. The term "batteries" will be however
preferred here. [9] The working principle of a LIB is based on the lithium ion transport as cationic charge
carrier between a negative and a positive electrode, plus the electrolyte in between that helps the transfer
of the Li-ions between the electrodes. Other components such as separators and current collectors are
present, however those are not within the interest of this work, as well as the cathode and electrolyte that
will be just briefly mentioned. To quickly recall the basics: the active material for the cathode (or for conven-
tion the positive electrode) should undergo a reversible reaction with the Li-ions, which are de-intercalated
during the charge and re-intercalated during the discharge. The lithiation (accompanied with a reduction)
of the cathode is as well called discharge while the charge (accompanied with an oxidation) is referred
as delithiation, while at the anode the opposite happens. The chemical reaction that summarizes that
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Figure 1.1 Depiction of the energy density as a function of the power density: The so called Ragone Plot from. [8]
This type of plot is typically used to characterize different types of energy storage devices. Copyright © 2014
American Chemical Society.

process is shown in Equation 1.1 and a schematic illustration of the operation of a battery while charging
and discharging is shown in Figure 1.2

xLi+ +AM + xe−
discharge

�
charge

LixAM (1.1)

where AM stands for active material. Equation 1.1 it shows the possibility of unlimited cycles, ideally, if the
reaction is fully reversible; however this is not the real case. Hence, the search for a better performance
and ideal system to strike closest to a utopian infinite battery is still ongoing. The performance of the
cell depends in fact on the nature of all the components: the properties of the electrodes with a prudent
selection of the active material, the electrolyte composition and the geometry of the cell assembly. [10]
Commercial state of the art of LIBs use LiTMO2 based materials as cathode, where the TM stands for
transition metals, with the most common one being a mixture of nickel, cobalt and manganese, in differ-
ent ratios. As anode material, graphite is by far the most used and as liquid electrolyte a combination of
ethyl-carbonate (EC) and dimetyl-carbonate (DMC). Figure 1.2 shows a sketch of a LIB, with a LiCoO2

as cathode, LP50 that corresponds to the EC/DMC mixture and graphite as the anode, here shown in the
LiC6 form. [10–12]

1.2 Graphitic and Carbonaceous Anodes

Graphitic anodes belong to the class of carbonaceous materials, which exhibit a particularly rich structural
variety. Carbons investigated for their lithium insertion properties include graphites, cokes, mesophase
pitches, carbon fibers and whiskers, glassy and vitreous reticulated carbons, pyrolytic carbons, buckmin-
sterfullerenes, carbon nanotubes, single graphene sheets, disordered carbons, hard carbons, etc.. [12–17]
All of these possess appealing features for reversible lithium intercalation and the variety within the struc-
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Figure 1.2 Illustration of a lithium ion battery. As cathode material serves LiCoO2, LP50 is the electrolyte which is
a ethyl-carbonate/dimetyl-carbonate (EC/DMC) mixture and the graphite is used as an anode material. Specifically,
we show the anode intercalated with lithium (LiC6).

tures offers different functionality. The facile kinetics and the reversible capacity can be raised by improv-
ing ideally their degree of crystallinity. [13] On the other hand, the disordered carbons (or carbon with no
long-range crystalline ordering) show appealing features for a higher uptake of lithium and excellent cy-
clability. [13] Despite continuous screening of materials to find a better carbon based anode, graphite is
still the most widely used one due to the its excellent synergy of the high-capacity and cyclability over the
lifetime of LIBs. [16,18]

Graphite electrodes are insertion based anode materials that allow lithium ions to be intercalated re-
versibly within the host material. Graphite is excellent in delivering a high reversible theoretical capacity
with 372 mAh/g for the nominal LiC6 stoichiometry shown in Figure 1.3, commonly identified as 100 % state
of charge (SOC) . [14, 15, 19] The ability of the graphitic materials to store lithium is however influenced
as well by the processes involved in the pre-preparation and post-preparation of the electrode. This can
hinder the interpretation on the atomistic behaviour within the actual raw material. Even though graphite
shows very good electrochemical properties, the variation in performance is still not fully understood and
it is hard to relate to one aspect or another of the specific material. [14,15]
Different production processes translate to a wide range of graphite morphologies with the respective
changes in performance. [14,15] Thus, the quality and the quantity of the sites that allow reversible lithium
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Figure 1.3 Representation of lithium intercalated in graphite LiC6. The structures shows AA layer stacking and αα
ordering of the lithium ions. Lithium ions are depicted in lilac, and the carbon layers within the graphene sheet are
colored in brown. The supercell of the structure is indicated by the black lines.

intercalation will determine the current/voltage characteristics of the electrochemical intercalation reaction
and also potential side reactions. [20] The suitability of a carbonaceous material as lithium intercalation
host depends then strongly on the method of preparation and on its pre-evaluation as material to judge the
actual and future performance. [15]
Further building on that and disentangling the elementary influences becomes mandatory for the interpre-
tation within the next steps of production, where particle size and morphologies play a role. This requires
a reference system to shed light on the full mechanisms and to include all the considerations while in-
vestigating via in situ and/or in operando techniques to look over a better performance. Within this family
of carbonaceous materials the graphitic one is the one currently used in commercial LIBs [14, 15], and is
still the anode at this level. In this thesis, the focus of our studies is on unravelling pressing questions,
especially related to the large uncertainty on diffusion coefficients of the lithium ion within the lithium in-
tercalated graphite (LIGs) while approaching LiC6, known as the highest state of charge. In the course of
this endeavour, we additionally found ourselves questioning if this is truly the highest accessible SOC. A
generic graphite structure is shown in Figure 1.4.

1.2.1 Structure and Properties of Graphitic Anodes

Graphite can be classified as natural or synthetic, based on the manufacturing process. Natural single
crystals can be found in coal or lead mines, whereas synthetic crystals can be produced with various de-
grees of perfection available using a range of available methods. [18]
Graphitic layers are composed of sp2- hybridized carbon atoms, which are arranged in a planar "honeycomb-
like" network, like a graphene sheet. Several graphene layers leading to the layered graphitic structure are
kept together by van der Waals forces that provide a weak cohesion between the layers. Strictly speaking
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from a crystallographic point of view, the term graphite should be used for the carbons having just a layered
lattice structure with a perfect stacking order of graphene layers, either the AB (hexagonal graphite, 2H-,
or α-phase) or the less common ABC (rhombohedral graphite, 3R- or β-phase). However, since perfectly
stacked carbons are not achievable, the term “graphite” is used regardless of the stacking order, as will be
done in the following here. In fact, the normal graphite stacking consists of hexagonal planes of carbon
stacked along the c-axis in a staggered array usually ABAB..., where the lateral shift is going from layer
A to layer B and is ∆AB = (1/3)a1 + (2/3)a2, with |a1| = |a2| = aG.
The primitive cell was identified at first by Bernal et al. [21] using X-ray diffraction. They also conclude
that the artificial and natural graphite in the so-called raw or pristine material, are identical in structure
despite different preparation processes. According to them, the unit cell consists of four atoms, with the
respective height 0, t/2, 1/2, 1/2 + t/2 above the basal plane of the cell, with the fractions referred to the
height of the full cell. However, if we consider half of the cell, the atoms must lie in two different planes, the
basal one and the one in the middle. In fact, the carbon atoms in graphite lie in planes in which they form
the so called nets of hexagons. These nets are then superposed in successive planes, so that half the
atoms in one net lie normally above each other. The symmetry of graphite is then identified as hexagonal
holohedral, with the space group D3

6h. [21, 22] The carbon atoms are linked in a two-dimensional net that
will bring the graphite to exhibit in plane cleavage on the sheets.
Simply, the 3D structure of it can be seen then as multiple 2D graphene layers stacked together. The
large gap between the carbon atoms between planes can be explained by the virtual extension of the
carbon atom along one axis, thus destroying the tetrahedral symmetry that carbons would indeed have
in a three-dimensional lattice, i.e., diamond like structure. The stacking of the atoms was discussed for
the first time in the early 30s and the final structure is known as AB or Bernal structure. [21]. This is
the building block for investigating intercalation compounds. [21,23] Nevertheless, different stackings such
as ABCA... or ABAC... are also possible, with the main requirement that a layer has to be followed by
another one shifted by ∆AB. In fact, if we think that the planes of carbon atoms are stacked in such a
way that half of the carbon atoms (A atoms) are located directly above each other in adjacent planes,
while the other half (B atoms) are located above the center of the hexagon in the adjacent plane, this can
easily cause a sliding process in the structure. Moreover, due to the small energy for the transformation
of ABA (hexagonal graphite, α) into ABCA (rhombohedral graphite, β) and vice versa, perfectly stacked
and defect-free graphite is not easily available. The ratio between coexisting different stackings can also
vary depending, again, on the pre-processing. Mechanical treatments, such as milling or shearing, can
move the balance towards the β-phase, while thermal annealing will produce the thermodynamically more
stable α-phase. The commonly observed stackings in graphite are a mixture of these discrete stacking
alternatives. [18,21,24]
The intercalation process we are going to focus on becomes even more dependent, then, on the actual
host morphology. Speaking of the latter, within the powder graphite used for electrode preparation, the
structure is less than perfect. The crystal structure, however, made by stacking graphene layers, is kept,
until any intercalant is (de)-inserted. The latter process changes the stacking order and the spacing based
on the degree of intercalation. Focusing on the lithium ions (de-)intercalation in a battery cell, the shuffling
of the ions will have a major effect on the reversible properties of the host material and the electrode prop-
erties itself. [18] Among the different sources of synthetic graphite as an alternative to the natural one, the
Highly Oriented Pyrolytic Graphite (HOPG) became the reference system to investigate fundamental and
basic properties. [14, 18] The best available HOPG is well oriented, however the possibility of creation of
defects while growing the material, e.g. high density or twist defects, cannot be completely ruled out. [18]
The impact of those defects within the ideal stacking by itself will induce variations and intricacies within
the processes that one needs to investigate. [14,18,21,24]
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Figure 1.4 The structure of the hexagonal graphite unit cell with the ABAB stacking – space group P63/mmc.
Carbon atoms are depicted in brown.

1.2.2 Lithium Storage in Graphite

The layers of the lamellar structure of graphite offer a perfect accommodation for different intecalants, not
only for alkali atoms such as lithium or potassium, but also for a variety of organic molecules. Despite
happening in the same host material, the intercalation chemistry will strongly depend on the intercalant
and on the insertion process. [16,18]
A general feature of intercalation into graphite described in literature for alkali as the guest species is
the formation of a periodic array of unoccupied layers (galleries) from high to low concentration of guest
species, called stage formation. [16,18] These are a periodic alternation of the host and guest layers, with
n layers of the host separating neighboring guest layers in a stage n intercalation compound. The staging
is commonly regarded as a quasi-one-dimensional ordering phenomenon and it is characteristic of a large
number of graphite intercalation compounds (GICs).
The stages are indexed "s" which is equal to the number of graphene layers between two nearest guest
layers. The staging phenomenon needs to take different contributions to the energetics of the formation
of the structure into account. Staging is a thermodynamic phenomenon related with the energy that is
required to formally open the van der Waals gap between two graphene layers, and allow the guest to
enter the host.
The main contributions to this energetics will come from: I) the charge transfer between the guest and the
host species, II) the elastic effects associated with the distortion of the host by the guest with the related
issue of the cohesion between the layers, and III) the interaction between the guest atoms in the same
layer, as well as with the adjacent host layers, if filled. In this thesis, the case of lithium as guest will be ad-
dressed. Despite the apparent simplicity of the involved elements, there is still room for debate regarding
the complete details of the lithium ion intercalation mechanism. The staging is only one of the proposed
models, and perhaps an overly simplified one. This simple model can be considered complementary with
the so-called domain model as a function of the inserted amount of lithium. [14,16,18,25]
The stage model of the lithium intercalated graphite was first proposed by Rüdorff and Hofmann in 1938. [12,
26–29] According to the staging nomenclature LiC6 is stage I, with the conventional assumption that this is
the maximum possible concentration of lithium to be inserted. The other binary phases with lower lithium
content are then named as stage, IV, III, IIL and II. The splitting of the II into s=II (x =0.5 in LixC6) and s=IIL
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(x =0.33 in LixC6) is due to the different lithium packing densities. The IIL is also seen as a liquid stage,
which ideally has no in-plane ordering. [10,14,16,18] The stacking of the LiC6 will change from ABABA
to AAAAA upon intercalation, and will strongly depend on the total lithium inserted. The staging phe-
nomena are more complicated though, if we think of the intermediate staging. The repulsive Coulombic
interactions between the guests are less relevant then those of the guests with the graphene sheets, how-
ever not to be neglected. As a consequence of this combination of effects, highly occupied van der Waals
gaps are energetically favored over a random distribution of guests. Those phenomena and the degree
of intercalation can be easily observed during the electrochemical reduction of carbons in Li+ containing
electrolytes as medium to shuffle the ions.
The domain model on the other side was proposed for the first time by Daumas and Herold [25], while
investigating the transition mechanism for staging. Within the domain model, the lithium ions will occupy
the interlayer space between the two graphene planes (galleries) as islands. [25, 30, 31] The existence
of islands or finite domains of intercalant presents the possibility of disorder in the staging sequence, in
particular when the layers are of finite extent. The islands can be present adjacent to each other within the
same gallery while maintaining the so called "stage" overall. Obviously, the debate whether the staging or
the domain model is the more accurate one is not fully clarified and the combination of the two might be
the right answer.
Neither of the two hypotheses alone suffices to explain the full transition mechanism from the empty
graphite to the full intercalated one. Within the early studies, it was shown that the entropy gain of the
rearrangement of finite size layers in intercalation compounds can lead to stage disorder without atomic
vacancies. [30,32] Phase diagrams to describe phase transitions via staging normally show the stage (and
in plane stoichiometry) as a function of intercalant, concentration, temperature, and/or pressure. To cal-
culate these phase diagrams, the statistical thermodynamics of staging must be understood. The kinetics
should not be neglected completely and focusing on one step after another may help to elucidate as much
as possible. [32]. The relationship between the changes in the in-plane density and re-staging transitions
induced by either changes in the pressure or temperature was described by Di Vincenzo et al. [33, 34] It
was reported that the diluted stage-II of Li-intercalated graphite showed the same phase transformation
at high T and finite P as at low T and P=0. Li GICs according to Safran et al. [32] in fact show a pro-
cess driven by the local elastic distortions. Low-T mixture of stoichiometric LiC6 and LiC12 transform upon
heating through the Safran restaging boundary Ts(x) to nonstoichiometric LixC6, an ordered pure stage-I
compound with the same in-plane

√
3×
√
3 superlattice as its low-T precursors. The new phases therefore

contain new sites through the otherwise long-range ordered Li layers. At higher T the long-range order
disappears in a 3D melting process, the details of which vary with vacancy concentration. The Safran
model neglects long-range order and thus does not account directly for the melting transition.
According to Fischer [32], the concentrated stage-I exhibits novel melting behaviour associated with the
presence of Li vacancies in the low-T ordered phase. A random vacancy distribution would be expected
to depress melting temperature Tm without changing the nature of the transition. An alternative scenario
consists of in-plane phase separation into maximally dense islands surrounded by empty canals, in which
case the transition will be smeared out since the lithium on the shorelines will melt first (analogous to
current ideas on dislocation mediated melting in 2D systems). Increasing the vacancy concentration [V]
(or decreasing x) decreases Tm, but smears the transition significantly. The first-order step found for x=
1.00 and 0.99 disappears for [V] > 2 % but the continuous melting fits a power law exponent up to [V] = 5
%. The samples with x=0.99 and 1.00 have the same Tm but the precursor is steeper in the latter. The
exponent was interpreted in terms of tri-critical behavior in the 3D–state Potts model: since the symmetry
class is unaffected by vacancies, this interpretation should be investigated in more detail. [32] Before going
into the description of the electrochemical storage, that is based on similar intercalation concepts as for
the mechanical intercalated lithium in graphite mechanism, a few words on the nature of the bond present
within the LIGs compounds are mandatory.
Hofmann et al. [27] proposed in the early 30s that the bond in GICs is of electrostatic nature. Based on that,
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the ionic model was developed, where the lithium is stored in cationic form in graphite, where the graphitic
host is taking over the corresponding negative charge. This concept is largely used in the description of
lithium ion batteries and is also supported by the electroconductivity increase for the GICs with respect to
pure graphite. The ionic state of lithium in GICs was indeed confirmed by 7Li NMR spectroscopy, as well
as quantum mechanical calculations, however the debate and the criticism on this pure ionic model is still
present and valid. In particular in LiC6 the bond seems to be partially metallic (or covalent). Additionally,
the AA stacking that is present, makes the Li-Li distance along the c-axis smaller then the in-plane Li-Li
distance. On the other side, the increase of the volume due to the lithium intercalation is better explained
with the ionic form of the lithium. For the LiC6 a neutral character was also attributed to lithium atoms,
however there is still a potential gap between the metallic lithium and the LiC6, that indicates the lithium
should be partly ionic. [16, 35] The window potential where the lithium is stored between the LiC6 and
the lithium metal, although pretty close to the metallic state, has to have an ionic character. In fact, the
nature of the bonds and the regular in-plane order of guest atoms in LiC6 can be better explained if the
lithium exhibits some ionic charge, which is providing repulsive Coulombic interaction with the near lithium
neighbors.

Electrochemical Lithium Storage

In the battery community, there is widespread consensus that a maximum lithium content of one Li guest
atom per 6 carbon host atoms, as mentioned above, can be reached for lithium insertion into graphite pow-
der, HOPG, or any graphitic carbon at ambient pressure, while performing an electrochemical intercalation.
The potential profile of the natural graphite while the lithium is intercalated electrochemically has a step-
wise shape, due to the formation of different stages and transitions according to Dahn et al. [36,37]. Based
on electrochemical experiments, a phase diagram for the lithium intercalation compounds was derived as
well, with following research that confirmed or raised new questions on the mechanism. Nevertheless, the
mechanism proposed and still widely used is the staging mechanism with the coexistence of two binary
phases, and following staging until the stage IV, passing through III, IIL, and II. The IIL is the subdivision of
the II stage and the "liquid-like" one, due to the different packing of lithium, where the "liquid-like" does not
have order in plane. The coexistence of the two stages during a first-order transition appears as a potential
plateau in the charging curve, as shown in Figure 1.5. [15]

In the context of electrochemical Li storage, it has been widely investigated over the past decades
whether the reduction of the number of constituent "graphene" layers of graphitic carbon to a few leads
to any difference with respect to the storage mechanism and content of the inserted lithium, down to the
single layer graphene (SLG) limit. However the results are still contradictory. In the case of graphenic
carbon having very few layers, but well-ordered and nearly pristine, graphene layers, intercalation of Li
does take place in the interlayer spaces and in the bulk graphite. In addition the surface(s) and also
exposed "stepped" edges of each layer also contribute to a relatively greater extent toward the Li-storage.
The role of the graphene edge sites on Li-storage indeed shows the possibility of accumulation of Li
close to the edges of a single graphene layer and the “stepped edges” of a graphene nanoribbon (GNR)
compromising more than one graphene layers (in addition to the Li "stored" on the surface of the topmost
graphene layer). The Li atoms added on the edges shows a tendency to move inside the GNR. The Li
storage contribution from the surface gives an increment of the storage capacity on top of the maximum
lithium intercalation, with respect to the graphene sheets. [38,39]

Lithium Storage in Non-Graphitic Carbons

Next to the graphitic carbons used for anode material, the non graphitic ones – those where the structure
disorder takes over the crystalline part – were taken into account for their ability to store a larger amount
of lithium.
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Figure 1.5 An example for the potential profile of the second dis-/charge cycle in a half-cell configuration with metallic
lithium as counter electrode. [15]. The stages for the electrochemical de-/intercalation were adapted and redrawn
from Assenbauer et al. [15].

In fact high lithium storage capacity, compared to the theoretical limit accepted for graphite, with a pre-
dominantly planar insertion, was identified within the hexagonal networks of carbons that lack extended
crystallographic order. It is worth noticing, that apart from the increase in disorder pyrolytic carbons have
also been known to retain up to 30 at.% of residual hydrogen. [40–42] The high lithium storage content can
be related to disorder [43, 44] and also to the hydrogen content [40, 45, 46]. The absence of long-range
order frustrates attempts at understanding the relationship between the structure and the reversible lithium
insertion properties of disordered carbons. Indeed, despite their large insertion capacities, the applicability
of these carbons in practical cells is hampered by large irreversible capacities, and polarization between
charge and discharge (hysteresis). Usually the irreversible capacity loss is associated to those effects.
Some extra mass to compensate for the capacity loss compared with the cathode materials can be ac-
commodated. However, since the hysteresis is associated with the lowering of the Coulombic efficiency
and a poor cycling performance, the practical energy efficiency overall is compromised. [13,16]
Another problem with disordered carbons is the variety of them and the association with multiple mecha-
nisms for the storage. The relevance of mentioning those will be clear in the interpretation of the actual
mechanical intercalation of the lithium in a reference system used in this thesis.

A brief overview other the concept of the so-called “superdense” phases that are then associated with
a higher lithium storage capacity will be reported here. Despite the fact that these are known, they were
never reported under normal conditions for lithium intercalation within bulk graphitic carbon, but only within
bilayer graphene or non-graphitic carbons. [47,48] Lithium storage higher than LiC6 was shown to proceed
with different carbons such as polyacenic semiconductors up to LiC2 and Ishikawa et al. showed that Li2
could indeed exist. Additionally it was shown that lithium atoms could occupy both edge and interstitial
sites up to LiC3 composition. [46] All these arguments on the "superdense" structures strenghten the ac-
tual convention that the lithium storage capacity of graphite is limited by the lithium accommodation of one
"ion" site for every six sp2 hexagonal carbons (LiC6), as mentioned above.
Lithium intake up to 4765 mAh/g for porogen treated pyrolithyc carbons was reported. However the high
irreversible capacities and continued loss in capacity with cycling hamper their exploitation in high-energy
lithium ion-batteries. [49] Sato et al. used the Li2 covalent molecule capacities to explain the high ca-
pacity up to 1116 mAh/g [41]. Another option to explain the high capacity would be the usage of the
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defects present within the graphene sheets or the existence of nanovoids, created while milling or during
the process of the matrix preparation. However, even the Li storage mechanism (or the storage locations)
in graphene is still up for debate both experimentally and theoretically. [17, 50–53] It has been proposed
that Li atoms cannot adsorb on monolayer graphene, but it only intercalates between at least two layers.
To understand and resolve this problem is rather essential for the incorporation of graphene materials
in LIBs. [17] In fact, as mentioned before, to gain deep insights into the Li-intercalation behavior, bilayer
graphene was used as a model to break down extended graphite into a simple system. [47, 54] Even
without the long distance z-axis diffusion of Li+ ions in graphite and the possible influence from the neigh-
boring layers, bilayer graphene still exhibits the same Li-storage processes as graphite, indicating that
the Daumas-Herold domain model should be more suitable for describing the z-axis Li-storage behavior
in graphite. Moreover, the planar distribution of these staged Li atoms may indicate that any incoming
Li+ ions can enter the centroid of three adjacent Li atoms in the former phase without disturbing their
initial locations too much. [25, 55] Additionally, for the graphite-based LIBs, it is as well known that the
insertion/deinsertion potential of Li+ ions is always below 0.3 V (vs Li+/Li), a range that contributes to the
overwhelming capacity of graphite. [54] Clearly, there are more intrinsic and quasi-reversible processes
than the ones expected within this range of the potential. This further raised even more questions, on the
irreversible capacity that is hard to retrieve back from those structures.

1.2.3 Ion Mobility within the Graphite Materials: Assessing the Diffusion Coefficient

An atom moving through a solid can be seen as performing jumps between minima in a potential landscape
of the crystalline matrix. This sounds relatively easy, however before reaching and investigating the jump
or the movement of those, we have to bring one system into the other.
The transfer of matter is a complex phenomenon, in particular for the lithium intercalation into graphite.
Herold [56] suggested within the early stages of the investigation the concept of "isostage" and "polystage"
reactions with two main mechanisms that need to be looked into – diffusion and sliding – when intercalating
a compound within the graphite matrix. The isostage reactions are those where the so called stages
remain unchanged and the polystage ones, as the word says, will lead to an increase or a decrease in
stage within the system. A combination of both, obviously, can not be excluded. Diffusion, which depends
on a gradient in concentration, is a slow phenomenon which governs the kinetics of isostage exchange
reactions. Sliding, which depends on the free enthalpy of the reaction, and on the intercalate cohesion,
can be very fast and often plays the main role in polystage transformations. Hence, changes in stage
during intercalation or de-intercalation correspond to an association of a slow interfacial process and a
faster reorganisation of the intercalate by sliding. Intercalation consists of an "invasion" of the graphite
interspaces by external ions within the layers, implying a movement of pleats (dislocation loops) in the
graphene sheets. This is then a matter transfer process, which is closer to a hydrodynamical than to a
diffusion one, and can be called a "sliding" process. [56]
A clear distinction, however, between a sliding or diffusion process with the lithium that intercalates in
graphite can not be made. This might be one of the reasons that the definition and the measurement of
the diffusion coefficient are hard to disentangle and to agree upon. Moreover, sliding and diffusion are not
the only mechanisms that can occur, while shuffling lithium atoms in a full working LIB cell.

1.3 Challenges and Limitations for a fast charge Electrode

As mentioned in Section 1.1, the performance of a LIB is determined by each single component and by
the design of the cell. Hence, the challenges to improve the performance of a battery are closely linked to
the performance of cathode, anode and the used electrolyte. [15, 17] However, as the main focus of this
work lies on graphite as anode material, the following section will focus on the limitations of this specific
material.
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To have a performant anode material, a high efficiency is required and no drastic change in the surface
is preferred in order to not promote the electrolyte decomposition reaction. Additionally, the used material
should also provide high safety. To ensure a high-energy density the electrode needs to operate close to
the potential of the metallic lithium and to not forget, it should be lightweight and cheap. [17]
Despite considerable effort in order to find alternatives to graphite, the latter still remains the most widely
used in commercial applications. Alternatives like lithium silicon alloys, antimony and lithium titanate
Li4Ti5012 still fall behind the performance of a standard graphite anode. [11,14,15] Nevertheless, graphite
anodes are affected by a rather high capacity loss during the first few charge cycles. This occurs due to
the formation of a so called solid electrolyte interface (SEI), also known as ageing process of the elec-
trode. Despite being the cause of capacity loss, it serves as a protective layer on the graphite anode which
prevents the continuous reduction of the electrolyte on the electrode side. [17,57]
Despite this loss in the first cycles, graphite continued to be used without many problems in commercial
applications. In fact, until a few years ago, the limiting factor for the loss in the capacity and energy density
of the LIB was still the cathode materials. [58, 59] However, with the development and the usage of high-
energy cathode materials in EVs, the drawbacks of the graphite anode were brought back into attention,
such as the limiting factors within the cycle life time and the failure of describing consistently the lithium
ion mobility within the material itself. In fact, despite decades of investigation of the mechanism of lithium
intercalation, the ion mobility and the underlying microscopic processes are still not fully understood and
there is still a huge variation of several orders of magnitude in the exact determination of lithium diffusion
coefficients in the literature i.e 10−12.5 − 10−6.5cm2s−1. [15,44,60–92]
These discrepancies clearly demonstrate that there is still a lack of fundamental understanding of the de-
tails behind the relevant diffusion processes. This becomes even more critical as lithium ion mobility is
nowadays used to predict the performance and life time of a battery cell. [14,15,17,20]

1.4 Motivation

This thesis is designed as part of a multi-disciplinary approach. Tackling all relevant characteristics of a
full working battery requires transversal thinking. The final product relies on the design and the engineer-
ing which will define the final performance of the battery cell. [3, 93] Since LIBS are used in all electronic
devices the optimization of the performance and the prediction of the performance reliability are a must. In
that context, the cell design is pretty well established, whereas the chemical materials are pushed towards
the extreme edge limits of their capabilities in order to achieve the highest performances. This is often
done without a full atomistic understanding of the underlying processes within all of the components. A
critical issue such as the overall performance of a battery still relies on the intrinsic properties of the mate-
rials, for example its theoretical capacity. [3] Therefore, the key to understand the limiting factors of certain
materials lies within the knowledge of the fundamental mechanisms that are behind the working cell. There
are different ways to gain insight into which process is hindering the performance, shortening the life-time
of a battery, as well as giving a priori a prediction of it. Most of them are experiments to measure directly
the ion mobility, however there are also observables that are not yet accessible with experiments or that
cannot unambiguously be measured, such as diffusivities.
On the other hand, theory is another way to investigate and identify the properties that are not experi-
mentally accessible. Within this context, the idea was then to combine and have a synergistic exchange
between experiment and theory. As mentioned before, one of the properties that was not yet assigned
unquestionably is the lithium ion mobility. Lithium atoms that are shuffled through the anode, cathode,
electrolyte and through the interface, can undergo different transport mechanisms within the same work-
ing cell. Lithium mobility is therefore fundamental for understanding the limiting factors and sources of
failure of LIB in general. [3] Once all the components and materials are combined within the working cell,
it is hard to identify the responsible component for the following failure. It has been proposed that there
is a substantial lack of theoretical knowledge within the meso-scale regime, which is indeed the one un-
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Figure 1.6 Upper panel: the representation of the 7Li static NMR, obtained under a spin alignment echo (SAE) pulse.
Lower panel: The inversion of 7Li SAE spectra recorded at room temperature for the mechanical intercalated LiC6

within graphite powder. Different regions are showing various mobility, however the spectra is to complex to correlate
directly the processes with the mobility.

derrepresented. [94] The uncertainties described above are particularly apparent with graphite anodes.
Literature values regarding the lithium ion mobility show quite a scatter over a large range, i.e., ten orders
of magnitude if looking at the lithium diffusion within the graphite material. [15,60–67]
A question that arises naturally is the reliability of diffusion coefficients, however it is not trivial to assess
them unambiguously, considering the complexity of the preparation of the materials, the underlying struc-
ture and the design of the cell. We identify experimentally within the Nuclear Magnetic Resonance (NMR)
the Spin Alignment Echo (SAE) as a good non-destructive technique that allows to investigate mobility in
the meso-scale regime directly on the raw material, which can be extended to in operando cells. From
the theoretical point of view, kinetic Monte Carlo (kMC) is then the method of choice within the multi-scale
framework to access the scale of interest. The challenge is to build a reference system that allows to
assess a reliable observable, to be studied both by theory and experiment and at all the necessary time
and length scales.
As a good candidate for a reference system we identified at first the post-mortem electrochemically in-

tercalated LiC6, however the influence of the electrolyte and the actual charging protocol or condition will
still complicate the system. Thus, the mechanically intercalated lithium in graphite within the LiC6 phase
was then taken into account as well. However, the variation in preparation and grinding procedures once
again makes the system a challenging reference as shown in the Figure 1.6 post data analysis. Finally
the mechanically intercalated lithium in the highly oriented pyrolithyc graphite (HOPG) was chosen. This
apparently simple system actually exhibits a surprisingly rich chemistry, pushing the challenge from a
methodological point of view and unravels more aspects on the materials, which were previously over-
looked. A more advanced data analysis namely the inverse Laplace transformation (ILT) on the SAE-NMR
was used, replacing standard fitting of relaxation spectra. The choice on the technique allows us to asses
a distribution of different relaxation times, thus offering more insight into the processes directly from the
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simple spectra. Furthermore, the diffusivities extracted from NMR can be directly compared with the re-
sults of kinetic Monte Carlo (kMC) simulations. For the latter, the in house kmos code was used, with a
new feature for the charge treatment, taking a step forward from the standard approaches to model lithium
intercalation in graphite, where the ions are treated as neutral particles.
This thesis discusses the short journey from well established techniques to newly developed methods to
unleash the synergies of the combination of experiments and theory to lead us to new insight into Li GICs.
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2 Theoretical Background of the Multi-Scale
Approach

This chapter will describe in a nutshell all the theoretical levels below the kinetic Monte Carlo (kMC) and the
reader will be introduced to an idea of how a multi-scale approach works. Figure 2.1 shows a schematic
representation of the different length and timescale with the standard applied methods.

Figure 2.1 Schematic representation of different length- and time-scales for different theoretical methods. This
representation can also be seen as an overview of how a multi-scale modelling approach would look like. Beginning
with the atomistic modelling approach on a quantum mechanical level more and more coarse grained methods
are used. Typically, the more coarse grained models use input parameters obtained from the less coarse grained
approaches.

In this thesis, the theoretical focus will be on the kMC and the meso-scale domain. However, having
a brief description of the necessary formalism to approach a system from first principles might help to
understand the full picture. Density Functional Theory (DFT), will be described shortly at first, followed
by the semi-empirical approach of Density-functional Tight Binding (DFTB) theory. From DFTB the next
level, passing through the Transition State Theory (TST), is represented by the kinetic Monte Carlo. The
continuum part from the multi-scale approach is discussed just briefly to complete the picture; even though
not used in this thesis, it is the next and last level to be taken into account. This is a description of a so

15



called "bottom up" approach, building from the lower scale into the upper. The complementary one will
be the "top down". While such approaches can be extremely powerful and efficient, they have a slightly
different focus then the one in this work.

2.1 Density Functional Theory

This section aims to introduce the reader to the basic concepts of electronic structure theory. In particular
the focus lies on density functional theory (DFT). For more details the reader is referred to "A Chemist’s
Guide to Density Functional Theory" by Koch and Holthausen. [95]

2.1.1 The Hohenberg-Kohn Theorems

Modern DFT is based on the first and second Hohenberg-Kohn theorem. The first theorem establishes a
one to one mapping between the ground state electron density of a system and its Hamiltonian. It states
that, the ground state density is in principle sufficient to obtain any property of interest of a system. [96]
In other words, the full many-particle ground state is a unique functional of the ground state density. It is
then the second Hohenberg-Kohn theorem which provides a practical tool set on how one can obtain the
ground state density by introducing a variational formulation for the total energy,

E0 ≤ E[ρ] = T [ρ] + ENe[ρ] + Eee[ρ] . (2.1)

Briefly, Equation 2.1 is the variational principle in the context of the HK theorem. This basic equation states
that any given trial density E[ρ] will always yield energies which are above the true ground state energy
E0 of the system unless the density is the ground state density itself. In other words, the true ground
state energy can be obtained in an iterative fashion by minimizing the energy of the total energy density
functional,

E0 = min
ρ→N

(
F [ρ] +

∫
ρ(~r)VNed~r

)
. (2.2)

In Equation 2.2, F [ρ] contains the individual contributions of the kinetic energy T [ρ(~r)], the classical
Coulomb interaction J [ρ(~r)] and the non classical interactions (ncl) like exchange (x) and electron-correlation
(c) effects, Equation 2.3:

F [ρ(~r)] = T [ρ(~r)] + J [ρ(~r)] + Encl[ρ(~r)] . (2.3)

Only J [ρ(~r)] is known. The kinetic energy and all non-classical contribution still need to be determined at
this point.

To summarize, the HK theorems are the foundations of DFT. However, they only state that the ground-
state density contains all the information about a system and that the true ground state density will minimize
the energy. Yet, formally, one still needs to obtain the ground state wave function first in order to determine
the ground state density. However, as the wave function is a multidimensional problem of 3N complex-
ity nothing is gained so far. It is the Kohn-Sham approach which allows to circumvent this problem by
introducing an auxiliary system of non-interacting particles which will be discussed in the next section.

2.1.2 The Kohn-Sham System

While the HK theorems establish the foundation of DFT, it is the Kohn-Sham approach which gives a recipe
on how one can obtain the ground state density without evaluation of the ground state wavefunction. The
idea behind the Kohn-Sham approach is to introduce an auxiliary system of non-interacting electrons.
However, these electrons are subject to an effective potential which is designed in such a way so that
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the density of the non-interacting auxiliary system exactly matches the ground state density of the true
interacting system. The total energy within the Kohn-Sham formalism is then given by

EKS = TKSs [ρ(~r)] +

∫
d~r Vext(~r) ρ(~r) + J [ρ(~r)] + EXC [ρ(~r)] . (2.4)

Here, TKSs is the kinetic energy of the non-interacting system which is a quantity which can be easily cal-
culated in contrast to the kinetic energy of the fully interacting system. Again, J is the classical Coulomb
interaction of a charge density and Vext is the external potential due to the nuclei. EXC is the so called
exchange-correlation contribution which contains all non-classical interactions like exchange and corre-
lation. In other words, EXC contains all the missing information of the non-interacting system which is
not captured by the other terms. In general, one can describe the Kohn-Sham approach as mapping an
interacting particle system onto a non-interacting system. Thus the Kohn-Sham approach give rise to the
so called Kohn-Sham equations which define the electron orbitals ψi,[

−∇
2

2
+ Vext + VJ + VXC

]
ψi = εiψi . (2.5)

This set of equations define single particle orbitals also called Kohn-Sham states. The density of the
interacting electrons is then given by

ρ0 =
∑
i

|ψi (r) |2 . (2.6)

In principle the Kohn-Sham orbitals do not have any physical meaning at all, as they are the orbitals
of the non-interacting electron system. Their only job is to yield the ground state density, however, in
many practical cases the orbitals provide a very good qualitative picture. So far no approximations have
been introduced and the Kohn-Sham formulation is in principle an exact theory. However, as the exact
exchange-correlation functional is not know, this part is usually constructed under some specific assump-
tion. Thus, Kohn-Sham DFT is in practice only an approximate solution to the many body problem. One
particular challenge for constructing a suitable exchange-correlation description is the requirement that it
has to account for the self-interaction error (SIE). J describes the classical Coulomb interaction of charge
densities (sometimes VJ is also described as VH , the Hartree potential). Unfortunately J also gives a
contribution if there is only one electron present in the system. As a consequence, the electron will interact
with itself which yields an over-delocalization of the electron cloud. Many qualitative failures of DFT such
as the band gap problem can be attributed to the SIE. [97] For a one electron system, it is quite trivial to
account for the self-interaction as it is equal to J – J , i.e., it should be zero. For a many electron system
the exact amount of self-interaction is however generally not known. Of course other challenges to the
construction of VXC is the correct modeling of exchange and correlation in terms of the density.

2.1.3 Approximation for the Exchange-Correlation Functional

The exchange-correlation functional EXC is the part which contains all the "unknown" contributions to the
electronic energy. The "unknown" parts are the non-classical portion of the electron-electron interaction
as well as the correction for the self-interaction. On top the part of kinetic energy that is not covered by the
non-interacting reference system is also contained in there. Unfortunately, the exact form of the exchange-
correlation functional is not known and approximations are necessary. The latter ultimately determine the
quality of the DFT treatment. Despite decades of research, finding new and better approximations is still
an active field of research as the exact form still remains a mystery. [96,98]

In general different approximations to EXC can be grouped according to the so called Jacob’s Ladder.
Different rungs of this ladder represent different levels of approximation while the lowest rung represents
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the least sophisticated ones. With increasing rung one usually obtains more and more accurate approxi-
mations, however, the computational effort will increase concomitantly. [99] Functionals which are based
on the local density approximation (LDA) are classed on the lowest rung of the ladder. Here, the exchange-
correlation functional is derived form the homogeneous electron gas model and it only depends on the local
value of the density. Not, surprisingly this type of functionals work already quite well for systems with an
almost uniform density distribution such as metals. However, it will fail for systems with strong varying den-
sity such as molecules. An improvement can be obtained by also taking into account the gradient of the
density. This leads to the so called generalized gradient approximation (GGA) functionals which form the
second rung of the ladder. The most prominent example is the parametrization after Perdew, Burke, and
Ernzerhof (PBE) [100] which showed great success in describing metals, semiconductors and equilibrium
geometries. Further, by inclusion of the Laplacian and the orbital kinetic energy density one obtains the
so called meta-GGA functionals which form the next rung. [101] Rung four consists of hybrid functionals.
The term hybrid comes from the fact that these functionals contain a part of exact exchange coming from
Hartree-Fock theory. The idea is quite simple as within Hartee-Fock theory the spurious self-interaction
is completely canceled out by the corresponding exact exchange term. However, this comes with a cost,
as the evaluation of the exact-exchange contribution involves the calculation of four-center two-electron
integrals which is computationally rather demanding. Nevertheless, hybrid functionals usually yield good
results for molecules [102] and semiconductors, especially if the semiconductor shows significantly cova-
lent bonding character, like TiO2 or Li4Ti5O12. [97,103]

2.2 Density Functional Tight Binding Theory

In this section the basics of the tight binding theory are presented. An overview on the parameterization
specifically for the lithium intercalated graphite system used in this thesis is described. This methodological
part is required for the next step within the multi-level approach. One of the reason that the methodology
and results are overlapping within this section.

2.2.1 General Concepts on DFTB

Despite modern computer power, tractable system sizes with DFT are in the order of up to several hundred
atoms maximum. If one is interested in larger systems one would treat the atoms in a classical way with a
force field (FF) or other related techniques. [94,104–106]. However, the description with force fields might
not be good enough for systems which are characterized by subtle balances between van der Waals and
electrostatic interactions, like lithium intercalated graphite. [107] In that case density functional tight binding
theory (DFTB) is a good alternative. [108–110] In general, DFTB can be regarded as a second-order
approximation to DFT with a semiempirical tight binding simplification. [111] With DFTB the same system
sizes as with a force field description are easily accessible. Computational cost as well as computational
time are usually also comparable. However, with DFTB one still has access to the electronic structure of
the system [106, 110]. The disadvantage though is the necessity of parametrization and most of the time
new parameters are necessary if one wants to treat a new system, but using force fields one is confronted
with similar challenges. [111] Hence, DFTB is not a fully ab initio method, and its performance will largely
depend on a good parametrization. In general the parametrization is obtained using DFT reference data.
Once a suitable parameter set is obtained, reparametrization for a chemically similar system is expected to
be relatively easy, e.g. the carbon parameters for the intercalation of Li can be easily adapted to describe
the intercalation process of Na and K. The starting point for the DFTB approximation is the second order
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expansion of the DFT ground state energy around a fictitious non-interacting auxiliary system with density
ρ0, which can be conceptually divided into three terms:

E[δρ, ρ0] =
{∑

a

fa〈ψa| −
1

2
∇2 + Vext + VH [ρ0] + VXC [ρ0]|ψa〉

}
+

{1
2

∫∫ (
∂2EXC [ρ0]

∂ρ∂ρ′
+

1

||~r − ~r′ ||

)
∂ρ∂ρ

′
d~rd~r

′
}
+

−
{∫

VH [ρ0](~r)ρ0~rd~r − EXC [ρ0] +
∫
VXC [ρ0](~r)ρ0~rd~r − VNN

}
=

= EBS + EC + EREP .

(2.7)

Within this formulation, EBS corresponds to the band structure energy of the system, EC is the Coulomb
energy that accounts for the electrostatics interactions, and EREP gives the repulsive energy that con-
tains all the other contributions. [110, 111] This last one can be considered analogous to the exchange-
correlation energy in DFT which was previously discussed in Section 2.1.3, as it contains (part of) the
corresponding contributions (and others), but most importantly as its form is not a priori known. To make
it even simpler, we can regroup those different parts into two main contributions: the electronic part, ac-
counting for both the band structure and the Coulombic term, and repulsive part, which will be discussed
separately below. Exploiting tight-binding approximations, these contributions can be cast into simple ex-
pressions which only depend on a handful of atomic parameters and pre-tabulated integrals. As such,
the quality of DFTB will essentially depend on the quality of its parametrization. The parameters for the
lithium and graphite are described in the paper by Panosetti et al. [112] For the electronic part an approach
proposed by Chou et al. [113] was used, based on the particle swarm optimization algorithm [114]. For the
repulsive part, a machine learning (ML) [115] algorithm based on Gaussian Process Regression (GPR)
implemented in GPrep package was used [110,112].

2.2.2 The Electronic Part

The so called "electronic part" of the total energy consists of the first two terms, the EBS and the EC
of Equation 2.7. The band structure energy EBS contains the contribution of all the total energy for
the non interacting auxiliary-system, such as all the single-atom-contribution and the valence electrons
effects. EC is the Coulombic contribution to the electrostatic interaction, that also includes some exchange-
correlation effects that comes from the coupling of mobile charge fluctuations. Then, to parameterize all
the electronic part becomes non trivial, despite its simplified expression; however it is still largely non-
empirical. The parameters needed for this contribution are essentially individual single-atom properties
(the diagonal element ε of the non-interacting Hamiltonian, the Hubbard-U parameter), which can be in
principle calculated directly ab initio, and the confinement potential to mimic the “compression” of atomic
densities in a chemical environment. Each aspect will be an individual parameter for any chemical species
in the system. The ε, as non-interacting energy values and the U , based on the chemical "hardness" of an
atom have more physical meaning, whereas the confinement potential is a truly arbitrary parameter with
a cutoff that can be defined for the diffuse tails of the basis orbitals. For this parametrization the Woods
Saxon potential was used, that assures a smoother transition to zero in the orbital tails. [116]

Vconf =
W

1 + exp(−a(r − ra))
(2.8)

with W that is the height, ra the location of the midpoint and the a the slope of the potential [116,117].
To determine the best combination for the above parameters a particle swarm optimization (PSO) algo-

rithm was used. PSO draws its inspiration from a natural phenomenon, such as a bird swarm searching for
food. [113, 114] The candidate solutions to the global optimization problem are represented by “particles”
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Figure 2.2 Comparison of the band structure between DFT (blue lines) calculated with the Perdew-Burke-
Ernzerhof(PBE) [100] functional and our DFTB (red lines). In detail the plots show metallic lithium (upper left),
graphene (upper right), diamond (lower left) and LiC6(lower right) [112]. As one can clearly see, all important fea-
tures of the DFT band structure are reproduced by DFTB with good accuracy.

which are moving through a search space like a swarm, guided by a combination of local and global crite-
ria. Hereby, this is used to identify the best parameters for the electronic part. [111,113] Each particle has
a position in this space, that will correspond to a trial set of parameters pi with coordinates corresponding
to its individual components. [111,117,118] In a more specific way here, in the PSO the particle will repre-
sent a set of parameters (ε,U and the confinement constants), with which the electronic part of the DFTB
is constructed and used to calculate one or more target properties. The deviation between the predicted
and the corresponding properties calculated with DFT is the target function to minimize.

By means of a careful choice of properties to include in the cost function, i.e., only properties that do not
depend on repulsion, one can conveniently separate the electronic parametrization from the parametriza-
tion of repulsion, which is generally much more complicated. The latter is then described in Section 2.2.3
For the electronic part, the targets were the band structures of the individual elements: metallic lithium,
graphene and diamond, and the results were validated with respect to the mixed system LiC6. Figure 2.2
shows the resulting band structures. [112] The mismatch is some parts is given by the intrinsic oversimpli-
fication of DFTB which uses a minimal (valence only) basis set.
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2.2.3 The Repulsion Potential

The last but not least part from Equation 2.7 is the so called repulsive contributionEREP to the energy. This
part consists of the all terms that are not included in the electronic contribution. The repulsion potential in
DFTB plays a similar role as the exchange-correlation in DFT. It covers underneath all the non-classical
many-body effects. As such, the term "repulsive" is somewhat of a misnomer, as the interaction may just as
well display attractive regions especially around equilibrium distances. It can be shown that EREP , defined
as the deviation between the "true" DFT energy and the "repulsion-less" DFTB energy, is adequately
approximated as a sum of pairwise terms, as simple as:

EREP := EDFT − EBS − EC =
1

2

∑
I

∑
J 6=I

VREP (RIJ) (2.9)

where RIJ = |RI − RJ | is the distance between the chemical species that we account for within the
sum. In this case the short-range pairwise potential VREP depends only on the interatomic distance, which
must be defined for each combination of elements. To enforce the short range-character one is using a
cutoff radius. [110]

As in the quest for the exchange-correlation, there are different ways of approaching this problem and
different fitting procedures. The problem of parametrizing a repulsive potential appears not only in DFTB
but in any other tight binding approaches. [109] A common approach is to either choose a functional form
a priori or represent the pairwise potentials with splines. In either case, the functional form has to be
flexible enough to correctly represent the subtleties of the repulsive interactions. Practically, this means
that the number of coefficients to fit per atomic species pair is rather large. Additionally, if one is targeting a
parameter set for N atomic species, the parametrization of the pairwise potential is an N2 effort. It is quite
evident at this point that this is the most cumbersome part of the parametrizazion procedure, as well as
dominating its entire cost. To avoid this and other shortcomings, here we rather adopt a machine learning
approach to replace the classical fitting procedure.

To this end, VREP was reformulated in the group by Panosetti et al. within the Bayesian machine learning
framework of Gaussian Process Regression (GPR). [110] In the GPR setting it is important to sample a
large set of training data points to cover all the interatomic distance ranges and chemical environments in
order to have a good representation of the system studied. The parameterization used in this work was
done for the repulsive potentials for C-C and Li-C only, the Li-Li repulsive is available as well now, however,
in this thesis all the models that were prepared for the kmos application, involved the energy barriers from
the DFTB parameterization without the Li-Li repulsion. [112,119]

Gaussian Process Regresson

A general Gaussian process is a multivariate Gaussian distribution that can be applied for any random
variable. In this context, random variables represent a target function value f∗ at a certain input x∗. In
GPR, VREP is modeled as a linear combination of covariance (kernel) functions

VREP (R) =
∑
I,J∈X

αIJk(R,RIJ) (2.10)

where the sum is over all Npairs of I, J , in the set of reference structures X, with regression coefficients
αIJ and the Kernel function k(R,RIJ). Without going into more details, the ML-based approach used
to fit repulsive potentials in DFTB, named as GPrep, is essentially a simplified version of the Gaussian
Approximation Potential (GAP) approach of Bartók et al. [110, 120], with the main difference consisting in
the use of a pairwise descriptor (the interatomic distance) rather than the many-body smooth overlap of
atomic positions (SOAP). Both GAP and GPrep allow to train on energies or forces or both. Here, we only
trained on forces.
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Figure 2.3 Upper left and right: 2D repulsion potential landscape (energy is given in eV, expressed by the color bar)
depending on the chosen Li-C cutoff radius (y-axis) for different sets, used in the parameterization. The black and
green dashed lines represent the next-neighbor Li-C distance for the respectively sets. The diagonal line are the
cutoff radii, at which the potential is set to zero. The plateaus are highlighted between thin dotted lines. Bottom left :
influence of the inclusion of MBD vs LJ force residues in the training data on the repulsion potential (energy is given
in eV, expresed by the color bar). Bottom right: the detailed repulsion potentials at RLiC6

cut = 5.0 Ångstrom [112].

A Gaussian, or squared exponential (SE) kernel was employed, of the form

kSE(~x1, ~x2) = δ2 exp

(
−(~x1 − ~x2)2

2θ2

)
(2.11)

where θ is a length scale, within the target value and can be seen as a measure of smoothness. δ2 is the
target variance from the prior distribution. The σn as one of the hyperparameters will prevent over-fitting
and the posterior mean only depends on the quotient σn/δ.

Van der Waals Interaction

Van der Waals (vdW) forces are weak attractive intermolecular forces. Usually they are decaying with an
order of R−6 with respect to the distance between the interacting particles. They are important for the
so called dilute systems or low state of charge, if referring to the world of layered battery materials such
as lithium-graphite. Tackling the domain model within the structure of the anode requires as well to take
into account even more the interactions between the graphite layers. Hence, the origin of those interac-
tions are mainly induced by van der Waals forces. PBE-DFT, commonly used as the reference for the
DFTB parametrization, does not include the van der Waals interactions. These usually are added then
in a post-processing step. Different approaches are available with variable accuracy and computational
costs, from the cheapest dispersion correction Lennard Jones (LJ), passing through the semi-empirical
approximation by Grimme [121] and the Tkatchenko-Scheffler (TS) [122,123] scheme based on the elec-
tron density, where van der Waals interactions are derived from the ground state electron density and free
atom references. Among the available vdW methods, the Many-Body dispersion (MBD) correction, which
is density-based like TS, showed satisfactory results for lithium intercalated graphite, however its cost when
integrated into the DFTB will make the method more expensive, despite still cheaper than DFT. [122,123]
Most importantly, we observed that the description of higher states of charge is already sufficient at the
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Figure 2.4 Depiction of Gaussian process regression (GPR) in 1D input space. The figures represent a finite subset
of 100 equidistant random variables according to Engelmann et al. [115] within the given range. The black dashed
line marks the mean of the distribution. The gray shaed region shows twice the standard deviation of the target
variables. The colored lines are random target vectors f∗, from the corresponding probability distribution. Left: The
representation of a Prior distribution of a Gaussian process. Right: Conditioned the prior distribution on the training
data (red crosses) is obtained the posterior distribution used to train or (machine learn) in the context of the GPR.
The figure has been reproduced from Engelmann et al. [115] on courtesy from the author.

PBE level, while at the same time MBD suffers increasingly more from numerical issues as the content of
lithium increases. In other words, there is no approach that performs equally well across the entire range
of states of charge. The idea is then to exploit the Machine-learning approach to encode the deviation
between MBD (in the reference data) and LJ (which is readily computable with DFTB) for the dilute Li-
graphite systems directly in the repulsive potential. In this way, with a careful choice of the training set,
including both PBE (for high states of charge) and PBD+MBD (for low state of charge) forces, we teach the
repulsive potential the correct behaviour at any state of charge. The detailed parametrization procedure is
described in the paper by Panosetti et al.. [112]

2.2.4 Energy Barriers and Transition State Theory

Energy barriers are required when it is necessary to describe a diffusion process or any processes that
involve a non static reaction. Those can be obtained theoretically with different methods and accuracy.
The most used one though is Transition State Theory (TST). Transition State Theory (TST) can provide
rate constants required as input for our next level, the kinetic Monte-Carlo (kMC). [124–126] TST is valid
under the assumption that in a process that goes from state A to state B will not come back. Hence, one
can write the expression for the transition from A −→ B known as Eyring-Polanyi

kTST (A→ B) =
qvibTSkBT

hqvibA
exp

(−∆E(A→B)

kBT

)
(2.12)

where T is the temperature, h is Planck’s constant qvibTS and qvibA are vibrational partition functions at the
transition state and at the reactant respectively, ∆E(A→B) is then the activation barrier of the process. The
latter is directly available from the PES information, based on first-principles calculations. [126] In other
words, TST will estimate the velocity of the transition from one state to another (rate constant) passing
through a high energy region on the PES. The resulting expression of the TST is formally equivalent to the
empirical Arrhenius relation;

k = A exp

(
− Ea
kBT

)
(2.13)
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Figure 2.5 Example of a coarse-grained molecular dynamics (MD) trajectory into a Markov chain. Left: Potential
energy surface (PES) of a system with the lower-energy basins in red. The MD(black line) is the trajectory that
is coarsed-grained. The time spent in these PES basins are vibrationl motion around the minima, followed by the
escape route at a certain time. As one can see from the behaviour, the system spends quite a significant time in
those minima. Center: The translation of the PES minima into position on a suitable defined lattice. Right: The final
representation of the continuous MD trajectory into a Markov chain as hops between different positions on the lattice.
The figure has been reproduced from Anderson et al. [127] on courtesy from the author.

whereA is the pre-exponential factor, related to the frequency of the successful collisions and depending
on the order of the reaction. The entropic effects are also incorporated within the pre-exponential factor.
In solid state systems TST is also known under the Harmonic Transition State Theory (HTST). [124] This
assumes in more detail that the harmonic approximation can be used for the local minima on the PES and
the transition states. In fact the transition states on the PES can be seen as saddle points of first order,
and the lowest is taken as the activation barrier of the relevant reaction/process.

In the presence of any other alteration on the transition process, i.e. electrostatic potentials acting
on the actual process, thus the energy barrier (EA) will be shifted or altered. This can be used in the
kMC subsequently, by adapting the raw simple activation energy barrier accordingly. Thus, the starting
point is based on first principles with the activation barriers extracted from DFTB through the Nudged
Elastic Band (NEB) approach. [110, 112] NEB is just a selected computational method that gives access
to transition states. There are several different computational methods with more detailed and complex
approximations, but that will go beyond this work. [128] The Nudged Elastic Band (NEB) method is part
of the chain-of state class of methods, that involves a chain of images optimized simultaneously until they
converge them to the minimum energy path (MEP). Moreover, that will estimate directly the path between
the initial state (IS) and the final state (FS) without using the second derivative energy for the calculation,
making it cheap. The starting point is the construction of the IS and FS, preferably with sensible guesses.
Those are optimized individually, and then when possible linear interpolation or a more complex scheme
between them is used to identify some replicas between IS and FS. The replica images are connected
with springs, which will give the name to the so called simplified elastic band (EB) concept. The images
are then optimized simultaneously in order to match the MEP, using the spring forces for keeping the
images together. However, the EB is not performing well and has problems such as corner cutting and
down-sliding. To correct those, the EB is "nudged", that is, the forces are projected in such a way that
the gradient forces only act perpendicularly to the chain, while spring forces only act parallel to the chain.
The resulting Nudged Elastic Band (NEB) method can be used in combination with the so-called "climbing
image" (CI). The idea of the CI is to change the forces affecting one of the NEB-image so it would converge
to the TS. The highest one in energy is chosen as the climbing image. This image is not affected by the
spring forces and the true force is applied with inverted parallel component. As a result, the energy of
the climbing image is maximized and it reaches an accurate value of the TS, with the same computational
cost as for the classical NEB. A representation of the search is in Figure 2.6. For all the energetics
the parameterization of the DFTB described in Panosetti et al. was used. [110] In the following work of
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Figure 2.6 Representations of different methods for the search of transitions states. Left: Initial state, Final state
and Transition sate. Center: The Nudge elastic band (NEB) method. Here, spring forces are added along a band
between the images. This determines the NEB force acting on an image i at a certain optimization step. Right: The
dimer method. The magnified panel shows the composition of forces which determines the effective force acting on
a dimer at a certain optimization step, after the constrained minimization with respect to orientation. The figure has
been reproduced from Anderson et al. [127] on courtesy from the author.

Anniés et al. [119] the DFTB parameterization was adapted to account for the lithium-lithium repulsive
intra/inter-layer contribution, however, here all the models involved were built on the previous one without
Li-Li repulsion. For further details, the reader is referred to the work of Panosetti et al.. The used diffusion
barriers which are included within the kmos model can also be found there. [112]

As activation barrier for the LiC6 as stage I 503 meV was identified and then the subsequent next level
was pursued. [112] Ideally we want to reduce the usage of low length and time scales to a minimum. There-
fore, we obtain the initial activation barrier from DFTB and then move forward. To effectively connect to
experimental studies, a theoretical framework for simulating large-scale and long-duration non equilibrium
processes in the graphite anode, based on kinetic Monte Carlo simulations is required. [112,127]

2.3 Kinetic Monte Carlo

kMC models can be applied to describe different processes in materials from diffusion to different kinds of
catalysis. In this work, however all the focus will be put on the diffusion properties applied within the field
of LIBs, in particular diffusion coefficients of the lithium ions within the ideal host system of the HOPG.
Within this chapter, the standard kinetic Monte Carlo approach will be introduced together with the kmos
code. [129]

2.3.1 kMC in a Nutshell

Describing dynamical properties of chemical or physical processes from an atomistic point of view can be
challenging depending on the actual time and lengths scale that we are looking for. The variation of the
lengths and time scale in the laboratory frameworks, such as micrometers to centimeters from one side
and seconds from the other side, promoted the usage of kMC. In fact, kinetics are generally studied on
meso- or macroscopic scale. kMC is an evolution of the classic Monte Carlo, where the kinetics can be
interpreted as a temporal evolution of the system. [124] To describe the dynamics of a process, i.e., that
evolves from state to state, kinetic Monte Carlo is one of the suitable algorithms. Despite the fact that
the algorithm appeared within the 60s, the terminology got settled to kMC in the early 90s and took over
a range of applications since then. It keeps being used as a common tool for studying materials from
catalysis, to any kind of ultra material storage, passing through irradiation, surface adsorption, diffusion
and crystal growth. [124, 125] Ideally, kMC can give the exact dynamical evolution of a system, however,
in practice a full dynamical evolution is challenging. The aim is simulating the dynamical evolution of
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systems of atoms cheaply and within a certain accuracy for a specific property, i.e., in our case, diffusion.
kMC exploits the fact that the long-time dynamics of the specific system typically consists of activated
diffusive jumps from state to state. The key assumption is that the jumps are Markovian. Markovian
processes are "memoryless", meaning that the transition probabilities are constant over the trajectory and
the state transition probability during each time step solely depends on the previous state. Hence, within
the Markovian approximation, the evolution of the system will depend on the transition probabilities of
individual elementary jumps, that can be calculated based on the current configuration of the state-to-
state dynamics. This evolution will be time dependent and is generally described by a differential equation
of first order, the Master Equation 2.14 [130].

dp(x, t)

dt
=
∑
y

k(y → x)p(y, t)−
∑
y

k(x→ y)p(x, t), (2.14)

where k(y → x) is the transition rate for the transition from state y to state x and can be identified with the
rate constants from Section 2.2.4. In the context of ion diffusion of only one type of cations, it is convenient
to consider the state x as filled with zeros and ones, where xi = 1 means that an ion is occupying the i-th
site and xi = 0 indicates that the i-th site is empty. For the later discussion, it is convenient to group the
transitions x→ y into processes ξ

ξ : x→ x+ dξ (2.15)

where dξ is the change in the state due to execution of the processes ξ and independent of the current
realisation x. Since each rare event will only affect a few sites in the near vicinity to each other, the vector
dξ will be sparse, i.e. zero in all entries except those corresponding to the affected sites, and the number
of process will scale linearly in the number of sites. We can then rewrite the master equation as

dp(x, t)

dt
=
∑
ξ

rξ(x− dξ)p(x− dξ, t)−
∑
ξ

rξ(x)p(x, t), (2.16)

where rξ(x) is the rate function of the process ξ and is formally given by

rξ(x) = k(x→ x+ dξ) (2.17)

As one can deduce, Master equation is at the base of all kMC simulations and solving the Master Equation
is mainly working on the rates necessary for the propagation of the system.

2.3.2 Rate Constants in kMC

Knowing the rate constants that corresponds to the processes that one needs to describe within kMC
allows as well to reproduce longer time scales, on the orders of seconds or well beyond within a reasonable
computational time. [124, 125] The simplest way of approximating the rate constant for escape from one
state to another is by the equilibrium flux through a dividing surface separating the two states, and is given
by the TST (see Figure 2.6 and Section 2.2.4) proposed first in 1915 by Marcelin. [131] Looking in detail at
each trajectory in the ensemble, it will be necessary to count the number of forward crossing through the
dividing surface per unit time and divide this by the number of trajectories, on average, that are in state i at
any time, we obtain the TST rate constant, kTSTij . Since the TST is an equilibrium theory, we can calculate
kTSTij without even looking at dynamical trajectories. For a thermal ensemble, kTSTij is simply proportional
to the Boltzmann probability of being at the dividing surface relative to the probability of being anywhere
in state i. In a computer implementation this can be realized with an array of partials sums. The array
element sj represents the lengths of all the objects up to and including object j. With s(j) being

s(j) =

i∑
q

kiq . (2.18)
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One then draws a random number r, distributed on (0,1), multiplies it by ktot, and iterates element-wise
through s, the first element for which s(j) > rktot is the selected pathway.

As mentioned before, the models are sensitive to the predefined rates. On top, if an external force in
one of the directions is applied to a system with charged particles, a concentration gradient is expected
as well. This gradient induces a flux of charged particles in a certain direction. Furthermore the flux is
influenced by the electrostatic interaction between the jumping charge carriers. To investigate the effect
of the electrostatic interaction on the particle flux, an adjusted formulation of kMC, which is driven by an
external potential, is required. That will be discussed in the chapter 5. The on the fly concept arises
from the fact that keeping the rate catalog on the lattice processes can still mislead or bring bias within
the generation of the paths. Keeping the system on lattice precludes certain types of diffusive events,
considering that the rate catalogs are based on intuition and most of the time pre-conditioned by the
system knowledge. On top the real dynamics are more complicated then expected. [124]

2.3.3 kMC in kmos

The code which was used for carrying out all the relevant kmc calculations is the open source package
kmos. For more details the reader is referred to the documentation of the code http://kmos.readthedocs.io
. [129,132] The kmos package was developed previously in the group [129,132] with the main application
on the heterogeneous catalysis. [127,133]. This allows to obtain mesoscopic averages of quantities such
as turn over frequencies from the first principles, that ultimately are required for simulation of the reactor
level kinetics or the optimal conditions of operation to maximize the performance. [104,127] The quality of
the latter, breaks down to the quality of the input data again. Thus, it is important to get reliable inputs.

dρi(t)/dt =
∑
j

(kijρj(t))−
∑
j

(kjiρi(t)) =
∑
j

(kijρj(t))− ρj(t)
∑
j

(kji) . (2.19)

To be able to use the implementation from kmos, it is required to map the problem onto a lattice, and to
identify the elementary processes with the respective rate constants. [129,134]

In order to run the kMC model in kmos and other on-lattice kMC implementations [124] one needs to
prefill the lattice sites with some particles. Starting the simulation with a completely empty lattice, would
directly bring to a deadlock where no processes are possible. [124, 129] The atoms in the system are
mapped onto a lattice. An event may move one atom or many atoms, perhaps in a complicated way, but
in the final state, each atom will again be mapped onto a unique lattice point. The rates are as described
above, and each process requires a unique rate through TST. In principle, calculating the rate for any
distinct process requires that the system should be relaxed to find the minimum energy at the starting
point and frequencies at the minimum. After relaxation, the atoms will in general no longer be positioned
on the lattice points, especially for atoms near defects. However, if the atomic positions do not change
much during the relaxation, then each atom is sufficiently close to a lattice point and it is safe to map the
system onto a lattice in this way to simplify the KMC and the generation of the rate constants. Lattice
mapping also makes it easy to exploit locality in determining rates. We assume that only the atoms near
a defect affect the rate constant for any change or migration of that defect. The example in Figure 2.7 is
representing these ideas.

The jump of a lattice vacancy, will be affected locally by the environment, the labeled sites (1-10) can
be either occupied or vacant and will influence the transition of the moving atom. This will be reflected on
the rate constant. As one can imagine based on that, the possible rates, ignoring the symmetry, can grow
quickly and will be explicitly dependent on the number of sites and the number of the possible atom types
that can sit on those sites: [124]

nrate = (ntype + 1)nsite (2.20)
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Figure 2.7 Schematic representation of a rate catalog example for the diffusional jump of a random vacancy in a
solid matrix. The sites which are labelled from 1-10 can affect the rate constant of the so called representative atom
depicted in grey. This influence will be assessed within the kMC simulation and will enter into the description of the
rate constant for the next jump in any direction of the environment. Figure adapted from Voter et al.. [124]

where nsite is the number of sites explicitly considered (nsite = 10) and ntype is the number of possible
atom types that can be each of those sites. This is a simplistic view; as soon as we go to a realistic
chemical system, that can get quickly complicated, as some pathways might include multiple vacancies
and a variety of atoms. Additionally, if it is sufficient to consider just the so called nearest neighbours, this
is still feasible; however if going to second or third, the number of rates to be computed increases very
rapidly, complicating the compilation of the "rate catalog". This can be addressed and reduced by splitting
the neighborhood into two sets of sites, but, in some cases, it can become advantageous to compute
the barriers on the fly instead. The latter approach consists in calculating the rate catalog as the kMC
simulation proceeds, so that the rate constants are computed only for those environments encountered
during the kMC. [135–137] That allows us to approximate the rate constant of a random process on-the-fly
within the kmos, based on the consideration of the nearest neighbors. That calculates the processes during
each MC step, allowing to save computational costs. Large scale atomistic simulations typically pursue
force field approaches, well described within the upper end of the SOC, however, those approaches are
limited when it comes to the entire range of different SOC. [127, 129] In our case we will be dealing with
hopping diffusion, that normally does not involve particularly sensitive or overall rate-limiting elementary
processes. [138] When kMC is correctly replicating the microkinetic events of a system, the overall behavior
of a collection of free-wandering particles must coincide with the analytical solutions of Fick’s laws at the
continuum level 2.4. [94].

2.4 Continuum

The final descriptive level of a multiscale approach is the continuum level. Although not performed in this
work, the full approach it is described briefly below for completeness. Ideally in this part, once the diffusion
coefficient was assessed and associated to a process, ideally from the first principles, the quality of these
parameters will reflect in the prediction of the performance of the material. With that said, it is not trivial how
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the final performance of the full cell within the electric device will be affected by all the other components
of the lithium ion battery. The problem becomes quickly a multidimensional and a multi-physics system. In
the context of battery materials modelling, the influence of the liquid electrolyte on the solid phase of the
electrodes, as well as the electrochemical-thermal phenomena are then taken into account on this scale.
The Li ion transport within the solid will be as well influenced by these processes, as well as the other way
around. This makes the predictability quite hard to address. [28,139,140] There are different mathematical
models to address this complexity; however, the fundamental principle within all of these electrochemical
models was established by Newman and co-workers. [141–144] The so-called Newman model is based on
the Maxwell-Stefan equation, that allows to describe the transport of the ions within the liquid electrolytes
and the porous electrode in a homogeneous way. Due to its simplicity it is still the main workhorse for
theoretical modeling. The principles of irreversible thermodynamics state that the flux of one species is
inherently coupled to the fluxes of all other species present, as set forth in Stefan-Maxwell equations:

ci∆µi =
∑
j

cicj
cTDij

(vj − vi) . (2.21)

Here, ci is the concentration, Dij are the diffusion coefficients, v the velocity, i and j the species indices
and Ct is the total molar concentration. In the simplest version, the Newman model takes the form of
the Planck-Nernst equation representing the competition between the transport (drift) of charged particles
due to an electric field and their diffusion. Here, the ionic fluxes are taking into account the diffusion and
electromigration in a mean electric field, which is described self-consistently from the mean ionic charge
density via Poisson’s equation.

Those methods developed to include more and more complexity, to be able to integrate further ad-
vancements in battery systems. The model addresses the electrolyte concentration, electrolyte poten-
tial, solid-state potential, solid-state concentration of the ions within the porous electrodes and the elec-
trolyte concentration and potential within the separator. This model includes the principles of the transport
phenomena, electrochemistry, and thermodynamics within nonlinear partial differential equations (PDEs)
space, velocity and time. However, by incorporating so many variables one disadvantage is that disentan-
gling the limiting factors is quite a difficult task. [139, 145] As mentioned, each of those will influence the
performance and the reliability of the predictive models. Each of those is challenging in its own complexity.
However, the solid state diffusion within the electrode material, as well as at the interface, remains one of
the key parameters. There are many models build on that, and to recall a few of them Singht, Ceder and
Bazant introduced the idea of using Cahn-Hilliard model to account for phase transformations that occur
in solid state particles during intercalation. [145,146]

Nc,i = civi . (2.22)

where ci is the concentration of the species and vi is the velocity of the medium.

Nm = −ziuiFci∆Φ . (2.23)

with Nm, with zi is the charge of the species i, ui the mobility, F the Faraday constant, ci the concentration
of the species i and ∆Φ the so called voltage if in continuum. Diffusion is also given by

Di = uiRT . (2.24)

and combining the equations 2.23 and 2.24 gives

Nm = −zi
Di

RT
Fci∆Φ . (2.25)

The latter will be used later to help in bridging the gap between the mesoscale and the continuum.

29



2.4.1 Fickian Diffusion in a Solid Matrix from a Continuum Perspective

The classical way of calculating the diffusion is through Fick’s law.

Ns = −Ds∇cs . (2.26)

∂cs

∂t
= −∇Ns . (2.27)

To describe the connection of kMC with Fick’s law we can take a simple scenario: an infinite one-
dimensional slab of intercalation material, having an initial uniform occupation degree x0 occupying a
portion of size l in the center of the slab, equation:

δx(r, t)

δt
= −D(

δ2x(r, t)

δr2
) . (2.28)

where the occupation at t = 0 is

x(r, 0) = {x0if |r| ≤ l/20if |r| > l/2 . (2.29)

Once again to connect this with kMC simulations, let us consider the diffusion of non interacting particles,
where we have the following relationships:

D = Γ(x)λ2 , (2.30)

and

Γ(x) = Γ(0)(1− x) . (2.31)

NM =
D

Deff
. (2.32)

at the end the Deff = (1/NM )D = ε1.5l D
The Poisson equation gives the connection between the charge density and the potential and can be

used to bridge the scale from the mesoscale to the continuum:

∇∇ϕ = −4πρ

ε
. (2.33)
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3 Theoretical and Experimental Background on the
Nuclear Magnetic Resonance (NMR)

This chapter presents the theoretical and experimental background to understand the basic concepts of
the Nuclear Magnetic Resonance (NMR) spectroscopy. NMR is known to be able to provide information
about the local electronic structure and dynamics directly from the nuclei that are investigated. A brief
description on the 7Li nucleus, and its characteristics within the NMR context will be given. Additionally,
a quick description on how atomistic dynamics are assessed with NMR techniques at different time and
length scales.
The spin alignment echo (SAE) and the inverse Laplace transform (ILT) will be introduced to describe the
techniques relevant for the purpose of this thesis. The focus will be on how to extract correlation times
from the (ILT)-SAE-NMR that can consequently be related to a diffusion process.

3.1 Nuclear Magnetic Resonance (NMR)

NMR spectroscopy allows to investigate nuclear spin energy levels. Every nucleus has an intrinsic angular
momentum (Equation 3.1). Thus energy levels of the nuclear spins are intrinsically present in any element.
The origin is the presence of spin within the respective nucleus, those the presence of nuclear µn as well
as electron angular momentum L. [147–149] The angular momentum L, from the magnetic nuclei, is
proportional to the spin I, where the proportionality constant is given by the Planck’s constant h, with L
and I being quantum mechanical operators. In more details, the eigenvalue of I2 is I(I + 1), with the
spin quantum number I that can have is integer and half integer values. The absolute value of the spin
angular momentum is defined as:

|L| = ~
√
I(I + 1) . (3.1)

Where I is the spin quantum number of the nuclear spin I, which is the result of the combination of the
individual proton and neutron spins in the nucleus. To be able to use magnetic resonance spectroscopy
there are some specific requirements: i) I has to have half-integer spin for odd mass number i.e. 1H,
13C, and 31P are spin −1/2 nuclei with I = 1/2, ii) I is integer with an even mass number and odd
proton numbers,2H, 6Li are spin −1 nuclei with I = 1. For the other immeasurable nuclei with spin 0 i.e.
12C,160, an enrichment with measurable isotopes can be used i.e.13C,17O, etc. Just to avoid confusion spin
quantum number and spin are often used interchangeably. In the following the basics will be discussed for
the most common nucleus, 1H. If needed the discussion will be extended to the 7Li nuclei, that is the one
which is investigated in this thesis. In the case of lithium, the 7Li, with spin −3/2 nuclei and with I = 3/2
will be treated.
The external magnetic field is defined along the z-direction, hence the component in the direction of the
applied field is:

|Lz| = Iz~ = m~ . (3.2)

The magnetic quantum number is Iz or m. A nucleus with spin I has 2I+1 eigenstates:

Iz ≡ m = −I,−I + 1, ..., I − 1, I . (3.3)

The angular momentum and thus the spin is proportional to the nuclear magnetic field µ of the respective
nuclei. Once again, the intrinsic magnetic moment of nuclei is due to the fact that an atomic nuclei carries
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an electric charge. In nuclei with spin, rotation then creates a circular current which produces a magnetic
moment µ. The nuclear moment µ then starts to precess in B (torque) in one of its eigenstates.

T = µ×B . (3.4)

The energy of the torque motion of the nuclear spin inB is naturally proportional to B and L and depends
on the type of nuclei species which is defined by γ, the gyromagnetic ratio.

In the following and since the notations are following the reference from Ernst [147], the magnetic in-
duction B will be used to characterize the magnetic field instead of the magnetic field strength H . The
total magnetization M is the sum of the magnetic dipole moments µ per unit volume. The gyromagnetic
(or magnetogyric) ratio γ, due to the rotation of the electrically charged particle, is fundamental for the
magnetic resonance and is defined by

µ = γL . (3.5)

In order to address the nuclear spin states experimentally, the degeneracy of the eigenstates has to be
lifted.

E = −µ ·B . (3.6)

As mentioned above we need the z component of the nuclear magnetic moment

µz = γLz = γIz~ ≡ γm~ . (3.7)

The energy levels of a nucleus of nuclear spin I are thereby split under the influence of an external field
in the z-direction B0. One obtains 2I + 1, the so called Zeeman levels. The energy difference compared
to the state without the magnetic field is:

Em = −µzB0 − γm~B0 . (3.8)

The interaction between the nuclear spin I and the external magnetic field B is given by the Zeeman
interaction

HZ = −~γIzB0 . (3.9)

Here γI is the gyromagnetic ratio of the nucleus I, ~ is the reduced Planck constant h divided by 2π
and B0 is the static magnetic field along the z-direction. The z index is used to indicate the direction of the
magnetic field. For the sake of simplicity but without loss of generality, this index is sometimes omitted in
the description, however most of the time it is implicitly included. The splitting of the energy levels is then
a consequence of the interaction of the magnetic moments with the applied magnetic field. Those energy
levels Em are described as the eigenvalues of the Hamiltonian operator, wherem is the magnetic quantum
number. The magnetic quantum number can have integer values between −I and +I. By this the nuclear
spin with a quantum number can assume one of 2I + 1 stable positions in the magnetic field, creating an
energy splitting. The simplest case is the nucleus with I = 1/2 which will give rise to two eigenstates,
one with spin up and one spin down orientation. Depending on the z-component of the magnetic moment,
these orientations are either parallel or antiparallel to the magnetic field. A simple sketch for this situation
can be seen in Figure 3.1.
In the case of 7Li, the I = 3/2 will give rise to four eigenstates. In presence of an magnetic field, this
will result in four different energy levels (Figure 3.1). In general, NMR is probing the nuclear spin states
by inducing transitions between the different spin states and measuring the energy difference ∆E. The
energy difference for transitions between different spin states (absorption, emission), if it reorients and
moves from one energy level to the next, will determine the NMR frequency µ0
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Figure 3.1 (Upper left) Free spins with random orientation. (Upper right) Reordering of the spins under the influence
of an external magnetic field which is applied in z-direction (B0). (Lower left) Zeeman splitting for a nucleus with
spin-1/2. (Lower right) Zeeman splitting for a nucleus with spin-3/2.
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∆E = |Em − Em−1| = ~γB0 = −~ω0 = −~µ0 . (3.10)

The above equation then defines the position of µ0 of the Zeeman signal in the NMR spectrum.
After we know what the origin of the signal position in the spectrum is, we further need to define the role

of its intensity. The polarization is the sum of all the components of the nuclear magnetic moments parallel
to the applied field.

The thermodynamic equilibrium of all magnetic moments are found in one of the energy eigenstates Em
with having one of the 2I +1 allowed projections along the z-axis. Thus the nuclear magnetic polarization
is determined by the differences in population of the energy levels. The relative numbers nm−1/nm of the
spin states are given by the Boltzmann distribution:

nm−1/nm = exp(−~ω0/kBT ) . (3.11)

Subsequently the population difference ∆n = nm−1-nm can be calculated and one can identify how many
spins are under investigation.

∆n = nm−1 − nm ≈ N0~ω0/(2kBT ) . (3.12)

In other words the NMR signal gives quantitative information about the number of spins. This can be
exploited in an NMR experiment. In a simple 1H experiment of ethanol (CH3CH2OH) the integrals of the
obtained signals have the ratio of 3:2:1. Note that the 1H on CH3 are chemically equivalent. This also
holds true for the 1H nuclei on CH2.

3.1.1 Influence of local chemical environment

In fact, the more complex the nuclei, the more complexity will be present in the spectra. The equilibrium
magnetization of the system M0 is given by the sum of the projection of all nuclear magnetic moments
along the axis of the external magnetic field B0. The macroscopic magnetization, which under the sole
influence of an external field aligns itself in the same direction as M0 that equals to χ0H0 and again
equal to χ0B0/µ0. To describe the correlation between the magnetic moments of the spins and the static
magnetic field B0, the Zeeman interaction is necessary. In general, this will also depend on the angle θ
between this natural dipole moment and the field.

The energy can be described as

E = −MB0 = −|M ||B0| cos θ =MzB0 . (3.13)

The orientation of the field B0 will define the z-axis of the coordinate framework as reference. Here,
Mz = |M |cosθ is the projection of the magnetization vector onto the direction of the magnetic field.

The intensity of the NMR signal (the area integral) depends on ∆n or subsequently N0m. As previously
mentioned, this makes NMR a method which also gives us information on the relative number of spins
under investigation. Additionally, the NMR signal provides qualitative information about the elemental
species of the nucleus and quantitative information about the relative concentration of the nuclei. Nuclei
of the same element will however resonate at different frequencies as a function of the magnetic field.
Additionally, the local magnetic field experienced by a nucleus is slightly different from that of other similar
nuclei due to the local magnetic field that each element/isotope i.e Li experience. If a molecule, which
contains the nucleus of interest, is put in a magnetic field B0, simple electromagnetic theory indicates that
the B0 field induces electron currents in the electron density of the molecule in the plane perpendicular to
the applied magnetic field. These will then produce a small magnetic field opposed to the applied field that
acts to partially cancel the applied field, thus shielding the nucleus. In general the induced opposing field
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Figure 3.2 Illustration of the simplest pulse-acquire experiment and the conversion into the spectrum. The π/2 pulse
is applied by a radio frequency (RF) signal. The pulse rotates rotates the magnetization through π/2. The signal is
detected in form of the so called free induction decay (FID). The FID is the result of loosing spin polarization over
the time. Here, the loss of spin polarization follows an exponential decay. The transformation of from time domain (t)
(the FID) into frequency domain (f, or the spectrum) is achieved by the Fast Fourier transform (FFT).

is about a million times smaller than the applied field. Consequently, the magnetic field perceived by the
nucleus will be slightly altered from the applied field so the resonance condition will need to be modified.

ν = γ/2πBlocal = γB0/2π(1− σ) . (3.14)

Here, sigma is a non dimensional screening or shielding constant. The frequency clearly depends on the
shielding which reflects the electronic environment of the nucleus. Although we cannot easily determine
absolute radio frequencies to an accuracy of ±1 Hz, we can determine the relative positions of two signals
in the NMR spectrum with even greater accuracy. Consequently, a reference signal is chosen, and the
difference between the position of the signal of interest and that of the reference is termed the chemical
shift:

δ =
νref − νsample
(νsample ∗ 106)

. (3.15)

or

δ =
(νobserved − νreference)

νspectrometer
. (3.16)

3.1.2 Solid State NMR

Classical NMR developed into a well-established standard tool for probing virtually any closed-shell molecule.
ESR provides a similar method for open-shell systems such as radicals. However, the solid state NMR
brings still challenges and even more on an electron conductive solid. Since in a condensed matter en-
vironment each nucleus feels the influence of the other nuclei, this will modify the local magnetic field.
Additionally, they are exposed to electric fields gradients and to the coupling of the surroundings or the lat-
tice. That raises a complication, since each coupling separately, similar to the external magnetic field B0,
will affect a specific shift of the energy levels. The observable being the differences between the energy
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levels, they will be given by the eigenvalues of total Hamiltonian operator HNMRtotal. The total Hamiltonian
that governs the analysis involves a solid sum of different Hamiltonians is:

HNMRtotal
= HZ +HQ +HC +HRF +HCSA +HJ . (3.17)

where HZ is the Zeeman effect or Zeeman interaction, HQ quadrupolar moment, HC dipolar interaction
between nuclei, HRF radio frequency effect, HCSA chemical shift anisotropy and HJ coupling constant
where ||HZ || > ||HQ|| > ||HC || > ||HCSA|| . [150] The magnetic shielding interaction Hσ is also referred
to as chemical shift δ and provides unique information about the chemical environment in most of the
cases. In metallic samples, this can be more complicated and less specific. The determination of the Hσ

is then the aim in the solid-state NMR spectroscopy from the standard static spectrum. The Zeeman NMR
signal discussed above does not provide information on the different environments on nuclei of the same
kind. So only this interaction is not practically useful for the application, but describes the basic concept
of NMR and is of fundamental importance in terms of absolute standard for theoretical calculations of the
magnetic shielding. [151] The chemical shift is the prime observable in NMR experiments. The second
important source of information from an NMR spectrum, i.e., nuclear spin-spin coupling effects is related
to the interaction of a spin at one nucleus with the electronic currents brought about by a second magnetic
nucleus., i.e., the interaction of two nuclear magnetic moments mediated by the electronic spin density.
On the other hand if it is not a nuclear spin, but the spin of an unpaired electron that interacts with the
magnetic field induced currents we enter the domain of electron spin resonance (ESR, also known as
electron paramagnetic resonance, EPR). Here, the main observable is the so-called g - tensor, which
resembles the NMR chemical shifts as it describes differences in the interaction due to the chemical
environment and the hyperfine coupling constants which probe the amount of unpaired spin density at the
nuclear position.

3.2 Dynamics in NMR

NMR spectroscopy is widely used to determine atomistic structure, atomistic/ionic order and mobility. The
time scale accessible by NMR is limited by the actual hardware and the pulse that is applied to excite
the nuclei. Regarding the intrinsic limit of the material, which is on one end limited by the fast motional
cutoff of the spectral densities for unrestricted segmental motion and on the other end by the length of
the spin-lattice relaxation time. The molecular dynamics, up to now, can be investigated within a range of
10−12 s to some 100 s. High resolution NMR is often used to analyse fast molecular motion. For the slow
molecular motion the so call wide-line NMR is used. Wide-line spectra can provide detailed information
about the type and the time scale of a slow molecular motion. However, due to the angular dependence of
the resonance frequency the information is restricted to re-orientational processes. Molecular translation
can not yet be sensed by NMR on molecular distance scale, but on a larger scale in the range of 0.1 µ up
to about 10 µ by measuring atomistic diffusion in magnetic field gradients. [149] Nevertheless, dynamical
processes that take place on or below the time scale of the NMR measurement will influence the recorded
spectrum and are thus observable.

Molecular motions appear incoherent and are described by a stochastic process n(t). One important
quantity to characterize stationary stochastic processes is the auto-correlation function a(σ),

a(σ) = lim
T→inf

1

2T

∫∫
t
Tn(t)n(t− σ)dt ∝ exp(−σ/τc) . (3.18)

In many cases the auto-correlation function is an exponential function with a time constant τc, which is
called the correlation time of the process. In polymer materials one often obtains distributions of correlation
times for molecular motions. Such a distribution can be interpreted in two ways. Either different atoms that
exhibit different correlation times during the time of observation (heterogeneous distribution) or a single
atom exhibits different correlation times in different observation intervals (homogeneous distribution).
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Figure 3.3 The pulse sequence for the classical inversion recovery experiment to measure T1 or longitudinal relax-
ation.

3.2.1 T1 and T2

After being perturbed, the spins tend to restore the initial state of the thermodynamic equilibrium through
a process called relaxation. They are two elementary kinds of relaxation that identify in the NMR world
two different times the so called T1 and T2. [147] Energy relaxation or spin-lattice relaxation or longitudi-
nal relaxation is known as T1. It characterizes the time needed to establish longitudinal thermodynamic
equilibrium magnetization after the sample was perturbed. To describe this, the energy should exchange
between the nuclear spin and the lattice according to:

Mz(t) =M0 + (Mz(0)−M0) exp(−
t

T1
) (3.19)

where Mz(t) is solution or the differential equation of a magnetic system in contact with its environment.
Here, one assumes a first order kinetic for its thermal equilibration. T1 is related then to the longitudinal
relaxation of the spins and corresponds to an exponential decay with this characteristic time constant. In a
T1 measurement, the recovery of the z-magnetization after an initial perturbation is measured as a function
of time. The perturbation can be selective or non-selective. To get a full characterization one would need
to perform different selective perturbations. To address that, saturation recovery methods are used. The
recovery is analogous to the inversion recovery except for a loss of a factor two in dynamics range:

Mx(τ) =M0[1− exp− τ

T1
] sin(β) (3.20)

Normally, the relaxation time T1 can be determined by a two- or three-parameter fit. However, that can
hinder other contributions to the relaxation time. This is one of the reasons one also has to apply and
proceed with more advanced data analysis, such as Inversion Laplace transformation (ILT). [152,153]

Another important contribution is the transverse relaxation time T2 . This is as a consequence of non
vanishing relaxation from the transverse components:

Mx(t) =Mx(0) cos(ω0t) exp(−
t

T2
) (3.21)

My(t) =Mx(0) sin(ω0t) exp(−
t

T2
) (3.22)

T2 can be extracted as well from the classical spectra by measuring the full line-width at half height in
units of Hz.
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Figure 3.4 The pulse sequence for the spin alignment echo experiment.

∆µ =
∆ω

2π
=

1

πT ∗2
=

1

π
[
1

T2
+

1

T+
2

] . (3.23)

The effective decay rate 1/T ∗2 is the sum of the natural relaxation rate 1/T2 and the inhomogeneous
broadening contribution 1/T+

2 . If the latter is negligible or can be measured from a reference line that
is known to have a negligible homogeneous line-width contribution 1/T2, the natural T2 can be obtained.
Relaxation theory is describing the processes for achieving relaxations. Here, the rotational and transla-
tional molecular motions will lead to the fluctuation of the local field at the sites of the nuclei, and the origin
is directly present in the spin interaction part of the material. This is also the one that allows us to be
able to perform a stimulated-echo experiment. Crucial aspects that play an important role and need to be
mentioned are the dipole-dipole interaction, the quadrupole interaction and the anisotropy of the chemical
shift. All those can happen at different time scales, hence the importance of analyzing the relaxation times.
The molecular motions are defined mainly by the resonance frequency, zero frequency and twice the reso-
nance frequency, but can also be correlated to the amplitude of an applied rf field, the rotation frequency
in magic angle spinning experiments or the cycle time in multi pulse experiments. In general a condition
exists whereby transitions induced by H , which tend to upset the thermal equilibrium of spins, are in com-
petition with processes of emission due to lattice perturbations which tend to restore equilibrium. Spin
relaxation phenomena which are measured in terms of the relaxation times T2 and T1 (spin-lattice), must
be distinguished simultaneously from effects due to the influence of the rf absorption. Consequently the
study of resonance absorption line shapes, intensities and transients must carefully take into account the
intensity of 1H and the manner in which resonance is obtained. In practice, resonance takes place over a
range of frequencies determined by the inhomogeneity throughout the sample. For resonance concerning
nuclei in liquids it is generally found that the natural line width given by 1/T2 on a frequency scale is much
narrower than the spread in Larmor frequencies caused by external field inhomogeneities, whereas the
opposite is true in solids. Therefore steady state resonance lines due to nuclei in liquids are artificially
broadened: transient signals are modified in shape and have decay times which are shorter than if they
would otherwise be determined by T1 and T2.
There are several ways to address diffusion within the field of NMR. One of the most used for molecular
transport and diffusion is the NMR pulsed magnetic field gradient (PFG). It has been developed over time
together with the strength of the gradients and allows us to measure self diffusion and apparent diffusion
coefficients more and more accurately. [154–156] The PFG allows to measure either the true diffusion
coefficient, i.e. the isotope under observation has the same mass as the atoms of the crystal, like the 7Li
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in pure 7Li metal, or impurity diffusion where the solute species such as 7Li diffuses in a 6Li matrix. This
leads to the diffusion coefficients in a simple and straightforward way without any a priori knowledge of
the diffusion mechanism. However, often PFG gives still a diffusion coefficient that is defined via Fick’s
first law (see Section 2.4) and hard to disentangle from the self-diffusion. Furthermore, the non trivial
extracted diffusion can be altered by the influence of the external field gradients especially in a conductive
sample, where the formation of eddy currents can be a problem. [154,156] Another set of techniques that
allow us to determine macroscopic self-diffusion coefficients DSD via NMR are exploit by NMR spin-lattice
relaxation times, where the 7Li relaxation [157–161] is investigated or even where possible, the β-NMR
method relaxation [162]. The β-NMR method is studying the β-active 8Li nuclei relaxation time, instead
of the 7Li nuclei. The signal for the 8Li radioactive nucleus is detected through the β decay of a the re-
spective isotope. [163]. The self-diffusion coefficient for isotropic diffusion is given by the modified Einstein
equation:

DSD =
f < r2 >

6τ
. (3.24)

Here, the f is the spatial correlation factor, < r2 > and 1/τ are the mean square jump distance and jump
rate of an Li ion, respectively. The spatial correlation factor f on top can be extracted by combining these
with the DSD. [63, 154] This equation is analogous to the one used by Langer et al. to extract activation
barriers through correlation times, according to the jumps of the lithiums. In fact, if such a jump consists of
an exchange jump of a Li ion with an adjacent monovacancy, they have 1/τ = cv(1/τv), with cv and 1/τv
where the concentration and hopping rate can be determined for those. [63]

3.2.2 Spin Alignment Echo

Ionic motions in the ultra-slow time-scale with jump rates in the kHz and sub-Hz are hardly accessible
by recording line shapes or spin-spin relaxation times, as the ultraslow motions do not or only marginally
affect the line shape as explained above. Ultra-slow Li hopping processes could be detected directly
via a stimulated echo technique in a time range up to four orders of magnitude. [150] In fact, solid state
echo NMR spectra allow us to study dynamics for the nuclei with I ≥ 1. In solids the diffusion, chemical
exchange and chemical reaction rates can be investigated in fact through the generation of the quadrupolar
stimulated echo interaction. The SAE-NMR spectroscopy was developed first for deuterons and probes
diffusion by labelling the ions via their quadrupole frequency. This is the relevant part which is used within
the context of the lithium mobility, to investigate the interaction between the nuclear quadrupole moment
and a non-vanishing electric field gradient (EFG) at the nuclei.

HQ =
e2qQ

4I(2I − 1)~
(3I2z − I(I + 1)) +

η

2
(I2+ + (I2−) . (3.25)

Here Q represents the quadrupole moment and when multiplied by e that is the elementary charge is
commonly known as electric quadrupole moment of the nucleus "eQ". η is the electric field gradient (EFG)
asymmetry parameter. To make it simpler, the quadrupolar interaction is described by the quadrupolar
coupling constant CQ [Hz] and the quadrupolar frequency ωQ [rad/s]. That helps in rewriting the 3.25 as

HQ =
ωQ
6
(3I2z − I(I + 1)) +

η

2
(I2+ + (I2−) . (3.26)

where ωQ = 3e2qQ
2I(2I−1)~ =

3(2π)CQ

2I(2I−1) with CQ = e2qQ
h .

The quadrupole interaction will alter then the Zeeman frequency ωL/2π according to ωL ± ωQ. Hence,
provided that electrically inequivalent sites are visited within a given diffusion pathway by the jumping ion,
the information about the dynamic process is coded in terms of a change in the quadrupole frequency ωQ.
The SAE experiment monitors the quadrupolar frequency ω Q of the addressed nuclei before and after
tm. If the probed nucleus experiences a change in its quadrupolar frequency Q during tm, the quadrupolar
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Figure 3.5 The pulse sequence of the SAE experiment. The SAE sequence generates quadrupole alignment within
the first part of the sequence, that decays in the second part during the mixing time tm. The remaining quardupolar
order is transferred during the last pulse to the observable magnetization of coherence order and after a time t equal
to tp, an echo can be recorded.

alignment T20 is reduced and the echo at t = tp is diminished. A modification of Q is indicative for a
change in the nuclear local environment, e.g. a jump of the nucleus to a site with a different electronic
structure. Therefore, atomic or ionic motions can be investigated by scanning tm and studying the decay
of the echo at t = tp caused by nuclear jumps during tm. The echo decay is defined by the correlation time
tc, which can be interpreted as the correlation time of the hopping process. The experimentally accessible
time scale of dynamical processes by SAE is limited by experimental restrictions and the inverse of the
quadrupolar interaction (lower bound 10−5 s) as well as by the quadrupolar spin lattice relaxation time T1
(upper bound), which relaxes the quadrupolar coherence to longitudinal z magnetization T10 during tm.

The investigation of the ionic motion through quadrupolar order interaction by stimulated echoes has its
origin with the Jeener Broekaert sequence (JBS). The original JBS was conceived to create dipolar order
and was used to detect its decay in different spin systems. [150, 164, 165] JBS can be used for different
effective spins i.e. I = 1, [151], I = 3/2 [166].
In the experiment the signal amplitude generated by the JBS can decrease as a function of the mixing time
either because i) the ultra-slow motional processes take place on a time scale τQ (> 0.1ms) which change
ωQ during tm or ii) because the quadrupolar spin-alignment order can decay due to the spin-relaxation
effects that occur on the scale set by Larmor frequency ωZ . The decay constant of the latter process is
usually called T1Q and marks the long-time limit accessible in the ultra-slow motion regime. The relaxation
of T1Q to the spectral densities characterizing the motional processes is well known and it is of the same
order of magnitude as the Zeeman spin-lattice relaxation time or T1. [150] For mobile ions in crystals
and glasses, the EFG at the probe site is dominated by the fixed charges in its environment. Under this
condition the SQ2 (tp, tm, t) represents a single spin-spin correlation function. Nevertheless, SQ2(tp, tm, t)
and SD2 (tp, tm, t) are governed by closely related ionic motions, and the associated time constants τQ
and τD may be expected to be quite similar as well. Ideally one should be able to distinguish these time
constants, which have to be independent of the Larmor frequency, from T1Q and T1D which in slow-motion
regime depend on the strength of the magnetic field. Generically dipolar and quadrupolar orders are
created simultaneously by the JBS. Those contributions can however be separated by choosing a suitable
evolution time tp. JB is a sequnce of two rf pulses, out of phase by π/2 with one another and separated
by a time of the order of T2. It is possible to transfer Zeeman order into dipolar order by the use of a pair
of phase-shifted rf pulses. [164]

SAE NMR uses the Jeener-Broekaert pulse sequence in β1− tp−β2− tm−β3− td. Here β represents
radio frequency pulses, tp is the evolution time, tm the mixing time and td the detection transient. [164]
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The result is an echo with an intensity relative to the correlation between the quadrupolar precession
frequency ωQ during the evolution time and during the detection transient at time tm later. The Jenner-
Broekaert echo is stimulated with three pulses 3.5. The second and the third pulse are each a 45°-pulse,
whereby the phase of the second pulse is shifted against that of the first pulse by 90 °.

3.3 Inverse Laplace Transformation

To retrieve relaxation time constants from experimental spectroscopic data, different numerical methods
are used, involving fitting procedures. Knowing a priori the number of relaxation processes, a mono- or
multi-exponential decays the common least-squares fitting procedure can be used. Most of the time, how-
ever, the processes are not known, hence it is hard for the fitting procedure to disentangle the relaxations
time constants with different components. To address this problem, inversion algorithms can be used,
since they do not require making assumptions on the number of parameters. The inversion provides a
density function of the underlying relaxation distribution. In fact, inversion algorithms are used as a better
tool to analyze NMR data of complex systems [152, 167]. The drawbacks of this kind of algorithms is that
the inversion can be ill-conditioned [152], and some a priori knowledge is still necessary. In this case, the
number of processes is not required, whereas assumption that the data are smooth or can be made smooth
via normalization is enough. A common method of regularization is the Tikhonov algorithm. [152, 167] To
prevent oscillating solutions due to noise or different signs in the function, further constraints are applied,
such as the so called non-negativity constraint (NNC). This assumes that all the relaxation components
have a positive sign and the negative ones will be suppressed by the algorithm. Despite that, the inversion
might show artificial features and the NNC does not guarantee the perfect fit. To overcome that, a uniform
penalty (UP) was introduced and showed to be reliable in one-dimensional and n-dimensional data sets.
Different implementations exists in particular to investigate and understand dynamics of complex systems,
where a parameter such as time constant in the relaxation matrix can be linked to a different state of a
system. [152]

In NMR, recording multidimensional relaxation or diffusion maps, in combination with two-dimensional
(2D) ILT proved successful in recovering the relaxation maps from contribution that in a standard way were
overlapping. The multidimensional experimental NMR data are related to an underlying joined distribution
function such as Fredholm integral of the first kind:

sr(t1, ..., tR) =

∫ ∞
0

...

∫ ∞
0

k1(t1, τ1)...kR(tR, τR)× G(τ1, ..., τR)dτ1, ..., dτR + ε(t1, ..., tR) , (3.27)

where, sR(t1, ..., tR) is the signal, with different evolution times, G is the underlying distribution function
of t1, ..., tR as variable. The kernels kr are continuous functions and the following ε(t1, ..., tR) are additive
noise contribution assumed to be independent and identically distributed (iid) Gaussian white noise with
zero mean and variance σ2. [152]. The signal can be scaled without loss of generality by a factor σ−1 to
obtain a unit variance. Non-iid noise can be accounted for by scaling the signal and the kernels with the
inverse of the noise variance. [152] Solving the Fredholm integrals with smooth kernels, i.e., estimating
G(τ1, ..., τR) from sr(t1, ..., tR), is an ill-conditioned problem. However, to simplify the formulation a vector
matrix notation can be used with the signal vector:

s =Kg+ e , (3.28)

where s is the vectorization of SR, g the vectorization of G, K the kernel and e is the vectorization of
the error matrix previously called noise.

A regularization has to be implemented with a penalty term to deal with the ill-condition problem, since
a stable solution cannot be obtained directly by the inversion. The minimization of the function in the
Equation 3.28 with the following penalty term can be written as
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ĝ = argmin
{
‖Kg − s‖22 + λ2 ‖Λg‖22

}
. (3.29)

where Λ is the regularization matrix and λ a global scaling factor. To avoid the non-negativity constraint,
the algorithm was adapted to employ a uniform penalty regularization [152] to avoid oscillations or unnec-
essary sing changed of the relaxation time distribution. The functional that has to be minimized can be
written as:

ĝ = argmin
{
gTKT g − 2sTKg + sT s+ λ2gTΛTΛg

}
. (3.30)

To solve equation 3.30 the inversion algorithm uses Tikhonov regularization. For all details of the inver-
sion and the parameter decision we refer to the implementation by Granwehr et al. [152]

This more advanced algorithm can be used to analyze and interpret T1 and SAE data. [152,153,168,169]
Applying the ILT to the experimental data yields a distribution of correlation times τc. Additionally, the ILT
approach provides the NMR spectral information for each point in the τc distribution which also contains
the ωq of the position where the jumping nucleus is originated from. The experimentally accessible time
scale of dynamical processes by SAE is limited by upper and lower boundary to the intrinsic property or
dynamics of the material. [152,153,168–170]
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4 Revisiting the Storage Capacity Limit of Graphite
Battery Anodes: Spontaneous Lithium
Overintercalation at Ambient Pressure

This chapter is closely following the paper on arXiv.org(2021) (arXiv:2107.11137v2) which is Reprinted
under the terms of Creative Commons Attribution 4.0 International License. The parts were just adapted
to follow the structure of this thesis, however the format was kept the same. Cristina Grosu performed
the measurements and Chiara Panosetti performed the DFT calculations. Peter Jakes and Steffen Merz
contributed valuable discussions and advice concerning the spectra acquisitions and sample preparation.
Data evaluation and the manuscript preparation was done by Cristina Grosu and Chiara Panosetti in
consultation with all the authors. Sebastian Matera contributed to the discussion on the data analysis.
Josef Granwehr and Christoph Scheurer designed the work.

4.1 Introduction

For a reduction in greenhouse gas emission to tackle global warming, mass market penetration of electric
vehicles (EVs) is a key element for a nearly CO2-free transportation sector [1]. Powerful, durable and safe
lithium-ion batteries (LIBs) are crucial for consumer acceptance of electromobility on a larger scale. In
particular, the fast-charging capability is regarded as a pivotal selling point. The necessity of fast-charging
batteries brought some intrinsic limitations of the materials back into the spotlight, which historically did not
matter in commonplace applications of LIBs, such as portable electronics. Primarily for the negative elec-
trode, notable issues are still largely unaddressed to this day, including increasing the active site density,
earlier detection of dendrite formation, or a quantitative description of mass and charge transport [3–6].
Extensive amount of work is ongoing to identify alternatives to the carbon-based anode materials. Even
within the class of carbonaceous materials, different options were screened for usage as negative elec-
trodes, from soft to hard carbon, carbon foam, carbon nanotubes, graphene sheets, artificial graphite, or
mesocarbon microbeads graphite (MCMB) [15].

Nonetheless, with its intrinsic capacity and wide availability, graphite is still the most employed anode
material. Its working principle is based on the intercalation of lithium ions. Upon lithium intercalation during
charging, graphite reaches its maximum reversible Li storage capacity at a lithium-to-carbon ratio of 1:6
(LiC6). Theoretically this compound yields a capacity of 372 mAh/g, commonly defining 100% state of
charge (SOC) [14, 15, 40]. However, the highest geometrically accessible composition – not considering
lithium carbide (Li2C2) but only the family of graphite intercalation compounds (GICs) – is not LiC6, but
LiC2, with a capacity three times higher. Nevertheless, the latter is metastable at ambient conditions and its
non-electrochemical preparation was only reported under high pressure, with superdense decomposition
products, LiC6 – x with x > 0, stable over an extended time period [171,172].

Despite extensive experimental efforts, in-depth understanding of in operando battery processes is still
sparse [173–176]. One major problem is that the interconnection of many relevant electrochemical pro-
cesses renders the analysis of experimental data difficult and complicates the understanding of actual lim-
its and causes of battery cell failure [3]. Furthermore, theoretical investigations over large compositional
Li/C ratios, and on time scales relevant for Li dynamics in graphite without unrealistic simplifications have
only become possible recently. Therefore, concomitant theoretical and experimental research is scarce.
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Figure 4.1 Schematic representation of the conducted synthesis. First, metallic lithium was melted and kept at 220
◦C. Subsequently, a HOPG sample with dimensions of 10.0x(4.9)x2.0 mm was added. Tweezers were used to keep
the HOPG in contact with molten lithium for a few minutes to start the intercalation. The system was then held for
ca. ten weeks at constant conditions to ensure full intercalation into the HOPG.

Here, we use HOPG as a model system to investigate lithium ion intercalation, providing nuclear mag-
netic resonance (NMR) reference data from a system as well-defined as possible for further in operando
studies of LIBs. To exclude any external influence on the intercalation process, we opted for an infiltration
technique under ambient pressure [177–179]. Figure 4.1 shows a sketch of the synthesis workflow, using
lithium metal and HOPG as precursors. More details on the preparation are provided in Section 4.4. Using
this slow intercalation route, we obtained a sample that, repeatedly analysed in detail, showed spectro-
scopic evidence of superdense structures. We assessed the plausibility of such an assignment of spectral
features by ab initio calculations. Eventually, we analysed the long-term evolution of the sample over
several months, concluded by heating it up to 60 ◦C.

4.1.1 What do we know about superdense LiC2 and LiC6 – x?

Superdense realisations of lithium GICs were reported at high pressure and temperature conditions since
the 1980s [171, 180–186]. Figure 4.2 schematically shows possible high-symmetry structures for some
intermediate stoichiometries between LiC6 and LiC2.

The occurrence of LiC2 was excluded a priori from any working battery for a long time. Since its non-
electrochemical synthesis was always performed at high pressure and temperature, it is considered un-
likely to be found in secondary batteries [172, 181, 187]. Alternatively to high-pressure synthesis, ball-
milling also allows LiC2 to be prepared using artificial graphite, MCMB, and carbon foam [185, 187, 188].
However, one may argue that ball-milling produces high pressure and temperature locally [189]. Once
the pressure is released, the LiC2 composition becomes unstable and approaches LiC2.2 – 2.7,3.4 [181,190].
Nevertheless, LiC2.7 and LiC3.4 as decomposition products of LiC2 were reported to be stable enough to
allow measurements at ambient conditions [182, 183]. Bindra et al. stabilised superdense GICs using
boron doping, in an attempt to enable higher capacity electrode materials, yet they still used high-pressure
synthesis [182].

For electrochemical intercalation, Conard et al. reported that the electric field actuates only as far as
the gallery entrance, and therefore is not sufficiently attractive to drive the intercalation up to LiC2 [191].
Notwithstanding, superdense phases were observed for electrochemical systems using different carbon-
based matrices, leading to the concept of overcharged LIBs [192–194]. In the latter works, lithium ions
appeared to continue intercalating after LiC6 was formally reached, yet before being plated as lithium
metal. Unfortunately, such overcharged anodes show irreversible capacity loss after the first deinterca-
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Figure 4.2 Schematic single-layer representation of some superdense LiC6 – x high-symmetry structures and respec-
tive states of charge (SOC) relative to LiC6. The grey honeycomb represents the graphitic host lattice assumed to be
AA stacked, and purple circles represent lithium atoms. Excess lithium with respect to LiC6 is represented in lighter
purple. The dotted circle in LiC3.4 marks how at least one Li atom must move from its original position in order to
achieve the Li7 cluster motif. Black diamonds represent the smallest supercell commensurate to all the lithiated stoi-
chiometries. For LiC6 and LiC2, the (smaller) primitive cell is also shown. Highlighted in red and cyan are structural
motifs that can give rise to high-ppm NMR signals.

lation cycle [193]. More recently Paronyan et al. successfully used carbon foam as anode material to
investigate overlithiation [195].

A systematic investigation of the relative stability of overlithiated compounds, especially the intermediate
stoichiometries between LiC6 and LiC2, is currently missing, both from the experimental and the computa-
tional standpoint. On the experimental side, there is widespread consensus [196–199] that the free energy
of intercalation of LiC6 falls in the range of -6 to -14 kJ/mol (-0.06 to -0.14 eV). Yet little is known about
the free energies of overintercalation, except that the formation of LiC2 is assumed endergonic at ambient
conditions. On the computational side, previous studies based on Density Functional Theory (DFT) only
report total energy calculations of LiC6 and – less often – LiC2 [172, 200–202]. Two main limitations are
recurring among these. First, dispersion interactions, which are crucial in intercalation chemistry, were not
included in all the studies. Secondly, total energies only provide a “virtual” zero-temperature picture, while
finite temperature and pressure require a description in terms of free energies. Despite these limitations,
the reported total energies are compatible with the measured thermochemistry. However, no coherent
body of literature exists that addresses the energetics of the entire LiC6 – x range on the same footing.

4.2 Materials and Methods

4.2.1 Experimental

Synthesis and Sample Preparation The LiC6 sample was prepared using an infiltration technique.
Metallic lithium with 99.9 % purity (Sigma-Aldrich) was intercalated into highly oriented pyrolytic graphite
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HOPG (Goodfellow purchased by Sigma-Aldrich). The lithium metal was heated after the melting point
up to 220 ◦ C. The lithium’s self-cleaning properties ensure a higher purity of the molten lithium metal.
Afterwards the HOPG was added. In order to ensure complete lithium intercalation, the intercalation
process has been allowed to take place for a period of over 2 months. This long infiltration time was
necessary due to the dimension of the host material (pre-intercalation size = 10.0× (4.9)× 2.0 mm) [177–
179]. The ageing process was performed in a closed container in a glove box under argon atmosphere.
The sample was left to age for 5 months initially, followed by an additional period of 2 months. For the 5
months aged sample, a series of temperature dependency spectra of 7Li static NMR were recorded.

NMR Measurements and Data Analysis All 7Li NMR spectra were acquired using a Bruker BioSpin
spectrometer Avance IIITM HD 600 XWB MHx at B0 = 14.1 T (7Li Larmor frequency = 233.3 MHz)
equipped with a Bruker DiffBB 5 mm BBO-H/F-Z Gradient diffusion probe-head. A single 90 ◦ pulse
excitation of 11 µs with recovery delays of 10 s on 7Li was employed. The raw data were analysed us-
ing MATLAB. An exponential window function was employed before a fast Fourier transform (FFT). The
spectra were zero- and first-order phase corrected as well as background corrected.

4.2.2 Computational

DFT Calculations and ab initio Thermodynamics All the DFT calculations were performed using the
plane-wave code VASP [203] v.5.4.4, with the GGA-PBE functional [100] and the Projector Augmented-
Wave (PAW) pseudopotentials [204]. Dispersion interactions were taken into account with the D3 method [121].
To ensure well converged total energies, a basis-set cutoff of 599 eV was chosen. All the calculated ge-
ometries were represented in appropriate periodic supercells and the Brillouin zone was sampled at a
fixed k-point density of 0.1 Å−1. The vibrational densities of states were calculated using phonopy [205]
at the harmonic approximation level. The chemical potential of lithium was mapped to the temperature
in a 0-600 K range using Janaf thermochemical tables [206] up to the fusion temperature (453.69 K) and
employing a linear approximation for higher temperatures as described in Section 4.5. AIMD simulations
were performed by means of the DFTB [109] code dftb+ [207] v.19.1 using the parametrisation devel-
oped in our group [112, 119]. Trajectories of variable length were propagated with a time step of 1 fs in
the canonical ensemble at 500, 750 and 1000 K, using a Nosé-Hoover thermostat [208] with a coupling
strength of 41 THz, corresponding to the highest vibrational mode of LiC6 as calculated with phonopy.

4.3 Results and Discussion

4.3.1 Static 7Li Nuclear Magnetic Resonance on Lithium intercalated HOPG

Static 7Li NMR spectroscopy is a valuable tool to distinguish different degrees of lithiation in carbona-
ceous materials [173]. The 7Li nucleus possesses spin 3/2, making observations of central transitions and
quadrupolar satellite transitions possible. Satellite transitions allow conclusions on ordered structures with
low Li-ion mobility [178,191], whereas their absence may indicate a lack of perfectly ordered motifs and/or
a motional averaging of the quadrupolar interaction [191].

Figure 4.3 shows a photograph of the fully intercalated HOPG sample. The golden colour is characteris-
tic of LiC6. However, overlithiated compounds were also reported to appear golden [182,187]. Figure 4.3
represents the static 7Li solid state NMR spectrum of the polished sample. All chemical shifts are reported
against an external reference of a 1.0 M solution of LiCl in D2O. We assign the isotropic chemical shift
at 45 ppm with quadrupolar satellites to LiC6, compatibly with previous works [63, 175, 209]. Additionally,
an asymmetric signal with a sharp peak at 274 ppm and a shoulder at ca. 256 ppm is present. We also
observe a broad spectral feature around 100-200 ppm, that is not background distortion (cf. Figure 4.8).
At first, the high-ppm signals may be attributed to plated lithium on the sample. The HOPG surface was

46



Figure 4.3 Static 7Li NMR and initial sample in the NMR tube: Static 7Li spectrum of lithium intercalated in HOPG.
The isotropic chemical shift at 45 ppm is assigned to LiC6. The quadrupolar satellites are compatible with a single-
crystal pattern [178, 191]. The quadrupolar coupling constant CQ for LiC6 is 46 kHz. The peak at 274 ppm and
the shoulder at 256 ppm show the presence of superdense LiC6 – x compositions [185]. Inserted figure shows the
golden colour of lithium-intercalated HOPG, nominally corresponding to LiC6 [14, 178]. Schematics in overlay show
the orientation of the graphite layers, the crystallographic c-axis and the direction of B0.

polished using sand paper (Figure 4.7), but residual metallic Li may persist. However, the intensity is too
high for only trace amounts of lithium metal on the surface that are not detectable by visual inspection.
Moreover, HOPG can be considered a defect-free single crystal, thus lacking internal pores that could
accommodate pockets of metallic lithium [22].

At this point, we must consider the possibility that these high-ppm signatures are generated by super-
dense phases instead. We are aware that superdense Li-GICs were never reported before without harsh
pressure conditions. However, the uncertainty raised in our sample reflects the ambiguity of assignments
present in literature. Azaïs et al. assigned a 259 ppm 7Li NMR resonance to lithium metal, despite using
the exact ratio of Li/C to form LiC2 with a ball-milling synthesis. Interestingly, they found no Li metal signal
in the X-ray spectrum, which is explained by intensive milling applied to the sample [194]. Conversely,
Conard et al. assigned a peak at 259 ppm to LiC2 [171]. Since the spectrum was recorded after releasing
the pressure, the true LiC2 chemical shift might be closer to the Li metal shift. The 259 ppm peak could
then be attributed to LiC2.2 – 2.4 [171,181,190].

As shown in Figure 4.2, two local structural motifs are recurring in superdense compositions: a Li4
pattern in the shape of a three-pronged “star” (highlighted in cyan) and a denser Li7 pattern in the shape
of a flat cluster, or “flower” (highlighted in red). The central Li atom is coordinated by three or six nearest
Li neighbors, respectively. It is therefore expected to exhibit pseudo-metallic character. This was already
suggested to explain the high-ppm signals associated to LiC2 decomposition products [181,187,191].

Chang et al. showed that variable shifts at high-ppm can arise from different microstructures of lithium
metal in electrochemical systems [210]. Since no current or potential was applied during sample prepara-
tion, the formation of dendrites or mossy-type microstructures is not expected here. Trease et al. showed
that lithium metal in non-spherical shapes is also sensitive to the direction of the magnetic field, with reso-
nances shifting between about 245 and 270 ppm if a planar sample is placed perpendicular or parallel to
B0, respectively [211]. This is known as orientation-dependent shift due to the bulk magnetic susceptibility
effect. All our comparative measurements were performed using the same sample orientation, with the
c-axis perpendicular to B0 (Figure 4.3). In a control experiment, we also cut part of the sample to measure
at parallel orientation. The high-ppm signature only moved to 264 ppm (Figure 4.8) within the limits set
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Figure 4.4 Evolution of the static 7Li NMR spectrum during ageing of Li-intercalated HOPG. The black curve shows
the spectrum recorded after preparation. The dark blue curve shows the spectrum of the same sample aged for
twelve days and the light blue curve after aging of five months. The signal appearing at 10-13 ppm overlaps with the
first quadrupole satellite peak of LiC6 and appears more pronounced after five months compared to twelve days.

by the original 274 and 256 ppm signals. This indicates a susceptibility effect also for the quasi-metallic
superdense species, as it has been observed for Li metal, before.

4.3.2 Calendar Ageing and Post-ageing Temperature dependent static 7Li NMR of lithium
intercalated HOPG

We aged the sample to investigate the long term (meta-)stability as well as changes in composition of
LiC6 – x over time. In addition, more invasive temperature dependent NMR experiments were performed
after five months, followed by another two months of ageing.

We recorded static 7Li NMR spectra after twelve days (dark blue curve in Figure 4.4) and after five
months (light blue curve Figure 4.4). The sample was thoroughly cleaned before each measurement,
exposing golden shiny faces on each side of the HOPG crystal. We observe a decrease in the high-
ppm peak intensities, suggesting a partial degradation of the corresponding structures. The degradation
process appeared incomplete, with a residual broad signal that appears as the overlap of both shifts
present in the fresh sample spectrum. The stability of the structures associated with these signals over
several months is compatible with Nalimova et al. [181]. The 274 ppm signal seems to decrease the
most during this timeframe but cannot be fully disentangled from the 256 ppm (light blue vs. black curve
Figure 4.4) A new Li environment with a chemical shift of 10–13 ppm forms concomitantly. Signatures in
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Figure 4.5 Representation of the sample: a, Image of Li intercalated in HOPG after polishing. The golden colour
indicates LiC6 or LiC6 – x compounds. The dashed black line indicates the cut for complementary measurement (cf.
Figure 4.9). The golden face is shown after partially cleaning the sample. b, The sample after ca. five months
of calendar aging in an inert atmosphere. The delamination shows the partial decomposition of the superdense
compound. (c-h), Schematic cuts through the overlithiated HOPG sample. Horizontal black lines in (f-h) represent
graphene layers, and violet dots are Li nuclei. Golden shaded regions represent well-ordered LiC6 domains, giving
rise to the 45 ppm NMR signal with quadrupolar satellites (cf. Figure 4.3). The lower intensity of the satellites
compared to the central transition indicates the presence of such ordered domains with limited dimensions, not
spanning the whole HOPG sample. The blue interdomain region is overlithiated. Note that the dimensions are not
drawn to scale – the intensity of the satellites indicates LiC6 domains with a fairly large ratio of Li nuclei on the surface
to Li in the volume of a domain of about 1:1. Upon aging, the surface of the lithiated HOPG crystal delaminates (grey
shading), with disordered carbon forming that pulls Li from disordered regions, yet maintaining the LiC6 domains and
the overlithiated interdomain region. Sanding only affects the surface, leaving the inner regions unchanged.

this region are commonly associated to lower SOC and generically identified as LiC6+x [175], or, in other
works, attributed to Li–Li dimers [41].

After five months the sample decomposed visibly as shown in Figure 4.5. The observed drastic de-
lamination is only compatible with the expulsion of lithium from inside the sample, thus it would not have
occurred if the high-ppm signal was caused by surface metal only. The opening of the graphite sheets also
indicates pressure release from within the bulk material [181,187,190]. This is a further indicator towards
the degradation of a superdense structure. Figure 4.5 also shows a schematic model of the possible mi-
croscopic configuration of sample (Panels a, f), with ordered LiC6 domains and overlithiated interdomain
regions. Panels d, g show the schematic delamination after five months. Panels e, h represent the sample
after cleaning.

In the temperature dependent measurements (Figure 4.6 and Figure 4.9), the residual high-ppm peak
disappears after mild heating to 310–330 K, while the 10–13 ppm signal becomes more evident (cf. Fig-
ure 4.9). The broad spectral feature between about 100–200 ppm, which temporarily vanishes at elevated
temperature during the heating cycle (cf. Figure 4.9 at 40 and 60°C), reappears post-heating and only
vanishes permanently after two more months of ageing.
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Figure 4.6 Static 7Li NMR spectra taken after the decomposition process and pre- and post-heating to accelerate
the equilibration of the residual superdense phases. All curves are shown for 25 ◦C, while the sample was treated
and measured from −10 ◦C to 60 ◦C (cf. Figure 4.4). The violet curve shows the sample aged for two additional
months. The peak at 10-13 ppm remains stable.

4.3.3 Ab initio Thermodynamics and Dynamics of superdense GICs

A basic modelling approach is to initially consider periodic high-symmetry structures as shown in Fig-
ure 4.2, and calculate the formation free energies of these extended “pure” phases. To this end, we
adopted an ab initio thermodynamics (AITD) approach [212]. A detailed derivation of the formalism
adapted to our system is provided in Section 4.5. Within this framework we calculated the free energy
of intercalation ∆Ginterc for the stoichiometries above at 300 and 500 K and ambient pressure. Based
on these, we estimate relative populations N(LiC6−x)/N(LiC6) at equilibrium as Boltzmann ratios with
respect to LiC6. The results are reported in Table 4.1. The effect of configurational entropy was neglected,
which would further favour overlithiated compounds (except LiC2; see Section 4.5 Ab initio thermodynam-
ics). As such, the relative populations are to be considered a lower estimate.

With a ∆Ginterc of +1.09 eV for LiC2(105.17 kJ/mol) at 500 K, we exclude its presence in the sample.
However, LiC3.4 and LiC4.8 have only mildly positive ∆Ginterc at 500 K, which becomes even negative at
room temperature for LiC4.8. Correspondingly, their relative populations are non-vanishing. Regardless
of the precise assignment of the high-ppm signal (vide infra), we stress at this point that the energetics
above, albeit simplified, confirm that a certain amount of excess lithium does indeed enter spontaneously.
In other words, the common conception that LiC6 corresponds to 100 % SOC is not entirely accurate
thermodynamically. The exact upper limit of overlithiation accessible beyond LiC6 and its dependence on
external conditions can only be determined by means of computationally expensive statistical sampling,
which goes beyond the scope of this work.
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Table 4.1 Formation energies of selected LiC6 – x intercalation compounds. ∆E is calculated from DFT total energies
(cf. Methods section), not including the zero point energies nor any finite temperature contribution. The values of
∆G at different temperatures and ambient pressure are calculated using the ab initio thermodynamics approach.
Our experimental conditions are T = 500 K and P = 1 atm. In bold, non-negligible populations at 300 and 500 K.

LiC6 LiC4.8 LiC3.4 LiC3 LiC2.7 LiC2

∆Einterc

(DFT-D3) /
eV

-0.10 -0.01 0.14 0.27 0.46 1.08

∆Ginterc

(300 K) / eV
-0.12 -0.03 0.09 0.24 0.40 1.00

∆Ginterc

(500 K) / eV
-0.09 0.02 0.12 0.28 0.44 1.09

N(LiC6−x)/N(LiC6)
(300 K) / eV

0.03 0.00 0.00 0.00 0.00

N(LiC6−x)/N(LiC6)
(500 K) / eV

0.08 0.01 0.00 0.00 0.00

The observed high-ppm signal may indeed arise from Li7 “flowers” and/or Li4 “stars” present not only
in sizeable domains of exact LiC3.4 and LiC4.8 compositions, but also diluted in a LiC6 environment. Con-
sidering that, starting from a LiC6 environment, every additional lithium will form at least a Li4 “star”, this
can happen at any LiC6 – x stoichiometry. Additionally, a “flower” may form if three neighbouring Li atoms
from the immediate surroundings aggregate around the centre of a “star”. We estimate the cost of such
aggregation as ca. 0.11 eV, thus also thermally accessible. Subsequently, “star” and “flower” motifs are in
equilibrium with each other, thus both can contribute to the high-ppm signals.

The relative populations at 300 K (cf. Table 4.1) confirm the metastability of superdense patterns at
room temperature. However, the relative concentrations of these patterns in the fresh sample must be
closer to those at 500 K than those at 300 K, as the calendaric aging showed a slow equilibration towards
degradation.

Assuming that the decomposition is diffusion-controlled, we estimate the effective diffusion barrier and
thus the relative degradation rate at 300 vs. 500 K. We performed ab initio molecular dynamics (AIMD)
simulations, based on Density Functional Tight Binding (DFTB) [109], to evaluate Li mobility in a slightly
oversaturated LiC6 – x supercell with two Li7 motifs in an LiC6-like environment. The resulting diffusion co-
efficients (Figure 4.10) show Arrhenius behaviour with an effective barrier of 0.35 eV, which slows down the
delithiation about 225 times at room temperature compared to 500 K (cf. Ab initio Molecular Dynamics) 4.6.

We note in passing that the AIMD trajectories exhibited frequent occurrences of directly connected Li
dimers and trimers in an isosceles triangular configuration as transient byproducts of the decomposition of
the Li7 clusters (Figure 4.11). This nicely ties in with the appearance of the low-ppm shoulder upon ageing,
if this were to be attributed to Li–Li dimers rather than low-SOC patterns.

4.3.4 Discussion

Without explicitly simulating chemical shifts, we cannot unambiguously assign each resonance. We ex-
cluded that the high ppm features are generated by lithium metal. On energetic grounds, we also exclude
full LiC2. Thus, we infer the presence of some form of intermediately overlithiated phase containing Li7
(“flowers”) and/or Li4 (“star”) motifs, and associate the high-ppm shift to pseudo-metallic character of the
central atoms. While one may argue whether the Li4 stars are “dense” enough to produce high-ppm shifts,
their formation is more energetically accessible than that of Li7 flowers, therefore a spectroscopic signature
is to be expected. In the light of this, we put forward the following scenario, qualitatively combining exper-
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imental observations and simulations. The asymmetric high-ppm signal corresponds to sizeable domains
of at least LiC4.8 stoichiometry, possibly mixed with LiC3.4, and domains of variable LiCx>3.4 stoichiometries
with Li7 and/or Li4 motifs diluted in LiC6-like surroundings.

The signal is split into a sharp 274 ppm feature and a broad 256 feature due to susceptibility effects
analogously to metallic lithium, but of smaller magnitude. As such, the more intense 274 ppm peak would
correspond to sample faces with normal vectors perpendicular to B0, while the 256 ppm corresponds to
face normals parallel to B0. It is reasonable to assume that overlithiation mainly occurs in the proximity
of the HOPG surface, while the inner bulk is predominantly LiC6. Then, the relative magnitude of the
two peaks reflects the dimensions of the sample (longer surface along B0). Moreover, as the core of the
sample may be shielded to a fair degree, surface species may be weighted more strongly and therefore
show a higher relative amplitude with respect to the LiC6 bulk than relative energetics would suggest [213].

Considering the inherent metastability of Li7 clusters, an additional significant population of imperfect
Lin clusters (with 3 ≥ n > 7) can be expected (“broken flowers”). The lithium atoms belonging to these
clusters are undercoordinated with respect to the Li7 central atom but still occupying adjacent C6 rings,
therefore they can be expected to produce a signal at a higher shift than the “free” lithium atoms in LiC6.
Li3 motifs can analogously appear as “broken stars”. Additionally, both the crown atoms of the Li7 and
the prongs of the Li4 motifs have lower coordination than the respective central atoms. As such, there are
many possible realisations of microstructures with a wide range of coordinations, thus we may attribute the
broad spectral feature at 100–200 ppm to a superposition of resonances corresponding to all the above.

Both the high-ppm peaks and the broad 100–200 ppm spectral feature are correlated with the increase
of the 10–13 ppm feature. This is a strong indication that the degradation of superdense structures directly
corresponds to the appearance of a new Li environment. In line with previous assignments of the low-
ppm feature in literature, this can correspond to either Li–Li dimers occurring as the smallest possible
decomposition product before isolated Li, or to the formation of locally Li-depleted LiC6+x regions following
the ejection of Li at the surface. Of note, these two patterns can coexist as a result of decomposition
(cf.Figure 4.11).

While preparing a reference sample of fully intercalated LiC6 for 7Li NMR spectra, we observed un-
expected high-ppm resonances. Confidently ruling out that the observed signatures arise from residual
metallic lithium, we attribute these to superdense LiC6 – x compounds formed under ambient pressure. We
investigate the evolution of the signal under calendaric aging and rationalise our observations with ab initio
simulations. We infer that the signal arises from sizeable domains containing Li7 (“flowers”) and/or Li4
(“stars”) motifs in sufficient amounts and we estimate the long-term (meta-)stability. Ab initio thermody-
namics confirms that a non-negligible excess of lithium enters spontaneously, which, to the best of our
knowledge, had never been considered before. These findings challenge the currently accepted hypothe-
sis that, since LiC2 can only be prepared under high pressure [181, 187, 191], any additonal intercalation
beyond LiC6 is implausible. In hindsight, the simple consideration that the range of stoichiometries be-
tween LiC6 and LiC2 spans 200% states of charge beyond 100% should suggest prudence in such an
assumption. Yet, it was never rigorously verified. In our view, multiple previous works on electrochemical
cells contain indications compatible with at least a sparkle of doubt [192,193,195]. To be fair, the question
of assessing the true capacity of ordered graphitic hosts was explicitly addressed for bilayer or multilayer
graphene [17, 48]. Inexplicably however, the evidence of overlithiation in the latter did not reopen the
question of analogous occurrence in extended graphite – which is the material actually used in working
batteries. For decades, superdense graphite intercalation compounds have been considered only accessi-
ble as decomposition products of LiC2 under high-pressure synthesis (“from above”) [181,187,191]. Here
we confirm that superdense compositions are also accessible directly as overintercalation products of LiC6

at ambient pressure (“from below”). If this is possible under the synthesis conditions employed here, it is
reasonable to expect that overlithiation is further favoured under an applied potential. Particularly in fast
charging conditions, lithium plating is also increasingly favoured [214]. Hence, the most intriguing aspect is
the interplay of partially reversible plating, overlithiation and reintercalation. On this account, we call for a
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reconsideration of the role of overlithiation, so far excluded from the picture with graphite as a host. Taking
overlithiation into consideration may also shed light onto other hitherto unexplained phenomena, such as
the apparent “disappearance” of some amount of available lithium between cycles, the latter commonly
attributed solely to the formation of solid electrolyte interfaces (SEI) and “dead” lithium [215]. Finally, with
regards to the use of NMR for the detection of plating and dendrite formation, our results also suggest that
caution is indicated with assigning high-ppm signals non-specifically to the emergence of metallic lithium
deposits.

4.4 Details on the Experimental Section

4.4.1 Sample Preparation

The LiC6 sample was prepared using an infiltration technique. Metallic lithium with 99.9 % purity (Sigma
Aldrich) was intercalated in highly oriented pyrolytic graphite (HOPG) from Goodfellow. The lithium metal
was heated above the melting point until 220 ◦C was reached. Note that the self-cleaning property of
lithium ensures an even higher purity of the liquid lithium metal bulk. [179] Afterwards the HOPG was
added. As one can see in Figure 4.7.a, the sample was cut, in order to expose some edges and to facilitate
the starting of the intercalation by maximizing lithium wetting on graphite, although recent studies show
that graphite is lithiophilic. [179] In order to ensure complete lithium intercalation, the high-temperature
intercalation process has been allowed to take place for a period of over two months in an inert atmo-
sphere. This long infiltration time was necessary due to the dimension of the host material pre-intercalation
size of 10.0x(4.9)x2.0 mm3. [177–179] The dimensions were determined by the requirement to fit the fi-
nal sample into an NMR tube of 5 mm diameter. The bracket notation is due to the cut of the original
10.0x10.0x2.0 mm3 piece. The final sample was, by applying a cleaning procedure, adapted to fit within
the NMR tube, so reduced even more in dimension. This was done, before recording the nuclear magnetic
resonance (NMR) spectra, by polishing the fully intercalated HOPG mechanically using sand paper, in
order to avoid further chemical contamination. The full synthesis workflow is sketched in Figure 4.7.

Figure 4.7 Summary of the steps to produce the lithium–graphite intercalation compound. a, shows the raw sample
of HOPG, cut mechanically from a 10.0x10.0x2.0 mm3 piece. b, represents the molten lithium in a nickel crucible
and the subsequently inserted HOPG, whereas c, is the fully intercalated sample after ca. two months, plated by
lithium metal, as it was removed from the molten lithium at the end of the synthesis. d, shows the final stage post
polishing. The golden colour indicates full lithiation.

4.4.2 7Li Nuclear Magnetic Resonance

Susceptibility effects are known to be present when measuring the 7Li NMR spectra of metallic or pseudo-
metallic samples. In particular, lithium metal can exhibit shift variations of ca. 10–30 ppm, depending
on the sample geometry and the angle of the c-axis of the sample with respect to the B0 field direction.
The maximum difference will be found comparing sample orientations with surface normal vectors aligned
parallel and perpendicular to B0. [211, 216] To investigate the influence of the susceptibility, our sample
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Figure 4.8 Photograph of the fully intercalated sample and the cut out fraction for the in-plane 7Li NMR measure-
ments. a, showing the whole sample after mechanical cleaning; the black dashed lines indicate the location of the cut
to produce a sliced sample that would fit into an NMR tube with its c-axis rotated by 90◦ with respect to the external
magnetic field B0. b, displays the sliced part from the main sample for measurement at the parallel orientation of
the c-axis towards the B0 field. The a and b directions are not labeled. c, 7Li NMR spectrum of the sample with its
c-axis oriented parallel to the B0 field direction. The signature at 45 ppm corresponds to the LiC6 phase, while the
peak at 264 ppm, excluding a lithium metal signal (see main text), corresponds to the LiC6 – x phase.

was cut as shown in Figure 4.8.a-b. Figure 4.8.c shows the 7Li NMR spectrum, with the graphite c-axis
oriented parallel to the B0 field, while Figure 3 in the main text (as well as Figure S3) shows the spectrum
taken at perpendicular c-axis orientation towards B0. The signal-to-noise ratio (S/N) is weaker due to
the smaller size of the sample. The high-ppm chemical shift is moving from 274 ppm for perpendicular
orientation to 264 ppm for parallel orientation. The effect is similar to that observed for a Li metal sheet,
but of different magnitude (10 vs. 30 ppm, respectively). [211] However, given the different shapes of the
two samples (Figure 4.8) and the anisotropic nature of susceptibility in graphite, no quantitative conclusion
can be drawn at this point. Since our main conclusions are reached by comparing a sample with invariant
shape at identical orientation, this aspect is not characterized in more detail here.

By comparing the resonance frequencies of the satellite transitions of the resonance at 45 ppm for our
single-crystal sample placed with its crystallographic c-axis in perpendicular and parallel directions with
respect to the magnetic field B0, the quadrupolar coupling constant can be extracted. The results are
consistent with the values reported by Roth et al. [217], with Figure 4.8.c showing the full quadrupolar
constant CQ at ca. 47 kHz and Figure 3.b in the main text shows CQ/2 with ca. 23 kHz.
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Figure 4.9 Representation of the 7Li static NMR in function of different temperatures during the heat treatment cycle
of the sample after 5 months ageing. 7Li-NMR spectra recorded from −20 ◦C to 60 ◦C, show the evolution of the
high-ppm signal and the appearance of the low-ppm feature at ca. 10-13 ppm, marked both by dashed lines.
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Temperature dependent static 7Li NMR of the lithiated HOPG sample was performed after 5 months
of ageing of the cleaned sample, after removal of all surface decomposition products. The spectra were
recorded with increasing temperature from−20 ◦C to 60 ◦C in steps of 15 ◦C. For temperature adjustment,
the integrated system for the temperature control of the Bruker DIFFBB probe was used. Figure 4.9 shows
the temperature series of the NMR spectra during heating of the sample. Interestingly, the residual high-
ppm peak, discussed in the main text, disappears, while concomitantly a peak at ca. 10–13 ppm rises. In
addition, attention has to be paid to a broad background signal of the spectra between 130–300 ppm at
temperatures from −20 ◦C to 25 ◦C. This background signal disappears at 40 − 60 ◦C. Upon cooling to
25 ◦C, it reappears and, correlated to this intensity change, the peak at 10–13 ppm decreases in intensity.
This indicates a reversible character of the associated species. The high-ppm feature, however shows
an irreversible character. The background entirely vanishes after an additional ageing of two months (cf.
Figure 4.5). After the full seven months of ageing, the sharp peak at ca. 11 ppm exhibits a quadrupolar
pattern of ca. 40 kHz. This and the overall narrower linewidths indicate that the sample reached a more
ordered equilibrium state, as visible in Figure 6 (violet curve).

4.5 Ab initio Thermodynamics

4.5.1 General Concept

The idea behind ab initio atomistic thermodynamics is to evaluate relative stabilities of different stoichiome-
tries as a function of the chemical potential of the variable components (in our case, µLi), by expressing
them in terms of quantities directly accessible via first principle calculations. Our system is effectively
graphite in equilibrium with a reservoir of liquid Li, so we can in principle express free energies and free
energy variations as a function of µLi. Following the same well established reasoning for surfaces, [212]
we can partition the total free energy of the entire system as

G = Ggraphite +Glithium +∆Ginterc (4.1)

where graphite and lithium are extended (infinite) regions and ∆Ginterc accounts for the (finite) interca-
lation region. Then we may write, for any lithiated compound in the intercalation region, with NLi Li atoms
and NC C atoms per C6 formula:

∆Ginterc = G−Ggraphite −Glithium = (4.2)

= G(T, P,NC, NLi)−NCgC(T, P )−NLiµLi(T, P ) , (4.3)

where g denotes the partial molar free energy, or, for an infinite reservoir such as liquid Li, the chemical
potential. If we now introduce the limit case

∆Ginterc
empty = G(T, P,NC, 0)−NCgC(T, P ) (4.4)

as the “formation energy” of empty graphite in the intercalation region (in other words, a reference finite
slab of empty graphite), then we can express

∆∆Ginterc = ∆Ginterc −∆Ginterc
empty =

= G(T, P,NC, NLi)−G(T, P,NC, 0)−NLiµLi(T, P ) . (4.5)

Trivially, this reference will be zero at any T, P and will allow us to conveniently evaluate the relative
stability of any lithiated compound simply with respect to empty graphite. In that regard, we simply indicate
those as ∆G rather than ∆∆G in the main text.
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4.5.2 Lithium chemical potential

In general, we can express the chemical potential of lithium at any (T , P ) as

µLi(T, P ) = µLi(0, 0) +∆µLi(T, P ) (4.6)

and use the fact that at vanishing temperature and pressure, the chemical potential is equal to the
internal energy U of the stable state at T = 0 K (i.e. BCC lithium):

µLi(0, 0) = gLi(0, 0) = ULi(0, 0) ' EDFT
Li,BCC , (4.7)

where we approximate the internal energy as the calculated DFT total energy (neglecting the zero point
energy). The variation ∆µLi(T, P ) may be evaluated from ab initio calculations, or, where available, ex-
tracted from thermochemical tables [206] as:

∆µLi(T, P ) = ∆GLi(T, P ) = ∆H − T∆S =

= [H(T, P )−H(0, 0)]− T [S(T, P )− S(0, 0)] .

Technically, thermochemical tables only report values at the standard pressure of P 0 = 0.1 MPa rather
than the hypothetical P = 0. However, as will be apparent in the next section, up to P 0 the effect of
pressure on the chemical potential of condensed phases is negligible, so we can safely approximate
H(0, 0) = H(0, P 0) and S(0, 0) = S(0, P 0), obtaining:

∆µLi(T, P
0) '

[
H(T, P 0)−H(0, P 0)

]
− T

[
S(T, P 0)− S(0, P 0)

]
. (4.8)

In principle, we may use the above equation to directly obtain the value of∆µLi(T, P 0) at the experimen-
tal temperature T = 500 K. However, this would require extrapolating H and S to T = 0 K for liquid lithium,
as those are not directly included in the corresponding thermochemical table – contrary to the reference
solid state. Thus, it is safer to calculate ∆µLi for solid lithium up to the fusion temperature Tfus = 453.69 K
and then, using the fact that, at the fusion temperature:

µLi,sol = µLi,liq , (4.9)

proceed to calculate the chemical potential of liquid lithium for higher temperatures from there. Since
the experimental temperature is not much larger than the fusion temperature, we can from this point on
use a simple linear approximation for the variation of the chemical potential:

∆(T, P ) = µ(Tfus, P
0)− s∆T + v∆P (4.10)

with s is the negative molar entropy (also tabulated) and v is the molar volume, which can be easily
calculated from the experimental density.

Of note, it is easy to verify that s∆P , for∆P = 0.1 MPa, only changes the chemical potential by 10−5 eV,
justifying the approximation in Equation. 4.8. Conversely, at the much higher pressures usually employed
in the synthesis of LiC2, the effect is in the order of 1 eV. We note in passing that this straightforwardly
brings the formation free energy LiC2 in the thermally accessible range at high pressure, in agreement to
its reported synthesis.

4.5.3 Free Energies of Graphite and LixCy

At this point we have a full, quantitative expression for µLi at any finite T and P. Let us now go back to
Eqn. 4.5 and let us simplify the notation posing NLi = x and NC = y for a generic LixCy intercalation
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compound. As a first approximation (often used in AITD), one may neglect all T and P effects on the
intercalated compounds, thus replacing the free energy with the DFT total energy:

GLixCy(T, P, x, y) ' ULixCy(0, 0) ' EDFT
LixCy

, (4.11)

and analogously for empty graphite. This approximation is extremely convenient and has been employed
successfully for (semi-)quantitative predictions especially in heterogeneous catalysis, where it is largely
justified by the fact that i) there the chemical potential which is allowed to vary is typically of some gas
species, hence it is much more sensitive to T and P effect than condensed phases, and ii) it is assumed
that the competing species are similar enough that the vibrational, entropic and PV contributions between
different species largely cancel each other. [212] This allows to draw simple diagrams in which the relative
stabilities of different stoichiometries vary linearly with the chemical potential of the variable component,
with slopes proportional to its content in the formula. However, the neglection of the finite temperature
contributions to the total energies should be carefully evaluated case by case – as it turns out, they do
make a difference in our case.

In the most complete picture, and employing the usual approximation of expressing the zero-temperature
internal energy as the DFT total energy, one may write

G = F + PV =' EDFT + Fvib + PV ; (4.12)

where Fvib is the vibrational free energy, directly calculated from the first-principles vibrational density
of states in the harmonic approximation. [205] The latter includes the Zero Point Energy, the vibrational
contribution to the internal energy and the vibrational entropy. This, the only contribution neglected here is
the configurational entropy. [218] Its estimation is computationally intensive. For the scope of this work we
may limit ourselves to qualitatively note that, being by definition always positive or zero, it would be positive
for lithiated compounds and zero for pristine graphite and perfect LiC2, for which only one realisation is
possible. Therefore, it would lower the formation free energy for all the intermediate compounds.

All the calculated free energies are normalized per graphite unit (or, equivalently and consistently with
the notation used here, per mole of LixCy with y = 6).

4.6 Ab initio Molecular Dynamics

4.6.1 Diffusion Coefficients and Effective Diffusion Barrier

Due to the high computational cost of DFT, MD was performed based on Density Functional Tight Binding
(DFTB), a semi-empirical tight-binding approximation to DFT, with the recently developed parametriza-
tion [112, 119] augmented with Li–Li repulsion. The diffusion coefficients were calculated from the mean
square displacements using Einstein’s relation

D =
1

2nt

〈
|r(t)− r(0)|2

〉
(4.13)

where r(t) is the position at time t and n is the number of degrees of freedom. Only the 2D diffusion in
the xy plane was taken into account. The analysis was performed using a module implemented in ASE,
using an average over 3 segments per trajectory to improve statistics.

The diffusion coefficients are reported in Table 4.2 and plotted in Figure 4.10.

Table 4.2 Diffusion Coefficients from MD

T (K) 500 750 1000
D ± σ (cm2/s) 4.1 · 10−7 ± 4.6 · 10−7 6.3 · 10−6 ± 1.5 · 10−6 2.3 · 10−5 ± 4.4 · 10−6
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Figure 4.10 Arrhenius plot of diffusion coefficients at 500, 750 and 1000 K. The error bars are computed by error
propagation based on the standard deviation of the mean square displacement. The error for 500 K is larger due to
the limited statistics, due to the fact that at lower temperatures the trajectory is dominated by vibrational noise with
very few true diffusion events (jumps).

The ratio between characteristic times t2 and t1 at temperatures T2 and T1 can be calculated as

t2
t1

=
k1
k2

= exp

[
(T1 − T2) · Ea
kB · T1 · T2

]
(4.14)

where k1 and k2 are the rates at T1 and T2 respectively, Ea is the effective activation barrier of the
diffusion, and kB is the Boltzmann constant.

4.6.2 Degradation of Clusters from MD Snapshots

Figure 4.11 shows selected snapshots of the MD trajectory, at 750 K to show advanced stages of degra-
dation of Li7 clusters. Similar fragments appear in the 500 K trajectory, only significantly more slowly.
The occurrence of disordered planar clusters with various coordinations, as well as dimers and trimers is
evident.
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Figure 4.11 Selected snapshots in the MD trajectory at 750 K showing the frequent appearance of Li-Li dimers as
transient byproducts of superdense cluster decomposition.
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5 Investigating Diffusion of Lithium intercalated in
Graphite by a Combination of charged kinetic
Monte Carlo and Spin-alignment Echo Nuclear
Magnetic Resonance

The following describes the results of the lithium intercalation within ideal HOPG. This serves as a refer-
ence sample in order to validate the combination of kMC and ILT-SAE which was presented in the previous
chapters. This chapter is part of a publication which is currently under preparation, where some parts are
adapted to follow the structure of the thesis and might overlap with the general introduction in some con-
cepts.The kMC simulations in this work were performed using kmos kMC code generator as a basis. [129].
A particular challenge in ion transport is the charge of the particles and the resulting long range interaction
by electrostatic forces. This motivated to implement a dedicated kMC algorithm for charged particles. 5.2
This work has been conducted in collaboration with Sandra Döpking (FU Berlin) and S. Matera (FU Berlin
and FHI Berlin), who developed the algorithm and implemented it for a cubic lattice showcase by extending
the FORTRAN code generated by kmos. Cristina Grosu adapted this implementation for Li+ diffusion on
the hexagonal graphite lattice. Peter Jakes and Steffen Merz contributed valuable clues for the spectra
acquisitions, discussions and sample preparation. Data evaluation was done by Cristina Grosu in collab-
oration with Josef Granwehr and Steffen Merz. Chiara Panosetti helped in the design of the kMC model,
based on the first principle calculations

5.1 Introduction

Li+ diffusion in graphite, based on the hexagonal structure LiC6 stoichiometry (commonly known as 100 %
SOC) will be used as a validation and reference system for modelling ion diffusion in solid materials. When
modelling such systems, and in particular intercalation compoundswe can often exploit that the matrix,
built of the atoms of the host material, is only mildly affected by the the presence of additional ions. On its
way through this matrix, an ion will most of the time reside in the low energy sites defined by the atomic
structure of the host. When an ion moves from one site to another it typically has to overcome a significant
(free) energy barrier and thus such events appear rarely on the timescale of atomic motion. Assessing
diffusion by means of molecular dynamics simulations then becomes computationally expensive, because
the diffusion is dominated by the rare transitions between the sites. With other words long simulation times
are necessary in order to achieve proper statistical sampling. To overcome this limitation, we coarse-
grain the dynamics to these rare events and employ a discrete description where the ion jumps between
different sites. Instead of following the detailed trajectories by employing molecular dynamics, we therefore
simulate the sequence of jumps using the kinetic Monte Carlo (kMC) technique, in combination with a novel
implementation which allows us to describe the charged lithium ion moving under an external field. To
assess diffusivity experimentally we decided for NMR which already showed great success in investigating
ion mobility within battery materials. [63, 153] The working principle of SLR-NMR for Li intercalated in
graphite was already proven with a robust approximation by Langer et al. [63] On the other hand SAE-
NMR is more sensitive to extremely slow translational and rotational jump processes, allowing for a broader
range of timescales for the observed processes, c.f. chapter 3. The peculiarity of SAE-NMR is that it can

61



access much slower lithium ion motions compared to other NMR techniques as mentioned in section 3.2.2.
To concisely recapitulate the basics, a SAE-NMR signal is observed if local changes of the electric field
gradient (EFG) are sampled by the nucleus. The echo decay is then characterized by correlation time
constants, i.e. τc that may be associated to a hopping time between sites, provided that the origin and the
destination of a jump are not electrically equivalent. [63, 153] A single ion moving to a neighboring single
defect site thus does not "see" a different environment before and after the jump due to the inversion
symmetry with respect to the jump barrier. It is, therefore, rather the ions in the environment of the initial
and final sites which produce the SAE signal. Within the LiC6, in principle, a fully ideal – defect free
– system, the lithium sites are electrically equivalent. Advanced analysis tools like the Inverse Laplace
Transformation (ILT) help to unravel the detailed nature of this system from an experimental point of view.
Note that ILT was already used successfully for studying other battery materials, i.e. LTO. [152,153] From
the theoretical perspective, the standard kinetic Monte Carlo offers a good starting point, but is limited
as it describes the lithium ions as neutral species. Hereby, the charge treatment for the lithium ions is
necessary. On top the external field will mimic closer the real diffusivity from the solid materials.

5.1.1 Standard kinetic Monte Carlo

The basic principle of a kMC simulation is to generate a Poisson process of stochastic events with a
hierarchy of rate constants in such a way that events with higher rates are more likely to occur than slower
ones. The state of the system is modeled as a vectorial integer random variable X ∈ ZD, with realizations
denoted by x. Each entry of X corresponds to a spatial site in the electrode material, where a charge
carrier (or any other kind of species) can bind. Its value defines which species is bound there.
X evolves in time by subsequently executing processes ξ,

ξ : x→ x+ dξ , (5.1)

where dξ is the change in the state due to execution of the processes ξ and independent of the current
realization x. Such processes could be the jump of a charge carrier from a site i to a neighboring site j.
In the following, we restrict ourselves to the rather general case, where dξ is sparse, i.e. it has only O(1)
non-zero entries, i.e. their number is independent of the total number of sites D. Further, we assume
that the changes caused by each process are only local - only the species on nearby sites are involved
in a process - and we therefore have O(D) different processes. The rare event nature of the processes
allows us to regard the time evolution X(t) as continuous time Markov jump processes. The probability
p(x, t) to find the system in state x at time t then obeys the master equation [130,219]

dp(x, t)

dt
=
∑
ξ

aξ(x− dξ)p(x− dξ, t)−
∑
ξ

aξ(x)p(x, t) , (5.2)

where aξ(x) is the propensity (or rate function) of the process ξ. An equivalent formulation in terms of the
process X(t) is

X(t) = X(0) +
∑
ξ

dξPξ

(∫ t

0
aξ(X(s))ds

)
, (5.3)

where the Pξ are independent unit rate Poisson processes [220]. For any reasonable choice of D, the
numerical solution of the master equation must be regarded as intractable, albeit progress has been made
during the last years for not too complex problems [127, 135, 221]. Therefore, any practical and unbi-
ased approach to estimate expected values of the process X(t) is based on simulating it by some kind
of kinetic Monte Carlo (kMC) algorithm, sometimes named Dynamic Monte Carlo or simply Stochastic
Simulation [125,222]. Albeit there exist different kinds of kMC algorithms, the majority can be cast into the
abstract form
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Algorithm 1 Pseudocode of an abstract kinetic Monte Carlo algorithm

initialize x0 and t0,
for n = 0 : N − 1 do

calculate/update propensity values kξ,n = aξ(xn)
determine time step ∆t on basis of the propensity values kξ,n,
set tn+1 = tn +∆t
select a process χn on basis of kξ,n, set xn+1 = xn + dχn

end for

for N kMC steps.

5.2 Charged kinetic Monte Carlo (ckMC)

The implementation of the external field in is constrained to a cubic lattice. Due to that, the hexagonal
structure of the graphite was mapped onto a 3D cubic lattice. With the corresponding processes, the ones
that were identified on the hexagonal unit cell, subsequently were mapped onto the simple cubic lattice.
The implementation is available on request from the author and more details are given in the Appendix B.
The charged kinetic Monte Carlo is not new, however it was never applied to lithium ion diffusivity under the
influence of an external field. In literature, so far it was only used for the description of semi-conductors,
ionized-gases or simple cluster systems. [223,224] Additionally, treating diffusion processes with charged
particles becomes quickly costly and not trivial. In particular when a charged particle moves in a certain
environment, it will influence also the surroundings of the neighbouring particles and will move slower or
faster depending on it. Moreover, in a system where ideally it is necessary to know the right time scales
for the processes, problems can occur if we fix a step size within the MC. Ideally the steps size should
be small enough in a way that the fastest diffusion or reaction is captured. However with only small step
sizes, the sampling of slower reactions is inefficient. The sampling of all timescales might quickly become
computationally prohibitive for very large system sizes. [222] Usually, diffusion is much faster than chemical
reactions. In our case, we do not deal with reactions at all, however the diffusion processes are changing
under an external potential,that might slowly build up due to charge accumulation or separation e.g. at
or across interfaces. Here, the necessity of having explicit charges within the kMC approach is relevant.
Additionally, in structurally highly ordered, i.e. single crystalline systems, defects are also required for the
movement of atoms or ions, otherwise jumps simply not occur. The concentration of point defects will
then influence the mobility. In this study, the so-called Variable Step Size Algorithm within the kmos [129]
framework is employed. However, the following methodology is largely independent of the employed kMC
algorithm, because it only focuses on the most expensive part —for problems which involve long range
interactions— which is the update of the propensity values. Note that the update of the propensity values
has to be done in all kMC algorithms. Most kMC models for charge transport simulation employ propensity
models in which long range interactions only enter by the difference of the change in (free) energy ∆Eξ(x)
caused by the event x→ x+ dξ, such as Marcus theory [225] or Transition State theory c.f. Section 2.2.4
with Bronsted-Evans-Polanyi terms [226]. These models can be cast into the general form

aξ(x) = aξ (x,∆Eξ(x)) , (5.4)

where the explicit dependence on x is only local, i.e. only those entries of x have an impact which represent
the immediate surrounding of ξ. Then ∆Eξ(x) = E(x + dξ) − E(x) and E(x) is the (free) energy in the
state x due to the complex interaction. In the case of long range interactions ∆Eξ(x) will depend on O(D)
entries of x. Thus it is necessary to update the O(D) propensity values in every kMC step.

To be specific, in this work we employ:

aξ(x) = θξ(x)fξ(x) , (5.5)
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with

fξ(x) = exp

(
−β
(
Ea,ξ +

1

2
∆Eξ(x)

))
. (5.6)

Here, θξ(x) is only local, with a constant prefactor which acts as an indicator function and which returns
one if the process is possible otherwise it returns zero. For the long range energy contribution E(x),
pairwise interactions are assumed

E(x) = q(x)TV q(x) , (5.7)

with the dense interaction matrix V ∈ (R)D×D and the charge state q(x) : ZD → RD. In case of isotropic
Coulomb interactions, the element of V would be Vij = ε−1/||ri− rj || for non-periodic problems, where ri
and rj are the positions of the i-th and the j-th site. For the charge state q(x) : ZD → RD it is assumed
that q(x + dξ) = q(x) +∆qξ, i.e. every process induces a constant sparse shift ∆qξ in the charge state.
For the problem at hand, this is trivial because q can be identified with x (xi = 1: a Li+ is on site i, and
xi = 0: site i is empty). The energy differences can be exploited in the (n+ 1)-th step and can be written
as Eξ(xn+1) = Eξ(xn) + 2∆qTξ V ∆qχn , where χn is the process executed in the n-step. Given the value
for fξ in the n-th kMC step, fξ,n, the update rule can be formulated as

fξ,n+1 = fξ,ngξ,χn , with gξ,χ = exp(−β∆qTξ V ∆qχ) . (5.8)

The factors gξ,χ can now be precomputed and stored. In the general case without translational symmetry,
there are O(D2) factors gξ,χ 6= 1 and storage consumption will be the limiting factor for large D. For the
translational invariant problem of this study, which can be mapped onto a regular lattice, one can exploit
that V is of convolution type and the memory requirement is reduced to O(D). Irrespective of this, we
can then perform the update of the propensity values in every step exploiting Equation (5.10) and (5.8).
This boils down to updating a vector which carries the values for θξ(x), which requires only to recalculate
a few of the values because of the locality of θξ(x). Updating the vector and carrying fξ,n+1 results in
O(D) scaling and calculating the propensity values kξ,n+1 from both vectors results again in O(D) scaling
behaviour.

Still, the standard kMC requires O(D) operations per step for problems with long range interactions. For
large values of D, this means a substantial overhead compared to problems with only local interactions.
The idea to overcome this problem is now to replace the interaction matrix V by a sparse approximation Ṽ
in the update rule Equation (5.8). In practice, the interactions are truncated after a certain distance. The
sparsity of Ṽ implies that most factors gξ,χ equal one and thus it is necessary to update O(1) of the factors
fξ (and therefore propensities) per time step. Starting with correct values for the factors fξ, however, this
will lead to errors in every kMC step which will accumulate over time. To avoid a too strong deviation of the
propensities, the update rule (5.8) in every H steps is replaced by the calculation of the factors fξ (and the
propensities) using Equation (5.10) with the correct original interaction V leading to the following update
rule (again χn is the process executed in the n-th step):

fξ,n+1 =

{
= exp

(
−β
(
Ea,ξ +

1
2∆Eξ(xn+1)

))
if n = H

= fξ,ng̃ξ,χn else
(5.9)

5.2.1 Extension for Coulomb Interactions

The Coulomb interaction between the ions is long range and can not be truncated. Thus, the barriers,
needed to calculate the rate constants from Section 2.2.4, and hence the rate values rξ,n, depend on all
entries of the current configuration xn, they are needed in every kMC step. Calculating them beforehand
or on-the-fly during the kMC simulation is prohibitively expensive, even with DFTB. In order to overcome
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this problem, we employ the Bronsted-Evans-Polanyi approximation (BEP) to incorporate the interaction.
In this case, the rate function approximately assumes the following

rξ(x) =θξ(x)fξ(x)),

with

fξ(x) = exp (−β (Ea,ξ + α∆Eξ(x)))

(5.10)

where β = (kBT )
−1 and Ea,ξ is the barrier of the process ξ in the limit of an infinitely diluted crystal (or if

x and x+ dξ are symmetry equivalent). The energy difference before and after the process (starting in x)
is given by ∆Eξ(x) = E(x + dξ) − E(x) and E(x) is the energy in the state x due to the interaction of
the ions. The prefactor θξ(x) is assumed to have only a local dependency, i.e. it depends only on those
entries of x which correspond to the sites which are in close vicinity to those sites for which occupations
are altered by the process ξ. In the simplest case, this is just the Arrhenius prefactor times an indicator
function which is one if the process ξ is possible and zero else. The factor α in Equation 5.10 describes
the nature of the transition state in BEP. The symmetry of the diffusion jumps of Li+ in graphite implies
then that α = 1/2. Coulomb interactions are pairwise, which means that

E(x) = xTV x (5.11)

where V with Vij = u(qi−qj) is a dense matrix with u(qi−qj) being the interaction energy between two ions
at the positions qi and qj of the i-th and j-th site for a homogeneous matrix material. Please note, that u(∗)
already incorporates the Ewald summation for periodic boundary conditions. Existing approaches either
employ some kind of physical or mathematical approximation [223] or employ “fast” potential evaluations
like the Ewald summation. [221] Our approach instead will be completely approximation free and be based
on update rules for rξ,n, which exploit the structure of Equation 5.10 and 5.11 and can be efficiently be
executed on modern compute units. For this, we investigate how ∆Eξ(x) evolves from step to step. We
find that the energy differences in the (n+1)-th step can be written as∆Eξ(xn+1) = Eξ(xn)+2dTξ V ∆dχn ,
where χn is the process executed in the n-step. Given the value for fξ in the n-th kMC step, fξ,n, we can
now pose the update rule

fξ,n+1 = fξ,ngξ,χn , with gξ,χ = exp(−βdTξ V dχ). (5.12)

the factors gξ,χ can easily be precalculated. In the general case, they form a Np × Np matrix and thus
would have a huge memory foodprint. For the considered case of periodic lattices, they are of convolution
type, which, together with the locally of the processes, results in a memory consumption which is linear in
the system size. Updating the rate values rξ,n+1 requires to updating the values for θξ, which however is
local and therefore needs only performed for very few processes. All non-local operations reduce to two
vector-vector multiplications, one for updating the factor fξ,n+1 and one for multiplications of fξ,n+1 with
θξ. Since the number of processes is linear in the system size, this comes at linear costs. Furthermore,
modern CPUs are very efficient in vector-vector multiplications and our implementation runs efficiently on
a single core of a standard desktop CPU (see Appendix B). Especially compared to an Ewald summation
in each step, this comes at much reduced costs and, by using a GPU, this could be further accelerated.
What remains is the calculation of gξ,χ and fξ,0, for which we need to calculate dTξ V dχ and dTξ V x0. For
this we employ lattice Ewald summation, see Appendix B

5.2.2 Ewald summation

Yet, we have to calculate the factor gξ,χn and our initial fξ,0, for which we need to calculate dTξ V dχ and
dTξ V x0. Both can be calculated using an Ewald summation. For this, we represent the distances in the
basis of the lattice vectors. Then our ions will resides on the sites of a simple cubic lattice, for which lattice
Ewald summation is quasi exact and can be done using a Fast Fourier Transform [227].
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5.3 The ckMC Algorithm and a Practical Guideline for Initializing the
Simulation

This section presents an explanation of the necessary steps and procedures required for the initialization
of a kmos run using the ckMC feature. However, the focus here lies only on the implemented ckMC feature,
for a more general description of the kmos input structure the reader is referred to the manual.
As already mentioned in the previous sections we are usually dealing with a simple cubic (SC) lattice
for which we have to set up the input structure. This lattice is usually characterized by a length L and a
volume V which is given by L × L × L (L3). Initialization is then achieved by placing ions in a random
fashion onto the given lattice. One can also interpret the process of filling up the structure from the point
of view of a fully packed system where randomly vacancies are created and distributed. Note that the
lattice and the structure is usually imposed by the underlying system which is supposed to be studied by a
kmos simulation. Parameters which are determined by the system are usually the distances to other sites,
possible jumps or the barrier heights of the jump processes. For this work we only considered to types of
systems, the toy system NiAl (which has already simple cubic crystal structure) and LiGIC. The latter has
a hexagonal structure and therefore requires a mapping of all relevant processes onto the SC lattice (see
section 5.5). After initialization of the system the total number of charges is then given by

N = N+ +N− . (5.13)

Here,N+ denotes the total number of positive charges (q+i ) andN− being the number of negative charges.
As a practical example, for our toy model system NiAl, the ions would be then divided into 50 % positive
and negative charges, N+ = 1

2N and N− = 1
2N . As we only allow positively charged species to move, q+i

(x,y,z) is the charge which would move freely in the medium. With other words, q+i is the charge associated
with cation i. Furthermore, q−i (x, y, z) is the charge of the anion i which is fixed at its position, or in other
words which is not allowed to move. Of course one can easily also allow the negatively charged species to
move freely through the system. The charge density ρi at position r induced by a moving particle is then
given by:

ρi(r) = qiδ(r − r0) , (5.14)

where the + sign on q+ and also on N+ in the following is dropped due to simplicity. As a consequence,
the total charge density is then given by the sum over the single densities:

ρ(r) =
N∑
i=1

qiδ(r − ri) . (5.15)

The total charge for the moving species is then obtained in the same fashion, Q =
∑N

i=1 qi. In order
to guarantee the electroneutrality of the system the following condition,here summing over all (cations
qi = q+i and anions qi = q−i ions,is imposed:

N∑
i=1

qipi = 0 . (5.16)

Furthermore, the total density needs to obey at any time,

ρi =
Q

V
. (5.17)

Again, Q is the total charge and V is the volume of the cubic lattice. Knowing the position of each particle,
and hence the charge density, the potential of the system then obeys a Poisson equation,

∆ϕ(r) = −ρ(r)
ε0εr

(5.18)
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which needs to be solved for the update steps. Here, the problem is that the coulomb interaction of the par-
ticle is long-range. As a consequence solving these equation in real space becomes unrealistic. Therefore,
we make use of the Ewald method where the long range electrostatics are solved within Fourier space.
Switching between real space and Fourier space is achieved by Fast Fourier Transform (FFT). Note that
this is one of the most common procedures in order to deal with long-range electrostatic problems. [228]
The potential then enters the rate equations of the kMC algorithm and one obtains the new jump processes
of the next kMC step. Before we will simulate lithium intercalated in graphite it is reasonable to consider a
much simpler test system in order to validate and benchmark the new implementation. Within this thesis
we chose nickel aluminide (NiAl) in its simple cubic crystal structure. In our case the dielectric constant is
of course also material specific.

5.3.1 Simple Cubic: Intrinsic NiAl Test Case

From a computational point of view, in particular so for the Ewald summation, it is most convenient to use
a rather simple structure in order to map the charges onto a lattice. In our case we use a simple cubic
lattice. In the following, the method will be discussed based on the usage of such a simple lattice. The
charge carrier in our case will be ions, with the ionic motion under the influence of an electric field, that
will describe then the ionic mobility or conductivity. In our system the moving charge carrier is positive,
where the flux is created by external driving force i.e. the potential or field, that exactly counterbalances
the diffusion flux. We will then obtain the mobilities and diffusivities as a result of propagating the system.
As a first step and in order to validate our approach we chose NiAl to serve as a test system. NiAl is
intrinsically simple cubic (SC). It is known to have mobile ions at high temperature with a hopping motion
and this is known enough to allow us to validate the newly implemented charged feature. In this case the
cation (Ni) will move and its possible jump processes are shown in Figure 5.1. [229] As already mentioned
above the atom moving through a solid can be seen as performing jumps between minima of a potential
energy landscape, where in crystalline solids these minima are represented by lattice sites or interstitial
sites. Therefore, in order for a jump to occur it is necessary to have a certain amount of vacancies. The
validation of the Ni mobility was performed then under the conditions, reported by Pelleg [229]. For more
details the reader is referred to Appendix B. However, the important part here is to think of how do we map
the charges and how is that treated from a mathematical point of view, first, and subsequently how will be
that resolved within the propagation of the kMC framework. In a solid state diffusion process the species
are moving with different rates. Locally, this will be altered by the surrounding neighbors, however, as we
are dealing with charges long range interaction will then influence the global properties as well. However,
let us make a step back and try to solve the problem of mapping the charged particles onto a lattice and
solve how the external field will influence their mobility. The mapping itself is not the limiting part, despite
the fact that we will need to ensure the electroneutrality of the system. According to Singer [230] the
distribution of charges can be simplified in a few cases under the constraint of keeping the system neutral.
Firstly, random arrays of charges can be distributed onto the lattice, with random distances between the
two nearest charges. Another way is to use a lattice (of random or periodic structure) with a random
distribution of charges, that does not need to the be alternated periodically. A third alternative would be a
lattice ( of random or periodic structure) with random charge strengths. The main part is to maintain the
electroneutrality while distributing those charges. Having the charges as q1, q2,...qn with their probabilities
p1, p2,...pn onto a lattice the electroneutrality is then given by the equation 5.16 [230]. For the NiAl system,
the hopping motion is related to the cation that is diffusing (Ni) within the NixAl1 – x single crystal. The
typical Arrhenius plot of the Ni self-diffusion was for example measured by Frank et al. [229, 231] where
Figure 5.2 shows the reported results as function of temperature and concentration. It should be noted
that the results displayed in Figure 5.2 have been obtained with different methods at low temperature and
high temperatures. The different results clearly show the complexity one has to deal with when performing
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Figure 5.1 Schematic representation of possible pathways of the triple-defect diffusion fro Ni in NiAl. The sequences
1-4 indicate possible jumps. Permission from Springer and Elsevier, Peleg [229] and Frank et al. [231]..

experiments. Despite the different experimental methods and thus slightly different results a qualitative
comparison with our theoretical simulations still provides an excellent benchmark for our implementation.

Input parameters for our test calculations have been obtained from Frank et al. [229,231]. To be specific
we used the data provided for the the 48.7 at. % Ni reference as shown in Figure 5.2. We applied
an activation barrier of 3 eV [229, 231]. More details in the input parameters can also be found within
Appendix B.

The ions have been allowed to be mobile along all three directions of the cubic crystal. The simulations
spanned the elevated temperature range of 1000-1700 K. As one can clearly see from Figure 5.3 we
obtain excellent Arrhenius type behaviour for the ion mobility in the NiAl system and a qualitatively good
agreement with the absolute experimental rates. Overall, this clearly demonstrates the validity and correct-
ness of our charged kinetic Monte Carlo implementation. Having established and validated our approach
we now move forward to lithium intercalated in graphite.
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Figure 5.2 Arrhenius plots of Ni bulk self-diffusion in NixAl1−x single crystal. The Ni content x is given in atom
percent and depicted as number close to the corresponding Arrhenius plot. Permission from Springer and Elsevier,
Pelleg [229] and Frank et al. [231].

Figure 5.3 Arrhenius like plot of ion diffusion in the toy system NiAl. The Arrhenius plot has been obtained by using
the charged kinetic Monte Carlo implementation. The plot was obtained for the vacancy concentration of 48.7 atom
% Ni.
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5.4 More on Diffusivity and Ionic Conductivity of Lithium

When taking into account the intercalation phenomena, the exchange of Li+ between the electrode and the
electrolyte is a key factor of this process.In principle a simulation would require to describe the electrolyte
as a Li+ reservoir with a fixed chemical potential that exchanges ions with the electrode material. To
address this, a kMC model must include the diffusion of the ions outside and inside the host for being
able to mimic the starting of the intercalation, i.e. such as from the surface of the electrode. Conceptually,
this sounds simple. However, despite years of research, the exact process of how the first lithium atom
intercalates into graphite is still unknown. Additionally, there would be the problem that a liquid electrolyte
would best be described with an off-lattice kMC approach.To circumvent this problem we decided to start
the cKMC model with lithium ions being already randomly distributed over the lattice.

In fact, within solid state materials, diffusion is governed by random jumps of atoms or ions, which of
course also results in exchange with their next neighbors. Within the LIB, the diffusivity is reported as a
function of intercalation or electrode voltage. [232] Ideally, it would be desirable to simulate the full range
of intercalation and to investigate how intercalation evolves. In order to address this complex part we first
address the two possible extremes. Further, despite focusing on the validation of the reference system
LiC6 the diffusion in Li2C216 will also be reported. In general, vacancy/defects play a central role in ion
diffusion. The vacancy/defects mediated mechanism are common in this kind of materials, however the
non-vacancy/non-defect mediated ones can occur as well. Li-ions diffuse mainly by an interstitial mech-
anism due to the small radius of the lithium. [232] However, the motion of the lithium ions is strongly
impeded by the potential created by the presence of neighboring ions. In this case, the diffusion can be
the rate-determining process compared to electronic conduction in an electrochemical reaction. Diffusion
within the kmos framework is treated by applying an external field, that will allow the description of the
diffusivity as a function of the external field that can be varied and which mimics ideally the diffusivities
as in the experimental measurements, as function of the intercalation or the electrode voltage. [232] The
kinetics of diffusion processes are temperature dependent and expected to follow a typical Arrhenius type
relationship. This is another key aspect why a validation is necessary and as this can be strongly affected
by defects. In the case of the graphite anode, a Li-ion can fairly easily diffuse parallel to the graphene
layers while diffusion perpendicular to the graphene layers has a significantly larger barrier and is thus not
likely to occur. In order to understand the diffusion of a Li-ion it is important to consider the crystal structure
as well as the surrounding potential. One needs to be careful when describing the motion of Li-ions, and
consider the relationship between diffusivity and ionic conductivity. Motion of the lithium ions gives rise to
ionic conduction under external electrical potential. The charged particles, in this case the lithium ions,
can pass through a media under two driving forces: an externally applied electric field or a concentration
gradient. The mobility (ui) of ions represents the degree of ease with which ions pass through the media
under a concentration gradient. Mobility, diffusivity and ionic conductivity are all related. The relationship
between mobility and diffusivity can be obtained by considering the drift velocity (vi) in terms of mobility
(ui) under both an externally applied electric field and a concentration gradient. [232] The Nerst-Planck
equation implies that mobility and diffusivity are interchangeable and uses the definition of current density
induced by ionic flux. In fact, if the contribution of ionic conductivity to the total conductivity (electronic con-
ductivity + ionic conductivity) is known, the diffusivity can be deduced and vice-versa. Normally, diffusivity
in an electrode materials is hard to measure from an experimental point of view. On the other side, ionic
conductivity is easier to measure. As a consequence the diffusivity, in principle, can be deduced from such
measurements. However, despite this general correspondence both are not directly related in practice.
Cyclic Voltammetry (CV), Galvanostatic Intermittent Titration Technique (GITT), Potentiostatic Intermittent
Titration Technique (PITT) and Electrochemical Impedance Spectroscopy (EIS) usually measure the vari-
ation of ionic current under an applied voltage in order to calculate diffusivity. [233] From these one usually
just obtains an overall diffusivity. Therefore, having theoretical support which allows independent diffusivi-
ties (distinguishing between directions, and different jump processes) becomes even more relevant. [232]
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On top, the various phase changes over the range of SOCs Li-GIC makes the diffusivities of Li ions even
more complicated, since this can introduce disorder into the originally ordered structure. [14]This is ob-
served within the modelling by the variation of the so called vacancy concentration or also known as empty
sites. Hence this will describe different state of charge.

5.5 Mapping the Hexagonal Graphite onto a Cubic Lattice

From a theoretical point of view the most convenient way in order to solve the mobility of a charged particle,
in this case a positive ion under an external field, is when there is only one particle that moves. Of course,
in a real system that is never the case; however, if we think of the graphite structure, entirely empty but for
a single lithium/ion inserted within the graphene layers, is the closest scenario. Relatively, this would also
be the case for the low state of charge i.e. as LiC108 or Li2C216, which will correspond to 5 % SOC. Simply,
this situation can be depicted as only one lithium that is moving ideally within an empty layer as it is shown
in Figure. 5.4.

Figure 5.4 Left panel: representation of the lithium atom on top of one graphene layer within the x/y plane. The
arrows indicate the direction of the jumps within the plane, the z-direction is not represented. Right panel: a simple
cubic representation in 3D with the superimposed x/y plane on top, to identify the sites that were translated from the
hexagonal symmetry.

The influence not only of the charged particles but also of the screening of the materials is taken into ac-
count through the dielectric constant. As a good starting point for our calculation we used values obtained
from Bessler et al. [234]. Bessler and co-authors managed to measure the dielectric response within the
bilayer graphene which can be considered to be a good approximation for the Li2C216 [234]. The value is
given by 6 C2/Nm2. Here, the lithium ion is left free to move within the framework of the sheet as depicted
in Figure 5.4. The jumping vectors are identified with motion to the next neighbour (NN) empty site, or the
2 NN, corresponding to jump distances j1 = 2.46 Å and j2 = 4.30 Å .

Another important aspect which needs to be taken into account is the treatment of the prefactor. The
geometrical factor of the structure was included within the treatment.For our kMC simulation we used a
lithium hopping barrier of 0.503 eV which was obtained from DFTB simulations c.f. chapter 3. [112] Note
that by this we establish for the first time a multiscale modeling approach for mesoscopic Li diffusion in
graphite where the input parameter of first-principles calculations have been used to feed a more coarse-
grained kMC approach. Again, comparison with experiment further helps us to validate our theoretical
approach. For this purpose, we list our obtained diffusion coefficients together with values found in lit-
erature ( Table 5.1). As one can clearly see, our obtained diffusion coefficients are in good agreement
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with the listed experimental values. Slight differences can be explained by impurities or other defects as
these effects are not capture by our model. However, this clearly demonstrates the capabilities of our
implementation.

Table 5.1 Calculated diffusion coefficients obtained from cKMC are compared with diffusion coeffiecients obtained
form experiment. Literature values have been experimentally determined by Hall measurements Kühne et al. [54].
These specific values are for Li intercalation in bilayer graphene C6Li2yC6.

DLi2C216 [cm
2/s] D[cm2/s]

4 · 10−6 10− 70 · 10−6

0.7 · 10−6 1 · 10−6

5.5.1 Modelling Ion Diffusion and Mapping of LiC6

Similar to the previous case, LiC6 will be treated in the following by a ckMC description. Note, that LiC6 is
now assumed to be the case of full intercalation which corresponds to high SOC.

Naturally, the lithium mobility depends on the number of introduced vacancies. This is easy to explain
as an empty site is necessary so that a successful Li jump can occur (Figure 5.5).

Figure 5.5 Representation of the simple cubic lattice. Lithium atoms/ions are represented by the violet dots. The
dark one is the ion that is considered to start moving. The white sphere is the nearest empty site. Rosa are the next
nearest neighbor ones that will count for the coulomb interaction. Diffusion across the layers is not allowed. The unit
cell is indicated by a black dashed line.

In general, the process of a moving a charged particle will have immediately an influence on the other
particles as well. On top, if the electric field is applied, the ion mobility is further influenced. This effect
then needs to be evaluated and adapted (on the fly (otf)) if the system is propagated. The influence of the
overall material itself is introduced within the model through the dielectric constant and the occupancy will
be used to control the number of the ions. For more details the reader is referred to Appendix B. We are
using two parameters, j1 = 2.46 Å and j2 = 4.30 Å are distance parameters used to control the allowed
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distances of a jump and to identify the possibilities of the jumps. Possible jump processes are shown in
Figure 5.6. The exact geometrical meaning of j1 and j2 is depicted in Figure 5.4. Here, the index 1 and 2
are site labels, with other words j1 and j2 are possible jumps that can occur during the simulation. Note,
that these are the same settings as for the previous case of the low state of charge. This is not surprising at
all as the structure is the same, only the number of intercalated lithium ions is different. For the treatment
of the dielectric properties we used a value of 11 C2/Nm2 for the dielectric constant of the system. [235]
This value is slightly higher than for the low state of charge system since more lithium ions in the structure
result in an increased screening effect.

Figure 5.6 Left panel: representation of the lithium atom on top of one graphene layer within the x/y plane. The
arrows indicate the direction of the jumps within the plane, the z-direction is not represented. Right panel: a simple
cubic representation in 3D with the superimposed x/y plane on top, to identify the sites that were translated from the
hexagonal symmetry. Jump processes which would occur along hexagonal lattice directions are no mapped onto a
cubic lattice.

For our simulation we used the computed activation barrier height of 0.503 eV. Table 5.2 lists the ob-
tained diffusion coefficients for different lithium vacancy concentrations. As one can clearly see, the lithium
vacancy concentration directly affects the diffusion. If more vacancies are present the diffusion coefficient
increases as more jumps can occur. It has to be noted, though, that the change in the diffusion constant
is not simply proportional to the increase in vacancy concentration. Further, if one compares the obtained
values with the values which are listed in Table 5.1 one directly sees that the values for LiC6 are several
orders of magnitude lower. Again, this can be easily explained by the number of jumps which are possible.
Within LiC6 less jumps can occur since lithium ions occupy most lattice. It should be emphasized that this
results confirms the correctness of the ckMC implementation as the less mobile lithium ions of a packed
structure (here LiC6) lead to a significantly lower diffusion coefficient which will be validated experimentally
in the following sections.

DLiC6 [cm
2/s] vacancy concentration %

4 · 10−16 [0.003]
7 · 10−15 [0.012]

Table 5.2 Calculated diffusion coefficients for different lithium vacancy concentrations in LiC6.
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Figure 5.7 Upper panel: the representation of the 7Li static NMR, obtained under the spin alignment echo (SAE)
pulse. Lower panel: The inverse Laplace transformation (ILT) of 7Li SAE spectra recorded at room temperature for
the mechanical intercalated LiC6 within the HOPG, via the infiltration technique. The underlying correlation times are
associated with different relaxation processes and correspondingly different diffusion processes.

5.6 ILT-SAE on Lithium intercalated HOPG

The LiC6 sample was prepared using an infiltration technique as described and characterized in chapter 4.
All the 7Li NMR spectra were acquired with a Bruker BioSpin spectrometer Avance III HD 600 XWB MHx at
B0 = 14.1 T (7Li Larmor frequency of 233.3 MHz). The spectrometer was equipped with a Bruker DIFF50
probe-head. For the spin alignment echo, the SAE-NMR was recorded with the Jeener-Broekaert pulse
sequence β1− tp−β2− tm−β3− td. Here β represents radio frequency pulses, tp is the evolution time, tm

the mixing time and td the detection transient. [164] For the determination of T1 or spin-lattice relaxation,
the inversion recovery (ISR) pulse was used. For more details of this method the reader is referred to the
theory part in chapter 3. The SAE and ISR were analyzed using an inverse Laplace transformation by
closely following the procedure described by Granwehr et al. 3.3 [152]. The extracted correlation times
can be related to the diffusion coefficient by considering the Einstein-Smoluchovsky relation, [63]

DdD =
a2

2d · τ
. (5.19)

As shown in reference [63] τ can be assumed to be equal to τc, where a is the mean jump distance of ≈ 3
Å and d is the dimensionality of the diffusion process (d=2 if it is a restricted and d=3 if it is a non restricted
motion). Note that the mean jump distance was obtained from literature. [63]

For τc one can write,

τ−1c ≈ τ−1 ≈ τ−10 exp
−Ea
kB

T
, (5.20)

where the τ−1c is extracted in this case from SAE.τ−10 is the pre-exponential factor. [63]
In Figure 5.7 we show the obtained SAE with correlation times which where obtained by ILT. It is im-

portant to realize that not all obtained correlation times can be attributed to diffusion processes. Here, T1
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from Figure 5.7, can be attributed to spin lattice relaxation processes, hence, it will not be considered in
the following analysis. Table 5.1 then lists the calculated diffusion coefficients obtained from the assigned
correlation times.

Dτc1Q 4.5 · 10−16cm2/s

Dτc2 1.4 · 10−15cm2/s

Table 5.3 Diffusion coefficients obtained from the SPE experiment. The diffusion coefficients have been calculated
using equation 5.19. Inverse Laplace Transformation (ILT) was used to obtain the correlation times.

The fact that we are actually observing a signal which can be attributed to a diffusion process is at first
quite surprising. If we think of a jump process within an ideal LiC6 system, the moving lithium ion should
on average see the same environment, if thinking of the local electric field. In other words the hopping
lithium ion has the same local environment before and after the jump. It only interchanges its positions
with a lithium vacancy. As a consequence one would assume that no signal is observable. However, as
our experiment shows, we are clearly obtaining correlation times which can be attributed to diffusion pro-
cesses. On the other side, one could argue that the jump processes change the chemical environment of
the local environment. Hence, the signal could originate from the lithium ions which are in close proximity
to the lithium ion which performs a jump process. Up to now, it is not fully clear which exact process
we are looking at, leaving room for interpretation. More investigations are needed in order to shed more
light on the relevant processes, however taking into account the fully intercalated structure that is the only
interpretation.

Figure 5.8 The representation of the 7Li static NMR (black spectra), obtained under the spin alignment echo (SAE)
pulse with the respective inversion Laplace transformation (ILT) of 7Li SAE spectra below. The system under con-
sideration is the mechanical intercalated LiC6 within the HOPG framework. The infiltration technique was used. The
measurements have been conducted for four different temperatures as indicated above. The underlying correlation
times are associated with different relaxation processes and subsequently different diffusion processes.
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To be able to cross validate our single-spectrum approach with ckMC, we recorded SAE-NMR as a
function of different temperatures. From this, one can extract activation barrier assuming an Arrhenius like
temperature dependence. Figure 5.8 shows results for the temperature dependent SAE measurements
from -8 ° C to 40 ° C and the corresponding ILT-SAE below. The first feature indicated by the black big
dashed line 45 ppm that is present in all four graphs are the T1 limited relaxation processes. Those are
not taken into account as correlation times which can be related with diffusivities. The appearance of
additional features at room temperature (25 ° C) and 40 ° C is given from the overall broad contribution
underneath the spectra which is discussed in more detail in part 4. The maximum of the second feature
45 ppm is used to construct the Arrhenius plot (Figure 5.9) of the system. To identify the limit on the T1
relaxation the ILT was applied with the extraction of the T1 inversion limit for all the samples systematically.

As one can see from Figure 5.9 we clearly obtain an Arrhenius like behaviour. Note that the data points
in the plot are related to the maximum of the obtained signals. The bars indicate the range of the obtained
correlation times from the width of the corresponding distribution. By analysing the slope of the fitted line
in figure 5.9 one can extract the activation barrier for the diffusion process. In this case the barrier is
measured to be 0.539 ± 0.037 eV . This is consistent with the activation barrier predicted by the DFTB
simulations (0.503 eV) and for a certain vacancy with cKMC (0.604 eV).

Figure 5.9 An Arrhenius like behaviour for the temperature dependent SAE-ILT. The range which is given as addi-
tional bars are taken from the upper and lower correlation time distribution post inversion. The activation barrier of
0.539± 0.037 eV is consistent with the literature [63].
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5.7 Comparison of ILT-SAE and cKMC

In the previous section the ILT-SAE and cKMC were described independently of each other. The validation
first was done using the experimental data of the fully intercalated LiC6 spectrum. The values obtained
were extracted from the distribution of the correlation time after the inversion, and through equation 5.19
converted in diffusion coefficients, with a = 3 Åand d = 2. Table 5.4 compares the results from the kMC
calculations with the experimentally obtained diffusion coefficients calculated from the NMR correlations
times. Also listed is the lithium vacancy concentration used within the kMC runs.

We see an exact match between the one extracted from cKMC, with the vacancy concentration tending
to zero, and with the first value listed in table 5.4. To recall, the lithium intercalated within the HOPG
should be almost perfect which means, from a theoretical point of view, the vacancy concentration within
the system should tend to be zero. Indeed, thinking of the LiC6 as a fully packed system with a few lithium
atoms missing from the intercalation, will lead to a surprisingly perfect match. However, we should not
forget the discussion on the overintercalation. Here, the specific chemical shifts (45ppm) for the LiC6

are then used to know that we are looking at that exact phase. The T1 limitation, does also exclude the
relaxation related to the spin-lattice relaxation, so in this case the correlation time we are comparing is
related indeed to a diffusion process. From theory, we observe that the system with the nominal vacancy
concentration of 0.003% is the one closest to the diffusion process extracted for the correlation times of
the quadrupoles and the one at 0.012 to the correlation time extracted from the main central peak. Since
we cannot measure the concentration of the vacancy experimentally, we can just speculate. However,
the perfect match between both theory and experiment clearly indicates that only a very low number of
vacancies exist in the sample and are responsible for lithium jumps to occur. Note, that this clearly shows
how helpful our kMC analysis is for interpretation of our experiment.

DcKMC [cm
2/s] theoretical vacancy concentration % DILT−SAE [cm

2/s]

4 · 10−16 [0.003] 4 · 10−16

7 · 10−15 [0.012] 1 · 10−15

Table 5.4 On the left the diffusion coefficients obtained from our cKMC calculations are listed. The middle col-
umn shows the theoretical vacancy concentration which where used for initializing the kMC runs. On the right the
experimentally obtained diffusion coeffiecents are shown. Both values have been obtained from ILT-SAE

From this perspective so far the match between experiment and theory was almost perfect, however the
validation was extended additionally to the cross-checking of the diffusivity in function of the temperature
that can be analyzed through the Arrhenius behaviour. In this case for the comparison the activation bar-
rier was taken into account. Unfortunately, using a lithium vacancy concentration of 0.003% and 0.012%
for our simulations results in a non Arrhenius like behaviour. At this low vacancy concentrations the Arrhe-
nius behaviour is probably hindered. However, once we go up to 0.1% we obtain an excellent Arrhenius
relationship (Figure 5.11). Nevertheless, this raises ultimately two questions. First, why does the obtained
activation barrier of 0.604 eV, from the kMC run, not align with the activation barrier from DFTB and sec-
ond how does the diffusion coefficient depend on the vacancy concentration? The first question is easy
to answer, as the DFTB simulations do not fully account for long range static correlation which is better
captured by the ckMC approach. Hence, in the obtained activation barrier of 0.604 eV we additionally see
those effects. Nevertheless, the obtained activation barrier of 0.604 eV is still in good agreement with the
activation barrier which was obtained from the NMR experiment.

To shed more light on the second question we show in Figure 5.10 the diffusion coefficients with respect
to lithium vacancy concentration. For this analysis we used again the same input parameters as for the
previous ckMC calculations. The vacancy concentration was varried between 0.0 and 0.9 %. The obtained
graph directly shows how sensitive the diffusion coefficient is. Over the full range the diffusion coefficient
varies quite significantly. From the cKMC we took into account just the diffusion in terms of jumps, for
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the reference. Yet at point this can be extended to any vacancy concentration. And to investigate more
complex diffusion phenomena.

Here, we present a fundamental understanding for the scattering of this values with a synergistic ap-
proach between experiment and theory. This lies intrinsically in the distribution and concentration of the
lithium vacancies or defects. In fact defining just the basic empty lithium position in an ideal LiC6-HOPG as
a simple lithium defect, and performing our simulation, by varying only this parameter, we observe a huge
variation. It might be obvious, but a four orders of magnitude difference included just in a few percentages
of vacancy within the ideal system is important if we have to think about battery performance prediction or
a battery management system. As we mentioned above we are aware of not performing for this presented
results any real prediction, since will go beyond our validation and investigation of the upper boundary limit
of the system.

Figure 5.10 Shows the diffusion coefficient of the LiC6 as function of vacancy concentration, defined as empty
lithium [Liv] within the cell. These results have been obtain from the previously described ckMC approach. Same
settings apply as described previously in section 5.5.1.
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Figure 5.11 Arrhenius like behaviour for the diffusion coefficients for the lithium ion in LiC6. The black line shows the
data extracted from the 7Li ILT-SAE NMR at different temperatures. The red one is the one extracted from cKMC at
0.1 % vacancy concentration.
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6 Summary, Conclusions and Outlook

Within this work, theoretical methods were successfully combined with experimental investigation in order
to address complicated diffusion phenomena not only within battery materials but also within solid-state
systems in general. To be specific, the diffusion of Li intercalated in HOPG was investigated using state of
the art spin alignment echo techniques in combination with inverse Laplace transformation (ILT-SAE) serv-
ing as a tool for signal analysis. The experimental measurements have been then supported by kinetic
Monte Carlo simulations by applying the newly implemented cKMC approach within the kmos code. Within
this approach, the ILT-SAE allows us to identify correlation times using an Einstein-Smoluchowski approx-
imation. These correlation times then can be related to diffusion coefficients. It could be demonstrated
that Li intercalated in HOPG serves as an excellent candidate for being a reference system in order to
validate the ILT-SAE and the newly implemented kmos feature. Further in order to shed more light on the
detailed mechanism within the industrially used graphite powder, more defects and disorder will need to
be introduced as a next logical step. Moreover, the impact of the grain boundaries and particle size needs
to be considered as well in order to slowly advance to a complete picture. This clearly demonstrates how
important the combination between experiment and theory actually is and specifically how valuable the
developed ckMC approach is for investigating diffusion phenomena. The key feature is that it allow us to
study the influence of these material characteristics from a well-defined first principles starting point. Com-
paring with experiment then directly allows for a more detailed interpretation of the gathered experimental
data sets. Within this work it could already be shown that the vacancy concentration has a huge effect
on the diffusion coefficient which ultimately raises the question if the diffusion coefficient can be used as
a reliable parameter in order to predict the performance or the lifetimes of LIBs. Clearly, the discussion
above as well as the discussions throughout this thesis directly reflect how challenging it is to measure and
to distinguish different self diffusion processes. However, it is necessary and mandatory to continue within
this direction of research as identifying possible limiting factor can lead to a more reliable prediction of bat-
tery performance. The tools applied in this thesis, clearly show the validity of both independent techniques
and demonstrate the reliability of computer generated diffusion values. The complexity of disentangling
the single contributions within the experimental measurements can be circumvented by applying our ckMC
approach. On top, the applied external field will allow in a shorter time to simulate extreme conditions and
identify their effect on the mobility. Further it will help to correlate experimental observed properties to the
atomistic process. Despite the fact that the main scope of this thesis is the investigation of the ion mobil-
ity for different state of charge within LiGIC compounds, also patterns of overintercalated lithium (beyond
LiC6) could be identified while preparing the reference system (LiC6) for the NMR-investigation. This was
then rationalized and investigated in more detail. By doing it could be finally confirmed that overintercala-
tion is indeed happening even at moderate synthesis conditions. This result shows that overlithiation has
to be considered while addressing complex concepts such as re-intercalation, lithium plating and of course
intercalation processes especially under the extreme fast-charging conditions. The findings reported here
will further help to contribute to the development of better battery management with a better prediction and
estimation of the a priori performance and duration of the graphite anodes, as well as of the full battery
cells.
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A Appendix I

A.1 Density Functional Theory

Variational principle of the density states that only the ground state density n(1) minimizes the energy of
the system,

E(1) [n(1)] ≤ E(2) [n(2)] . (A.1)

Within KS-DFT the ground state is described by a single Slater determinant

ΘS =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~x1) ψ2(~x1) ... ψN (~x1)

ψ1(~x2) ψ2(~x2) ... ψN (~x2)
...

...

ψ1(~xN ) ψ2(~xN ) ... ψN (~xN )

∣∣∣∣∣∣∣∣∣∣∣∣
. (A.2)

Here, the spin orbitals are given by following single-particle like quations (Kohn-Sham equations),

f̂KSψi = εiψi . (A.3)

The one electron Kohn-Sham operator f̂KS has the follwing form:

f̂KS = −1

2
∇2 + VS(~r) , (A.4)

where VS(~r) is the potential which acts on the particles. The so called Kohn-Sham orbitals can be used to
obtain the total density according to.

ρo(~r) =
N∑
i

|ψi(~r)|2 . (A.5)

The kinetic energy of an single-slater determinant of a non-interacting electron system than can be calcu-
lated as

Ts = −
1

2

N∑
i

〈ψi|∇2
i |ψi〉 . (A.6)

F [ρ(~r)] is an unknown functional, however, it can be written in following the general form

F [ρ(~r)] = Ts[ρ(~r)] + J [ρ(~r)] + EXC [ρ(~r)] , (A.7)

where J [ρ(~r)] describes the classical coulomb interaction. The non-classical exchange and correlation
interaction are included in EXC [ρ(~r)] with

EXC [ρ(~r)] = (T [ρ]− Ts[ρ]) + (Eee[ρ]− J [ρ]) = TC [ρ] + Encl[ρ] . (A.8)

Here, T [ρ] is the kinetic energy of the true interaction system.
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A.2 Hartree-Fock

In order to distinguish Kohn-Sham orbitals from ther Hartree-fock counterpart the Hartree-fock single-
particle states are denoted by χi. The kinetic energy can be obtained by

THF = −1

2

N∑
i

〈χi|∇2|χi〉 . (A.9)

As already mentioned for DFT, the variational principle can be also applied to the Hatree-Fock energy. The
true ground state energy then can be obtained by minimization,

EHF = min
φSD→N

〈φSD|T̂ + ˆVNe + V̂ee|φSD〉 (A.10)

Note that φSD denotes the total Hartee-Fock wavefunctions in form of a Slater determinant (SD). The
Hartee-Fock Hamiltonian can be written as

ĤS = −1

2

N∑
i

∇2
i +

N∑
i

VS(~ri) . (A.11)

Note that VS(~ri) has to be distinguished from its DFT counterpart. Within Hartree-Fock only exchange
contributions are included whereas correlation contributions are in general not described by this level of
theory.
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B Appendix II

B.1 NiAl: Test and Input Parameters

For the simulation we chose a lattice size with dimension 32 × 32 × 32, with an occupation parameter of
0.487. The latter corresponds to the control of the concentration of the ions. A hopping activation barrier
of Ea = 3.0 eV was employed. The dielectric constant was sampled and 30 [C2/Nm2] was used for the
simulation. The electric field was set to 1e8 [V/m].

B.1.1

The diffusion can be described by following equation,

J = −Di∇C . (B.1)

where J is the diffusion flux of the particles and C the concentration of charged particles or better their
number density. The negative sign indicates the opposite directions of diffusion flux and concentration
gradient. Nabla operator acts on a scalar concentration field C(x,y,z,t) and produces the concentration
gradient field ∇C.

Ohm’s law, ohm’s transport of electric charge (for us ions), under the influence of the electric field (ionic
conductivity) can be expressed as

je ≡ −σdc · E . (B.2)

With setting E = −∇V on obtains,
Je ≡ −σ · ∇V . (B.3)

where Je is the electric current density, V the electrostatic potential and σ the conductivity. If we have a
certain number of the particles with charge qi and their mobility (µi) and Ni the number density of ions of
type i we will have

σdc =
∑
i=1

Niqiµi . (B.4)

Which is the velocity of the particles under the action of the driving force.
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Figure B.1 Convergence test for the lithium diffusion coefficient within the graphite structure. The different lines
represent different vacancy concentrations. This convergence test was performed on one computer core of a Intel(R)
Core(TM) i7-6700 CPU.

B.2 LiC6: Input Parameters and Analysis

If we go to a high occupancy parameter, which will bring us to the fully intercalated LiC6, the position are
controlled as well by the distance parameter j1 = 2.46 Å and j2 = 4.30 Å.

Ncc = Nsites · occ (B.5)

where the number of sites is determined by the length of the lattice Nsites = L2 and occ is the parameter
that controls the empty/full sites of the charged particles. In this case the velocity can be directly calculated
using a simple python command

Algorithm 2 A simple python command in order to obtain directly the velocity

velocity = occ * (OTF * prc.T) *a

In general, the starting point for the simulation was an activation energy of 0.503 meV for a lithium jump.
For additional details the reader is also referred to chapter 3.

In Figure B.1 we show the convergence behaviour of the diffusion coefficient of lithium with respect to the
required CPUh. As one can clearly see from the picture, the diffusion coefficient is already converged
within 1 h of simulation time for both 0.05% and 0.01% of Li vacancy concentration. Only the system with
a Li vacancy of 0.03% needs a slightly longer simulation time until convergence is reached. However,
convergence is reached within 2 h simulation time. Overall this clearly demonstrates the capabilities of
our ckMC approach. Similar statistics can not be achieved with MD simulations, at least not within such a
short simulation time. It should be noted, that this convergence test was performed on one computer core
of a Intel(R) Core(TM) i7-6700 CPU.
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B.3 Equations related to the ckMC implementation

p = koe
qTV qT e2αq

T (V i) . (B.6)

krate =
kBT

h
e−EA/kBT . (B.7)

Rate constants

ki = k0 ∗ e(q
TV q−(qT+∆qTi )V (q+∆qi)) = k0 ∗ e(−2q

TV∆qi−∆qTi V (q+∆qi)) . (B.8)

the factors
fn+1
i = fni ∗ e(−2∗∆qTn V∆qi) . (B.9)

with
f0i = fni ∗ e(−2q

T
0 V∆qi−∆qTn V∆qi) . (B.10)

Here, V is the solution from the Poisson equation, and the potential is

V (i, j) = φ(ri,j) . (B.11)

with:

φ(ri,j) =
∑
n

erfc(η|ri,j − nL|)
|ri,j − nL|

. (B.12)

It is the easiest to introduce classes of process (in kmos we call these classes ’reactions’), which combine
all equivalent processes. A particular process is then identified by its class label α and the site i at which
it is defined. One particular property of these classes is that their changes obey the relation

∆(qi,α)j = ∆(q0,α)j+1 . (B.13)

j is a multi-index and periodic, i.e. if j, in one dimension, is larger than the periodicity n we set j = j
mod n. In three dimensions, this is meant elementwise. For diffusions, an example is the process class
α, whose members moves a positive charge from a site i i = (ix, iy, iz) to i + ey = (ix, iy + 1, iz). The
corresponding ∆qi, α is given by

(∆qi, α)j = −δix,jxδiy,jyδiz,jz + δix,jxδiy+1,jyδiz,jz . (B.14)

In general, a class β moves a charge by a vector vβZ. Then

(∆qi, α)j = −δi,j + δi+v,j . (B.15)

One has to be aware that
ri = ix∆rxex + iy∆ryey + iz∆rzez . (B.16)

The update involves then the following changes:

∆qi = (0, ...,−1, 1, ...0) . (B.17)

Here, the qi is the distributed ion after the propagation of the system. It follows that,

∆qn = (0, ...,−1, 1, ...0) . (B.18)

The qn is then the generic update, on the distribution of the atoms after a certain point.

V ∆qn = φ(ri,n) + q2φ(r(i, n)) = φ(ri,n)∆qn +
ε

2L
q2nn (B.19)

It holds,

V =
1

2

N∑
i

qiφ(ri) . (B.20)

with
φ(ri) =

∑
j,n

qj
|rij + nL|

. (B.21)
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B.4 Poisson Boltzmann Linearized

The Poisson Boltzmann Linearized (PBL) is a second order partial differential equation given by

4Φ(r) = − ρ(r)

(ε0εr)
. (B.22)

where4 is the Laplace operator.
The charge density can be replaced by qi. One obtains the following form of PBL:

∇φ(r) =
N∑
i=1

qi
(ε0εr)

. (B.23)
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B.5 Equations related to the ionic conductivity and mobility

The ionic conductivity in solids is given by σDC = σC + σA Obviously this will be mediated by the concen-
tration of the cation vacancy and the background. However, in general, it is given by the contribution of the
cation and anions. One can identify the fowllowing:

DσC =
kBTσC
NCq2

(B.24)

and

DσA =
kBTσA
NAq2

. (B.25)

Here, if one uses the relationship NC = NA = Nion one can then write

Dσ = DσC +DσA (B.26)

or

Dσ =
kBTσDC
Nionq2

. (B.27)

σ =
q2i ci
kBT

Di (B.28)

DiO = uiRT ;Di =
Di0

NA
=
uiRT

NA
= uikBT (B.29)

For the ion mobility calculation we use

Di = λiRT (zi/(F
2) (B.30)

where F is the Faraday constant, R the molar gas constant, T the temperature and zi is the charge of the
ion, λi is the single ion conductivity which is given by

λi = ui · F . (B.31)

The velocity ui (sometimes also denoted as vi) of an ion under the influence of an electric field (E) can be
described using the following formula:

ui =
vi
E

. (B.32)

One can then define the ion mobility within a crystal by

σ = nzeu . (B.33)

where n is the charge carrier per volume, z is again the charge of the ion and u the velocity.
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A word on rate equations

The interaction between the charged ions was taken into account within the on the fly (otf) approach, as a
novel feature. The external field and the multilevel approach that is not discussed here where implemented
as additional features within the code and is available upon request. The otf rates read to

OTF rate = BASErate · eβ(Nrcation−1nn·Ecation−1nn) , (B.34)

where β is given by

β =
1

kBT
(B.35)

Here, kB is the Boltzmann constant and T the temperature.
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T. Dumitrică, A. Dominguez, S. Ehlert, M. Elstner, T. van der Heide, J. Hermann, S. Irle, J. J.
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