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Abstract: Weyl transverse gravity is a gravitational theory that is invariant under trans-
verse diffeomorphisms and Weyl transformations. It is characterised by having the same
classical solutions as general relativity while solving some of its issues with the cosmological
constant. In this work, we first find the Noether currents and charges corresponding to local
symmetries of Weyl transverse gravity as well as a prescription for the symplectic form. We
then employ these results to derive the first law of black hole mechanics in Weyl transverse
gravity (both in vacuum and in the presence of a perfect fluid), identifying the total energy,
the total angular momentum, and the Wald entropy of black holes. We further obtain the
first law and Smarr formula for Schwarzschild-anti-de Sitter and pure de Sitter spacetimes,
discussing the contributions of the varying cosmological constant, which naturally appear
in Weyl transverse gravity. Lastly, we derive the first law of causal diamonds in vacuum.
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1 Introduction

The implementation of the Noether charge formalism in gravitational systems provides a
systematic way to calculate conserved quantities in these theories [1–5]. Among the suc-
cesses of this method we can count a formulation of the first law of black hole mechanics
and a prescription for black hole entropy (known as Wald entropy) valid for all local, diffeo-
morphism (Diff) invariant theories of gravity [2–4]. It has also been employed to calculate
the conserved charges corresponding to the Bondi-Metzner-Sachs symmetry group [5].

The seminal works on the gravitational Noether charge formalism were concerned only
with local, Diff invariant theories. Here, we extend this analysis to gravity invariant under
transverse diffeomorphisms and Weyl transformations (WTDiff). While there exist a large
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class of gravitational theories with a WTDiff symmetry group, we focus on the simplest
one, Weyl transverse gravity (WTG).

The relevance of WTG lies in the fact that it represents a classical alternative to general
relativity (GR), and even offers some advantages over it. The idea of WTG has first emerged
from the observation that the construction of a consistent theory of self-interacting gravitons
does not uniquely lead to GR. Instead, it also allows to arrive at a WTDiff invariant theory
now known as WTG [6–8]. Classical solutions of WTG and GR equations of motion are
equivalent (although WTG in principle allows coupling to more general matter sources,
as we discuss in subsection 2.2). However, WTG solves some of the problems connected
with the cosmological constant, Λ, intrinsic to GR. Applying the formalism of the effective
field theory to GR appears to yield unrealistically high estimate for Λ coming from vacuum
energy [9–11] (see, however, [12] for an alternative viewpoint). Both WTG and unimodular
gravity (a gauge fixed version of WTG) solve this problem, since vacuum energy does not
gravitate in these theories [7, 8]. Perhaps more worryingly, Λ is radiatively unstable in
GR [13, 14]. In other words, even if one somehow fixes Λ to be consistent with observations
at the tree level, higher loop corrections will drastically alter its value. Hence, arriving at
a Λ value consistent with observations apparently requires infinite amount of fine-tuning.
This challenges the rationale behind the effective field theory, i.e., that high energy physics
does not significantly affect low energy observations. However, Weyl invariance of WTG
ensures radiative stability of Λ [14], avoiding the problems with validity of the effective field
theory approach.

Within this framework, developing a Noether charge formalism for WTG provides, on
one side, a consistency check for this theory. On the other side, it offers a practical tool to
calculate conserved quantities in WTG, aiding its further development.

Another interest of this analysis comes from the results of applying the Noether charge
formalism to the case of causal diamonds. One then obtains a first law of causal diamond
mechanics and even an expression for their Wald entropy, both analogous to the results
known for black holes [15]. Conversely, considering Wald entropy and Unruh temperature
associated with local causal diamonds allows one to derive equations governing gravita-
tional dynamics [16–18]. However, the resulting dynamics is consistent with unimodular
gravity, which is invariant only under transverse diffeomorphisms [19, 20]. Furthermore,
gravitational dynamics derived from thermodynamics is invariant under Weyl transforma-
tions [21] and, thus, has exactly the same symmetries as WTG. In this way, starting with
Wald entropy obtained from the Diff invariant Lagrangian of GR one arrives at equations
of gravitational dynamics consistent with WTDiff invariant WTG. This motivates us to see
whether an expression for Wald entropy can be recovered even for WTG.

In this work, we develop a new version of the Noether charge formalism adapted to
WTG. We start by reviewing the main features of WTDiff invariant theories in section 2.
Then, in section 3, we derive expressions for the Noether current and charge. In section 4, we
employ these expressions to derive the first law of black hole mechanics and an expression for
Wald entropy. Furthermore, we analyse the cases of Schwarzschild-anti-de Sitter spacetime
and de Sitter spacetime which highlight some differences between Diff and WTDiff invariant
theories. Section 5 concerns the first law of black hole mechanics in the presence of matter
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fields. In section 6, we apply our formalism to conformal Killing vectors and derive the
first law of causal diamonds. Finally, section 7 sums up our findings and discusses possible
further applications of the formalism.

Unless otherwise specified, we work in an arbitrary spacetime dimension n and use
metric signature (−,+, ...,+). We set G = c = ~ = kB = 1. Definitions of the curvature-
related quantities follow [22].

2 Weyl transverse gravity

In this section, we first review the basics of WTG and definitions of some auxiliary quantities
useful for working in a WTDiff invariant setting. Then, we turn to the coupling of WTG
to matter fields, highlighting the differences compared to Diff invariant theories.

2.1 Vacuum theory

The action for vacuum WTG in n spacetime dimensions reads [23, 24]

SWTG =
1

16π

∫
V

[
R+

(n− 1) (n− 2)

n2
gαβ∂α ln

√
−g
ω

∂β ln

√
−g
ω

](√
−g
ω

) 2
n

ωdnx

− 1

8π

∫
V
λωdnx+

1

8π

n− 1

n

∮
∂V

(√
−g
ω

) 1
n

∂µ ln

√
−g
ω

nµωdn−1x, (2.1)

where g is the determinant of the metric, V is the domain of integration, ∂V denotes
its boundary with a unit normal nµ, and we introduced a non-dynamical volume n-form
ω = ω (x) dx0 ∧ dx1 ∧ ... ∧ dxn−1, with ω (x) being a strictly positive function. The pres-
ence of such a privileged background n-form is necessary for any WTDiff invariant theory
of gravity [8] (unless one chooses to introduce dynamical degrees of freedom besides the
metric [24, 25]). In principle, it is possible to introduce dynamics for the volume n-form
ω, without affecting the gravitational dynamics of WTDiff invariant gravity or the radia-
tive stability of Λ [26]. However, for our current purposes the underlying dynamics of the
background volume n-form plays no role and we will treat it as non-dynamical.

The second integral in the action contains an arbitrary constant λ and, as it is com-
pletely independent of the metric (the only dynamical quantity in vacuum), it does not
contribute to gravitational equations of motion and does not even enter higher order effec-
tive field theory calculations. Therefore, unless specified otherwise, we simply set λ = 0 in
the following without any loss of generality.

To rewrite the action for WTG in a simpler form, we introduce a WTDiff invariant
(but not Diff invariant) auxiliary metric

g̃µν =
(√
−g/ω

)−2/n
gµν . (2.2)

One may notice that g̃µν is just the dynamical metric gµν restricted to the unimodular
gauge,

√
−g = ω. In principle, it is possible to formulate WTG in the unimodular gauge

and consider g̃µν as the dynamical variable. However, we impose no such gauge restriction
and only use g̃µν as a convenient notational device. We further note that raising and
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lowering of indices is always done with the dynamical metric, gµν (the obvious exception
being g̃µν which we define as an inverse of g̃µν).

The Weyl connection corresponding to g̃µν reads

Γ̃µνρ = Γµνρ −
1

n

(
δµν δ

α
ρ + δµρ δ

α
ν − gνρgµα

)
∂α ln

√
−g
ω

. (2.3)

Using g̃µν and Γ̃µνρ we can write the action of WTG in a simpler form,

SWTG =
1

16π

∫
V
R̃ωdnx, (2.4)

where R̃ = g̃µνR̃µν and R̃µν is the Ricci curvature tensor constructed from the auxiliary
(WTDiff invariant) Riemann tensor

R̃µνρσ =2Γ̃µν[σ,ρ] + 2Γ̃µλ[ρΓ̃
λ
σ]ν

=Rµνρσ +
2

n

(
δαν δ

µ
[ρδ

β
σ] + gµαgν[σδ

β
ρ]

)
∂α∂β ln

√
−g
ω

+
2

n2

(
gαβgν[ρδ

µ
σ] + δαν δ

µ
[ρδ

β
σ] + gµαδβ[ρgσ]ν

)
∂α ln

√
−g
ω

∂β ln

√
−g
ω

. (2.5)

The WTG action is invariant with respect to Weyl transformations

δgµν = e2σgµν , (2.6)

where σ is an arbitrary spacetime function. Likewise, it is invariant with respect to trans-
verse diffeomorphisms. However, the usual transversality condition, ∇µξµ = 0, where ξµ

denotes the diffeomorphism generator, is not Weyl invariant. Thus, it cannot be satisfied
in every Weyl frame simultaneously, making it unsuitable for WTG. Instead, one must
define transversality with respect to the Weyl invariant covariant derivative. Transverse
diffeomorphisms then obey

δgµν =2∇(νξµ), (2.7)

∇̃µξµ =0 ⇐⇒ ∇µξµ = ξµ∂µ ln

√
−g
ω

. (2.8)

The theory is not invariant under longitudinal diffeomorphisms (with ∇̃µξµ 6= 0).
Varying the action with respect to gµν yields the vacuum equations of motion of WTG

R̃µν −
1

n
R̃g̃µν = 0, (2.9)

which are traceless. We can restate these equations of motion in a form more reminiscent
of the standard Einstein equations. Invoking the contracted Bianchi identities,

2g̃νρ∇̃νR̃µρ = ∇̃µR̃, (2.10)

we find that on shell
(n− 2) / (2n) R̃g̃µν = Λg̃µν , (2.11)
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where Λ is an arbitrary integration constant. Finally, subtracting the previous equality
from the traceless equations of motion yields

R̃µν −
1

2
R̃g̃µν + Λg̃µν = 0. (2.12)

By comparison with the Einstein equations, we can see that Λ plays the role of the cos-
mological constant. In contrast with GR, Λ has no connection with the constant λ present
in the Lagrangian, which we already set to 0. Furthermore, Λ is naturally allowed to vary
between solutions of the equations of motion, since it is an integration constant.

2.2 Coupling to matter fields

Let us now discuss the behaviour of matter fields coupled to WTG. We start by introducing
a WTDiff invariant matter action and the form of WTG equations of motion with matter.
Lastly, we discuss local energy-momentum conservation.

Consider a matter field minimally coupled to WTG. The corresponding WTDiff invari-
ant matter action takes form

Sψ =

∫
V

(√
−g/ω

)2k/n
Lψωdnx, (2.13)

where Lψ is a function of the matter variables ψ, their Weyl invariant covariant derivatives,
and k contravariant metric tensors, gµν . The factor (

√
−g/ω)2k/n then ensures the overall

Weyl invariance of the action, compensating the behaviour of gµν under Weyl transfor-
mations1. By definition, the Weyl transformations affect only the gravitational sector of
the theory and matter variables are invariant under them. If more than one matter field
is present, Sψ is just a sum of several terms of this form (including possible interaction
terms).

By simultaneously varying the WTG and matter actions with respect to gµν we obtain
the full gravitational equations of motion

R̃µν −
1

n
R̃g̃µν = 8π

(√
−g
ω

)2 k−1
n
(
Tµν −

1

n
Tgµν

)
, (2.14)

where we define the energy-momentum tensor Tµν by the standard Hilbert prescription2

Tµν = −2
∂Lψ
∂gµν

+ Lψgµν , (2.16)

1We might instead just replace gµν by g̃µν in a Diff invariant matter Lagrangian. However, since we
work with the standard definition of the energy-momentum tensor, the notation we chose is more practical
for our purposes.

2One might instead consider an energy-momentum tensor defined with respect to the auxiliary metric [26]

T̃µν = −2
∂
[
(
√
−g/ω)

2k/n
Lψ
]

∂g̃µν
+
(√
−g/ω

)2k/n
Lψ g̃µν , (2.15)

which has the advantage of being Weyl invariant. However, we choose the standard definition as it involves
variations with respect to the full dynamical metric.
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and T = Tµνg
µν denotes its trace. From the Hilbert prescription and Weyl invariance of

matter variables, we can easily see the behaviour of the energy-momentum tensor under
Weyl transformations

T ′µν = e−2 k−1
n
σTµν . (2.17)

Thus, the right hand side of the WTG equations of motion (2.14) is Weyl invariant.
Let us now briefly address the question of local energy-momentum conservation in

WTDiff invariant gravity. Since the matter and gravitational actions are WTDiff invariant
rather than Diff invariant, the energy-momentum tensor is not guaranteed to be divergence-
free by the symmetries of the action (nor, conversely, by the combination of the equations
of motion and the contracted Bianchi identities). Nevertheless, invariance with respect to
transverse diffeomorphisms still ensures [23]

8π∇̃ν
[(√
−g/ω

)2k/n
T ν
µ

]
= ∇̃µJ , (2.18)

for some scalar function J . Clearly, nonzero J implies that energy-momentum is not locally
conserved. The condition ∇̃νT ν

µ = 0 is anyway fulfilled for most of the often considered
matter sources, thanks to the matter equations of motion, but this is not a requirement
of the theory. The freedom to break local energy-momentum conservation by introducing
J 6= 0 has been exploited, e.g. to propose a mechanism for cosmic acceleration [27, 28]. In
the present work, we therefore assume the most general situation, J 6= 0.

3 The Noether charge formalism

Upon reviewing the properties of WTG, we proceed to develop the Noether charge formalism
applicable to it. Our goal is to identify conserved quantities corresponding to symmetries
of a given spacetime. Before specialising to WTG, we briefly review general aspects of
the Noether charge formalism. Then, we consider general variations of the vacuum WTG
action and calculate the symplectic potential and the symplectic current. Next, we derive
the Noether currents and charges corresponding to symmetry transformations, i.e., Weyl
transformations and transverse diffeomorphisms. Lastly, we find a formula for a general
variation of a Hamiltonian corresponding to evolution along a transverse diffeomorphism
generator.

3.1 General formalism

We start by briefly presenting the Noether charge formalism in a general setting in order to
establish the notation and basic concepts. On a manifold equipped with some volume form,
ε, define a Lagrangian L, constructed from a collection of dynamical variables, φ, some
non-dynamical variables, γ, and their covariant derivatives, ∇µ, which obeys ∇µε = 0

(clearly, ∇µ is not unique). The change of L under an arbitrary variation of the dynamical
variables, δ1φ, equals

δ1L = Aφδ1φ+∇µθµ [δ1] , (3.1)

where Aφ = 0 are the equations of motion, and, by virtue of the Gauss theorem, ∇µθµ [δ1]

contributes only a boundary integral to the variation of the action. We call θµ the symplectic
potential [1].
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Now perform a second arbitrary variation of the dynamical variables, δ2φ, independent
of δ1φ. The commutator of the variations applied to the Lagrangian reads

(δ1δ2 − δ2δ1)L = δ1Aφδ2φ− δ2Aφδ1φ+∇µΩµ [δ1, δ2] , (3.2)

where
Ωµ [δ1, δ2] = δ1θ

µ [δ2]− δ2θ
µ [δ1] , (3.3)

is known as the symplectic current [1]. The integral of Ωµ [δ1, δ2] over an initial data surface
C then yields a symplectic form3

Ω [δ1, δ2] =

∫
C

Ωµ [δ1, δ2] dCµ. (3.4)

If one of the variations is generated by a vector field ξµ, i.e., δ1φ = £ξφ, and there exists
a Hamiltonian Hξ corresponding to evolution along ξµ, the Hamilton equations of motion
give us the variation of Hξ for an arbitrary variation, δ2φ = δφ, as

δHξ = Ω [£ξ, δ] . (3.5)

Now consider a variation δ̂φ corresponding to a local symmetry of the Lagrangian L.
The change of L under such a variation is a total divergence, δ̂L = ∇µαµ

[
δ̂
]
, for some

vector αµ. The Noether current corresponding to a local symmetry reads [1]

jµ
[
δ̂
]

= θµ
[
δ̂
]
− αµ

[
δ̂
]
. (3.6)

From now on we drop the argument δ̂ unless it is needed. The covariant divergence of jµ

is proportional to the equations of motion (see (3.1))

∇µjµ = ∇µθµ −∇µαµ = ∇µθµ − δ̂L = −Aφδ̂φ, (3.7)

and, thus, vanishes on shell. The Noether charge corresponding to jµ is just its integral
over an initial data surface C [1]

Q =

∫
C
jµdCµ. (3.8)

In the following subsections, we apply this general formalism to the case of WTG.

3.2 WTG symplectic potential and form

Symplectic potential. We begin by computing the symplectic potential, which directly
leads to expressions for both the Noether current and the symplectic form. Our starting
point is a general variation of the WTG Lagrangian (2.4) with respect to the dynamical
metric, gµν ,

δL = − 1

16π

[(√
−g/ω

)2/n
R̃µν − 1

n

(√
−g/ω

)−2/n
R̃g̃µν

]
δgµν + ∇̃µθµ. (3.9)

3Technically, the form defined in this way can be degenerate [1]. To obtain a true symplectic form, one
must restrict it from the space of field configurations to the phase space. However, this subtlety is not
important for our purposes.
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The first term is proportional to the WTG equations of motion and vanishes on shell.
The second one is a Weyl invariant divergence that contributes only a surface term to the
variation of the action and, thus, does not affect the equations of motion4. The symplectic
potential θµ reads

θµ [δ] =
1

16π

(√
−g
ω

) 4
n

(gµνgρσ − gµσgνρ) ∇̃σδg̃νρ. (3.13)

The variation of the auxiliary metric δg̃νρ equals

δg̃νρ =

(√
−g
ω

)− 2
n
(
δgνρ −

2

n
gνρδ ln

√
−g
ω

)
. (3.14)

Then it is easy to check that θµ is WTDiff invariant.
In the unimodular gauge,

√
−g = ω, and for variations that do not change the metric

determinant, δg = 0, the symplectic potential of WTG coincides with the GR result [3],

θµGR =
1

16π

√
−g (gµνgρσ − gµσgνρ)∇σδgνρ. (3.15)

This is of course expected, since the WTG action reduces to the Einstein-Hilbert action of
GR in the unimodular gauge.

Symplectic form. Consider two general, independent variations of the metric, δ1gµν and
δ2gµν . The corresponding symplectic current (3.3) equals

Ωµ [δ1, δ2] =δ1θ
µ [δ2]− δ2θ

µ [δ1] . (3.16)

The symplectic form, Ω [δ1, δ2] is then given by an integral of Ωµ [δ1, δ2] over an appropriate
initial data surface, C.

Evaluating the symplectic form for a transverse diffeomorphism generated by a vector
field ξµ, δ1gµν = £ξgµν , and a general metric variation, δ2gµν = δgµν , yields the variation
of the Hamiltonian corresponding to the evolution along ξµ

δHξ = Ω [£ξ, δ] . (3.17)
4Let us briefly clarify the use of the Gauss theorem in this case. For an integral of a Weyl covariant

divergence of any Weyl invariant vector Wµ, we find∫
Ω

∇̃µWµωα1...αn =

∫
Ω

(ω∂µW
µ +Wµ∂µω) εα1...αn =

∫
Ω

∂µ (ωWµ) εα1...αn , (3.10)

where εα1...αn is the n-dimensional antisymmetrisation symbol and ωα1...αn = ωεα1...αn is the background
volume element. The Gauss theorem implies∫

Ω

∂µ (ωWµ) dnx =

∫
∂Ω

Wµnµn
α1ωα1...αn , (3.11)

where nµ denotes a unit normal to ∂Ω. As a normal vector, nµ transforms as n′µ = e−σnµ under Weyl
transformations. If nµ is a coordinate vector, we can write∫

∂Ω

Wµnµn
α1ωα1...αn =

∫
∂Ω

(√
−g/ω

)−1/n
Wµnµdn−1x. (3.12)
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Obtaining an expression for δHξ is one of our main goals. While we could apply the above
described method, it requires the precise form of the Lagrangian. In the following, we
discuss an alternative route applicable to Hamiltonians corresponding to generators of the
symmetries of the theory [2, 3] (in our case the WTDiff group). Although the calculations
are less straightforward, they can be applied to any Lagrangian with WTDiff symmetry.
This will allow us to derive the matter contributions to the perturbation of the Hamiltonian
in subsection 5. Furthermore, this method relates the Hamiltonian perturbations with the
Noether charges corresponding to symmetry transformations. As a by-product, it also yields
several relations valid even off shell.

3.3 WTG Noether current

So far, we have considered general variations of the metric. We now focus on variations
that do not change the physical content of the theory, i.e., those corresponding to local
symmetry transformations, and calculate the Noether currents and charges. For WTG,
the local symmetry transformations are transverse diffeomorphisms, δξgµν = 2∇(µξν) with
∇̃µξµ = 0, and Weyl transformations, δWgµν = φgµν for some function φ.

We start with local Weyl transformations. The corresponding variation of the WTG
Lagrangian vanishes, δWL = 0. Hence, αµ in the general definition of the Noether cur-
rent (3.6) equals zero. Furthermore, it holds θµW = 0. In total, we have that the Noether
current jµW associated with Weyl invariance vanishes, jµW = 0, in agreement with earlier
observations [24, 29].

Let us now turn to transverse diffeomorphisms generated by a vector field ξµ. The
variation of the Lagrangian equals

δξL = £ξL = ∇̃µ
(

1

16π
R̃ξµ

)
, (3.18)

where we used ∇̃µξµ = 0. Therefore, we have αµ = R̃ξµ/16π.
For the symplectic potential corresponding to a transverse diffeomorphism, we find

from equation (3.13)

θµ [£ξ] =
1

8π

(√
−g/ω

)2/n
(gµνgρσ − gµσgνρ) gλ(ν|∇̃σ∇̃|ρ)ξ

λ

=
1

8π
g̃µρR̃ρνξ

ν + ∇̃ν
[

1

8π

(√
−g/ω

)2/n ∇̃[νξµ]

]
, (3.19)

where we repeatedly employed the commutator of Weyl covariant derivatives(
∇̃σ∇̃ρ − ∇̃ρ∇̃σ

)
ξλ = −R̃λνρσξν . (3.20)

In total, the corresponding Noether current jµξ = jµ [£ξ] reads

jµξ =
1

8π

(
g̃µρR̃ρν −

1

2
R̃δµν

)
ξν + ∇̃ν

[
1

8π

(√
−g/ω

)2/n ∇̃[νξµ]

]
. (3.21)

While this form of jµξ is perfectly well defined without any reference to the equations of
motion, we also often work on shell in the following. In that case, the vacuum WTG

– 9 –



equations of motion imply

jµξ = − 1

8π
Λξµ + ∇̃ν

[
1

8π

(√
−g/ω

)2/n ∇̃[νξµ]

]
, (3.22)

where Λ is an arbitrary integration constant.
For the Weyl invariant divergence of the off-shell Noether current jµξ , we find

∇̃µjµξ =∇̃µ
[

1

8π

(
g̃µρR̃ρν −

1

2
R̃δµν

)
ξν
]

+ ∇̃µ∇̃ν
[

1

8π

(√
−g/ω

)2/n ∇̃[νξµ]

]
=

1

8π

(√
−g/ω

)2/n(
R̃µν −

1

2
R̃g̃µν

)
∇̃νξµ, (3.23)

where we modified the first term using the contracted Bianchi identities (2.10) and the
second term drops out due to antisymmetrisation. On shell, it holds

∇̃µjµξ = − 1

8π
Λ∇̃µξµ = 0, (3.24)

and the divergence of the Noether current vanishes by the transversality condition.
The second term in the Noether current (3.21) corresponds to the divergence of the

Noether charge antisymmetric tensor, Qνµξ = Q
[νµ]
ξ , which equals

Qνµξ =
1

8π

(√
−g
ω

) 2
n

∇̃[νξµ]. (3.25)

One can easily check that Qνµξ is WTDiff invariant.
As expected, in the unimodular gauge the WTG Noether charge coincides with the

corresponding GR expression

QνµGR,ξ =
1

8π

√
−g∇[νξµ]. (3.26)

However, the WTG Noether current in the unimodular gauge becomes

jµξ =
1

8π

√
−g
(
R µ
ν −

1

2
Rδµν

)
ξρ +

1

8π

√
−g∇ν∇[νξµ], (3.27)

and, compared to the Noether current associated with transverse diffeomorphisms in GR

jµGR,ξ =
1

8π

√
−g
(
R µ
ν −

1

2
Rδµν + Λδµν

)
ξρ +

1

8π

√
−g∇ν∇[νξµ], (3.28)

it misses a term proportional to Λ. This difference is just a divergenceless contribution.
To explain it, note that the Einstein-Hilbert Lagrangian for GR, LEH = (R− 2Λ) /16π,
contains Λ as a constant fixed parameter, whereas the WTG Lagrangian, L = R̃/16π,
does not. This is the origin of the discrepancy, since the Noether current contains a term
−αµ = −Lξµ in both theories.

Before going further, we should mention (and dismiss) an apparent way to match the
WTG and GR Noether currents. As we showed in equation 2.1, the WTG Lagrangian may
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in principle include a term of the form −λ/8π, with λ being an arbitrary constant. As λ
does not affect the gravitational dynamics in any way, we set λ = 0. However, if we choose
nonzero λ in the Lagrangian, it shifts the WTG Noether current by λξµ/8π. Since we
have ∇̃µξµ = 0, the Weyl divergence of the shifted Noether current still vanishes on shell.
One might be tempted to use this freedom to set λ = Λ and recover the GR form of the
Noether current in the unimodular gauge. However, as Λ in WTG appears as an integration
constant in the process of solving the equations of motion, it is well defined only on shell
and in general different for each solution. Hence, the single constant λ which we are free to
choose at the level of the Lagrangian cannot match all the different values of Λ for various
solutions of the equations of motion. In the following, we continue to assume λ = 0, as it
it is completely irrelevant for our considerations (we briefly return to its interpretation in
subsection 4.3).

Lastly, we note that the above defined Noether current and charge, as well as the
symplectic potential and current contain some ambiguities. Since these are the same as for
the Noether charge formalism of Diff invariant gravity [3], we do not discuss them in detail.
In any case, they do not affect the physical situations we investigate in this paper. Hence,
in the following, we simply treat all the expressions derived up to this point as effectively
unambiguous.

3.4 WTG Hamiltonian for transverse diffeomorphisms

The Noether current corresponding to a transverse diffeomorphism can be used to obtain
the Hamiltonian for evolution along its generator, ξµ. To see this, consider any variation
of the metric, δgµν . We have two ways of calculating the corresponding variation of jµξ . On
one side, the general definition of jµξ with αµ = Lξµ implies

δjµξ = δθµ [£ξ]− ξµδL.

Using equation (3.9) to express the variation of the WTG Lagrangian yields

δjµξ = δθµ [£ξ]− ξµ∇̃νθν [δ]− 1

16π
ξµg̃αρg̃βσ

(
R̃ρσ −

1

n
R̃g̃ρσ

)
δgαβ. (3.29)

To obtain the variation of the Hamiltonian given in general by equation (3.5), we first
need to identify the symplectic current (3.16) corresponding to a transverse diffeomorphism
generated by ξµ and an arbitrary variation of the metric,

Ωµ [£ξ, δ] = δθµ [£ξ]−£ξθ
µ [δ] . (3.30)

The first term is already present in equation (3.29). If we add and subtract the second
term, £ξθ

µ [δ], to equation (3.29) and use that it holds

£ξθ
µ = ξν∇̃νθµ − θν∇̃νξµ, (3.31)

we obtain

δjµξ = Ωµ [£ξ, δ] + 2∇̃ν
(
ξ[νθµ] [δ]

)
− 1

16π

(√
−g/ω

)2/n
ξµgαρgβσ

(
R̃ρσ −

1

n
R̃g̃ρσ

)
δgαβ.

(3.32)
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On the other side, we expressed the Noether current in terms of the equations of motion
and the Noether charge (3.25). A variation of this expression reads

δjµξ =
1

8π
ξνδ

(
g̃µρR̃ρν −

1

2
R̃δµν

)
+ ∇̃νδQνµξ . (3.33)

Equating both expressions (3.32) and (3.33) for δjµξ yields the desired expression for the
symplectic current

Ωµ [£ξ, δ] =∇̃ν
(
Qνµξ − 2ξ[νθµ] [δ]

)
+

1

8π
ξνδ

(
g̃µρR̃ρν −

1

2
R̃δµν

)
+

1

16π

(√
−g/ω

)2/n
ξµgαρgβσ

(
R̃ρσ −

1

n
R̃g̃ρσ

)
δgαβ. (3.34)

Note that equation (3.34) has been derived without requiring that the equations of motion
hold.

Now assume that we compare two solutions of the vacuum WTG equations of motion
related by a small perturbation. Then, the perturbation obeys the equations of motion,

δ

(
g̃µρR̃ρν −

1

2
R̃δµν

)
= −δΛδµν , (3.35)

where δΛ is an arbitrary integration constant. Clearly, the cosmological constant in the
perturbed spacetime equals Λ + δΛ. In this way, our formalism naturally allows for Λ to
differ between various solutions of the equations of motion. The symplectic current then
considerably simplifies on shell

Ωµ [£ξ, δ] = ∇̃ν
(
δQνµξ − 2ξ[νθµ] [δ]

)
− 1

8π
ξµδΛ. (3.36)

Suppose that the unperturbed spacetime possesses a Cauchy surface, C. We introduce
a Weyl invariant volume element on C, dCµ = (

√
−g/ω)−1/n nµωdn−1x, where nµ denotes a

unit normal to C and dn−1x is the coordinate volume element on C. We stress that dCµ only
reduces to the physical volume element (measured with respect to the dynamical metric)
in the unimodular gauge,

√
−g = ω. Integrating equation (3.36) over C with this volume

element and rewriting the integral of the first term as an integral over the boundary ∂C of
C yields a Weyl invariant expression for the symplectic form

Ω [£ξ, δ] =

∫
C

Ωµ [£ξ, δ] dCµ =

∫
∂C

(
δQνµξ − 2ξνθµ [δ]

)
dCµν −

∫
C

1

8π
δΛξµdCµ, (3.37)

where dCµν = (
√
−g/ω)−2/n n[µmν]ωdn−2x denotes the Weyl invariant area element on the

boundary ∂C (with mµ being the unit normal to ∂C with respect to its embedding in C and
dn−2x being the coordinate area element). Provided that the HamiltonianHξ corresponding
to the evolution along ξµ exists, the Hamilton equations of motion imply

δHξ = Ω [£ξ, δ] =

∫
∂C

(
δQνµξ − 2ξνθµ [δ]

)
dCµν −

∫
C

1

8π
δΛξµdCµ. (3.38)
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In contrast with the situation in fully diffeomorphism invariant theories, the Hamiltonian no
longer consists only of surface terms [2]. Instead, it includes a volume integral proportional
to the perturbation of the cosmological constant. This is a consequence of the fact that Λ is
an integration constant rather than a fixed parameter in the WTG Lagrangian. Since the
contribution of the volume integral is clearly infinite, cases with nonzero Λ or δΛ require a
separate treatment, which we discuss in subsection 4.3.

For Λ = 0, i.e., when the HamiltonianHξ is finite, the necessary and sufficient condition
for its existence is the same as for diffeomorphism invariant theories [5]∫

∂C
Ωµ [£ξ, δ] ξ

νdCµν = 0. (3.39)

To see this, consider some solution of the vacuum WTG equations with Λ = 0. On this
solution, choose a vector field ξµ, so that the Hamiltonian Hξ exists. We consider two
independent variations of the metric, δ1gµν and δ2gµν , which satisfy the equations of motion
with δ1Λ = δ2Λ = 0. Then, it holds (δ1δ2 − δ2δ1)Hξ = 0. Using equation (3.38) for the
variation of the Hamiltonian, the commutation of δ1 and δ2 on the antisymmetric tensor
Qνµξ , and the definition of Ωµ [£ξ, δ], we get the condition (3.39).

4 The first law and Wald entropy in vacuum

In the previous section, we have obtained an expression for the perturbation of a Hamil-
tonian corresponding to evolution along a transverse diffeomorphism generator, ξµ. In the
following, we use it to study several special cases of interest. Given the classical equivalence
of WTG and GR, we naturally expect an agreement of our results with the ones known
for GR. Even so, the machinery we developed presents some advantages. First, it allows
us to treat situations in which the energy-momentum tensor is not locally conserved, i.e.,
J 6= 0. Second, as Λ appears as an integration constant in WTG, it can vary between
solutions. Therefore, our formalism allows for a very natural treatment of contributions
from a varying cosmological constant to the first law, a possibility studied in the context
of black hole chemistry [30].

We first discuss an asymptotically flat, vacuum black hole spacetime and define the
Wald entropy for WTG. Then we turn to two situations with a nonzero cosmological con-
stant, an asymptotically anti-de Sitter black hole and de Sitter spacetime.

4.1 WTG first law of black hole mechanics

In this subsection we concentrate on spacetimes with Λ = 0. We will focus on nonzero Λ

in subsection 4.3. We start by discussing a general case of an asymptotically flat spacetime
which possesses a Cauchy surface, C, and a Killing vector, ξµ. We adopt a WTDiff invariant
definition of a Killing vector, i.e., g̃ρ(ν∇̃µ)ξ

ρ = 0. This implies £ξ g̃µν = 0. For the dynamical
metric, we have £ξgµν = gµνξ

ρ∂ρ ln (
√
−g/ω). Hence, the change of gµν corresponds to a

pure Weyl transformation. This definition of a Killing vector agrees with the standard
one, ∇(µξν) = 0, in the unimodular gauge, in which equations of motion for WTG and
GR coincide. Beyond this gauge, the WTDiff invariant definition ensures that the Killing
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vectors of any two spacetimes related by a Weyl transformations will be the same (this
is desirable, since such spacetimes are physically identical in WTG). We stress that even
though the Killing vectors do not affect g̃µν , this statements depends on the specific form
of the metric. Hence, the Noether current and charge derived for general metrics are
generically nonvanishing when evaluated for a Killing vector.

In this spacetime, we consider an arbitrary perturbation of the metric which obeys
the equations of motion. We further require that the metric perturbation does not spoil
the asymptotic flatness, in particular, we impose δΛ = 0. Since the perturbation of the
Hamiltonian corresponding to the evolution along the Killing vector ξµ vanishes (as £ξ g̃µν =

0 for any Killing vector, the symplectic current Ωµ [£ξ, δ] (3.16) identically vanishes and so
does δHξ according to equation (3.37)), equation (3.38) yields

δHξ =

∫
∂C

(
δQνµξ − 2ξνθµ [δ]

)
dCµν = 0. (4.1)

The boundary ∂C of the Cauchy surface C has in general several components. One is an
intersection ∂C∞ of the Cauchy surface C with the spatial infinity5. There can be further
internal components of the boundary, e.g. intersections of C with black hole horizons. We
collectively denote these by ∂CI. Then, equation (4.1) can be written as∫

∂C∞

(
δQνµξ − 2ξνθµ [δ]

)
dCµν −

∫
∂CI

(
δQνµξ − 2ξνθµ [δ]

)
dCµν = 0. (4.2)

The interpretation of the second term depends on the nature of ∂CI. The first term cor-
responds to the perturbations of quantities measured in the asymptotic infinity. For ex-
ample, suppose that a spacetime possesses a timelike Killing vector, tµ, normalised so that
g̃µνt

µtν = −1 in the asymptotic infinity. Then, the contribution to δHt from ∂C∞ can be
identified with the perturbation of the total canonical energy of the spacetime,

δE =

∫
∂C∞

(δQµνt − 2tνθµ [δ]) dCµν . (4.3)

Similarly, the presence of a rotational Killing vector ϕµ allows us to define the perturbation
of the total canonical angular momentum

δJ = −
∫
∂C∞

δQµνϕ dCµν , (4.4)

where the overall minus sign ensures that J is positive. Note that, since ϕµ is orthogonal to
dCµν , there is no contribution proportional to ϕνθµ. Both expressions are explicitly Weyl
invariant. In the unimodular gauge and for perturbations preserving the metric determi-
nant, δg = 0, they reduce to the perturbations of the familiar ADM energy and angular
momentum for GR.

We now specialise to the case of a stationary spacetime with a single black hole. Any
such spacetime is endowed with a time translational Killing vector tµ and a set of n − 3

5Here and in the following, we consider a causal structure defined with respect to the background metric,
g̃µν . This is a consequence of the WTDiff invariance of physics in WTG.
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Killing vector fields ϕµ(i) corresponding to rotations. These can be combined into a Killing

vector field ξµ = tµ +
∑n−3

i=1 Ω
(i)
H ϕ

µ
(i), where Ω

(i)
H are constant angular velocities of the black

hole horizon in directions ϕµ(i). The black hole’s horizon is then a bifurcate Killing horizon
with respect to ξµ. A spacelike Cauchy surface C has an inner boundary formed by the
intersection of C with the black hole’s event horizon, H, which we denote by ∂CH. Applying
equation (4.2) to this case yields

δE −
n−3∑
i=1

Ω
(i)
H δJ(i) −

1

8π

∫
∂CH

[
δ
((√
−g/ω

)2/n ∇̃νξµ)− 2ξνθµ
]
dCµν = 0, (4.5)

where we identified the perturbations of energy (4.3) and angular momenta (4.4). The
Killing vector ξµ is normal to H. Hence, the second term in the integral over ∂CH vanishes.
If we define the Weyl invariant surface gravity of the horizon,

κ =

√
gµνgρσ∇̃ρξµ∇̃σξν

∣∣∣
H
, (4.6)

it is easy to show that ∇̃νξµ = κενµ, where ενµ is the bi-normal to the horizon. Finally, we
obtain

δE −
n−3∑
i=1

Ω
(i)
H δJ(i) −

1

8π
κ

∫
∂CH

δ
[(√
−g/ω

)2/n
ενµ
]
dCµν = 0. (4.7)

In the unimodular gauge and for perturbations which do not change the metric determinant,
this reduces to the standard first law of black hole mechanics known for GR [3]

δE −
n−3∑
i=1

Ω
(i)
H δJ(i) −

1

8π
κδA = 0, (4.8)

where A denotes the area of the horizon’s cross-section ∂CH. It is then proved that the
formulations of the first law in WTG and GR are physically equivalent.

4.2 Wald entropy

The previous subsection concerns purely classical gravity. That suffices to derive the first
law of black hole mechanics. However, to identify black hole entropy and promote the first
law into a genuine thermodynamic statement, we require insights from the quantum field
theory in a curved background. It is well known that due to quantum effects black holes
emit black body radiation (Hawking radiation) corresponding to a finite temperature [31].
Hawking radiation results from fluctuations of the matter fields, which are Weyl invariant
(and there are no quantum anomalies associated with local Weyl transformations [14, 32]).
Hence, we expect the Hawking temperature to be Weyl invariant as well. Since the Hawking
radiation is a kinematic effect independent of the gravitational dynamics [33], the standard
expression for the Hawking temperature, TH = κ/2π, must hold. We just need to specify κ
to be the Weyl invariant surface gravity (4.6) to ensure the overall Weyl invariance of TH.

Hawking radiation allows us to identify a term of the form THδS in the first law and
define Wald entropy of the horizon, S. For the bifurcate Killing horizon of a stationary
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black hole it then holds

S =
1

4

∫
∂CH

(√
−g/ω

)2/n
ενµdCµν =

1

4

∫
∂CH

(√
−g/ω

)(2−n)/n√
hdn−2x, (4.9)

with h being the determinant of the (n− 2)-dimensional reduced metric on ∂CH and dn−2x

is the corresponding coordinate area element. As expected, defining the Weyl invariant
Hawking temperature also ensures the Weyl invariance of Wald entropy. In the unimodu-
lar gauge, the WTG Wald entropy reduces to the well-known Bekenstein entropy of GR,
SB = A/4.

Defining TH and S in this way yields the following first law of black hole thermody-
namics for stationary, asymptotically flat black holes in vacuum

0 = δE −
n−3∑
i=1

Ω
(i)
H δJ(i) − THδS, (4.10)

which has the form familiar from GR. However, the total energy, angular momenta, Hawking
temperature, and Wald entropy are all Weyl invariant and only agree with the corresponding
GR expressions in the unimodular gauge.

Finally, let us once again stress that the Hawking temperature, rather than emerging
naturally in the Noether charge formalism, requires an additional insight from the quantum
field theory in a curved background. We have just introduced it in this subsection to find
Wald entropy of WTG for the sake of comparison with GR. In the rest of the paper, we
return to considering only classical physics.

4.3 Spacetimes with non-zero cosmological constant

Since the main difference between GR and WTG lies in the nature of the cosmological con-
stant, it is of interest to apply the WTDiff invariant Noether charge formalism to spacetimes
with Λ 6= 0. We do so for two physically interesting yet tractable examples, a Schwarzschild-
anti-de Sitter black hole and de Sitter spacetime in four spacetime dimensions. Applying
our formalism to more general spacetimes with a non-zero cosmological constant, e.g. sta-
tionary, asymptotically (anti-)de Sitter black holes, would be more or less straightforward.
However, we choose the simplest cases to more clearly illustrate the peculiar features of the
cosmological constant in WTG.

Schwarzschild-anti-de Sitter spacetime. The simplest way to find a solution of the
WTG equations of motion corresponding to a known solution of the Einstein equations is
by expressing the metric in the unimodular gauge (using a suitable diffeomorphism). Since
the equations of motion of WTG and GR coincide in this gauge, the metric is then also a
solution in WTG. The four-dimensional (n = 4) Schwarzschild-anti-de Sitter spacetime can
be described by the following unimodular (

√
−g = ω) metric

ds2 =
√
ω

[
−
(

1− 2M

r
− Λ

3
r2

)
dt2 +

dR2

r4
(
1− 2M

r −
Λ
3 r

2
) + r2

(
dx2

(1− x2)
+
(
1− x2

)
dφ2

)]
,

(4.11)
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where Λ < 0 is the cosmological constant, and, with respect to the usual spherical coor-
dinates r, θ, φ, we defined R = r3/3 and x = − cos θ (thus, x ∈ [−1, 1)). We choose
this modification of the standard Schwarzschild coordinates to obtain a unimodular metric
(while there exist other unimodular forms of the Schwarzschild-anti-de Sitter metric, this
one is computationally convenient and also easily generalises to other black hole space-
times). The spacetime possesses a time translational Killing vector field, tµ = (1, 0, 0, 0),
and the black hole’s event horizon is a Killing horizon with respect to it. Now consider
equation (3.22) for the on-shell Noether current and integrate it over a Cauchy surface
orthogonal to tµ∫

C
jµt dCµ = − 1

8π
Λ

∫
C
tµdCµ +

∫
∂C∞

Qνµt dCµν −
∫
∂CH

Qνµt dCµν (4.12)

where we used the Gauss theorem and the division of the boundary of C into its intersections
with the asymptotic infinity, ∂C∞, and the black hole horizon, ∂CH.

If Λ = 0, then R̃ = 0 and the Lagrangian vanishes. Moreover, as tµ is a Killing vector
and £tg̃µν = 0, the corresponding symplectic potential vanishes (see equation (3.13)), and
we have jµt = θµt −Ltµ = 0. The integral of Qνµt over the asymptotic infinity is in this case
proportional to the total mass, M , and the integral over the horizon is proportional to the
area. Equation (4.12) then becomes the Smarr formula relating the horizon area, A, and
mass M of a Schwarzschild black hole

0 =
1

2
M − κ

8π
A, (Λ = 0) (4.13)

where κ is the surface gravity.
For Λ < 0 both sides of equation (4.12) are infinite. However, these infinities are of

the same nature as in the pure anti-de Sitter spacetime. We can then choose anti-de Sitter
spacetime as our reference background and demand that the Noether current and charge
vanish there. In other words, we define the physical Noether charge and current as the
difference of their Schwarzschild-anti-de Sitter and pure anti de-Sitter values6,

Qνµt,phys =Qνµt −Q
νµ
t,AdS, (4.14)

jµt,phys =jµt − j
µ
t,AdS = ∇̃νQνµt,phys. (4.15)

The Smarr formula stated in terms of these physical quantities yields a finite result∫
C
jµt,physdCµ =

∫
∂C∞

Qνµt,physdCµν −
∫
∂CH

Qνµt,physdCµν ,

0 =
1

2
M − 1

8π
κAH∩C +

1

3
Λr3
H, (4.16)

where rH denotes the horizon radius. This result agrees with the Smarr formula for a
Schwarzschild-anti-de Sitter black hole valid in GR [34].

6This trick is similar to obtaining a finite entropy in GR by subtracting the action of a reference static
background [35]. However, subtraction on the level of the action is problematic in WTG, since the cosmo-
logical constant is defined only on shell.
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To obtain the first law for a Schwarzschild-anti-de Sitter black hole, we can consider
a change of the physical Hamiltonian corresponding to evolution along tµ between two
Schwarzschild-anti-de Sitter black holes related by a small perturbation. Since the cos-
mological constant is allowed to vary between solutions in WTG, we must first subtract
the anti-de Sitter background corresponding to the unperturbed cosmological constant Λ

from the original Schwarzschild-anti-de Sitter spacetime and the anti-de Sitter background
corresponding to Λ + δΛ from the perturbed Schwarzschild-anti-de Sitter spacetime. Only
then can we calculate their difference. The resulting formula for the perturbation of the
physical Hamiltonian reads

δHt,phys = δHt − δHt,AdS =

∫
∂C

(
δQνµt,phys − 2tνθµphys [δ]

)
dCµν , (4.17)

where
θµphys = θµ − θµAdS. (4.18)

Plugging the Schwarzschild-anti-de Sitter metric (4.11) into the general expressions for the
Noether charge and symplectic potential, subtracting the anti-de Sitter background, and
evaluating the integral in equation (4.17) yields the WTG first law of black hole mechanics
for a Schwarzschild-anti-de Sitter spacetime

0 = δM − 1

8π
κ

∫
∂CH

δ
[(√
−g/ω

)2/n
ενµ
]
dCµν +

4π

3
r3
H
δΛ

8π
. (4.19)

If the metric perturbation does not change the determinant, δg = 0, we recover the form of
the first law for a Schwarzschild-anti-de Sitter spacetime in GR [34] (since our background
metric is chosen to be unimodular)

0 = δM − κ

8π
A+

4π

3
r3
HδΛ8π. (4.20)

However, a perturbation of the cosmological constant δΛ appears naturally in WTG,
whereas it needs to be added somewhat ad hoc for GR [15, 34], since Λ is understood
as a constant fixed parameter in the Lagrangian.

The consequences of the varying negative cosmological constant has been studied in the
context of the so-called black hole chemistry [30, 34]. It has been shown that a varying Λ

in an asymptotically anti-de Sitter black hole spacetime behaves like an effective pressure.
This can be seen from the first law for a Schwarzschild-anti de Sitter black hole (4.19) which
contains a term of the form

(
4πr3

H/3
)
δΛ/8π. The term VT = 4πr3

H/3 may be understood
as a thermodynamic volume of the black hole [30]. Defining pressure associated with Λ as
pΛ = −Λ/8π gives us a term of the form −VTδpΛ. If we further invoke the Hawking effect
and view the second term in equation (4.19) as THδS, it becomes a genuine first law of
thermodynamics. The total mass of the black hole, M , then obeys δM = THδS − VTδpΛ.
Therefore, it corresponds to the enthalpy of the system [30, 34]. This picture allows to
describe the behaviour of asymptotically anti-de Sitter black holes in a standard ther-
modynamic language. Among other insights, it led to to the notion of black hole phase
transitions [30].
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De Sitter spacetime. The situation in asymptotically de Sitter spacetimes is somewhat
more complicated [36]. Therefore, in the present work, we limit ourselves to the cosmological
horizon in a pure de Sitter spacetime in four dimensions (n = 4). A suitable unimodular
de Sitter metric reads

ds2 =
√
ω

[
−
(

1− Λ

3
r2

)
dt2 +

1

r4
(
1− Λ

3 r
2
)dR2 + r2

(
dx2

1− x2
+
(
1− x2

)
dφ2

)]
, (4.21)

where the coordinates are defined in the same way as for the unimodular Schwarzschild-
anti-de Sitter metric presented above. The cosmological horizon is a Killing horizon with
respect to the time translational Killing vector, tµ = (1, 0, 0, 0), which is timelike inside the
cosmological horizon and becomes spacelike outside of it.

Consider a perturbation of the metric that satisfies the vacuum WTG equations of
motion. We study the perturbation of the Hamiltonian corresponding to evolution along tµ

defined on a Cauchy surface C orthogonal to tµ whose outer boundary is the horizon. Since
tµ is a Killing vector, δHt vanishes and we find

0 = δHt =

√
Λ

3

∫
∂C
δ
[(√
−g/ω

)1/2
ενµ
]
dCµν +

1

8π
δΛ

∫
C
tµdCµ. (4.22)

In this simple case, we can explicitly evaluate all the integrals, obtaining the following first
law of the de Sitter cosmological horizon√

Λ

3

(
δA∂C −

1

2
A∂Cδ

√
−g
ω

)
+

1

8π
VCδΛ = 0, (4.23)

where A∂C = 12π/Λ and VC = 4
√

3π/Λ3/2 are the area of ∂C and the volume of C, re-
spectively. Since the background metric is unimodular, we recover the first law of the de
Sitter horizon valid in GR for δg = 0. Let us note that, if we choose to invoke the quantum
field theory on a curved background to identify the temperature of the de Sitter horizon,
TdS = (1/2π)

√
Λ/3, the first term has the interpretation TdSδS. The entropy of the de

Sitter horizon then reads
S = 3π/Λ, (4.24)

and agrees with the GR result.
Apart from the first law, we can also obtain the Smarr formula for de Sitter spacetime

which relates the volume and the area of C. To do so, we integrate the on-shell relation for
jµt (3.22) over C ∫

C
jµt dCµ = − 1

8π
Λ

∫
C
tµdCµ +

∫
∂C
Qνµt dCµν , (4.25)

and use that jµt = −Ltµ = −Λtµ/4π in this case, since the symplectic potential correspond-
ing to tµ (or, in general, to any Killing vector) vanishes. The final result then reads

ΛVC
8π

=
1

2π

√
Λ

3

A∂C
4
, (4.26)

which one can easily verify by plugging in the expressions for VC and A∂C .
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To conclude our discussion of de Sitter spacetime, we address an apparent inconsistency
between WTG and GR pointed out in the literature [37] (while the issue was originally
discussed in the context of unimodular gravity, it also appears in WTG). It concerns the
entropy of the de Sitter horizon defined using the path integral approach. This method uses
a path integral in an Euclidean space to obtain the partition function, Z [38]. By standard
thermodynamics arguments, it then holds

lnZ = −E/T + S, (4.27)

where T denotes the temperature, E the total energy, and S the entropy. The equation
may also contain additional terms corresponding to nonvanishing chemical potentials. In
the case of the 4-dimensional de Sitter spacetime, lnZ equals simply minus an integral of
the Euclidean action over a 4-sphere V of radius

√
3/Λ [37]. In GR, it yields

I = − 2Λ

16π
VV = −3π

Λ
, (4.28)

whereas for the action of WTG we find

I = −4Λ− 2λ

16π
VV = −3π

Λ

(
2− λ

Λ

)
, (4.29)

where λ is a constant present in the Lagrangian, which we set to zero in the majority of
the paper. As we argued in section 2, λ is unrelated to the cosmological constant and its
value does not affect the dynamics of WTG in any way.

De Sitter spacetime is completely described by the value of Λ. In GR, Λ is a fixed
parameter of the Lagrangian, which we cannot change. Hence, the standard treatment of
the de Sitter spacetime sets its energy to zero and considers no chemical potentials. Then,
equation (4.27) implies I = S, and the entropy of the de Sitter horizon obeys S = 3π/Λ in
GR [38]. In contrast, setting I = S for de Sitter spacetime in WTG yields

S =
3π

Λ

(
2− λ

Λ

)
, (4.30)

which agrees with the GR case only for Λ = λ. However, fixing Λ = λ runs contrary to Λ

being an integration constant independent of the Lagrangian parameters (see the discussion
at the end of subsection 3.3 for details of the reasoning). Equation (4.30) also disagrees
with the entropy of de Sitter horizon in WTG (4.24) we found using our Noether charge
formalism.

To reconcile this discrepancy, we first note that Λ is allowed to vary in WTG. In the
previous subsection, we reviewed the arguments which lead to identifying a varying (nega-
tive) cosmological constant with pressure, pΛ = −Λ/8π. If we adopt the same interpretation
for a varying positive cosmological constant in de Sitter spacetime, we have by a standard
thermodynamic argument

I = −S + pΛVV = −S − 3π

Λ
, (4.31)

and, thus,

S =
3π

Λ

(
1− λ

Λ

)
. (4.32)
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Regarding the contribution from λ, it can be easily interpreted in WTG. The term in WTG
action proportional to λ equals V(ω)

V λ, where V(ω)
V is the spacetime volume of the integration

domain V , measured with respect to the non-dynamical volume form, ω. Therefore, V(ω)
V λ

is a universal constant which simply quantifies our freedom to perform a constant shift of
the value of entropy. Hence, we can just set λ = 0 in the same way it is customary to
set S = 0 at the absolute zero temperature in standard thermodynamics. In this way, the
results for entropy of de Sitter horizon in GR and WTG are consistent. Furthermore, we
see that the Noether charge and Euclidean canonical ensemble approaches to calculating
entropy for WTG lead to equivalent results (although we have shown this only for de Sitter
spacetime, the cosmological constant contribution may be expected to be the only possible
obstacle to the equivalence).

5 The first law in WTG coupled with matter

So far we have been discussing the Noether charge formalism for vacuum WTG. Adding
matter sources minimally coupled to gravity is fairly simple, as the general Noether charge
formalism reviewed in subsection 3.1 can be straightforwardly applied. We first briefly dis-
cuss the general case and then illustrate it on the example of a stationary and asymptotically
flat black hole spacetime filled with a perfect fluid.

5.1 General formalism for matter fields

The matter symplectic potential θµψ and symplectic current Ωµ
ψ can be obtained directly

from the general equations (3.1) and (3.3), respectively. Regarding the local symmetry
transformations, the Noether current corresponding to local Weyl symmetry vanishes. For
a transverse diffeomorphism generated by a vector field ξµ it is easy to check that αµψ,ξ =

(
√
−g/ω)2k/n Lψξ

µ and we have from the general equation (3.6),

jµψ,ξ = θµψ [£ξ]− Lψξµ. (5.1)

We cannot directly evaluate jµψ,ξ as we do not have an expression for θµψ,ξ corresponding
to a general matter Lagrangian. However, the general definition of the symplectic poten-
tial (3.13) expresses its divergence in terms of the equations of motion and a variation of
the Lagrangian. Hence, we can learn more about jµψ,ξ by evaluating its Weyl covariant
divergence,

∇̃µjµψ,ξ =∇̃µθµψ,ξ −£ξ

[(√
−g/ω

)2k/n
Lψ

]
=−Aψ£ξψ −

(√
−g/ω

)2k/n(
Tµν − 1

n
Tgµν

)
2∇(µξν), (5.2)

where Aψ = 0 are the matter equations of motion. A series of straightforward manipulations
yields [4]

∇̃µjµψ,ξ = ∇̃µ
[
− (ψ ·Aψ · ξ)µ −

((√
−g/ω

)2k/n
T µ
ν − J δµν

)
ξν
]
, (5.3)
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where J is defined by equation (2.18) and (ψ ·Aψ · ξ)µ is to be understood as ψAψξµ for
scalar fields and ψνA

(µ
ψ ξ

ν) for vector fields (more general tensorial fields require a separate
treatment). This form of the divergence of jµψ,ξ implies [4, 39]

jµψ,ξ = − (ψ ·Aψ · ξ)µ −
[(√
−g/ω

)2k/n
T µ
ν − J δµν

]
ξν + ∇̃νQνµψ,ξ, (5.4)

where Qνµψ,ξ is the antisymmetric matter Noether charge tensor. Once the matter Lagrangian
is specified, the precise form of Qνµψ,ξ can be found by comparing equations (5.1) and (5.4)
for jµψ,ξ. Since the second term in jµψ,ξ corresponds to the right hand side of the WTG
equations of motion, the combined matter and gravitational WTG Noether current on shell
reduces to the divergence of the total Noether charge tensor and a contribution proportional
to Λ discussed in subsection 3.3.

As an aside, we note that the matter Noether charge we derived is proportional to
ξµ. This can be seen from the fact that a Lagrangian Lψ for minimally coupled matter
fields contains at most first derivatives of the matter variables (otherwise, Lψ would depend
on the connection which would be in conflict with the assumption of minimal coupling).
Hence, from the general definition of the symplectic potential (3.13), we see that θµψ can
depend only on variations of the matter variables and not on their derivatives. The matter
field variations corresponding to transverse diffeomorphisms generated by a vector field ξµ

are given by Lie derivatives along ξµ, which depend on the first (but not higher) derivatives
of ξµ. Hence, the Noether current depends at most on the first derivatives of ξµ (see
equation (5.1)). The Noether charge Qνµψ,ξ appears as a total divergence in the expression
for jµψ,ξ. Therefore, it can contain only ξµ and not its derivatives and there exists a WTDiff

invariant antisymmetric tensor W νµ
ρ = W

[νµ]
ρ , such that Qνµψ,ξ = ξρW νµ

ρ .
The symplectic current corresponding to a transverse diffeomorphism and an arbitrary

perturbation of the metric and matter fields equals

Ωµ
ψ [£ξ, δ] =δθµψ [£ξ]−£ξθ

µ
ψ [δ] .

=δ
(
jµψ,ξ +

(√
−g/ω

)2k/n
Lψξ

µ
)
−£ξθ

µ
ψ [δ] . (5.5)

If both the background and the perturbation satisfy the equations of motion, we have

Ωµ
ψ [£ξ, δ] =∇̃ν

(
δQνµψ,ξ − 2ξ[νθ

µ]
ψ [δ]

)
− δ

[(√
−g/ω

)2k/n
T µ
ν − J δµν

]
ξν

+
1

2

(√
−g/ω

)2k/n
ξµ
(
Tαβ − 1

n
Tgαβ

)
δgαβ. (5.6)

Finally, integrating Ωµ
ψ [£ξ, δ] over a Cauchy surface C yields the perturbation of the matter

Hamiltonian, Hψ,ξ,

δHψ,ξ =

∫
∂C

(
δQνµψ,ξ − 2ξνθµψ [δ]

)
dCµν −

∫
C
δ
[(√
−g/ω

)2k/n
T µ
ν − J δµν

]
ξνdCµ

+
1

2

∫
C

(√
−g/ω

)2k/n(
Tαβ − 1

n
Tgαβ

)
δgαβξ

µdCµ. (5.7)
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The total Hamiltonian perturbation consists of the matter part and the gravitational con-
tribution δHg,ξ (we use the subscript g to distinguish it from the perturbation of the total
Hamiltonian) discussed in subsection 3.4, so that δHξ = δHg,ξ+δHψ,ξ. The perturbation of
the matter Hamiltonian, δHψ,ξ is given by equation (5.7). However, equation (3.38) for the
perturbation of the gravitational Hamiltonian was derived by invoking the vacuum WTG
equations of motion (2.9) and it no longer holds in the presence of matter. We only have

δHg,ξ =

∫
C

Ωµ
g [£ξ, δ] dCµ. (5.8)

To find a suitable expression for the total Hamiltonian perturbation, δHξ, we can follow
the same line of reasoning as we did to obtain equation (3.38) for the vacuum case. The
total symplectic current Ωµ = Ωµ

g + Ωµ
ψ obeys

Ωµ [£ξ, δ] = δθµ [£ξ]−£ξθ
µ [δ] , (5.9)

where θµ = θµg + θµψ denotes the total symplectic potential. This can be rewritten in the
same way as for the vacuum WTG symplectic current (equations (3.31)-(3.36) hold, just
with the matter contributions added) and we obtain

Ωµ [£ξ, δ] = ∇̃ν
(
δQνµξ − 2ξ[νθµ] [δ]

)
− 1

8π
δΛξµ, (5.10)

where Qνµξ = Qνµg,ξ + Qνµψ,ξ denotes the total Noether charge. The integral over a Cauchy
surface C then yields the perturbation of the total Hamiltonian

δHξ = δHg,ξ + δHψ,ξ =

∫
∂C

(
δQνµξ − 2ξνθµ [δ]

)
dCµν −

∫
C

1

8π
δΛξµdCµ. (5.11)

Substituting for δHψ,ξ =
∫
C Ωµ

ψdCµ from equation (5.6), we finally obtain

δHg,ξ =

∫
C

Ωµ
g [£ξ, δ] dCµ =

∫
∂C

(
δQνµg,ξ − 2ξνθµg [δ]

)
dCµν −

∫
C

1

8π
δΛξµdCµ

−
∫
C
δ
[(√
−g/ω

)2k/n
T µ
ν − J δµν

]
ξνdCµ

+
1

2

∫
C

(√
−g/ω

)2k/n(
Tαβ − 1

n
Tgαβ

)
δgαβξ

µdCµ, (5.12)

where the contributions from δQνµψ,ξ and θµψ [δ] cancel out. Equation (5.12) allows us to
straightforwardly derive the first law of black hole mechanics for a stationary black hole
spacetime with matter fields present, as we show in detail in the following.

Consider a stationary, asymptotically flat black hole spacetime with arbitrary minimally
coupled matter fields present. As in the vacuum case we discussed in subsection 4.1 the
spacetime has a time translational Killing vector, tµ, and n − 3 rotational Killing vectors,
ϕµ(i). The black hole horizon is again a Killing horizon with respect to the Killing vector

ξµ = tµ +
∑n−3

i=1 Ω
(i)
H ϕ

µ
(i), where Ω

(i)
H are the constant angular velocities of the horizon. The

spacetime also possesses a spacelike Cauchy surface, C, whose boundary is composed of its
intersections with the spatial infinity, C∞, and with the horizon, ∂CH.
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Although all the physical quantities describing the matter are required to have the same
symmetries as the spacetime, the matter Lagrangian may also contain dynamical variables
which are not stationary [4] (in other words, £tψ 6= 0, £ϕ(i)

ψ 6= 0). A typical example of this
behaviour are perfect fluids, whose Lagrangian depends on Lagrange multipliers which in
general do not share the symmetries of the spacetime, although fluid’s entropy, temperature,
velocity, particle density, energy density and pressure do. We demand that there exists
a vector field co-moving with the matter that is of the form Uµ = tµ +

∑n−3
i=1 Ω(i)ϕµ(i),

where Ω(i) are the matter angular velocities (not necessarily constant) in the various Killing
directions.

Let us introduce an arbitrary perturbation of the metric and the fluid variables which
obeys the equations of motion and preserves the asymptotic flatness of the spacetime.
We are interested in evaluating the perturbation of the gravitational Hamiltonian, δHg,ξ,
corresponding to the evolution along the Killing vector ξµ. Since ξµ is a Killing vector,
£ξ g̃µν = 0, the gravitational symplectic current Ωµ [£ξ, δ] vanishes and so does δHg,ξ. Ap-
plying equation (5.12) for the perturbation of the total Hamiltonian to this case then yields∫

∂C

(
δQνµg,ξ − 2ξνθµg [δ]

)
dCµν −

∫
C
δ
[(√
−g/ω

)2k/n
T µ
ν − J δµν

]
ξνdCµ

+
1

2

∫
C

(√
−g/ω

)2k/n(
Tαβ − 1

n
Tgαβ

)
δgαβξ

µdCµ = 0. (5.13)

The surface integral comes from the gravitational degrees of freedom and has the same
interpretation as in the vacuum case:∫

∂C

(
δQνµg,ξ − 2ξνθµg [δ]

)
dCµν = δE −

n−3∑
i=1

Ω
(i)
H δJ(i) −

1

8π
κ

∫
∂CH

δ
[(√
−g/ω

)2/n
ενµ
]
dCµν .

(5.14)
In this case the perturbations of the total energy and angular momenta include both the
contributions of the black hole and the matter fields. The first volume integral in equa-
tion (5.13) can be rewritten in the following way

−
∫
C
δ
[(√
−g/ω

)2k/n
T µ
ν − J δµν

]
ξνdCµ = −

∫
C
δ
[(√
−g/ω

)2k/n
T µ
ν

]
UνdCµ

−
∫
C
δJ ξµdCµ +

∫
C

n−3∑
i=1

(
Ω(i) − Ω

(i)
H

)
δ
[(√
−g/ω

)2k/n
T µ
ν

]
ϕν(i)dCµ. (5.15)

The first term now contains a variation of the energy-momentum tensor contracted with the
vector Uν co-moving with the matter. The second term represents the contribution of the
local non-conservation of energy-momentum. The last integral contains the perturbations
of the WTDiff invariant angular momenta densities of the matter, δJ̃µ(i), defined in the
standard way

δJ̃µ(i) = δ
[(√
−g/ω

)2k/n
T µ
ν

]
ϕν(i). (5.16)

Since the total angular momenta in equation (5.14) obey J(i) = J
(i)
H +

∫
C J̃

µ
(i)dCµ, it holds

−
n−3∑
i=1

Ω
(i)
H δJ(i)+

∫
C

n−3∑
i=1

(
Ω(i) − Ω

(i)
H

)
δJ̃µ(i)dCµ = −

n−3∑
i=1

Ω
(i)
H δJ

(i)
H +

∫
C

n−3∑
i=1

Ω(i)δJ̃µ(i)dCµ. (5.17)
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In total, equation (5.13) yields the following form of the first law for stationary, asymptot-
ically flat black hole spacetimes with matter fields

δE −
n−3∑
i=1

Ω
(i)
H δJ

(i)
H −

1

8π
κ

∫
∂CH

δ
[(√
−g/ω

)2/n
ενµ
]
dCµν

−
∫
C
δ
[(√
−g/ω

)2k/n
T µ
ν

]
UνdCµ +

1

2

∫
C

(√
−g/ω

)2k/n(
Tαβ − 1

n
Tgαβ

)
δgαβξ

µdCµ

+

∫
C

n−3∑
i=1

Ω(i)δJ̃µ(i)dCµ +

∫
C
δJ ξµdCµ = 0. (5.18)

Any further analysis of the first law depends on the specific properties of the matter fields
present in the spacetime.

5.2 WTDiff invariant perfect fluids

The original derivation of the first law of black hole mechanics in GR considered a stationary,
asymptotically flat black hole spacetime filled with a perfect fluid [40]. This form of the
first law was later reproduced (and generalised) using the Noether charge formalism for Diff
invariant gravity [4]. Here, we derive it for WTG. Our aim is to both illustrate the matter
field contributions to the Hamiltonian perturbation discussed above in a general setting and
to show the physical equivalence of the final formula with the result known in GR.

Before applying the Noether charge formalism to a perfect fluid, we first need to intro-
duce a suitable Lagrangian description. In particular, we develop a WTDiff invariant (and
somewhat simplified) version of the formalism presented in [41]. We choose the entropy per
particle, s, and the particle density, ν, as the configuration variables describing the fluid.
We then consider an equation of state which expresses the energy density of the fluid as a
function of s and ν, ρ = ρ (s, ν). We further need the velocity of the fluid, uµ, normalised
so that uµuµ = −1. To keep this normalisation Weyl invariant, the behaviour of uµ under
Weyl transformations must be u′µ = e−σuµ (in other words, gµν +uµuν must be a projector
to the subspace orthogonal to uµ in every gauge). Using the fluid velocity and particle
number density, we introduce the particle number density flux

Iµ =
(√
−g/ω

)1/n
νuµ, (5.19)

which is Weyl invariant.
As the basic component of our fluid Lagrangian we choose the energy density, ρ (ν, s).

Furthermore, it must incorporate the conditions that the fluxes of particle number density
and entropy per particle along the flow lines are conserved (these requirements characterise
a perfect fluid), which we add via Lagrange multipliers. In total, the Lagrangian reads7

Lf = −ρ (s, ν) + Iµ
(
∇̃µη + s∇̃µτ

)
, (5.20)

7In principle, one should also add a term depending on the Lagrangian coordinates of the fluid, which
specifies the flow lines and serves to fix them on the spacetime boundaries [41]. However, this is not needed
for our purposes.
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where η and τ are spacetime scalars which play the role of Lagrange multipliers. We
discuss their physical interpretation after deriving the equations of motion. Varying the
matter action with respect to the metric yields the traceless part of the energy-momentum
tensor

Tµν −
1

n
Tgµν = (ρ+ p)

(
uµuν +

1

n
gµν

)
, (5.21)

where we identified the pressure

p = ν
∂ρ

∂ν
− ρ, (5.22)

by comparison with the standard form of the energy-momentum tensor of a perfect fluid.
The variations with respect to η and τ give us the conservation of the particle number
density flux and the entropy per particle flux, respectively,

∇̃µIµ = 0, ∇̃µ (sIµ) = 0. (5.23)

The variation with respect to s implies

− ∂ρ

∂s
+ Iµ∇̃µτ = 0, (5.24)

which can be interpreted as the first law of thermodynamics for the fluid [41]. Indeed, if
we specify the Weyl invariant fluid temperature

T =
(√
−g/ω

)1/n
uµ∇̃µτ, (5.25)

equation (5.24) becomes

T =
1

ν

∂ρ

∂s
. (5.26)

Next, varying the fluid action with respect to ν leads to

∂ρ

∂ν
−
(√
−g/ω

)1/n
uµ
(
∇̃µη + s∇̃µτ

)
= 0. (5.27)

The last term equals −T s according to equation (5.25) and the first term corresponds to
(ρ+ p) /ν (see equation (5.22)). Using the Gibbs-Duhem equation of standard thermody-
namics, we obtain the chemical potential µ of the fluid

µ =
ρ+ p

ν
− T s =

∂ρ

∂ν
− s

(√
−g/ω

)1/n
uµ∇̃µτ. (5.28)

Equation (5.27) then relates the chemical potential with the Lagrange multiplier η

µ =
(√
−g/ω

)1/n
uµ∇̃µη. (5.29)

Lastly, a variation of the fluid action with respect to uµ yields an equation which governs
the behaviour of η and τ on the surfaces orthogonal to the flow lines.

It is not difficult to see that the fluid equations of motion imply that the energy-
momentum tensor of the perfect fluid is divergenceless, ∇̃νT ν

µ = 0 [41]. Hence, local energy-
momentum conservation is directly built into our construction (in other words, J = 0 in
our case).
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We now apply the Noether charge formalism for matter fields that we described in
the previous subsection to our perfect fluid Lagrangian. We straightforwardly obtain the
symplectic potential for a general variation of the fluid variables and the metric, and the
Noether current corresponding to a transverse diffeomorphism generated by a vector field ξµ

θµf = Iµ (δη + sδτ) , jµf,ξ = −T µ
ν ξν . (5.30)

The Noether charge Qνµf,ξ identically vanishes in this case.
Now consider some solution of the WTG equations of motion with the perfect fluid

energy-momentum tensor. For the symplectic current Ωµ
f [£ξ, δ] corresponding to a trans-

verse diffeomorphism and an arbitrary perturbation of the fluid variables and the metric
which satisfies the equations of motion, equation (5.6) implies

Ωµ
f = −2∇̃ν

(
ξ[νθ

µ]
f

)
− ξνδT µ

ν +
1

2
ξµ
(
Tαβ − 1

n
Tgαβ

)
δgαβ, (5.31)

which directly yields the perturbation of the fluid Hamiltonian for the evolution along ξµ,
δHξ,f (see equation (5.7)).

5.3 WTG first law of black hole mechanics with a perfect fluid

Upon introducing a suitable description of a perfect fluid, we return to deriving the first
law for a stationary, asymptotically flat black hole spacetime filled with a perfect fluid. Our
starting point is equation (5.18) valid for general matter fields. The perturbation of the
fluid energy-momentum tensor satisfies

UνδT µ
ν = Uνδ [(ρ+ p)uνu

µ + pδµν ] = Uνδ [(νµ+ νT s)uνuµ] + Uµδp, (5.32)

where the fluid velocity is given by uµ = Uµ/
√
−gαβUαUβ = Uµ/|U | and, since δUµ = 0,

we can use that Uνδuν = |U |uαuβδgαβ/2. Furthermore, equations (5.22), (5.26) and (5.27)
together imply δp+ νδµ+ νsδT = 0. We further use the definition of the particle number
density flux Iµ (5.19). The final result after some calculations is

UνδT µ
ν =

1

2
Uν (ρ+ p)

(
uνu

µ +
1

n
δνµ

)
+
(√
−g/ω

)−1/n |U |µδIµ (5.33)

+
(√
−g/ω

)−1/n |U |T δ
[(√
−g/ω

)1/n
νsuµ

]
. (5.34)

The first term is just the traceless part of the energy-momentum tensor and it cancels
out with the last integral in equation (5.18). The final form of the first law of black hole
mechanics for a stationary, asymptotically flat black hole spacetime filled with a perfect
fluid thus reads

0 =δE − Ω
(i)
H δJ(i) −

1

8π
κ

∫
∂CH

δ
[(√
−g/ω

)2/n
ενµ
]
dCµν

−
∫
C

(√
−g/ω

)−1/n |U |µδIµdCµ −
∫
C

(√
−g/ω

)−1/n |U |T δS̃µdCµ −
∫
C

n−3∑
i=1

Ω(i)δJ̃µ(i)dCµ,

(5.35)
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where the first term of the second line quantifies the change of the fluid energy due to
absorption of particles by the black hole, as it contains the perturbation of the previously
defined particle number density current, Iµ, and the chemical potential, µ, with the red-
shift between the horizon and the asymptotic infinity taken into account by the factor
(
√
−g/ω)−1/n |U |. The second term of the second line corresponds to heat exchange between

the fluid and the black hole, as S̃µ = (
√
−g/ω)1/n suµ is the WTDiff invariant flux of the

entropy density and (
√
−g/ω)−1/n |U |T the red-shifted temperature. In the unimodular

gauge, and for perturbations that do not change the metric determinant, δg = 0, we of
course recover the GR form of the first law [4, 40].

6 The first law for causal diamonds

The Noether charge formalism for Diff invariant theories of gravity has been used to derive
the first law of causal diamonds, which plays an important role in thermodynamics of
spacetime [15–18]. However, applying the WTG Noether charge formalism to them leads
to technical difficulties. The reason is that causal diamonds posses an isometry generated
by a conformal Killing vector. Such vectors are defined by the conformal Killing equation

δζgµν = £ζgµν = 2∇(µζν) =
1

n
∇ρζρgµν . (6.1)

A conformal Killing vector ζµ does not satisfy the transversality condition as ∇̃µζµ 6= 0.
Hence, the Noether charge formalism we developed for transverse diffeomorphisms cannot
be applied directly to this case. Nevertheless, ζµ generates a pure Weyl transformation.
Hence, it does not affect the auxiliary metric (when ∇̃µζµ 6= 0, one must be mindful that
δω = 0 and apply the rules for Lie deriving tensor densities)

δζ g̃µν =ω2/n£ζ

[(√
−g
)−2/n

gµν

]
= 2∇̃σ∇̃(ν

(
g̃ρ)λζ

λ
)
− 2

n
g̃νρ∇̃σ∇̃λζλ = 0. (6.2)

The transformation generated by ζµ thus lies in the intersection of Diff and WTDiff groups
and represents a symmetry transformation of WTG. However, the condition on a vector
field to generate a transformation from the intersection of Diff and WTDiff groups which
is not a transverse diffeomorphism explicitly depends on the metric [6]. This prevents
us from finding a general expression for the Noether current and Noether charge in this
case. Nevertheless, the symplectic potential θµ [δζ ] and the symplectic current Ωµ [δζ , δ]

corresponding to the transformation generated by ζµ obey equations (3.13) and (3.16),
respectively, which we derived for completely general variations of the metric. Therefore,
if the Hamiltonian corresponding to the evolution along ζµ exists, its on-shell perturbation
is given by the standard expression (3.17)

δHζ = Ω [δζ , δ] =

∫
C

Ωµ [δζ , δ] dCµ, (6.3)

where C is a Cauchy surface. This equation is then sufficient to derive the first law of causal
diamonds in the same way we derived the first law of black hole mechanics in subsection 4.1.
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We first provide an expression for δHζ valid for any vector field ζµ. Then, we use it
to derive the first law of causal diamonds and show that it is physically equivalent to the
one valid in GR. In the present work, we concentrate on the vacuum case. The matter
contribution to the first law of causal diamonds will be discussed elsewhere.

6.1 Hamiltonian

In the following, we consider an arbitrary vector ζµ, which need not obey the transversality
condition. Our aim is to derive a perturbation of the Hamiltonian for evolution along
ζµ. Since ζµ does not in general generate a symmetry transformation of WTG, we cannot
follow the procedure based on the Noether current considered in section 3. Instead, we
take advantage of having an explicit expression for the WTG Lagrangian and obtain the
Hamiltonian perturbation by directly evaluating the symplectic current

Ωµ [δζ , δ] = δθµ [δζ ]− δζθµ [δ] , (6.4)

where we assume that both the background metric and the perturbation obey the vacuum
WTG equations of motion.

The first term in equation (6.4) is a perturbation of the symplectic potential θµ [δζ ],
which can be expressed directly from the general equation (3.13) as

θµ [δζ ] =
1

16π

(√
−g
ω

) 4
n

(gµνgρσ − gµσgνρ) ∇̃σδζ g̃νρ, (6.5)

where
∇̃σδζ g̃νρ = 2∇̃σ∇̃(ν

(
g̃ρ)λζ

λ
)
− 2

n
g̃νρ∇̃σ∇̃λζλ. (6.6)

A straightforward calculation leads to

θµ [δζ ] =
1

8π
g̃µρR̃ρνζ

ν + ∇̃ν
(

1

8π

(√
−g/ω

)2/n ∇̃[νζµ]

)
+ Πµ

ζ , (6.7)

where we write
Πµ
ζ =

1

8π

n− 1

n
g̃µν∇̃ν∇̃ρζρ, (6.8)

for the only extra term appearing with respect to the transverse diffeomorphisms case. It
can be noticed that the first term on the right hand side of equation (6.7) has formally the
same form as a Weyl covariant divergence of the WTG Noether charge corresponding to
ζµ. However, since ζµ does not in general generate a symmetry transformation of WTG,
we cannot understand this term as a Noether charge.

Therefore, for the on-shell perturbation of the symplectic potential, δθµ [δζ ], we find,
invoking the vacuum WTG equations of motion,

δθµ [δζ ] =
1

8π

1

n
ζµδR̃+

1

8π
∇̃ν
[
δ
((√
−g/ω

)2/n ∇̃[νζµ]
)]

+ δΠµ
ζ . (6.9)

For the second term in equation (6.4), δζθµ [δ], we find from the definition of the
Lie derivative (one must be mindful that θµ [δ] contains the metric determinant and its
derivatives, which are not tensors)

δζθ
µ [δ] = ζν∇̃νθµ [δ]− θν [δ] ∇̃νζµ +

2

n
θµ [δ] ∇̃νζν +

1

16π
∇̃ν∇̃ρζρδg̃µν . (6.10)
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In total, the symplectic current reads

Ωµ [δζ , δ] =
1

8π

1

n
ζµδR̃+

1

8π
∇̃ν
[
δ
((√
−g/ω

)2/n ∇̃[νζµ]
)]
− ζν∇̃νθµ [δ] + θν [δ] ∇̃νζµ

− 2

n
θµ [δ] ∇̃νζν +

1

16π

n− 2

n
∇̃ν∇̃ρζρδg̃µν . (6.11)

where we used the definition of Πµ
ζ (6.8). Adding and subtracting ζµ∇̃νθν − θµ∇̃νζν , we

obtain a total divergence term of the form −∇̃ν
(
ζ [νθµ] [δ]

)
,

Ωµ [δζ , δ] =
1

8π

1

n
ζµδR̃+

1

8π
∇̃ν
[
δ
((√
−g/ω

)2/n ∇̃[νζµ]
)]
− ∇̃ν

(
ζ [νθµ] [δ]

)
− ζµ∇̃νθν [δ]

+
n− 2

n
θµ [δ] ∇̃νζν −

1

16π
∇̃ν∇̃ρζρδg̃µν . (6.12)

Finally, we use the on-shell relation

δL =
1

16π
δR̃ =

1

16π

2n

n− 2
δΛ = ∇̃µθµ [δ] , (6.13)

to write

Ωµ [δζ , δ] =− 1

8π
ζµδΛ +

1

8π
∇̃ν
[
δ
((√
−g/ω

)2/n ∇̃[νζµ]
)]
− ∇̃ν

(
ζ [νθµ] [δ]

)
− ζµ∇̃νθν [δ]

+
n− 2

n
θµ [δ] ∇̃νζν +

1

16π

n− 2

n
∇̃ν∇̃ρζρδg̃µν . (6.14)

An integral of Ωµ [δζ , δ] over a Cauchy surface C then yields the perturbation of the Hamil-
tonian Hζ corresponding to the evolution along ζµ (if it exists)

δHζ =

∫
C

Ωµ [δζ , δ] dCµ =

∫
∂C

{
1

8π
δ
[(√
−g/ω

)2/n ∇̃[νζµ]
]
− 2ζνθµ [δ]

}
dCµν

−
∫
C

1

8π
δΛζµdCµ +

n− 2

n

∫
C

(
1

16π
∇̃ν∇̃ρζρδg̃µν + θµ [δ] ∇̃νζν

)
dCµ. (6.15)

Even for δΛ = 0, the perturbation of the Hamiltonian contains a volume integral. We
discuss its interpretation on the example of a causal diamond in the following subsection.

6.2 Causal diamonds

Let us now apply the previously derived formalism to a simple yet interesting case of causal
diamonds. A geodesic local causal diamond centred at some spacetime point, P , is fully
described by an arbitrary unit timelike vector, nµ (P ), and a length scale, l. We define
it as a region causally determined by a spacelike geodesic ball Σ0, which is formed by
geodesics of parameter length l starting in P and orthogonal to nµ (P ). In the following,
we assume that the causal diamond is constructed in a flat spacetime. We choose the time
coordinate so that n (P ) = ∂/∂t, and spatial coordinates {xi}i=n−1

i=1 to be Cartesian. We
further perform a suitable Weyl transformation to have (at least locally) a unimodular
metric,

√
−g = ω. We only consider a unimodular form of the metric for computational

convenience (as in subsection 4.3). In the following, we allow for metric perturbations which
change the determinant, i.e., δg 6= 0.

– 30 –



A causal diamond possesses a conformal isometry generated by a conformal Killing
vector, ζµ [16]. In our coordinate system, ζµ reads, up to an arbitrary normalisation
constant, C,

ζ = C

((
l2 − t2 − r2

) ∂
∂t
− 2txi

∂

∂xi

)
, (6.16)

where r =
√
xixi. The GLCD’s boundary is a conformal Killing horizon with respect to ζµ.

Its spatial cross-section at t = 0 which corresponds to the boundary of the geodesic ball,
∂Σ0, is a bifurcate surface and ζµ vanishes there, as can be easily seen from equation (6.16).
The surface gravity κ corresponding to ζµ obeys κ = 2lC at ∂Σ0.

To provide a consistency test for our formalism, we first derive a relation between
the volume of Σ0 and the area of ∂Σ0. The derivation proceeds similarly to that of the
Smarr formula for black holes (see subsection 4.3). We start by integrating the symplectic
potential (6.7) corresponding to ζµ over the geodesic ball Σ0∫

Σ0

θµ [δζ ] dΣµ =

∫
Σ0

Πµ
ζ dΣµ +

∫
∂Σ0

1

8π

(√
−g/ω

)2/n ∇̃[νζµ]dΣµν . (6.17)

The symplectic potential θµ [δζ ] can be worked out from equation (6.7). Since δζ g̃µν = 0

we easily obtain θµ [δζ ] = 0. Therefore, we have∫
Σ0

Πµ
ζ dΣµ +

∫
∂Σ0

1

8π

(√
−g/ω

)2/n ∇̃[νζµ]dΣµν = 0. (6.18)

In flat (or any maximally symmetric) spacetime, it holds

Πµ
ζ = − 1

8π

n

n− 2
kκnµ, (6.19)

where k = (n− 2) /l is the extrinsic curvature of the (n − 2)-sphere ∂Σ0 and κ = 2lC is
the surface gravity corresponding to ζµ. Performing both integrals in equation (6.18) then
leads to

1

8π

n− 1

n− 2
κkV − 1

8π
κA = 0, (6.20)

where A and V denote the area of ∂Σ0 and the volume of Σ0, respectively. This result is
essentially just the well-known flat space relation between the (n − 1)-dimensional ball’s
volume and the area of its boundary, A = (n− 1)V/l. Hence, its recovery serves to check
the consistency of our formalism.

Next, we derive the first law of causal diamonds governing small perturbations of the
metric from the flat spacetime to some other solution of the vacuum WTG equations of
motion. Since δζ g̃µν = 0, we can easily see that the symplectic current Ωµ [δζ , δ] vanishes
and, therefore, the perturbation of the Hamiltonian for the evolution along ζµ vanishes as
well. Then, equation (6.15) directly yields the first law of causal diamonds

δ0 = Hζ =

∫
C

Ωµ [δζ , δ] dCµ =
1

8π
κδA− 1

8π
kκδV − 1

8π

n− 2

n
κ

∫
∂Σ0

δ ln
(√
−g/ω

)
dn−2x

+
1

8π

n− 1

n
kκ

∫
Σ0

δ ln
(√
−g/ω

)
dn−1x, (6.21)
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where δA and δV denote the perturbations of the area of ∂Σ0 and the volume of Σ0,
respectively. In the unimodular gauge and for determinant preserving perturbations, δg = 0,
we reproduce the first law of causal diamonds valid in GR [15].

While the final form of the first law of causal diamonds in WTG is physically equivalent
to the GR one, the term corresponding to the volume perturbation appears in a different
way in both theories. In GR, the perturbation of the Hamiltonian is expressed entirely
as a surface integral and the volume perturbation comes from a non-vanishing symplectic
current, Ωµ [δζ , δ] [15]. In other words, the perturbation of the Hamiltonian corresponding
to the evolution along ζµ does not vanish, δHζ 6= 0. While δHζ in GR always vanishes
for true Killing vectors, it is in general nonzero for conformal Killing vectors. However, in
WTG Weyl invariance of the symplectic current Ωµ [δζ , δ] implies that it always vanishes
for conformal Killing vectors and we have δHζ = 0. Instead of coming from Ωµ [δζ , δ], the
volume perturbation term instead appears in the first law from the volume integral,

n− 2

n

∫
C

(
1

16π
∇̃ν∇̃ρζρδg̃µν + θµ [δ] ∇̃νζν

)
dCµ, (6.22)

present in the perturbation of the Hamiltonian (6.15).

7 Discussion

The principal outcome of the paper is an extension of the Noether charge formalism to
WTG, a WTDiff invariant theory of gravity whose solutions are equivalent to those of
GR. Moreover, we have employed it to obtain a statement of the first law of black hole
mechanics, both in vacuum and in the presence of a perfect fluid, and an expression for
WTG Wald entropy. The results turn out to be physically equivalent to those for GR.
However, all the relevant physical quantities (total energy, total angular momentum, black
hole entropy, etc.) are Weyl invariant and reduce to their form valid in GR only in the
unimodular gauge. These findings precisely correspond to what one would expect, given
that the equations of motion of WTG and GR coincide in the unimodular gauge. In this
way, we provide a consistency check for the physical equivalence of both theories.

The equivalence of GR and WTG nevertheless breaks down in two respects. First,
WTG allows coupling of gravity to certain locally non-conservative matter sources. Our re-
sults apply to such cases without any difficulties. Since breaking of local energy-momentum
conservation is sometimes considered in unimodular and WTG cosmological models, our
Noether charge formalism might serve to provide the appropriate conservation laws for
them. Second, the cosmological term in WTG appears as an integration constant, its value
is radiatively stable and, in general, it varies between solutions of the equations of motion.
In this regard, we show that entropy of the de Sitter horizon in WTG and GR has the
same value in the unimodular gauge. Furthermore, we derive a contribution of the vary-
ing cosmological constant to the first law of mechanics for a Schwarzschild-anti-de Sitter
black hole. While such results have been previously obtained in GR, there they require
an ad hoc assumption of a varying cosmological constant (for instance, by appealing to its
interpretation as vacuum energy). In contrast, our approach has the advantage of naturally
demanding a varying cosmological constant, already on the fully classical level.
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While we derived several physically relevant results for WTG, the main purpose of
our work is to introduce a new formalism useful for a systematic study of WTG. Some
possible future applications of it include calculating Noether charges corresponding to the
symmetries of the null infinity in asymptotically flat spacetimes, the Bondi-Metzner-Sachs
group. Since calculations related to the Bondi-Metzner-Sachs group involve a conformal
transformation of the metric, it might be interesting to see the impact of the Weyl invariance
in this case. Another option lies in exploring the conserved quantities corresponding to
dynamics of the background volume n-form and their impact on horizon thermodynamics
(this will require a generalisation of the formalism to gauge field theories, along the lines
of [42]). Moreover, the Noether charge formalism for GR has been used to construct the
solution phase space (see, e.g. [43]). Obtaining the solution phase space for WTG in the
same way might further clarify the (in)equivalence of both theories. We plan to address
these issues in future works.

Originally, the Noether charge formalism was obtained for any local, Diff invariant
theory of gravity, regardless of the form of its Lagrangian. In principle, it should be possible
to similarly obtain a generalisation of the formalism we derived for WTG to any local,
WTDiff invariant theory of gravity. We will address this in a forthcoming paper [44].

Lastly, an extra motivation for exploring WTG comes from thermodynamics of space-
time. It appears that from thermodynamic arguments there emerge gravitational dynamics
equivalent to WTG. Within the presently developed formalism, we will be able to study
this emergence more rigorously and possibly provide a conclusive proof of it. This would
lend further support for the physical relevance of WTG as an alternative to GR.
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