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Abstract In this work we calculate the partition functions
of N = 1 type 0A and 0B JT supergravity (SJT) on 2D sur-
faces of arbitrary genus with multiple finite cut-off bound-
aries, based on the T T̄ deformed super-Schwarzian theories.
In terms of SJT/matrix model duality, we compute the cor-
responding correlation functions in the T T̄ deformed matrix
model side by using topological recursion relations as well as
the transformation properties of topological recursion rela-
tions under T T̄ deformation. We check that the partition
functions finite cut-off 0A and 0B SJT on generic 2D surfaces
match the associated correlation functions in T T̄ deformed
matrix models respectively.
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1 Introduction

In recent years, a particular kind of irrelevant deformation of
field theory referred to as T T̄ deformation [1–3] has received
much research attention. The T T̄ deformation possesses a
number of remarkable properties, e.g. integrable and solv-
able [2,4,5], helping us gain a better understanding of two-
dimensional deformed quantum field theory [6–8]. These
properties make the deformed theories tractable though the
deformation is irrelevant. Another aspect that makes T T̄
deformation so compelling is that in the context of holo-
graphic duality [9,10], the T T̄ deformed CFT was proposed
to be dual to finite cut-off AdS3 with positive deformation
parameter [9]. Nevertheless, the cut-off picture was shown
valid only for pure AdS3 gravity, while in the general case
with the matter, the deformed CFT is dual to AdS3 gravity
with mixed boundary conditions [11–13]. Interestingly, the
two dual pictures were consistent with each other in pure
gravity. A natural question to ask is what is dual of the finite
cut-off AdS gravity in other dimensions, and whether one
can define the analog T T̄ deformation in other dimensions
providing such a duality. For higher-dimensional cases, it
has been explored in [14]. For lower dimension, i.e., the
one-dimensional case or ordinary quantum mechanic sys-
tem, which is the main interest of present work, the T T̄
deformation was first introduced in [15,16], see also recent
developments [17–24].

One way to define T T̄ deformation in 1D is through the
dimensional reduction of T T̄ operator in 2D [15,16], which
is

2∂t H = H2

4 − 2t H
. (1)

Here t is the deformation parameter, and one works with
Hamiltonian H instead of Lagrangian formalism as in 2D. It
was shown that such deformation shares many crucial prop-
erties with that of 2D theory. The deformed spectrum can be
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worked out explicitly which agrees with the energy of 2D
black hole with a finite cut-off, and the eigenvectors remain
unchanged under deformation. In this sense, the deformation
is solvable. Furthermore, such deformation will preserve the
supersymmetry of seed theory, which is in the same situation
as in 2D cases [25–29]. In addition, the partition function and
correlation functions were also investigated in the deformed
theory. Especially, similar to the Nambu-Goto action cor-
responding to the deformation of the 2D boson, the defor-
mation of 1D QM will be a world line action. As concrete
examples [15,16], the deformed Schwarzian and SYK model
were discussed. Among other things, a remarkable feature is
the holographic dual of 1D deformed theory. The dual gravity
with mixed boundary conditions at infinity can be interpreted
as a finite cut-off with the Dirichlet boundary condition.

The 2D JT gravity on a disk was proposed to be dual to
Schwarzian theory, which was regarded as a particular exam-
ple of AdS2/CFT1 [30]. Since then a substantial amount of
work has been focused on many aspects of JT gravity. In [31],
JT gravity was shown to be dual to a double scaled Hermi-
tian random matrix model. From such a perspective, the dual
of JT gravity on higher genus Riemann surface beyond disk
can be explored, which is an example of ensemble average
in the lower dimensional holography [32]. The JT gravity
can be viewed as a limit of a minimal string theories [33]
which is known to possess random matrix description [34–
38]. The JT/matrix model duality has been extended in many
directions. A general classification of such kind of duality
was investigated in [39], including both JT and JT super-
gravity (SJT) cases. Furthermore, the deformed JT gravity
with a generic dilaton potential also admits matrix model
description [40–43]. Interestingly, there are applications on
page curves with island formula [44] and average ensemble
holography. For other related recent developments, please
refer to [45–49]. In the present work, we are interested in
the JT and SJT/ matrix model duality with T T̄ deformation
[19,50–57].

In [51], the partition function of JT gravity with finite cut-
off boundaries was in good agreement with the partition func-
tion and correlation functions of T T̄ deformed Schwarzian
theory. Subsequently, the finite cut-off JT gravity, defined
based on T T̄ deformed Schwarzian theory, was re-visited
in [52]. The disk and trumpet partition functions were com-
puted by the resurgence method. The result was consistent
with [51]. Meanwhile, the deformed partition functions for
JT gravity with higher genus and multiple boundaries are dual
to correlation functions in the matrix model, which can be
derived from the Eynard–Orantin topological recursion rela-
tion in the matrix model. It is a natural question to check the
finite cut-off SJT/matrix model duality. The random matrix
theory dual of SJT was introduced in [39]. Since fermions
are present in supersymmetric theory, there are two different
ways to sum over the spin structure for fermion fields. It fol-

lows that there exist two types of SJT called type 0A and type
0B. They are dual to complex and Hermitian matrix models
respectively. In the literature, the duality between SJT with
certain defects and the matrix model is investigated in [43].

Inspired by the above progress, we focus on investigating
the duality between the N = 1 JT supergravity (SJT) with
finite cut-off and the corresponding matrix model. One can
define the finite cut-off of SJT as the holographic dual of T T̄
deformed super-Schwarzian theory. The deformed disk and
trumpet partition function can be worked out by applying the
techniques developed in [52] as well as the method in [51].
For SJT with higher genus and multiple boundaries, the par-
tition functions can be computed using the gluing procedure
systematically. In the matrix model side, the quantities dual
to gravity partition functions are the correlation functions
of, for example, the resolvents, which can be computed by
using topological recursion relation. The results obtained in
the matrix model match the gravity side computation in the
0A case. For 0B SJT with finite cut-off, to match the gravity
side, we make use of the covariant properties of topological
recursion relation under the transformation induced by T T̄
deformation.

The structure of this paper is organized as follows. In Sect.
2, we review some aspects of N = 1 JT supergravity, as well
as the matrix model duality for type 0A and 0B SJT respec-
tively. In Sect. 3, we investigate the finite cut-off deformed
SJT and the corresponding T T̄ deformed matrix models. The
partition functions on the gravity side and the dual correla-
tion functions on matrix model side are computed in this
section. Conclusions and discussions are given in the final
section. In the appendix, we list some relevant derivations in
our analysis.

2 Basic facts

In this section, we firstly review some aspects of N = 1 JT
supergravity, and the matrix model to set the notations. We
mainly follow the discussions in [31,39,43]. The action of
SJT can be written in terms of superfields [58,59], see also
[60–62]

I ′SJT = −1

2

(
i
∫

d2zd2θE�(R+− − 2) + 2
∫

dudϑ�K

)
.

(2)

Here � is the dilaton superfield including the dilaton field φ

� = φ + θαλα + iθ θ̄F (3)

and the scalar curvature R of the 2D manifold is contained
in superfield R+−
R+− = A + θαλα + iθ θ̄C,

C = R + fermions + auxiliary fields. (4)
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Besides the field φ and R, all other fields are fermions or
auxiliary fields, whose precise definition can be found in
[58]. The second term is the Gibbons–Hawking-like term,
and (u, ϑ) is the boundary superspace. The field contents in
the bosonic part include metric and dilaton, and the super-
symmetric partners consist of gravitino and dilatino. Inte-
grating over auxiliary fields and turning off the fermions, the
action of I ′

SJT (with proper boundary term added) reduces to
the action of JT gravity

IJT = −1

2

∫
M

√
gφ(R + 2) −

∫
∂M

√
hφ(K − 1). (5)

An important kind of quantities in SJT relevant later is the
partition functions, i.e, the path integral of N = 1 SJT on
a two-dimensional surface M with n boundaries, which can
be written as [43]

ZSJT(β1, ..., βn) =
∫

DgμνDφD�e−S0χ(M)−ISJT(gμν,φ,�)

(6)

with

χ(M) = 1

2π

(
1

2

∫
M

√
gR +

∫
∂M

√
hK

)
. (7)

Here (β1, ..., βn) are related to boundary conditions: the i-th
boundary length =βi

ε
, φ|∂M = 1

2ε
. The fermions are denoted

collectively as �. χ(M) = 2 − 2g − n is the Euler charac-
teristic of the manifold M if it has g handles and n bound-
aries. We denote such manifold as Mg,n . The appearance of
the Euler characteristic implies that the gravity path integral
admits a topological expansion in the limit e−S0 � 1

ZSJT(β1, ..., βn) =
∞∑
g=0

e−(2−2g−n)S0 ZSJT
g,n (β1, ..., βn), (8)

where ZSJT
g,n (β1, ..., βn) is understood as the gravity path inte-

gral on the manifold Mg,n . The SJT on disk reduces to
N = 1 super-Schwarzian theory containing a bosonic field
and an anti-periodic (on disk) fermionic field with global
OSp(2|1) symmetry [63]. It turns out that the disk partition
function ZSJT

0,1 can be computed by the path integral of super-
Schwarzian theory which is 1-loop exact [39,63,64]

ZSJT,D(β) ≡ ZSJT
0,1 (β1) =

√
2

πβ
e

π2
β . (9)

Beyond the disk case, the higher topological partition func-
tion can be obtained by gluing method which will be dis-
cussed in the subsequent section. In this method, we need to
know the partition function on the trumpet, which similar to
the disk case, results from the super-Schwarzian theory

ZSJT,T(β, b) = 1√
2πβ

e− b2
4β . (10)

Here the trumpet contains two boundaries, i.e, the geodesic
and asymptotic boundaries, b(β) is related to the length of the
geodesic (asymptotic) boundary. From partition functions,
one can get the corresponding spectral densities defined by

ZSJT,D(T)(β) =
∫ ∞

0
dEe−βEρSJT,D(T)(E) (11)

as

ρSJT,D(E) =
√

2

π
√
E

cosh(2π
√
E),

ρSJT,T(E, b) = cos(b
√
E)√

2πE
. (12)

Since SJT contains fermions which could be periodic (R)
or anti-periodic (NS) for general topology, one should sum
over different spin structures. One can defined the parity
(−1)ζ for spin structures, where (−1)ζ = 1 for NS spin
structure, and (−1)ζ = −1 for Ramond. Then two types of
SJT could be defined [43]. The first one is denoted as type
0B SJT whose partition function is defined by summing over
different spin structures, while the second one called type
0A SJT is defined by summing over different spin structures
weighted by the parity (−1)ζ . Note for disk and trumpet,
there is a unique spin structure, thus the disk and trumpet
partition function is the same for both types of SJT.

In the next step, let us move on to the matrix model side.
The SJT dual to an ensemble of supersymmetric quantum
mechanics (QM) [39]. For SUSY QM the supercharge is
related to Hamiltonian by H = Q2. There are two different
matrix ensembles dual to two types of SJT respectively. For
type 0A SJT including (−1)ζ in the summation of spin struc-
ture, there is an additional (−1)F symmetry in dual ensem-
ble [39]. Then the Hilbert space can be decomposed into two
blocks with

(−1)F =
(
IN 0
0 −IN

)
, Q =

(
0 M†

M 0

)
,

H = Q2 =
(

0 MM†

M†M 0

)
(13)

where IN is N × N identity matrix, M is N × N complex
matrix. This implies that type 0A SJT dual to random com-
plex matrix ensemble. The dictionary is [39]

ZSJT,−(β1, ..., βn) = 〈Z−(β1)...Z
−(βn)〉conn. (14)

with

Z−(β) = 2Tre−βH = 2Tre−βMM†
. (15)

We will use ZSJT,±(β1, ..., βn) to represent ZSJT(β1, ..., βn)

in (8) for type 0B and 0A SJT respectively. Note the the grav-
ity path integral on the LHS of (14) on connected manifold
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Mg,n , and the average on the RHS is connected part of the
following matrix integral [43]

〈Z−(β1)...Z
−(βn)〉 = 1

Z
∫

dMe−NTr(V MM†)Z−(β1)...Z
−(βn),

Z =
∫

dMe−NTr(MM†), (16)

where V (H) is a function of H that defines the matrix model.
It is convenient to work with the Hermitian matrix H =
MM† [39,43], and the corresponding spectral density and
resolvent defined with respect to MM† are1

ρ−(E) = Trδ(E − MM†), R−(E) = Tr
1

E − MM† .

(19)

For type 0B SJT, there is no (−1)F symmetry. It follows
that the dual matrix model is the ensemble for supercharge
Q, which is a random Hermitian matrix. Similar to the type
0A case, the dictionary for this duality [39]

ZSJT,+(β1, ..., βn) = 〈Z+(β1)...Z
+(βn)〉conn. (20)

with

Z+(β) = √
2Tr(e−βH ) = √

2Tr(e−βQ2
) (21)

and

〈Z+(β1)...Z+(βn)〉 = 1

Z
∫

dQe−NTrV (Q)Z+(β1)...Z+(βn),

Z =
∫

dQe−NTrV (Q). (22)

The corresponding spectral density and resolvent are then
defined in terms of Q

ρ+(E) = Trδ(E − Q), R+(E) = Tr
1

E − Q
. (23)

For later convenience, we use the notation RQ(E) = R+(E),
and define the resolvent for H = Q2

RH (E) = Tr
1

E − H
= Tr

1

E − Q2 . (24)

1 In the study of matrix models, one is usually interested in the quantities
called resolvent and spectral density In general, for a random matrix A
with eigenvalues λi , the resolvent, spectral density are defined as

R(E) = Tr
1

E − A
=

N∑
i=1

1

E − λi
, ρ(E) =

N∑
i=1

δ(E − λi ). (17)

They related to each other and the quantity Tre−βA through integral
transformations

R(E) = −
∫ ∞

0
dβeβETre−βA, R(E) =

∫ ∞

−∞
dE ′ ρ(E ′)

E − E ′ . (18)

Let us focus on the correlation functions of matrix model,
i.e., the RHS of (14) and (20). In large N expansion as indi-
cated by perturbation theory of matrix integral [31]

〈Z±(β1)...Z
±(βn)〉conn. =

∞∑
g=0

N 2−2g−n Z±
g,n(β1, ...βn).

(25)

Here g is the genus of the double-line diagram in the matrix
perturbation theory. Strictly speaking, equalities (14) and
(20) hold only in the so-called double -scaled limit. In
this limit, the 1/N is replaced by e−S0 [31] in (25).2 This
expansion is the matrix model version of (8). It follows that
we have the relation ZSJT±

g,n (β1, ..., βn) = Z±
g,n(β1, ..., βn),

(ZSJT±
g,n (β1, ..., βn) are actually ZSJT

g,n (β1, ..., βn) for 0A and
0B SJT in (8) respectively). In the matrix model, usually
Z±
g,n could be computed by the so-called topological recur-

sion relation as we will discuss in detail in the next section.

3 T T̄ of SJT

In this section, we will study the finite cut-off SJT and the
dual T T̄ deformed matrix models. The partition functions of
SJT on general topologies are computed, which are shown to
match the results obtained from the dual matrix model side.

3.1 Gravity side

As remarked above, by performing super-Schwarzian path
integrals, the corresponding partition function can be obtained
as [39]. Firstly, let us consider the disk and trumpet topolo-
gies, since there is only one boundary condition for fermions
in this geometry, the corresponding partition functions are
the same for both type 0A and 0B SJT. The results are pre-
sented in (9) and (10). Comparing these results with the disk
and trumpet partition functions in JT gravity [31,63,68]

ZJT,D ≡ Z0,1(β)= 1

4
√

πβ3/2
e

π2
β , ZJT,T(β, b)= 1

2
√

πβ
e− b2

4β .

(26)

2 To match the gravity results, one should take the continuum limit of
matrix models. Naively, one takes N → ∞ limit, however, in this limit,
all the terms except the leading term (25) would vanish. To enhance
the higher-order terms to keep all the terms in the expansion, one can
take a second limit simultaneously, i.e., taking a particular coupling
constant near its critical value. The critical value is determined by the
configuration of spectral density in the matrix model [43]. This is called
double scaling limit [36,65–67]. Note the two limits are not independent
of each other.
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the corresponding spectrum densities

ρJT,D = 1

(2π)2 sinh(2π
√
E), ρJT,T = cos(b

√
E)

2π
√
E

,

ZJT,D(T )(β) =
∫ ∞

0
dEρJT,D(T )e

−βE . (27)

A key observation is that ZSJT,T equals to ZJT,T up to a
numerical factor and moreover ZSJT,D can be reproduced by
analytically continuing of b in ZJT,T, i.e.

ZSJT,T(β, b) = √
2Z JT,T(β, b) (28)

and

ZSJT,D(β) = 2
√

2Z JT,T(β, b = 2π i). (29)

The corresponding spectral density again is related to the
trumpet density of the JT case as

ρSJT,D(E) = 2
√

2ρ JT,T(E, b = 2π i),

ρSJT,T(E, b) = √
2ρ JT,T(E, b). (30)

For higher topologies, the partition functions can be com-
puted by the gluing procedure as did in [39]. More recently,
this was generalized with defect deformation of SJT [43].

So far we have discussed the undeformed SJT gravity.
When taking T T̄ deformation into account, The deformed
partition function for disk and trumpet are

ZSJT,D(β, t) = 2
√

2e−u/t

√
t[

u√
4π2t + u2

I1

(
1

t

√
4π2t + u2

)]
, u = 2β, (31)

and

ZSJT,T(β, b, t) =
√

2e−u/t

√
t[

u√−b2t + u2
I1

(
1

t

√
−b2t + u2

)]
. (32)

These results can be obtained through two different
approaches. In fact, utilizing the definition of T T̄ deforma-
tion (1), we can derive (31) and (32) by employing the resur-
gence method, as demonstrated in [52], without relying on
the relations between the partition functions of JT and SJT.
We provide the detailed calculations in Appendix A. Alter-
natively, the deformed SJT partition functions can also be
produced by the integral kernel method proposed in [51]. In
this method, the deformed partition function is [51]

Z(β, t) =
∫ ∞

0
dβ ′K (β, β ′)Z(β ′) (33)

with the integral kernel

K (β, β ′) = β√−tπβ ′3/2
e

(β−β′)2
tβ′ , t < 0. (34)

This method is only well-defined for t < 0. For t > 0 which
is related to finite cut-off geometry, one can analytically con-
tinue from t < 0. Now apply the above method to the SJT
disk partition function (9), the deformed one is then

ZSJT,D(β, t) =
∫ ∞

0
dβ ′K (β, β ′)ZSJT,D(β ′)

=
2
√

2ue−u/t K1

(
−

√
u2+4tπ2

t

)
√−tπ

√
4π2t + u2

, t < 0.

(35)

Using K1(−z) = −K1(z) = −iπ I1(z) and keeping only the
real part [51], one can also obtain (31).

Interestingly, we can compare the partition functions of
SJT with those of the JT case, and remarkably, the relations
(28) and (29) continue to hold after deformation, i.e.,

ZSJT,D(β, t) = 2
√

2Z JT,T(β, b = 2π i, t),

ZSJT,T(β, b, t) = √
2ZJT,T(β, b, t) (36)

with [52]

ZJT,D(u, t) = u√
t

e−u/t

u2 + 4π2t
I2

(
1

t

√
u2 + 4π2t

)
,

ZJT,T(u, t) = u√
t

e−u/t

√
u2 − b2t

I1

(
1

t

√
u2 − b2t

)
, (37)

where I1, I2 are modified Bessel functions. It should be
emphasized that the first equality (31) and (32) are com-
puted from the deformed spectrum in both resurgence and
integral kernel methods and are not simply an extrapolation
of undeformed relation (28) and (29) to the deformed case.

In parallel with the JT case, the SJT disk partition function
(31) can be written as an integral over a contour C surround-
ing interval (− 1√

t
, 1√

t
) on complex s = √

E plane, noting
this interval corresponds to branch cut in deformed spectrum
(39) below

ZSJT,D(u, t) =
∫
c
dssρSJT,D(s2)e−I (s,t,u)

=
√

2

π

∫
C
ds cosh(2πs)e−I (s,t,u), (38)

where we follow the notation in [52] with u = 2β, and
I (s, t, u) = u

t (1 − √
1 − ts2) (rewriting of (39) below).

Furthermore, (38) can be expressed in a form where both
branches of deformed spectral density are included. To see
this let us recall that the T T̄ deformation defined in (1), would
lead to two branches deformed eigenvalues

E±(t) = 2

t

(
1 ∓ √

1 − t E
)
. (39)

Notice that when t > 0, the spectrum would be complex
for when E > 1/t . In addition, the undeformed eigenvalues
can be recovered for the solution E+(t) as t → 0. It seems

123



  885 Page 6 of 16 Eur. Phys. J. C           (2023) 83:885 

that only the E+(t) makes sense as the deformed spectral.
However, Ref. [52] shows that by employing the resurgence
method both branches should be included. Moreover, when
both branches are taken into consideration, the T T̄ flow equa-
tion will be satisfied and the complex spectrum problem men-
tioned above will disappear [51].3

Explicitly, ZSJT,D(β, t) in terms of two branches spectrum
is

ZSJT,D(β, t)

=
√

2

π

∫ 1/
√
t

−1/
√
t
ds cosh(2πs)e− u

t

(
e

1
t

√
1−ts2 − e− 1

t

√
1−ts2

)

=
√

2

π

∫ 1/t

0
dE cosh(2π

√E)√E e− u
t

(
e

1
t

√
1−tE − e− 1

t

√
1−tE)

=
∫ 4/t

0
dE

√
2

π

(
1 − t E

2

)cosh
(

2π
√
E − t E2/4

)
√
E − t E2/4

e−uE/2,

(41)

where s = √E , E = − 2
t (±

√
1 − tE −1). From the last line

the deformed spectral density of SJT can be read off, which
is

ρSJT,D(E, t) =
√

2

π

(
1 − t E

2

)cosh
(

2π
√
E − t E2/4

)
√
E − t E2/4

.

(42)

This spectral density has support on (0, 4
t ) and reproduces

the undeformed one when t = 0. Notice that ρSJT,D(E, t) is
negative in the range ( 2

t ,
4
t ), which is similar with JT case

[52].
Along the same line, we can obtain the deformed spectral

density for trumpet in SJT

ρSJT,T(E, b, t) =
(

1 − t E

2

)cos
(
b
√
E − t E2/4

)
√

2π
√
E − t E2/4

. (43)

Next, let us move on to consider other topologies with
g > 0 or n > 1 in SJT. In this case, we should distinguish
between two different types of SJT. The partition functions
can be computed by the gluing procedure, i.e. gluing the basic
building block, the trumpet partition function ZSJT,T (βi , b)
for each boundary, to the supervolume V±

g,n(b1, ..., bn), “±”
to denote type 0B and 0A supervolume respectively [39].
V±
g,n(b1, ..., bn) is an analogue to Weil-Petersson volume

Vg,n(b1, ..., bn) in JT case. The latter is volume of moduli

3 One problem is that the resulting deformed spectral density contains
a negative part. For JT case is [52]

ρJT,D(E, t) = 1 − t E/2

4π2 sinh(2π
√
E(1 − t E/4)). (40)

which is negative in the range (4/t, 2/t).

of space of hyperbolic Riemann surfaces of genus g with n
geodesic boundary of length b1, ..., bn [39]

Z±
g,n(β1, ..., βn, t) =

∫ ∞
0

b1db1...

∫ ∞
0

bndbnV
±
g,n(b1, ..., bn)

ZSJT,T(β1, b1, t)...ZSJT,T(βn, bn, t). (44)

Here we assume that under T T̄ deformation the gluing pro-
cedure still works as finite cut-off JT/SJT case [38].4

And only the boundary condition is affected by the defor-
mation, while the geodesic boundary remains the same, the
super volumes would not change, thus the gluing takes the
above form. Intuitively, this can be understood as follows,
the T T̄ deformation will lead to a finite cut-off in the bulk as
what happens in higher dimensions [9]. Therefore only the
boundary conditions will be changed, which is relevant to
ZSJT,D(T) but not V±

g,n .
For type 0A it takes the form as

V−
g=1,n(b1, ...bn) = 1

2

(−1)n(n − 1)!
4

V−
g=2,n(b1, ...bn) = 3

1

2

(−1)n(n + 1)!
45

[
(2π)2(n + 2) +

n∑
i=1

b2
i

]

(46)

V−
g=3,n(b1, ...bn) = 1

5

(−1)n(n + 3)!
49

×
[
(2π)4(n + 4)(42n + 185) + 84(2π)2(n + 4)

n∑
i=1

b2
i

+25
n∑

i=1

b4
i + 84

∑
i �= j

b2
i b

2
j

]
(47)

and V−
g=0,n≥3(b1, ...bn) = 0. While for the case of type

0B, all V+
g,n vanish except (g, n) = (0, 2). For both case

V±
0,1(b1) is undefined, and by definition V±

0,2(b1, b2) =
2δ(b1 − b2)/b1. In the subsequent section, we will need the
correlation functions of the resolvent, which following (18)

4 There is a subtlety in the finite cut-off JT picture. For example, con-
sider the partition function of a cylinder with two Dirichlet boundaries
of lengths β1/t and β2/t . This partition function can be obtained by
gluing two trumpets together.

Zcyl. =
∫ ∞

0
dbbZJT,T(β1, b, t)ZJT,T(β2, b, t). (45)

Here, ZJT,T(β, b, t) is defined in (37). In [51], ZSJT,T(β, b, t) is referred
to as non-perturbative (eq. (94) therein) due to the inclusion of both
branches of the deformed spectrum, similar to the discussion in (41).
However, including both branches in ZJT,T(β, b, t) prevents it from hav-
ing a geometric interpretation [51]. An issue arises when the Dirichlet
boundary βi/t of the cylinder is finite, allowing it to extend into the
bulk and intersect with the geodesic of length b inside the bulk. In such
cases, the cylinder cannot be simply glued together by two trumpets. It
remains unclear whether this geometry can be taken into consideration
in (45), as ZJT,T(β, b, t) lacks a geometric interpretation. We expect
that a similar issue arises in the case of SJT as well.
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is

RSJT±
g,n (E1, ..., En, t) = (−1)n

∫ ∞

0
dβ1...

∫ ∞

0
dβne

β1E1+...+βn En ZSJT±
g,n (β1, ..., βn, t). (48)

To evaluate this integral, at the first step, by substituting into
(44), we should compute the following integral

T̃ (E, b, t) =
∫ ∞

0
dβZSJT,T(β1, b1, t)e

βE . (49)

which is essentially computed in the JT case, since ZSJT,T is
proportional to ZJT,T. The result is [52]

T̃ (E, b, t) ≡ −
√

t

2π

∞∑
k=1

�(k + 1/2)

(1 − t E/2)k

(
2
√
t

b

)k

Jk

(
b√
t

)
.

(50)

In the second step, Noticing that the supervolumes are poly-
nomial in the power of b2

i , the integral (48) decomposes into
the following integrals [52]

R̃n(E, t) ≡
∫ ∞

0
dbb2n+1T̃ (E, b, t)

= − (2n + 1)!(1 − t E/2)√
2(−E(1 − t E/4))n+1

√−E(1 − t E/4)
.

(51)

Similarly, the integral (44) for deformed correlation functions
of Z(β) can be decomposed into

Z̃n(β, b, t) ≡
∫ ∞

0
dbb2n+1ZSJT,T(β, b, t)

=
√

2

t
n!un+1e−u/t Im

(u
t

)
. (52)

Now we are ready to compute the deformed correlation
functions of resolvent and Z(β) from the gravity side. Using
(46), (47) and (48), for the cylinder geometry

RSJT±
0,2 (E1, E2, t) = 4R JT

0,2(E1, E2, t)

= t2(1 − t E1/2)(1 − t E2/2)(t E2
1/4 + t E2

2 − E1 − E2)

((1 − t E1/2)2 − (1 − t E2/2)2)2
√−E1(1 − t E1/4)

√−E2(1 − t E2/4)

− t2((1 − t E1/2)2 + (1 − t E2/2)2)

((1 − t E1/2)2 − (1 − t E2/2)2)2 , (53)

which reduces to undeformed result 1√−E1
√−E2(

√−E1+√−E2)2

when t = 0. And then from (52)

ZSJT
0,2 (β1, β2, t) = 4Z JT

0,2(β1, β2, t)

=
∫ ∞

0
db1db2b1b2ZSJT,T(β1, b1, t)ZSJT,T(β2, b2, t)V

±
0,2(b1, b2)

= 4u1u2e−(u1+u2)/t

t (u2
1 − u2

2)

(
u1 I0

(u2

t

)
I1

(u1

t

)
− u2 I0

(u1

t

)
I1

(u2

t

))
,

(54)

which reproduces the undeformed result 2
π

√
β1β2

β1+β2
at t = 0.

Note that for cylinder geometry, the correlators of type 0A
and type 0B share the same form as presented in above.

In what following, we turn to consider more gen-
eral topologies except the cylinder and disk. For type
0B theory, all the correlators RSJT+

g,n (E1, ..., En, t) and
Z+
g,n(β1, ..., βn, t) vanish except the case (g, n) = (0, 2)

RSJT+
g,n = 0, (g, n) �= (0, 2), (55)

since corresponding V+
g,n = 0. For type 0A, we list some

examples (g ≤ 3) for the correlation functions of resolvent
below

RSJT−
1,n (E1, ..., En, t) = 1

2

(−1)n(n − 1)!
4

n/2 n∏
i

R̃0(Ei , t),

RSJT−
2,n (E1, ..., En, t) = 2n/23

(−1)n(n + 1)!
45(

(2π)2(n + 2)

n∏
i

R̃0(Ei , t) +
∑
j

R̃1(E j , t)
∏
i �= j

R̃0(Ei , t)

)
,

RSJT−
3,n (E1, ..., En, t) = 2n/2 1

5

(−1)n(n + 3)!
49(

(2π)4(n + 4)(42n + 185)

n∏
i

R̃0(Ei , t)

+84(2π)2(n + 4)
∑
j

R̃1(E j , t)
∏
i �= j

R̃0(Ei , t)

+25
∑
j

R̃2(E j , t)
∏
i �= j

R̃0(Ei , t)

+84
∑

i, j,i �= j

R̃1(Ei , t)R̃1(E j , t)
∏

k,k �=i, j

R̃0(Ek , t)

)
. (56)

In the next section, we will show some examples that the
correlators computed in (56) will match the results obtained
from the dual matrix model.

3.2 Matrix model side

Before delving into specific models, such as the T T̄
deformed matrix model dual to type 0A and 0B SJT, let
us first review some general characteristics of T T̄ deforma-
tion in the context of supersymmetric undeformed quantum
mechanical systems [15]. In light of (1), the defining property
of T T̄ deformation indicates that the deformed Hamiltonian
H(t) is a function of the undeformed Hamiltonian H0, i.e.,
H(t) = f (H0). Consequently, if a conserved charge Q in
the undeformed theory satisfies [Q, H0] = 0, it remains con-
served in the deformed theory, as [Q, f (H0)] = 0.

For a supersymmetric quantum mechanical system, the
conserved charge Q can be identified as the supercharge,
satisfying H0 = Q2 in accordance with the supersymmetry
algebra. As discussed earlier, under deformation, Q remains
conserved. However, in order to preserve the supersymmetry
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algebra, we may introduce the deformed charge Q(t) defined
by H(t) = Q(t)2. Consequently, we have [Q(t), H(t)] = 0,
indicating that the system retains its supersymmetry even
after deformation.

3.2.1 Type 0A

In this case, as reviewed in Sect. 2, the dual random matrix
is a complex matrix ensemble. It follows from (15) that the
spectral density of the dual matrix model is half of that of
SJT (12)

ρ−(E) = 1

2
ρSJT,D(E) = 1

π
√

2E
cosh

(
2π

√
E

)
. (57)

Under T T̄ deformation, using (42), the deformed spectral
density reads

ρ−(E, t) = 1

2
ρSJT,D(E, t)

= 1√
2π

(
1 − t E

2

)cosh
(

2π
√
E − t E2/4

)
√
E − t E2/4

.

(58)

For general topological with (g, n), it follows from (15)
that one has

RSJT−
g,n (E1, ..., En, t)(β, t) = 2n R−

g,n(E1, ..., En, t). (59)

Here R−
g,n(E1, ..., En, t) is related to Z−

g,n(E1, ..., En, t)

defined in (25) by integral transformation.5 To compute
R−
g,n(E1, ..., En, t) in matrix model, one can employ a power

tool called topological recursion relation [69,70]. This recur-
sion relation can be derived from loop equation which play
the role of Ward identity in matrix model. For matrix model
dual to SJT without T T̄ deformation, the topological recur-
sion relation have been considered in [39,43]. Below we will
consider the case when T T̄ deformation presents. The input
of topological recursion relations are the deformed spectral
density (or spectral curve) and R−

0,2(E1, E2, t). To be more
concrete, we first define the uniformizing parameter z by
E(z) = −z2 as in T T̄ JT case [52]. In terms of z, the recur-
sion relation is

Wg,n(z1, ..., zn, t) = Resz→0K (z1, z, t)[
Wg−1,n+1(z, −z, z2, ..., zn, t)

+
′∑

h1+h2=g

′∑
I1∪I2=J

Wh1,1+I1(z, I1, t)Wh2,1+I2 (−z, I2, t)
]
,

(60)

5 It is interesting to note that R−
0,2(E1, E2, t) takes the same form

for both JT and SJT cases. This is follows from RSJT−
0,2 (E1, E2, t) =

4R JT
0,2(E1, E2, t) (see (53)).

where the prime in the summation indicate terms containing
W0,1 are excluded. Here J = {z2, ..., zn}. For g = 0, n = 1
the quantities Wg,n is related to spectral density

W0,1(z, t) = iπρMM(E(z))E ′(z)

= √
2(2 + t z2)

cos
(
π z

√
4 + t z2

)
√

4 + t z2
. (61)

For general (g, n), Wg,n are determined by R−
g,n as

Wg,n(z1, ..., zn, t)

=

⎧⎪⎪⎨
⎪⎪⎩

(
R−

0,2(E(z1), E(z2), t) + 1
(E(z1)−E(z2))2

)

E ′(z1)E ′(z2), g = 0, n = 2,

R−
g,n(E(z1), ...,E(zn), t)E ′(z1)...E ′(zn), otherwise.

(62)

As mentioned before R−
0,2(E(z1), E(z2), t) in SJT takes the

same form as in JT case, therefore W0,2(z1, z2, t) also equals
to JT case, which is [52]

W0,2(z1, z2, t) =
(
R−

0,2(−z2
1,−z2

2, t)

+ 1

(E(z1) − E(z2)2)

)
E ′(z1)E

′(z2)

= 4(2 + t z2
1)(2 + t z2

2)

(z2
1 − z2

2)
(4 + t (z2

1 + z2
2))

2

(
2z1z2 + 4(z2

1 + z2
2) + t (z4

1 + z4
2)√

4 + t z2
1

√
4 + t z2

2

)
. (63)

The last quantities that remain to explain are the kernel

K (z1, z, t) = 1

2[W0,1(z, t) + W0,1(−z, t)]∫ z

−z
dz2W0,2(z1, z2, t)

= z(4 + t z2)(2 + t z2
1) sec(π z(4 + t z2))

√
2(2 + t z2)(z2

1 − z2)

√
4 + t z2

1(4 + t (z2 + z2
1))

.

(64)

With the initial data W0,1 and W0,2 in hand, we are ready to
evaluate higher topological cases via the topological recur-
sion relations. Below we consider several examples.

• W1,1 Applying the topological recursion relation (60),
one have 6

6 Here we used

W0,2(z,−z, t) = (2 + t z2)2

z2(4 + t z2)2 . (65)
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W1,1(z1, t) = Resz→0K (z1, z, t)W0,2(z,−z, t)

= 2 + t z2
1

2
√

2z2
1(4 + t z2

1)
3/2

. (66)

The result from SJT in (56) is

RSJT−
1,1 (E, t) = −

√
2

16

1 − t E/2

(−E(1 − t E/4))
√−E(1 − t E/4)

= −
√

2

4

2 + t z2

z3(4 + t z2)3/2 . (67)

From (59), we see that the result from the matrix model
is in good agreement with the one obtained on gravity
side

2R1,1(z1, t) = 2W1,1(z1, t)/(−2z1) =RSJT−
1,1 (z1, t).

(68)

• W0,3 The relevant topological recursion relation for W0,3

is

W0,3(z1, z2, z3, t) = Resz→0K (z1, z, t)

[W0,2(z, z2, t)W0,2(−z, z3, t)

+W0,2(z, z3, t)W0,2(−z, z2, t)] = 0, (69)

which also matches the SJT result since V−
0,3 = 0.

• W1,2 The relevant topological recursion relation for W1,2

is

W1,2(z1, z2, t) = Resz→0K (z1, z, t)[W0,3(z,−z, z2, t)

+W0,2(z, z2, t)W1,1(−z, t) + W1,1(z, t)

W0,2(−z, z2, t)]
= (2 + t z2

1)(z + t z2
2)

z2
1(4 + t z2

1)
3/2z2

2(4 + t z2
2)

3/2
, (70)

where we need to use the result (69) derived before. Note
this result matches the SJT computation

RSJT−
1,2 (E1, E2, t) = (2 + t z2

1)(2 + t z2
2)

z3
1(4 + t z2

1)
3/2z3

2(4 + t z2
2)

3/2
,

(71)

since

4R−
1,2(z1, z2, t) = 4W1,2(z1, t)/(4z1z2)

= RSJT−
1,2 (z1, z2, t).

(72)

• W2,1 The relevant topological recursion relation for W2,1

is

W2,1(z1) = Resz→0K (z1, z, t)[W1,2(z,−z)

+W1,1(z)W1,1(−z)]
= −9(2 + t z2

1)(2 + π2z2
1(4 + t z2

1))

32
√

2z4
1(4 + t z2

1)
5/2

. (73)

where W1,2,W1,1 have been obtained before. The gravity
result is

RSJT−
2,1 (z, t) = 9(2 + t z2)(2 + 4π2z2 + π2t z4)

32
√

2z5(4 + t z2)5/2
. (74)

Thus they match each other as

2R−
2,1(z1, t) = 2W2,1(z1, t)/(−2z1) =RSJT−

2,1 (z1, t).

(75)

Note that in the above examples, the deformed Wg,n are
related to the undeformed one by transformation

Wg,n(ẑ1, ..., ẑ1, t) = Wg,n(z1, ..., zn)
dz1

dẑ1
...
dzn
dẑn

(76)

with the coordinate transformation induced by T T̄ deforma-
tion [52]

Ê = −2

t

(√
1 − t E − 1

)
, (77)

Ê = −ẑ2, E = −z2 ⇒ z = ẑ

2

√
4 + t ẑ2. (78)

Here Wg,n(z1, ..., zn) is undeformed one and Wg,n(ẑ1, ...,

ẑ2, t) is deformed one. Note that formally (77) is the same as
the T T̄ deformed spectral as (39). According to [52], topo-
logical recursion relations formulated in terms of differentials

wg,n(z1, ..., zn) = Wg,n(z1, ..., zn)dz1 ⊗ ... ⊗ dzn (79)

is covariant and takes the same form under coordinate trans-
formation, for example, like in (78).

3.2.2 Type 0B

The dual matrix model is a random Hermitian matrix for
supercharge Q. And according to the dual dictionary (22),
we have

RSJT+
g,n (E1, ..., En) = 2n/2RH

g,n(E1, ..., En). (80)

where RH
g,n(E1, ..., En) is n-pt function of resolvent RH (E)

defined in (24).
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Let us recall the undeformed case

ZSJT,D(β) = √
2〈Tr(e−βH )〉 = √

2〈Tr(e−βQ2
)〉

= √
2

∫ ∞

0
dx2xe−βx2

ρH (x2)

= √
2

∫ ∞

−∞
dx |x |ρH (x2)e−βx2

= √
2

∫ ∞

−∞
dxe−βx2

ρQ(x), (81)

where x is eigenvalue of Hermitian matrix Q, while x2 is the
eigenvalue of system Hamiltonian H . According to (11) and
(12), ρH (E) is

ρH (x2) = 1√
2
ρSJT,D(x2) = 1

πx
cosh(2πx). (82)

The leading spectral density for matrix ensemble Q is

ρQ(E) = |x |ρH (x2) = cosh 2πx

π
. (83)

Note that the spectral density has support on the whole real
axis, in other words, it means the branch-cut of resolvent is
the real axis.

In one-cut Hermitian matrix model, in general, the leading
2-point function RQ

0,2 depends only on the position of spectral

edges. For Q ensemble considered here RQ
0,2 is [39]

RQ
0,2(x1, x2)

=
{

0, x1, x2 on same side of real axis ,

− 1
(x1−x2)2 , x1, x2on opposite sides of real axis.

(84)

Using the identity

2x RH (x2) = RQ(x) − RQ(−x), (85)

one obtain the follow relation for 2-pt function

−4x1x2R
H
0,2(−x2

1 ,−x2
2 ) = RQ

0,2(i x1, i x2)

+RQ
0,2(−i x1,−i x2) − RQ

0,2(−i x1, i x2)

−RQ
0,2(i x1,−i x2). (86)

Substituting into (84), one obtains RH
0,2(−x2

1 ,−x2
2 ) =

1
2x1x2(x1+x2)2 . In gravity side RH

0,2(−x2
1 ,−x2

2 ) is dual to SJT

partition function on cylinder, [39] showed that this is indeed
the case.

Now let us add T T̄ deformation. The deformed spectral
density is, using (42) and (81)

ρQ(x, t) = |x |ρH (x2, t) = 1√
2
|x |ρSJT,D(x2, t)

= 1

π

(
1 − t x2

2

)cosh
(

2πx
√

1 − t x2/4
)

√
1 − t x2/4

,

x ∈
(

− 2√
t
,

2√
t

)
. (87)

Next, let us consider the leading 2pt function under defor-
mation. According to (80), one has

RSJT
0,2 (E1, E2, t) = 2RH

0,2(E1, E2, t), (88)

where the LHS is computed in (53) and RHS is related to
Q ensemble quantity RQ

0,2(E1, E2, t) through (86). Thus we
have

−4x1x2R
H
0,2(−x2

1 ,−x2
2 , t)

= RQ
0,2(i x1, i x2, t) + RQ

0,2(−i x1,−i x2, t) − RQ
0,2(−i x1, i x2, t) − RQ

0,2(i x1,−i x2, t)

= −2x1x2

(
t2(1 − t E1/2)(1 − t E2/2)(t E2

1/4 + t E2
2/4 − E1 − E2)

((1 − t E1/2)2 − (1 − t E2)2)2
√−E1(1 − t E1/4)

√−E2(1 − t E2/4)

− t2((1 − t E1/2)2 + (1 − t E2/2)2)

((1 − t E1/2)2 − (1 − t E2/2)2)2

)
,

E1 = −x2
1 , E2 = −x2

2 . (89)
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One simplification of above equation can be made by using
the fact

RQ
0,2(x1, x2, t) = RQ

0,2(−x1,−x2, t). (90)

This could result from the fact that the deformed spectral
ρQ(x, t) in (87) is an even function in x . For more details
please see the Appendix (B). Note that for the undeformed
RQ

0,2(x1, x2) (84), this is indeed the case.7 One possible solu-

tion for RQ
0,2(x1, x2, t) of (89) can be obtained by assuming

there exist a coordinate transformation between deformed
and undeformed topological recursion relation. The result is
presented as follows. We leave the detailed procedure for
obtaining the result in Appendix C

RQ
0,2(x1, x2, t)

=
{
RQ−

0,2 (x1, x2, t), x1, x2 on same side of real axis,

RQ+
0,2 (x1, x2, t), x1, x2 on opposite sides of real axis,

(92)

where RQ−
0,2 (x1, x2, t) is defined in Appendix C. It ready to

check this expression reduces to undeformed case (84) when
t = 0 and indeed satisfies the equation (89).

Next consider the deformed higher topologies quantites
RQ
g,n(E1, ..., En, t) in Q ensemble. A simplification comes

from the gravity side. As discussed in previous section, the
supervolumes V+

g,n vanish except for the case (g, n) = (0, 2),
which leads to RSJT+

g,n with (g, n) �= (0, 2) vanishing. Thus
the dual RH

g,n is expected to equal zero. From (85), then

RQ
g,n = 0 with (g, n) �= (0, 2). Note this results valid whether

or not the T T̄ deformation presents, since the supervolume
is unchanged under T T̄ deformation.

In principle, the topological recursion relation would be
a possible way to investigate RQ

g,n(E1, ..., En, t), since Q
is a random Hermitian ensemble. However the initial data
for topological recursion relation, i.e., RQ

0,2(E1, E2, t), takes
very complicated form as presented in the appendix. We
will adopt another way, by making use of the transforma-
tion properties of topological recursion relation under T T̄
deformation. At the end of subsection (3.2.1), the deformed
and undeformed topological recursion relations are related
to each other by the coordinate transformation

Ê = −2

t

(√
1 − t E − 1

)
. (93)

7 Also (90) holds for usual one-cut Hermitian matrix model, if the
support of spectral density is a symmetric interval (−a, a. In this case
the 2-pt function R0,2(x1, x2) is (see (3.3.38) of [70])

R0,2(x1, x2) = − 1

2(x1 − x2)2

(
1 − x1x2 − a2√

x2
1 − a2

√
x2

2 − a2

)
. (91)

Motivated by this fact, similarly, if there exists a that there
exists a coordinate transformation relates deformed and
undeformed correlators in Q ensemble for type 0B theory.8

It follows by using (76) the deformed Wg,n would vanish
since the undeformed Wg,n vanish, which is consistent with
the prediction of the gravity side (55), i.e., RSJT+

g,n = 0 when
(g, n) �= (0, 2).

4 Conclusions and discussions

In the work, we study the partition functions of type 0A
and 0B SJT on higher genus g 2D surfaces with n finite
cut-off boundaries, and the dual correlation functions in the
T T̄ deformed matrix models. The disk and trumpet parti-
tion function in SJT with finite cut-off are the same for both
type 0A and 0B SJT. For other topologies except for disk and
cylinder, the deformed partition functions can be computed
by the gluing procedure, which are non-zero for 0A SJT and
vanish for 0B SJT. The latter case is due to the fact that the
vanishing super-volume V+

g,n for 0B except (g, n) = (0, 2).
In the dual matrix side, the deformed partition functions of
SJT with multiple finite cut-off boundaries are correspond-
ing to the correlation functions Rg,n(E1, ..., En, t) which can
be computed by employing the topological recursion rela-
tions. In the 0A SJT, we compute several Rg,n(E1, ..., En, t)
(or, more precisely, the quantities Wg,n) in the dual matrix
model. The results from the gravity (56) and matrix model
(65)−(73) match each other. In addition, there is a trans-
formation (77) rule between the deformed and undeformed
topological recursion relations.

For the case of type 0B SJT, the dual matrix model is
unusual. In the undeformed matrix model, i.e. Q ensem-
ble, the spectral is supported on the whole real axis. After
taking T T̄ into account, the deformed density in Q ensem-
ble can be worked out. Applying the covariant property of
Wg,n and topological recursion relation in a generic Hermi-
tian matrix model, we compute the matrix model counterparts
of correlation functions in 0B SJT on surfaces with finite cut-
off boundaries. In particular, as for leading 2-point function
RQ

0,2, we give one possible solution that satisfies the con-
straint (89) imposed by matching the SJT result. This solu-
tion is obtained by transformation properties of RQ

0,2 under

T T̄ deformation, as presented in appendix C. For other RQ
g,n ,

to match the gravity results, as the RQ
0,2 case we assume that

the deformed topological recursion relations for Q ensemble

8 The T T̄ deformation of SUSY QM system was considered in [15],
where the supercharge Q deforms as

Q(t) = ±
√

2

t

(
1 −

√
1 − t Q2

)
, (94)

which induced from (93) and H = Q2.
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exist, and there exists a transformation between the deformed
and un-deformed topological recursion relations. With such
assumptions, we can obtain results consistent with the gravity
side.

In addition, one problem is how to explain the negative
spectral density of the deformed matrix model and the finite
cut-off SJT, which should not occur in the standard matrix
model. This is an open question as pointed out in [52], which
is also presented in the finite cut-off JT case. Recently, a rel-
evant discussion on the negative spectral density appeared
in [43]. This question may be related to how to define T T̄
deformation for the matrix model. [50] treated the T T̄ defor-
mation of the matrix model in the framework of the standard
matrix model. However, the results there don’t match the
gravity side. Interestingly, recently, another definition of T T̄
deformed matrix model was proposed in [19]. The T T̄ flow
equation could be satisfied in this definition. A further study
on such problems would be an important direction.

It would be interesting to apply the deformed 2D grav-
ity/matrix model duality to Liouville gravity, or minimal
string theory. It has been shown in [37] that the partition
function of such theories can be calculated by the gluing pro-
cedure and they also admit dual matrix description. Therefore
one may consider the T T̄ deformation of the corresponding
matrix model.
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Appendix A: Deformed disk and trumpet partition func-
tions

In this appendix we review the resurgence method used in
computing deformed disk and trumpet partition functions in

the JT case [52], and we employ this method to compute the
deformed disk and trumpet partition functions (31) and (32)
in SJT.

The density for disk and trumpet in JT is

ρdisk,JT(E) = 1

(2π)2 sinh
(

2π
√
E

)
,

ρtrumpet,JT(E, b) =
cos

(
b
√
E

)

2π
√
E

, (A1)

while for type 0B SJT [39]

ρdisk,SJT(E) =
√

2

π
√
E

cosh
(

2π
√
E

)
,

ρtrumpet,SJT(E, b) =
cos

(
b
√
E

)
√

2πE
. (A2)

Let us introduce variables u = 2β, s = √
E . The deformed

spectrum is

βE± = 2β

t

(
1 ∓ √

1 − t E
)

= u

t

(
1 ∓

√
1 − ts2

)
≡ I (u, t, s). (A3)

The deformed partition function is

ZSJT,D(β, t) = 1

π

∫ ∞

0
dEe−βE

√
2√
E

cosh
(

2π
√
E

)

= 2
√

2

π

∫ ∞

0
ds cosh(2πs) e−I (u,t,s). (A4)

The exponent in the integrand can be written as

e−I (u,t,s) = e−us2/2
(

1 +
∞∑
n=1

An(s, u)tn
)
,

An(s, u) = −us2n+2

22n+1n
Ln+1
n−1

(
us2

2

)
, (A5)

where Ln+1
n−1(x) are generalized Laguerre polynomials. One

can expand the deformed partiton function in power of the
deformed parameter t

ZSJT,D(u, t) =
∞∑
n=0

Z (n)
SJT,D(u)tn, (A6)

with

Z (n)
SJT,D(u) = 2

√
2

π

∫ ∞

0
ds cosh (2πs) e−us2/2An(s, u)

= 2
√

2

π

∞∑
j=0

(2π)2 j

(2 j)! a j . (A7)

Here we have used

cosh(2πs) =
∞∑
j=0

(2πs)2 j

(2 j)! , (A8)
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and [52]

a j =
∫ ∞

0
dss2 j e−us2/2An(s, u)

= − 1

n!2 j−n−1/2u− j−n−1/2
(

1

2
− j

)
n−1

�

(
j + n + 3

2

)

(A9)

with Pochhammer symbol (x)n .
Then we get9

Z (n)
SJT,D(u) = −2

√
2(2u)−n−1/2

π

×
∑
j=0

(2)2 j

(2 j)!
(2π2) j

u j

(
1

2
− j

)
n−1

�

(
j + n + 3

2

)

= −
(

1

2

)
n−1

�

(
n + 3

2

)
2
√

2(2u)−n−1/2

π

×
∑
j=0

(2)2 j

(2 j)!
(2π2) j

u j

( 1
2 − j)n−1�( j + n + 3

2 )

( 1
2 )n−1�(n + 3

2 )

= −
(

1

2

)
n−1

�

(
n + 3

2

)
2
√

2(2u)−n−1/2

π
1

×F1

(
n + 3

2
; 3

2
− n; 2π2

u

)

= − 1

n!
( 2

π

)3/2
�

(
n − 1

2

)
�

(
n + 3

2

)
(2u)−n−1/2

1

×F1

(
n + 3

2
; 3

2
− n; 2π2

u

)
. (A11)

The power expansion (A7) with coefficients (A11) is diver-
gent, and can be dealt with the Borel resummation and resur-

9 Here the summation can be computed as

∑
j=0

(2)2 j

(2 j)!
(2π2) j

u j

( 1
2 − j)n−1�( j + n + 3

2 )

( 1
2 )n−1�(n + 3

2 )
(A10)

=
∑
j=0

(2π2) j

j !u j

( 1
2 − j)n−1(n + 3

2 ) j

( 1
2 )n−1

√
π

�( 1
2 + j)

=
∑
j=0

(2π2) j

j !u j

(n + 3
2 ) j�( 1

2 )

�(n − 1
2 )

√
π�(n − j − 1

2 )

�( 1
2 + j)�( 1

2 − j)
= π

∑
j=0

(2π2) j

j !u j

(n + 3
2 ) j

�(n − 1
2 )

�(n − j − 1
2 )

(−1) jπ

=
∑
j=0

(2π2) j

j !u j

(n + 3
2 ) j

�(−n + j + 3
2 )

�

(
−n + 3

2

)

=
∑
j=0

(2π2) j

j !u j

(n + 3
2 ) j

(−n + 3
2 ) j

= 1

F1

(
n + 3

2
; 3

2
− n; 2π2

u

)
,

where in the 1st step we using �( 1
2 + j) = (2 j)!√π

j !4 j .

gence method. For an introduction to this method please refer
to [52]. Here we just give the result for our case. First, make
the Borel transformation of (A6) we get

B[ZSJT,D](u, ζ ) =
∞∑
n=0

Z (n)
SJT,D(u)

ζ n

n!

= 2√
uπ

∑
m=0

1

m!
(

2π2

u

)m

2F1

(
m + 3

2
, −m − 1

2
; 1; ζ

2u

)
.

(A12)

Then we perform directional Laplace transformation:10

S0± ZSJT,D = 2√
uπ

∑
m=0

1

m!
(2π2

u

)m

e−u/t

√
π/2ut

(
π Im+1

(u
t

)
∓ (−1)miKm+1

(u
t

) )
. (A14)

Finally, the T T̄ deformed disk partition function is given by

ZSJT,D(u, t) = 1

2
(S0+ + S0−)ZSJT,T

= 2√
uπ

∑
m=0

1

m!
(2π2

u

)m e−u/t

√
π/2ut

π Im+1

(u
t

)

= 2
√

2e−u/t

√
t

u√
4π2t + u2

I1

(
1

t

√
4π2t + u2

)
, (A15)

which is (31). Similarly, we can obtain the result (32).

Appendix B: Equation (90)

In this appendix we will show that if ρ0(x) is a even function
of x , then R0,2(−E1,−E2) = R0,2(E1, E2). To this end, we
convert to the 2pt correlator of resolvent to that of spectral
density

〈R(E1, E2)〉 =
∫ ∞

−∞
dE ′

1

∫ ∞

−∞
dE ′

2
〈ρ(E ′

1, E
′
2)〉

(E1 − E ′
1)(E2 − E ′

2)
.

(B1)

Therefore the problem now is to show

〈ρ(−E ′
1,−E ′

2)〉 = 〈ρ(E ′
1, E

′
2)〉, (B2)

which can be seen as follows. Ifρ0(x) is even, the potential for
matrix model V (x) is even. It follows that in the orthogonal
polynomial method (for example, see [71]), the orthogonal
polynomials Pn(x) have definite parity, i.e., being even or

10 Use the formula
∫ ∞

0
e−bx xa−1

2F1

(
1

2
+ ν,

1

2
− ν; a; − x

2

)
dx (A13)

= 2aeb
1√
π

�(a)(2b)
1
2 −aKν(b), Re a > 0, Re b > 0.
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odd of x . The 2pt correlator for spectral density for N × N
random matrix is

〈ρ(E1, E2)〉
= 1

Z
∫

dN x�2(x)
∑
i �= j

δ(E1 − xi )

δ(E2 − x j )e
−N

∑
i V (xi )

= 2C2
N

Z εr1...rN εs1...sN∫
dN x Pr1(x1)...PrN (xN )Ps1(x1)...PsN (xN )

δ(E1 − x1)δ(E2 − x2)e
−N

∑
i V (xi )

= 2C2
N

Z εr1...rN εs1s2r3...rN

Ps1(E1)Pr1(E1)Pss (E1)Pr2(E1)e
−N (V (y1)+V (y2))

hr3 ...hrN

∝ e−N (V (y1)+V (y2))
∑
r1,r2

1

hr1hr2

(P2
r1

(E1)P
2
r2

(E2)

−Pr1(E1)Pr2(E1)Pr1(E2)Pr2(E2)) (B3)

with

hnδmn =
∫

dxe−NV (x)Pn(x)Pm(x), and �(x)

= εr1...rN Pr1(x1)...PrN (xN ). (B4)

HereZ ∝ h1...hN is a normalization factor. From the last line
of (B3), (B2) follows since Pr (x) have definite parity. Note
in the first line we omit the term proportional to δ(E1 − E2),
which obviously does not effect the equality (B2).

Appendix C: RQ
0,2

In this appendix, we describe the procedure to obtain (92).
The undeformed RQ

0,2(x1, x2) is supported on (−a, a) with

a → ∞. RQ
0,2(x1, x2) has a cut along (−a, a) according to

(3.3.37) in [70].11 Transforming to uniformized coordinate
zi by the map ((3.3.15) of that paper a = −b)

x = a

2

(
z + 1

z

)
, (C1)

11 W̄2(x1, x2) in [70] is RQ
0,2(x1, x2) here.

where z is double cover of x (similar to the map x = −z2

appeared in the JT case). Note RQ
0,2(x1, x2) is not covariant.

And the quantities being covariant in topological recursion
relation is [70]

W0,2(z1, z2) = 1

(z1 − z2)2

=
(
RQ

0,2(x1, x2) + 1

(x1 − x2)2

)
dx1

dz1

dx2

dz2
.

(C2)

with

RQ
0,2(x1, x2) = − 1

2(x1 − x2)2

(
1 ± x1x2 − a2√

(x2
1 − a2

√
x2

2 − a2

)
,

(C3)

where there are two choices of signature since the square root
is double-valued, “-” is chosen when x1, x2 are in the same
sheet, and “+” when x1, x2 locate in different sheets.

To account for T T̄ deformation we assume the coordinate
transformation between deformed and undeformed topolog-
ical relations is z = z(ẑ), then W0,2 transforms as

W0,2(ẑ1, ẑ2, t) = W0,2(z1, z2)
dz1

dẑ1

dz2

dẑ2
, (C4)

where the RHS is known by (C2). The LHS is related
to deformed RQ

0,2 like in undeformed case (C2) (we treat
(assume) the deformed 0B as a one-cut matrix model)

W0,2(ẑ1, ẑ2, t) =
(
RQ

0,2(x̂1, x̂2, t) + 1

(x̂1 − x̂2)2

)dx̂1

dẑ1

dx̂2

dẑ2
.

(C5)

From the above equations, we can obtain the deformed RQ
0,2

RQ
0,2(x̂1, x̂2, t) =

(
RQ

0,2(x1, x2) + 1

(x1 − x2)2

)
dx1

dx̂1

dx2

dx̂2

− 1

(x̂1 − x̂2)2 . (C6)

Here x(x̂) is the eigenvalue of the supersymmetry charge.
The coordinate transformation between x and x̂ , if it exists,
is expected to be is (94) (see (76))

x̂(t) =
√

2

t
(1 −

√
1 − t x2), (C7)
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Now let us compute RQ
0,2(x̂1, x̂2, t), which is

RQ
0,2(x̂1, x̂2, t)

= − 1

(x̂1 − x̂2)2 ±
2(t x̂2

2 − 2)(t x̂2
2 − 2)(−4a2 + x̂1 x̂2

√
4 − t x̂2

1

√
4 − t x̂2

2 ±
√

4x̂2
1 − t x̂4

1 − 4a2
√

4x̂2
2 − t x̂4

2 − 4a2)√
4 − t x̂2

1

√
4 − t x̂2

2

√
4x̂2

1 − t x̂4
1 − 4a2

√
4x̂2

2 − t x̂4
2 − 4a2)(x̂1

√
4 − t x̂2

1 − x̂2

√
4 − t x̂2

2 )2

(C8)

where the+(−) corresponds to the initial x1, x2 in RQ
0,2(x1, x2)

locate in the different (same) sheet. Now we take the limit
a → 0, RQ

0,2(x̂1, x̂2, t) with “-” is

RQ−
0,2 (x̂1, x̂2, t) = − 1

(x̂1 − x̂2)2

+ 4(t x̂2
1 − 2)(t x̂2

2 − 2)√
4 − t x̂2

1

√
4 − t x̂2

2 (x1

√
4 − t x̂2

1 − x̂2

√
4 − t x̂2

2 )2
,

(C9)

and for “+”

RQ+
0,2 (x̂1, x̂2, t) = − 1

(x̂1 − x̂2)2 , (C10)

where for convenience we renamed RQ
0,2(x̂1, x̂2, t)

= RQ±
0,2 (x̂1, x̂2, t) in each case. Note in the limit t → 0,

RQ±
0,2 (x̂1, x̂2, t) reduces to the result (84) as it should be.
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