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Abstract: Key aspects of the AdS/CFT correspondence can be captured in terms of
tensor network models on hyperbolic lattices. For tensors fulfilling the matchgate con-
straint, these have previously been shown to produce disordered boundary states whose
site-averaged ground state properties match the translation-invariant critical Ising model.
In this work, we substantially sharpen this relationship by deriving disordered local Hamil-
tonians generalizing the critical Ising model whose ground and low-energy excited states
are accurately represented by the matchgate ansatz without any averaging. We show that
these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical
toy model based on layers of the hyperbolic lattice, breaking the conformal symmetries
of the critical Ising model in a controlled manner. We provide a direct identification of
correlation functions of ground and low-energy excited states between the disordered and
translation-invariant models and give numerical evidence that the former approaches the
latter in the large bond dimension limit. This establishes tensor networks on regular hy-
perbolic tilings as an effective tool for the study of conformal field theories. Furthermore,
our numerical probes of the bulk parameters corresponding to boundary excited states
constitute a first step towards a tensor network bulk-boundary dictionary between regular
hyperbolic geometries and critical boundary states.
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1 Introduction

Tensor networks are a widely applied tool in the study of many-body systems both in
numerical approaches [1–3] and analytical techniques [4], providing a variational ansatz for
a large class of quantum states. A tensor network depends on the choice of tensors as well
as the bulk geometry of how they are contracted together, both determining the properties
of the quantum state on the network’s boundary, i.e., its uncontracted indices. The choice
of bulk geometry restricts many of the qualitative properties of possible boundary states, in
particular its entanglement structure. Ground states of systems in 1+1 dimensions with an
energy gap, exhibiting an entanglement entropy area law [5], can be efficiently parametrized
by a one-dimensional chain of tensors [6]. Such a matrix product state (MPS) thus possesses
the same geometry as the boundary system it describes; its bulk geometry is trivial. For
critical systems without a characteristic length scale and polynomial decay of correlations,
whose continuum limit can often be described by a conformal field theory (CFT), such
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an ansatz is insufficient for describing the entanglement structure at large scales. Instead,
a bulk geometry with an additional spatial dimension beyond the ones corresponding to
the modeled quantum system become necessary. On an intuitive level, this additional
dimension captures the various length scales at which the system can be probed, all of which
contribute equally to the scale-invariant theory describing such tensor network states.

The multi-scale entanglement renormalization ansatz (MERA) provides such a ten-
sor network model, efficiently representing low-energy states of critical quantum systems
in 1+1 dimensions [7–9]. With the MERA one can accurately extract conformal data
(central charge, scaling dimensions and operator product expansion coefficients) of the cor-
responding continuum CFT [10]. Moreover, MERA allows for an explicit representation
of lattice CFT transformations [11]. The shortest path between two boundary points in
the MERA network scales logarithmically in boundary distance, which resembles the ge-
ometry of hyperbolic space [12] and leads to the correct entanglement entropy scaling of
a CFT ground state. This has led to the proposal that the MERA — or more generally,
the process of entanglement renormalization [7] — serves as a discrete implementation of
a holographic duality [12–17]. Such a duality appears most prominently in the anti-de Sit-
ter/conformal field theory (AdS/CFT) correspondence [18, 19] relating (quantum) gravity
on a negatively curved AdS space-time to a dual CFT in one lower dimension. As in the
MERA, AdS/CFT thus features a hyperbolic bulk related to a flat boundary. Entangle-
ment entropies of a holographic CFT with a dual bulk description can be computed on the
gravitational side using the Ryu-Takayanagi approach [20–22], leading to the same scaling
as found for boundary states of the MERA.

While the connectivity of the MERA resembles hyperbolic AdS time-slices, it cannot be
regularly embedded into the hyperbolic disk. The resemblance to discretized time-like slices
in positively curved de Sitter spacetime (dS) has been pointed out [23], though MERA has
also been interpreted as a discretized path integral on light-like slices in AdS [24]. Instead,
tensor networks on regular discretizations of AdS time-slices have been proposed. These
first appeared in tensor network approaches to holographic dualities distinct from entangle-
ment renormalization: building on the notion of holographic quantum error correction [25]
describing AdS/CFT as an encoding map between bulk and boundary information, it was
found that discrete holographic codes on such geometries can be implemented in a large
number of toy models of holography [26–36]. As visualized in figure 1, regular hyperbolic
lattices no longer possess the inherent directionality of the MERA but obey a discrete
subset of the symmetries of the hyperbolic disk: around each vertex, the lattice exhibits
the same (discrete) geometry. Specifically, regular hyperbolic tilings break the continuum
PSL(2,R) symmetries of the hyperbolic disk into a Fuchsian group [31, 37, 38].

While regular tilings appear to be a more natural discrete geometry for studying
AdS/CFT, they come with a trade-off: rather than the smooth boundary of the MERA
geometry, specifically designed to produce translation-invariant states through the use of
local disentanglers on every layer, the geometrical boundary of a regular hyperbolic tiling
is inherently quasiperiodic, i.e., breaking periodicity on every scale up to aperiodically
repeating features [39]. To elucidate the general behaviour of boundary states resulting
from such bulk geometries, some of the authors previously considered a generic matchgate
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(a) MERA tensor network and tiling

(b) Regular hyperbolic tensor network and tiling

Figure 1. The MERA and a regular hyperbolic tensor network with their corresponding tiling in
the hyperbolic disk, organized into radial layers (shaded). (a) The MERA consists of two types
of tensors (isometries and disentanglers, drawn here as triangles and squares) arranged in layers
around a central tensor. It corresponds to an irregular, alternating triangle/quadrilateral tiling
that breaks the symmetries of the hyperbolic disk but produces a smooth boundary after many
layers n. (b) A regular triangular hyperbolic tensor network with one type of tensor (drawn as a
circle) with the same geometrical structure around any lattice vertex, preserving a discrete subset
of the symmetries of the hyperbolic disk. Unlike the MERA, the tiling has no directionality or
well-defined center; however, its boundary exhibits quasiperiodic irregularity at any n.

tensor network (MTN), which is numerically efficient to contract and thus suitable for
studying the whole parameter space of such a setup [40]. This circumvents the need for
isometric or causal constraints to reduce computational effort, as employed in the MERA
as well as hyperinvariant tensor network approaches [41, 42], while also incorporating the
hyperbolic pentagon code [26] into a more general framework. Boundary states from MTNs
on regular hyperbolic tilings were found to exhibit aperiodic disorder in their correlation
functions, but surprisingly, the parameter space of these models contains boundary states
whose correlation functions, when averaged over all boundary sites, accurately reproduce
ground states of the critical Ising model [40]. This is surprising, as critical Ising ground
states are translation-invariant and one should expect any disorder to significantly alter its
correlation functions in an uncontrolled manner.
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In this work, we explain why and how ground states of translation-invariant, critical
models can be well approximated by boundary states of regular hyperbolic tensor network,
again relying on the MTN framework for concrete numerical results. We begin in section 2
with a review of regular tilings and their iterative construction via inflation rules as well as
of matchgate tensors and the covariance matrix formalism for Gaussian states. In addition,
we recap the general properties of hyperbolic MTN boundary states and their resemblance
to ground states of the Ising model.

Complementing these previous numerical observations with analytical techniques, we
introduce in section 3.1 a class of disordered Ising models with nearest-neighbor couplings
whose ground state covariance matrix can be explicitly mapped to that of its translation-
invariant relative. We then show in section 3.2 that a sub-class of these models with
coupling terms determined by a highly constrained multi-scale quasicrystal ansatz (MQA),
built from the bulk symmetries of a given regular tiling, produces ground states closely
resembling those found in the hyperbolic MTN setup. The MQA effectively depends on
only a single free parameter determining the disorder strength. The relationship between
the resulting multi-scale quasicrystal Ising (MQI) model, the more general mode-disordered
Ising (MDI) model, and the original Ising model is summarized in figure 4. In section 3.3
we discuss the boundary symmetries of these constructions and relate them to the recent
proposal that regular hyperbolic TNs implement quasiperiodic CFTs whose CFT-like state
symmetries are determined by the bulk geometry [37]. Specifically, we show that the qCFT
symmetries realized by hyperbolic MTNs include a fractal self-similarity and an approxi-
mate translation invariance of correlation functions. In contrast to the qCFT construction
in ref. [37] using Majorana dimer states, in the MTN setup we can define a nearest-neighbor
Hamiltonian generalizing a well-known CFT lattice model — the Ising model — and are
thus able to sharpen the relationship between qCFTs and CFTs.

While critical models have been previously identified in systems with quasiperiodic
couplings [43–48], we here provide the first tensor network ansatz leading to such an effective
Hamiltonian. We numerically demonstrate in section 3.4 that the quasiperiodic disorder is
weakened at large bond dimension, with MTN states converging towards the translation-
invariant ground states of the critical Ising model. Furthermore, we show analytically in
section 3.5 that even at small bond dimension, the quasiperiodic nature of the disorder
leads to site-averaged correlation functions that reproduce the continuum Ising model,
explaining the results of ref. [40]. Finally, in section 3.6 we consider excitations beyond
the ground state produced by deformations of the bulk tensors from their critical Ising
value in the MTN ansatz, and find a “holographic” relationship between the location of
the deformation in the hyperbolic lattice and the energy scale of the excitation. We further
sharpen this relationship by numerically constructing the first low-lying excited states of
the boundary Hamiltonian (visualized in figure 15), demonstrating a concrete dictionary
between bulk tensor configurations and boundary energy spectra, resembling the dictionary
between bulk fields and boundary operators in AdS/CFT [49, 50].

We close with a discussion on our results in section 4. In particular, we note that
our numerical results rely on the MTN ansatz corresponding to a restriction to fermionic
Gaussian states, but as many of its properties appear as a consequence of the tensor network
geometry they should be expected in models with more general types of tensors, as well.
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2 Background

2.1 Regular hyperbolic tilings and their boundaries

Throughout this work we consider tensor networks on regular hyperbolic tilings, with a
strong focus on how the symmetries of the tiling boundary are reflected in the symmetries
of the boundary states of the tensor network. A useful notation for these highly symmetric
tilings is given by the Schläfli symbol {p, q}, denoting a tiling with regular p-gons with q of
them meeting at each corner. This implies an interior angle of 2π/q in each p-gon corner,
which leads to a hyperbolic tiling with negative (Gaussian) curvature if pq > 2(p + q).
While such a tiling is regular in the bulk, cutting it off after a finite number of suitably
defined layers produces a boundary whose geometry is highly non-regular: indeed one
finds it to be quasiperiodic, i.e., having no exact periodicity but containing aperiodically
repeating features [39]. Such quasiperiodicity, sometimes also referred to as quasicrystal
symmetries, can be characterized by inflation rules parametrizing the construction of tiling
layers. These rules allow us to obtain the sequence of the types of corners exposed at the
boundary of the tiling from the sequences describing the boundary of a smaller tiling
embedded in its interior. Here we will always consider this construction in terms of a
starting tile onto which concentric layers of new tiles are “glued” upon, thus producing
a progression of tilings of (exponentially) increasing size, motivating the name inflation.
Figure 2 demonstrates two examples of this procedure for {p, q} = {3, 7} using vertex
inflation, where each iteration adds a closed layer of tiles that are adjacent to the vertices
of the previous tiling boundary. These boundary vertices (small circles in figure 2) can
be classified by their adjacency with respect to the tiles included up to the given inflation
step: blue vertices (denoted b) are connected only to other boundary vertices, while green
and red vertices (g and r, respectively) are each connected to one and two interior vertices
on previous inflation layers.

We briefly recapitulate how to define these inflation rules in terms of letter sequences:
defining an alphabet of unique letters {li}, an inflation rule is a map f from each letter
lk to a string {li}×nk of nk letters. Applying the rule f to a string of letter is defined as
applying f to each string individually and concatenating the resulting strings. We call this
a local inflation if f is only applied to a subset of a total string, and a global inflation if it
is applied to the complete string. The string usually grows exponentially under repeated
global inflation. This general prescription is best exemplified by the Fibonacci quasicrystal.
Its sequences are defined by considering two letters a and b and the inflation rule (letter
replacement rules)

a 7→ ab and b 7→ a , (2.1)

where we omitted the set notation for a string of letters. For instance, starting from a seed
string aaa, applying the inflation rule globally to all three letters produces ababab. Globally
inflating the preceding string produces abaabaaba, and so on. Iterative applications of these
rules produce strings of a’s and b’s with a quasiperiodic structure, in which the ratio of
the number of a’s to the number of b’s converges to an asymptotic value as the string size
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Inflation of a hyperbolic {3,7} triangle tiling

n = 0, N = 3 n = 1, N = 12 n = 2, N = 33 n = 3, N = 87

Rule b ↦ gggr Rule g ↦ ggr Rule r ↦ gr

b-type vertex g-type vertex r-type vertex

Figure 2. Iterative construction of a regular hyperbolic tiling through inflation rules (2.2) of a
{3, 7} triangle tiling. With each additional iteration n, a connected layer of tiles is added, leading
to an exponentially increasing number N of boundary vertices. The types b, g, r denote boundary
vertices with 0, 1, 2 adjacent edges connected to the previous inflation layer, respectively. The
inflation procedure for any tiling can be associated with an iterative tensor network contraction,
with each p-gon tile representing an p-index tensor, and adjacent edges between tiles within the
region covered by the inflation step (grey-shaded area) corresponding to contracted pairs of tensor
indices. Note that this visualization is dual to the common convention of identifying vertices, rather
than tiles, with individual tensors.

grows. This asymptotic ratio is characteristic of the quasicrystal. For the Fibonacci case,
this ratio asymptotes to the so-called “golden ratio,” 3+

√
5

2 .
We now define the inflation rules for the {3, 7} tiling in figure 2 in terms of the boundary

vertex types b, g, r. This leads to the vertex inflation rule

b 7→ gggr , g 7→ ggr , r 7→ gr . (2.2)

Note that the b letter vanishes after the first inflation step and any larger sequences are fully
characterized by gs and rs. In fact, the remaining inflation rule for g and r is equivalent to
a twofold application of the Fibonacci rule if we relabel letters (g, r) 7→ (a, b) and allow for
an overall shift in the sequence. The boundary of the {3, 7} tiling under vertex inflation
thus has the same geometric structure as a Fibonacci quasicrystal.

Inflation rules can be constructed for any regular hyperbolic tiling: in appendix D we
consider the {4, 5} tiling that can be constructed in a similar fashion, shown in figure 18.
In fact, the inflation rules for every {p, q} tiling produce quasiperiodic sequences [39, 47].
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While the inflated sequences share the symmetries of the initial sequence (bbb with Z3
symmetry for the {3, 7} tiling), the scaling of the length of a sequence under a single
inflation step quickly becomes independent of the starting seed sequence after a few inflation
steps. Each inflation rule is thus characterized by a unique number λ that defines the
asymptotic scaling factor between steps. This factor can be computed analytically and is
given by λ{3,7} = 3+

√
5

2 for the {3, 7} tiling.
These purely geometrical considerations have physical implications: when construct-

ing tensor networks with the geometry of regular hyperbolic tilings, correlations between
boundary degrees of freedom are influenced by the tiling geometry. Unsurprisingly, the
quasiperiodic boundary geometry of these tilings implies that tensor networks on them will
generally lead to boundary states that do not obey translation invariance. However, it is not
immediately obvious how exactly this quasiperiodicity is reflected in boundary correlation
functions for generic choices of tensors. As we will show, the critical states naturally en-
capsulated by such tensor networks indeed possess correlations appearing quasiperiodically
disordered on all length scales and are thus being influenced by the boundary symmetries
at all inflation steps, rather than merely the final one.

2.2 Matchgate tensor networks

We consider tensor networks composed of matchgate tensors [51], whose contraction can be
performed numerically very efficiently. The matchgate constraint is an algebraic constraint
on the entries of a given tensor which physically results in considering a variational ansatz
restricted to fermionic Gaussian states, i.e., ground states of non-interacting fermionic
Hamiltonions [40, 52]. In tensor network approaches contraction of individual tensors
in the network is a key sub-routine and crucially the tensor obtained by contracting two
matchgate tensor again retains the matchgate condition which facilitates efficient numerical
contraction schemes [52]. As an example, consider a tensor Ti,j,k with three indices and
bond dimension 2, i.e., each index can take the value 0 or 1. If T = T (A) is an (even-
parity) matchgate tensor, it can be fully expressed by a 3× 3 matrix A, which we call the
generating matrix (or squeezing matrix) of the matchgate tensor. The relationship between
A and T is most conveniently expressed in a fermionic Fock basis where the quantum state
vector |ψ 〉3 on 3 modes is expressed in terms of T as

|ψ 〉3 =
1∑

i,j,k=0
Ti,j,k |i, j, k 〉 with |i, j, k 〉 := (f†1)i(f†2)j(f†3)k |∅〉3 , (2.3)

where |∅〉3 is the fermionic vacuum on three modes with creation operators denoted by f†k.
The extension to N modes is straightforward. We can now express a matchgate tensor T
through A via

Ti,j,k(A) = 〈i, j, k | c exp

1
2

3∑
a,b=1

Aa,b f†a f†b

 |∅〉3 . (2.4)
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Here c = T0,0,0 is a normalization constant. Due to anti-commutation relations {f†j , f
†
k} = 0,

we find that the matrix A can always be anti-symmetrized, so that only 3 of its elements
are relevant. This construction can also be easily extended to N modes, and at large N , we
immediately see the advantage of the matchgate representation: instead of working with
2N components of a tensor T , we instead use an antisymmetric N × N matrix A with
only N(N−1)

2 independent entries. Of course, matchgate tensors form a heavily restricted
subclass of all possible tensors; specifically, they can only describe Gaussian states that
appear as states of non-interacting theories [40, 52].

To give an example of the efficiency of matchgate tensor network (MTN) contractions,
consider two 3-leg matchgate tensors Ti,j,k(A) and Tl,m,n(B) with 3×3 generating matrices
A and B. We specify an overall index ordering of (i, j, k, l,m, n) that becomes necessary
in the fermionic language of anti-commuting modes. We now perform a contraction of the
index pair (k, l), producing the tensor

Ti,j,m,n(C) ≡ Ti,j,0(A)T0,m,n(B) + Ti,j,1(A)T1,m,n(B) . (2.5)

Writing out the resulting expression side as a matchgate state, we find that its 4 × 4
generating matrix C is given by

C =


0 A1,2 A1,3B4,5 A1,3B4,6

−A1,2 0 A2,3B4,5 A2,3B4,6
−A1,3B4,5 −A2,3B4,5 0 B5,6
−A1,3B4,6 −A2,3B4,6 −B5,6 0

 . (2.6)

We find that this matrix C is a direct sum of the “uncontracted blocks” of A and B, along
with diagonal elements that form products of matrix entries over the contracted indices.
These contraction rules can be explicitly constructed for any N -mode matchgate tensor,
including for self-contractions [40]. As the computational cost for any single contraction
is merely O(N2), this makes possible the contraction of matchgate tensor networks with
thousands of bonds in a few seconds on standard desktop hardware.

MTN states, being Gaussian, are fully described by their covariance matrix Γ encoding
two-point correlations, from which higher-order moments follow via the Wick’s theorem.
For N physical fermions, this matrix can be conveniently expressed in terms of 2N self-
adjoint Majorana operators γk with {γj , γk} = 2δj,k for Majorana labels j, k which are
related to the N fermionic anihilation operators as fk = (γ2k−1 + i γ2k)/2. The entries of
the covariance matrix can then be written as

Γj,k = i
2 〈ψ|

[
γj , γk

]
|ψ〉 . (2.7)

For a matchgate tensor T (A) with a general N × N generating matrix A, its covariance
matrix Γ = Γ(T (A)) can be computed explicitly from A. Decomposing Γ into subma-
trices Γ1 to Γ4 describing the correlations between even and odd Majorana modes, these
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submatrices are given by [53]

Γ1
j,k ≡ Γ2j−1,2k−1 = =

(
2(1 +A)(1 +A†A)−1

)
, (2.8a)

Γ2
j,k ≡ Γ2j−1,2k = <

(
(−1− 2A+A†A)(1 +A†A)−1

)
, (2.8b)

Γ3
j,k ≡ Γ2j,2k−1 = <

(
(1−A− 2A†A)(1 +A†A)−1

)
, (2.8c)

Γ4
j,k ≡ Γ2j,2k = =

(
2(1−A)(1 +A†A)−1

)
, (2.8d)

If A is real, we thus find that correlations between two even or two odd Majorana modes
vanish and only the even-odd correlations are non-trivial. The resulting checkerboard
pattern of the covariance matrix is typical for eigenstates of quadratic Hamiltonians with
coupling terms over an odd number of sites, such as the Ising model [40].

2.3 Matchgate boundary states

We now briefly review previous results on matchgate tensor networks (MTNs) on regular
tilings. Ref. [40] considered the simplest flat and hyperbolic triangular tilings, i.e., the
{3, q} case with q = 6 (flat) and q ≥ 7 (hyperbolic). For the minimal bond dimension case
χ = 2 (with one spin or fermion per tiling edge), this leads to three degrees of freedom per
matchgate tensor, given by the independent entries of its anti-symmetric 3× 3 generating
matrix. This setting is simplified further when assuming that the tensors respect the
symmetries of the tiling itself: regularity requires the geometry around any vertex to be
indistinguishable and isotropic, which leads us to the construction of a tensor network of
identical tensors T , each of which is invariant under cyclic permutations of its indices, i.e,
Tj,k,l = Tk,l,j . On the level of the generating matrix A defining each local matchgate tensor
T = T (A), this leads to the constraint A1,2 = A1,3 = A2,3 ≡ a. The state vector of an
(even-parity) fermionic state constructed from T (A) has the form

|ψ(a)〉3 = c exp
(
a (f†1 f†2 + f†2 f†3 + f†1 f†3)

)
|∅〉3 . (2.9)

Here c is a normalization constant. While in general a ∈ C , it suffices to assume a ∈ R
to produce ground states of local Hamiltonians (both for the three-site state and larger
contractions thereof). Clearly, by changing a we can tune the coupling between fermionic
modes, with a = 0 corresponding to the vacuum state. Similar to how the fermionic vacuum
can be represented in terms of maximally entangled pairs between the two Majorana modes
composing each physical fermion — a trival phase in the language of topological order — the
a = 1 case produces a topological phase where pairs of Majorana modes between neighboring
sites are maximally entangled. For physical models with some decay of correlations over
(tensor network) distance, the 0 < a < 1 range is thus the relevant one for constructing
physical MTN ground states. We can visualize the full contraction of the MTN as a
(fermionically ordered) projection of tensor products of (2.9), each contraction between
a pair of indices being equivalent to a projection onto a Bell state of two fermions. In
the tiling picture of figures 1 and 2, each edge between two tiles corresponds to such a
contraction, with the uncontracted boundary degrees of freedom being represented by the
“open” edges on the boundary of the tiling.
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What are the properties of the boundary states produced by this one-parameter MTN
ansatz? As these states do not exhibit translation invariance, ref. [40] considered boundary
properties averaged over all boundary sites. In particular, this includes the site-averaged
correlation decay function

c(d) := 1
2N

2N∑
j=1
|Γj,j+d| , (2.10)

computed from the 2N×2N covariance matrix Γ = Γ(a) for a boundary state of a {p, q} for
a specific choice of a on N boundary sites. Here we defined covariance matrix indices up to
modulo 2N . The absolute value |Γj,j+d| was taken to account for sign flips resulting from
anti-periodic boundary conditions for fermionic systems, e.g. sgn Γj,2N = − sgn Γj+1,1.
Now, for the flat case q = 6 one finds c(d) to decay exponentially with d for generic a
and polynomially only around a critical value a ≈ 0.58. In the hyperbolic case q ≥ 7
the decay is always polynomial; still, there exists a special value of a ≈ 0.61 where c(d)
decays with the smallest power p = 1. This is also the decay power to be expected —
without averaging — for the critical Ising model corresponding to a CFT with central
charge c = 1/2 in the continuum limit. Furthermore, the correlation decay between more
complicated operators on the {3, 7} MTN boundary reproduces scaling dimensions and
operator product expansion (OPE) coefficients consistent with the Ising CFT prediction,
again under averaging over boundary sites.

Let us briefly review relevant properties of the critical Ising model, one of the simplest
critical lattice models. Written in terms of 2N Majorana operators γk, its Hamiltonian is
given by

HI = i
2

2N−1∑
k=1

γk γk+1 + (boundary terms) , (2.11)

where each neighboring pair of Majorana modes is coupled with equal strength. Restricting
to states with positive fermionic parity and choosing antisymmetric boundary conditions
γ2N+1 ≡ − γ1 further allows us to neglect any boundary terms. Under a Jordan-Wigner
transformation, this choice produces the same fermionic ground state as the Ising model
as it is commonly defined in the spin picture. In the fermionic picture the model is exactly
solvable and leads to a translation-invariant ground state whose covariance matrix (2.7) is

ΓI
j,k =

0 for even j − k
−1

N sin( π
2N (i−j)) for odd j − k

. (2.12)

A full derivation of this result is included in appendix A.
We shall now establish a more precise connection between the ground states of the Ising

model which respects translation invariance, and the hyperbolic MTN boundary states that
explicitly break it. Following a characterization of the boundary state symmetries in an
analytical model, we will show the connection between both models, explain the surprising
effectiveness of site-averaging, and study the emergence of translation invariance for MTNs
in the limit of large bond dimension.
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3 Results

3.1 Mode-disordered Ising models

We now seek to construct the physical theory describing matchgate tensor network (MTN)
boundary states on the hyperbolic {3, 7} tiling at the critical Ising point. As mentioned
above, the site-averaged correlation decay (2.10) follows the Ising model prediction c(d) ∝
1/d, where d is the distance between boundary Majorana modes.1 To more clearly study
the local deviations of correlations from this average, i.e., the state’s disorder, we modify
the (boundary) state’s covariance matrix (2.7) into the decay-adjusted covariance matrix
Γ̃ defined as

Γ̃j,k = Γj,k
c(j − k) . (3.1)

For the covariance matrix of any translation-invariant state, such as the ground state of the
Ising model, we would find values |Γ̃j,k| = 1 for all sites j, k where Γj,k is nonzero. In the
case of the {3, 7} MTN boundary states, however, Γ̃ encodes the disorder on the level of
two-point correlations, shown in figure 3(a). This disorder has a peculiar structure, which
appears as a “tartan pattern” of site-dependent disorder. We find that this disorder can be
almost completely captured by a disorder vector g, i.e., that we can find 2N real numbers
gk so that

Γ̃′j,k ≡
Γ̃j,k
gjgk

≈

0 for even j − k
sgn(j − k) for odd j − k

, (3.2)

where Γ̃′ is approximately translation-invariant, i.e., Γ̃′j,k ≈ Γ̃′j+d,k+d. Indeed, as we see in
figure 3(b), Γ̃′j,k only deviates from this approximation in a small band around the diagonal
j = k. From definition (3.1) it immediately follows that we can rewrite (3.2) in terms of
the original covariance matrix:

Γ′j,k ≡
Γj,k
gjgk

≈

0 for even j − k
sgn(j − k) c(|j − k|) for odd j − k

. (3.3)

As c(d) matches the correlation decay of the Ising model, it follows that Γ′j,k closely ap-
proximates its covariance matrix ΓI as given by (2.12). Because both the Ising ground
state and MTN boundary states are Gaussian and thus completely determined by their
covariance matrices, (3.3) allows us to directly map between both states and all of their
correlation functions. Making use of the {3, 7} tiling’s Z3 symmetry, we can construct a
suitable disorder vector g while avoiding lattice effects by averaging over a third of the
system at large distances. Explicitly,

gj ≈
∑2N/3
k=1 Γ̃j, 2N

3 +j+k

Ng
, Ng = 3

2N

2N/3∑
j,k=1

Γ̃j, 2N
3 +j+k , (3.4)

where the normalization factor Ng ensures that 1
2N
∑
j gj = 1. This is the method used for

determining g as used in figure 3(b), leading to an almost translation-invariant Γ̃′.
1The physical distance between boundary sites (tiling edges) is therefore given by b d2 c
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(c) Growth of auxiliary function h

Figure 3. (a) Decay-adjusted covariance matrix Γ̃ (as defined in eq. (3.1)) for the boundary state
of a {3, 7} matchgate tensor network (MTN) of N = 597 sites (n = 5 inflation steps) at the critical
Ising point. (b) Nearly translation-invariant matrix Γ̃′ computed by applying a site-dependent
disorder vector, computed via eq. (3.4), on Γ̃. (c) The integrated squared disorder vector grows
close to linearly on large scales and thus fulfills the condition (A.14) for the validity of the mode-
disordered Ising (MDI) parent Hamiltonian (3.5).

This relationship between the ground state of the translation-invariant Ising model and
the disordered MTN boundary states can be extended to a relationship between models
with specific Hamiltonians. In the following, we will introduce two models, the second a
constrained version of the first:

1. The mode-disordered Ising (MDI) model, where a disorder vector g is applied to each
Majorana mode.

2. The multi-scale quasicrystal Ising (MQI) model, where g follows a distribution de-
termined by an analytical multi-scale quasicrystal ansatz (MQA).

The MDI model will give us a parent Hamiltonian whose ground states are related to the
critical Ising model via (3.3), which clearly includes the hyperbolic MTN boundary states,
while the MQI model will closely reproduce the specific coupling terms appearing in the
latter. We summarize the relationship between the models relevant for our work in figure 4.
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Figure 4. The space of theoretical models considered in this paper. All are based on exactly
solvable Gaussian fermionic models (describable by a Hamiltonian (A.1)) with correlation functions
that are fully encoded by a covariance matrix. Only a subset of Gaussian models are translation-
invariant, in particular including the (critical) Ising model. This model is generalized into the
mode-disordered Ising (MDI) model described by a Hamiltonian (3.5), with the critical Ising model
resulting from a trivial (constant) disorder vector. The MDI model includes the multi-scale qua-
sicrystal Ising (MQI) model where the disorder vector is specified by a multi-scale quasicrystal
ansatz (MQA) as introduced in section 3.2. Instances of the MQI model with symmetries of regular
tiling layers closely approximate the {3, 7} and {4, 5} matchgate tensor network (MTN) states at
their critical Ising point, the latter being discussed in appendix D.

We begin with the MDI model, which is defined as the class of Hamiltonians

HMDI[g] = i
2

(2N−1∑
k=1

1
gkgk+1

γk γk+1 + 1
g1g2N

γ1 γ2N

)
, (3.5)

dependent on a disorder vector g with 2N components gk > 0. As we prove in appendix A,
the ground state covariance matrix ΓMDI[g] of this Hamiltonian is related to the Ising
model’s ΓI via

ΓMDI
j,k [g] = gjgk ΓI

j,k[g] . (3.6)

This relationship holds only if g is approximately constant over large length scales, i.e.,
varies only on smaller ones. Specifically, the derivation of (3.6) assumes that the auxiliary
function

hk =
k∑
j=1

g2
j , 1 ≤ k ≤ 2N , (3.7)

grows approximately linearly with k, and thus (3.6) breaks down at scales below which h
grows nonlinearly.

We can immediately test this conjecture with the MTN covariance matrix at the critical
Ising point with g provided by (3.4): as we see in figure 3(c), the corresponding auxiliary
function h indeed grows approximately linearly at distances of more than a few dozen sites
(ofN = 597 total ones), and indeed Γ̃j,k/(gjgk) is very close to translation-invariant at these
scales. We therefore conclude that (3.5) with the disorder vector g extracted from the MTN
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Figure 5. Disorder values gk and coupling terms Jk = 1/(gkgk+1) for the {3, 7} MTN at the
critical Ising point for N = 174 boundary sites, N/3 of which are shown here. The disorder values
are extracted from the MTN boundary covariance matrix following (3.4). For the coupling terms,
a linear interpolation is shown between the even terms J2i, showing that J2i+1 ≈ (J2i + J2i+2)/2.

covariance matrix via (3.4) describes a theory whose ground state is given by our MTN
ansatz. In appendix B, we give further support to this result by showing that a numerical
optimization over all nearest-neighbor Hamiltonians indeed yields the couplings specified
in (3.5). We also argue that this Hamiltonian is indeed the unique parent Hamiltonian for
these boundary states.

3.2 Multi-scale quasiperiodic Ising models

Possessing a technique for constructing effective parent Hamiltonians for the boundary
states of our hyperbolic matchgate tensor networks at their critical Ising point, let us
now study the relationship between the resulting coupling terms and the quasiperiodic
symmetries inherent to the underlying tensor network geometry. We first rewrite the
Hamiltonian HMDI[g] of the disordered Ising model into the form

HMQI[J ] = i
2
∑
k

Jk γk γk+1 , (3.8)

with couplings Jk = 1/(gkgk+1) and a subscript that will be explained shortly. Note that
there are effectively two types of couplings Jk: those for odd k describe coupling within the
k+1

2 th fermionic mode, while those for even k describe coupling between the k
2 th and k+2

2 th
fermionic modes. For the disorder vectors resulting from our matchgate tensor network
ansatz, we find that the odd couplings can be well approximated by

J2i−1 ≈
J2i−2 + J2i

2 , (3.9)

as is shown in figure 5. We can see that this corresponds to a condition g2i ≈ g2i+1 on the
level of the disorder values, which is equivalent to (3.9) up to a subleading (g−1

2i+1−g
−1
2i−1)2/2

correction. As a result, it is sufficient to focus our attention on the N even coupling terms
J2i ≡ J̄i, or geometrically, on effects from the vertices of the tiling boundary.

As explained in section 2.1, the geometry of the tiling boundary is characterized by a
quasiperiodic sequence of vertex types (denoted b, g, r for the {3, 7} tiling), so is it possible
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to relate these vertex types to the even coupling terms J̄i? It is immediately clear from
figure 5 that there exists no one-to-one correspondence between the two, as the couplings
take a range of values that can be only poorly approximated by assigning a fixed coupling
strength to each boundary vertex type. This discrepancy worsens when increasing the
number n of inflation steps, where the range of values assumed by the couplings appears
to approach a continuum. As we are considering the couplings of a model with (averaged)
critical behavior, it should perhaps not be surprising that we cannot completely character-
ize our model by the symmetries on a fixed length scale alone. With the inflation layers
interpreted as a discretized renormalization group (RG) flow, and the symmetries of each
RG layer being characterized by a quasiperiodic sequence, we should instead expect the
boundary state to contain symmetry contributions from all length scales in the RG pro-
cess. Following this intuition, we define a simple model to construct such a Hamiltonian
analytically, and show that it reproduces the qualitative features of the couplings obtained
from our tensor network ansatz. This model, which is an extension of the multi-scale
quasicrystal ansatz (MQA) proposed in ref. [37] for describing quasiperiodic CFT (qCFT)
symmetries, relies on the same inflation rules used above, but stacks the letter sequences
produced at each iterations in sequence. Representing each letter as a rectangular block,
we arrange the blocks so that the letters produced by an application of the inflation rule are
directly under the letter from which originated, as visualized in figure 6(a) for the inflation
rule (2.2) corresponding to the {3, 7} tiling. We can equivalently denote the MQA as a
sequence of sets of letters, encoded as a matrix. For example, the iterated inflation

g 7→ ggr 7→ ggrggrgr , (3.10)

which is essentially a mapping between vectors of different lengths, can be turned into an
MQA simply by including “parent” letters with each element of the sequence,

g 7→
(
g g g

g g r

)
7→

g g g g g g g gg g g g g g r r

g g r g g r g r

 . (3.11)

The last row in each iteration step in (3.11) contains the sequence (3.10) at that step.
We now map this list of sequences onto physical couplings J̄i in (3.8) by associating each
letter l with a positive real number jl and taking the product across columns of the MQA.
From (3.11), for example, we produce the list of couplings

J̄ =
(
j3
g , j

3
g , j

2
gjr, j

3
g , j

3
g , j

2
gjr, j

2
gjr, jgj

2
r

)
. (3.12)

We thus produce coupling terms with a multi-scale quasiperiodic symmetry. For this
reason, we refer to the class of Hamiltonians HMQI(J) in (3.8) with couplings produced by
an MQA as the multi-scale quasicrystal Ising (MQI) model. The only free parameters of
the MQA are the coupling terms jl ≥ 0 for each letter l, making the MQI model highly
restrained.

Let us now apply the MQI model to the {3, 7} tiling: as shown in figure 6(b), the
couplings J̄ resulting from the MQA take a range of values between jbjnr and jbjng , n being
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(d) Couplings for {3,7}MTN at critical Ising point

Figure 6. Construction of a multi-scale quasicrystal ansatz (MQA) for coupling sequences with the
symmetries of {3, 7} tiling layers. (a) The MQA of ref. [37] composed of inflation layers following
the rule (2.2). The sequence directly below each letter is generated by applying (2.2) to that letter.
(b) A point-wise (vertical) product of couplings jl corresponding to each letter l ∈ (b, g, r) of the
inflation sequence. Each bar corresponds to the product of blocks directly above it in (a). (c) The
inflation layers embedded into the {3, 7} tiling, with the path between layers highlighted for three
point-wise products. (d) For a suitable choice of the jl the couplings closely reproduce the effective
Hamiltonian couplings for the {3, 7} MTN states at the critical Ising point. As the inflation rules
are not reflection-symmetric, the couplings are taken as a symmetrized sum. The jb coupling is
chosen to provide an overall normalization 〈v〉 = 1. Note that there are 2N Hamiltonian coupling
terms for a boundary with N vertices.

the number of iterations. Each local coupling value contains the factor jb once, as this
letter only appears at the 0th inflation step. In the geometrical tiling picture (figure 6(c)),
this corresponds to every geodesic path from a boundary vertex to the center ending at a
b-type vertex. As the overall normalization of the couplings J̄ is irrelevant for the physical
(ground) states, we are thus free to choose jb so that the expectation value 〈J̄〉 over all
site equals one. With this normalization, only two effective parameters jg, jr remain; as we
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find in figure 6(c), these are sufficient to produce a coupling pattern that closely matches
the actual MTN couplings computed using (3.4). In other words, hyperbolic MTNs can
produce Ising-like boundary states with multi-scale quasiperiodic disorder quantified by
the MQA, sharpening the relationship suggested in ref. [37]. Note that jg > jr, which we
can explain as the result of the two boundary edges on a g-type vertex being geometrically
closer than those on an r-type one, with an angle of 4π

7 and 6π
7 between them, respectively.

Before studying the specific symmetries of the {3, 7} MQI model, we address the
question of continuum limit consistency of this class of Hamiltonians. We will find that
this reduces the number of free parameters by a further constraints, leaving only a single
effective parameter for a consistent model. One may worry that the couplings J̄ defined as
above diverge with n→∞ as we inflate the tiling, as they tend towards infinite products.
Indeed, for generic values of the weights jl the continum limit of the Hamiltonian couplings
cannot be described by a smooth function with finite values at every point: in order for the
couplings J̄ not to converge to zero in this limit, we have to demand jl > 1 for at least one
letter l, leading to diverging couplings (jl)n →∞ at a set of boundary points. Fortunately,
the ratio between the number of sites with divergent couplings to the total number of
sites generally converges to zero exponentially in n. For example, in the {3, 7} MQA the
ratio of sites with coupling jb(jg)n converges as ∝ (2/λ{3,7})n. As a result, despite local
divergences it is still possible to define an MQI model with finite average couplings. To
compute this average analytically, we first recapitulate the description of inflation steps via
a substitution matrix M with rows and columns corresponding to vertex types, following
the notation of ref. [33]. For the {3, 7} tiling, the corresponding rule (2.2) corresponds to

M{3,7} =

0 3 1
0 2 1
0 1 1

 . (3.13)

For example, the first row indicates that each inflation step turns one b letter into a
sequence containing zero bs, three gs and one r. Representing the number of letters in a
given sequence at inflation step n by a row vector ~v(n) (with entries (Nb, Ng, Nr) in the
{3, 7} example), an inflation step acts as a matrix multiplication ~v(n) 7→ ~v(n+1) = ~v(n)M .
After sufficiently many inflation steps n, ~v(n) will eventually be proportional to the left
eigenvector ~l fulfilling ~lM = λM for the largest eigenvalue λ, and each successive inflation
step increases the size of the sequence by λ.

This logic can be extended to describe the inflation steps of a product of sequences:
assume we start with a sequence consisting of a single letter g as in (3.11). We thus start
with an initial vector ~v′(0)

{3,7} = (0, jg, 0), denoting a single coupling term jg on one g-type
vertex. We then apply the modified inflation step

~v
′(0)
{3,7} 7→ ~v

′(1)
{3,7} = ~v

′(0)
{3,7}M

′
{3,7} =

(
0, 2j2

g , jbjg
)
, M ′{3,7} =

0 3jg jr
0 2jg jr
0 jg jr

 , (3.14)

where M ′{3,7} is just M{3,7} with each column multiplied by the corresponding coupling
term. This inflation step produces a new vector ~v′(1)

{3,7} that encodes the product of couplings
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after the second step of (3.11). If we wish to compute the average 〈j〉(n) of all final couplings
at step n, we simply compute

〈j〉(n) =
∑
i v
′(n)
i∑

i v
(n)
i

, (3.15)

which here corresponds to 〈j〉(1)
{3,7} = 2j2

g+jgjr
3 . Does 〈j〉(n) remain finite at arbitrarily large

n? Just as M , the modified substitution matrix M ′ has a left eigenvector ~l′ for its largest
eigenvalue λ′ describing the asymptotic scaling after computing ~v′(n) = ~v′(0) (M ′)n for large
n. This leads to the following asymptotic scaling for the average coupling:

〈j〉(n) ∝
(
λ′

λ

)n
. (3.16)

We immediately find that λ{3,7} = λ′{3,7} for translation-invariant couplings jg = jr (where
M ′{3,7} ∝ M{3,7}), and hence the coupling average remains constant. But for jb 6= jc,
the constraint λ{3,7} = λ′{3,7} ensuring a finite coupling average restricts the values of the
couplings. In the {3, 7} case, this constraint can be written as

jr =
7 + 3

√
5− 2

(√
5 + 3

)
jg

3 +
√

5− 2jg
. (3.17)

Note that if we restrict ourselves to coupling terms with 0 < jr < jg, following our obser-
vation that g-type vertices are geometrically closer than r-type ones and are thus coupled
more strongly, this implies

1 < jg <
3
√

5 + 5
2
√

5 + 6
≈ 1.31 . (3.18)

Indeed, as seen in figure 6(d), a choice jg ≈ 1.14, jr ≈ 0.60 fulfilling the constraint (3.17)
produces MQA couplings that closely match with the even couplings J̄ resulting from the
{3, 7} matchgate tensor network ansatz at the critical Ising point. Because the inflation
rule (2.2) is not reflection-symmetric (i.e., g 7→ ggr 6= rgg), we actually take the average of
the sequence and its reflection around the symmetry axis of the geometry (vertex i = 11
in figure 6(d)). The optimal values for jg and jr appear convergent as the number of
inflation steps n is increased further: for n = 3, 4, 5 we find the optimal coupling jg =
1.139, 1.124, 1.115 (the n = 3 result was quoted above and used in figure 6 as well).

Similar consistency conditions can be calculated for any {p, q} tiling and the MQI
constructed from its inflation rule; in appendix D, we show that the {4, 5} works analogously
to the {3, 7} one, with an MQI for suitable weights jl again well approximating the couplings
obtained from the Ising-critical MTN ansatz. Vertex inflation for a {p, q} tiling can always
be written in terms of two letters up to initial conditions, where a third letter type may
become necessary (such as b for the {3, 7} tiling) [47]. As a result, the MQI produced
from {p, q} inflation rules only has a single free parameter when constraint equations such
as (3.17) for a well-defined scaling limit are imposed. This free parameter determines the
disorder strength, with a choice of unity corresponding to a translation-invariant model.

The small deviations between the coupling terms of HMQI and those obtained from
the MTN boundary states via (3.4) are due to a smearing of contributions on each inflation
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Figure 7. Visualization of symmetry transformation of a CFT ground state with periodic boundary
conditions on a regular discretization: while translations and local (non-uniform) scale transforma-
tions merely distort the lattice under constant number of discretization points, global (uniform)
scale transformations change its resolution and are thus equivalent to a renormalization group
(RG) transformation. Figure adapted from ref. [37].

layer under tensor contraction, for which the sharp block structure shown of the MQA in
figure 6(a) is only an approximation. Yet, as this smearing happens equally on all layers
of the tensor network, the symmetries of the MQA are preserved in the MTN boundary
states, as we will explore in the next section.

We wish to stress that the MQI model is somewhat different from previously studied
“aperiodic” Hamiltonians (as in ref. [43]) where the couplings are fixed to a finite number
of distinct values by a single letter sequence. In contrast, in our model the scaling limit
produces a fractal sequence of unbounded couplings which are disordered on arbitrarily
small distances.

3.3 Boundary symmetries

As we have seen in the last section, boundary states of the Ising-critical MTN exhibit multi-
scale quasiperiodic symmetries that are well approximated by the MQI model. We will now
discuss the relationship of these symmetries to those of continuum CFT states, connecting
to the recent proposal that tensor networks on regular hyperbolic tilings produce (ground)
states of a quasiperiodic CFTs (qCFTs) [37] only invariant under a discrete subgroup of
the full CFT symmetries. The symmetries of discretized CFT ground states are shown
in figure 7: these include global (i.e., uniform) scale invariance, local (non-uniform) scale
invariance, and translation invariance. Local scale invariance, under a metric deformation
with a local, position-dependent scale factor, is specific to CFTs.

As was shown in ref. [37], boundary states of tensor networks with regular hyperbolic
geometry — as the MTN setup considered here — fulfill symmetries corresponding to
discretized versions of the above:

1. Global scale invariance is represented by the inflation rules, which add short-range
degrees of freedom to the boundary state and thus define an RG step. The scale
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factor is restricted to powers of λ{p,q}, the asymptotic ratio between two boundary
vertex type sequences under application of the inflation rule.

2. Local scale invariance turns into a fractal self-similarity between boundary subsys-
tems of different size, with the scale factor between them again given by λ{p,q}. The
self-similarity only becomes exact in the large inflation limit n→∞.

3. Exact translation invariance is broken into an approximate subsystem translation
invariance, resulting from cumulative self-similarity at sizes smaller than the subsys-
tem size.

We now discuss how these qCFT symmetries appear in {3, 7} MTN boundary states. As
we have seen in section 3.1, the deviations of the covariance matrix of these boundary
states from the Ising ground state covariance matrix are fully captured by the disorder
vector g (or equivalently, the effective couplings J). It is thus sufficient to study only the
symmetries of g.

We begin with global scale transformations. Cosider the disorder values gk produced by
different numbers of vertex inflation steps: as figure 8(a) shows, a higher number of inflation
steps effects a fine-graining transformation on g, adding additional detail on small scales
while preserving averages on larger ones. This implies that adding or removing inflation
steps implements a global scale transformation similar to the effect of a layer of the MERA
tensor network in previous approaches to entanglement renormalization [7]. We show in the
next section that this transformation also acts as a renormalization step on the spectrum
of the boundary Hamiltonian. The scale factor of the number of sites per inflation step can
be computed analytically for vertex inflation on any {p, q} tiling, and for the {3, 7} case is
given by

λ{3,7} = 3 +
√

5
2 ≈ 2.62 , (3.19)

in the limit of large system sizes (independent of the original subregion after sufficiently
many inflation rules are applied).

In addition to an invariance under global rescaling, we find that the disorder values gk
also possess a self-similarity that represents the qCFT equivalent of a local scale transfor-
mations: for example, as shown in figure 8(b), various subsystems of the gk at N = 597
sites (five vertex inflation steps) correspond to a coarse-grained version of the whole, with
the scaling factor equivalent to that of a global scale transformation. We quantify this
self-similarity and equivalence between local and global rescaling by introducing a fidelity
measure between two disorder sequences g and g′ of equal length L, defined as

F(g|g′) =
∑L
k=1 gkg

′
k

‖g‖ ‖g′‖
, (3.20)

where ‖g‖ and ‖g′‖ are the 2-norm of each sequence. This natural definition gives F = 1
for two functions that are completely identical up to a total scale and fulfills F > 0 for any
well-defined disorder vector with positive values. By this definition, the disorder values gk
at N = 12 (figure 8(a), last column) and the ones obtained by choosing a specific 12-site

– 20 –



J
H
E
P
0
4
(
2
0
2
2
)
1
1
1

subsystem of the disorder values after four further vertex inflation steps (figure 8(b), last
row, last column) have a fidelity of F = 0.9986. The fidelity values given in figure 8(b) for
other inflation numbers and subsystem sizes are very close to 1 as well, confirming that
local and global inflation steps have almost the same effect up to numerical variations and
small-size effects. As expected, the scale factor of local self-similarity is also λ{3,7}, i.e.,
a global deflation step from N to N ′ < N sites is approximately equivalent to taking a
suitable subsystem of N ′ sites.

This self-similarity also directly follows from the structure of the multi-scale quasicrys-
tal ansatz (MQA) introduced in figure 6(a), which as we saw in section 3.2 closely describes
the boundary disorder (equivalently expressed by either g or the couplings J). The ap-
pearance of an invariance under discrete local scale transformations in the {3, 7} MQA
is visualized in figure 9(a). We first consider the quasiperiodic letter sequences appear-
ing on each boundary layer. After a single inflation step under rule (2.2), the sequence
characterizing the full boundary geometry is given by

bbb 7→ gggrgggrgggr , (3.21)

which is composed of three repetitions of the subsequence grgg (allowing for cyclic per-
mutations), which thus characterizes the non-repeating part of the boundary geometry.
Applying (2.2) to this subsequence leads to a new sequence that contains the old one twice,

grgg 7→ ggrgrggrggr , (3.22)

where both appearances are over- and underlined, respectively. This means that succes-
sively applying the inflation rules leads to a sequence that recursively contains the non-
repeating part of the starting sequence, as can be seen in figure 9(a), where we only show
the second appearance (overlined in the above equation) on five inflation layers. The ef-
fective scale factor between the original and the rescaled sequence is necessarily the same
as the global one, λ{3,7} ≈ 2.62, after many inflation steps. For example, in the above
sequence the ratio between the lengths of both sequences is 11

4 = 2.75. After two further
inflation steps, we find

grgg︸ ︷︷ ︸
4 letters

7→ ggrgrggrggr︸ ︷︷ ︸
11 letters

7→ ggrggrgrggrgrggrggrgrggrggrgr︸ ︷︷ ︸
29 letters

7→ ggrggrg . . . rgrggrgr︸ ︷︷ ︸
76 letters

,

(3.23)

leading to a ratio (76
4 )1/3 ≈ 2.67 per scale, gradually approaching λ{3,7}. This is because

inflating any sequence of length ` for N times leads to a sequence of length ∼ ` λN{3,7} at
large N . If we consider a subsequence equal to the original sequence (and thus of equal
length `), the ratio between the length of the total sequence after N inflation steps and that
of the subsequence thus scales as ∼ λN{3,7} in the same limit. Global and local self-similarity
thus behave equivalently in quasiperiodic sequences.

We now extend this insight from letter sequences describing a single inflation layer
to multi-scale blocks thereof, that is, to the full MQA: first we note that as the inflation
rules are deterministic, all the further sequences “below” each appearance of grgg (i.e.,
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(a) Global self-similarity of disorder vector
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(b) Local self-similarity of disorder vector
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Figure 8. (a) The disorder vector g after n = 2, 3, 4, and 5 inflation vertex inflation steps (right to
left) of the {3, 7} tiling at the critical Ising point. Only a third of the total system is shown, as the
Z3 symmetry leads to a repeating pattern on the remaining sites. We a find a gradual refinement of
the disorder vector at a larger number of inflation steps. (b) Subsystems (coloured frames) of the
disorder vector for N = 597, 228, 87, and 33, slightly site-shifted for easier visualization. We find a
self-similarity between total system and subsystems resembling the scaling between inflation steps,
up to a global rescaling factor. The fidelity F between subsystems and rescaled total system (top
row) is quoted above each plot (with the site shift taken into account).
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(a) Local self-similarity of multi-scale quasicrystal

n=0:
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(b) Approximate translation invariance of multi-scale quasicrystal
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b-type vertex g-type vertex r-type vertex

Figure 9. Self-similarity of the {3, 7} multi-scale quasicrystal ansatz (MQA). The letters b, g, r
for each block are omitted, only using the colors blue, green, and red. (a) The sequence grgg
(shaded blocks) characterizing one third of the total system at n = 1 inflation steps appears again
as subsequences at n > 1. This leads to a fractal self-similarity of the resulting disorder vector.
The colored lines at the bottom of each inflation layer indicate the boundary subsystems of the
same color in each row of figure 8(b). (b) Appearance of the sequence grgg in other subsystems
at n = 2 inflation steps, with equal self-similarity on further inflation layers. In addition to the
three subsystems shown, Z3 symmetry leads to six additional repetitions. With exponentially many
repeating sequences at large n, any sufficiently large boundary region is approximately invariant
under translations.

after more inflation steps) are the same, no matter on which inflation layer it appears,
up to different cutoffs after a finite number of inflation steps. As a result, the bound-
ary subsystems characterized by each grgg sequence exhibit the same symmetries up to
differing contributions from inflation layers “above” each sequence, which again become
negligible as long as we allow for sufficiently many inflation steps below each sequence.2

This leads to a discrete self-similarity: the disorder vector of the entire system (or rather,
its non-repeating part) appears as a coarse-grained subsequence of itself on every inflation
layer, again associated with the scaling factor λ{3,7}. The number of such local rescalings

2Recall that the local product of couplings in the MQA follows the structure of a Markov chain, eventually
becoming independent of the starting point.
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Figure 10. Approximate translation invariance of a subsystem of l values of the disorder vector
g on N = 597 total sites (figure 8, top left) with another subsystem at offset δ. The fidelity F
between both subsystems of g is shown on the left for three different subsystem sizes, with two
examples subsystems A and B with fidelity close to 1 shown on the right.

that leave the system invariant grows exponentially with the number of inflation steps, as
the subsequences appear more than once in inflated versions of themselves. Figure 9(b)
demonstrates this by showing three of the nine appearances of grgg on the second inflation
layer, each of which again contain itself recursively. As a result, a constant fraction of
the entire system consists of self-similar sequences. The specific subregion self-similarity of
the {3, 7} disorder vector in figure 8(b) exactly matches the self-similarity of the grgg se-
quence: in the N = 12 case (fifth column of figure 8(a)), the central peak of gk corresponds
to a weakened coupling term Jk = 1/(gkgk+1) characterized by the r letter (recall that
jg ≈ 1.14, jr ≈ 0.60 in the {3, 7} MQA). Cyclically permuting the disorder values to move
the gk peak to the left (matching the grgg sequence), we find exactly the self-similarity of
subsequences of eq. (3.23). This one-to-one correspondence is shown graphically through
colored lines denoting equivalent subsystems between figures 8(b) and 9(a). Using our
argument from eq. (3.23), we can thus quantitatively describe the self-similarity of gk and
explain why its scaling factor matches λ{3,7}.

Finally, this self-similarity also implies an approximate translation invariance: each
boundary translation that maps a subsequence on one inflation layer onto a repetition
of itself leaves the disorder vector in that subsystem invariant. As with the number of
repeating subsystems, the number of such boundary translations grows exponentially with
the number of inflation steps (compare figure 9(b)) and remains a constant fraction of all
possible translations. In figure 10, we show how this approximate translation invariance
manifests itself in the disorder vector: by taking a subset of l values and computing the
fidelity F (as defined in (3.20)) with another subset obtained by shifting its position by an
offset 0 ≤ δ ≤ 2N/3, we find a close but not exact matching between subsets with F ≈ 0.94
for most δ, independent of l.

However, for certain offsets the fidelity jumps very close to F = 1; these correspond
exactly to two subregions related to matching subsequences in the MQA. Indeed, one finds
disorder vector values at these offsets to be almost exactly equal up to a small difference in
overall scale; this scale corresponds to contributions “above” the matching sequences in the
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MQA, acting uniformly on each subsystem. To summarize, the self-similarity properties
of the disorder vector — and by extension, the multi-scale quasicrystal Ising (MQI) model
— can be completely captured by the multiscale quasiperiodic ansatz (MQA), which also
provides a concrete setting of discretized conformal transformation of the qCFT proposal.

3.4 Continuum limit

The MTN ansatz is inherently discrete and finite-dimensional, with boundary states of the
{3, 7} setup exhibiting disorder at all length scales. This prohibits a clean identification
with a continuum CFT, even though boundary states appear to approximate properties
of the Ising CFT. In the following, we will discuss two limits that appear to produce a
physical continuum limit, i.e., in which the {3, 7} MTN boundary states converge towards
the Ising ground state. These are:

1. The limit of an infinite number of inflation steps n, or scaling limit, producing an
infinite number of tensor network boundary sites N .

2. The limit of an infinite (bulk) bond dimension χ, which restricts the space of paramet-
rizable boundary states in our ansatz.

We begin with the first limit. As seen in the previous section, the disorder vector g encoding
the deviation of the boundary states from the translation-invariant critical Ising ground
state is successively fine-grained under successive inflation rules, exhibit fractal disorder on
all length scales. Instead of considering the n → ∞ behavior of the disorder or coupling
terms of the effective Hamiltonian whose ground state is produced by the MTN ansatz, we
focus our attention on the scaling behavior of the spectrum of these Hamiltonians. Here
we use the mode-disordered Hamiltonian HMDI[g] with g extracted from the boundary
states via (3.4), though one may also use the couplings from the MQI model Hamiltonian
HMQI[J ] (with suitably chosen free MQA parameter), leading to very similar results.

The translation-invariant ground state of the critical Ising model (2.11) on N lattice
sites is exactly solvable. Antisymmetry of the Gaussian Hamiltonian in its coupling terms
γj γk = − γk γj in terms of the Majorana operators γk yields a spectrum of N eigenvalue
pairs λ±k ≡ ±λk with opposite sign. As we compute in appendix A,

λ±k = ± sin (2k − 1)π
2N . (3.24)

In other words, the low-energy spectrum follows a linear dispersion relation λ±k ∝ k but
saturates at large momenta, i.e., exhibits a finite bandwidth.

In figure 11(a), we show how this property changes for the spectrum of the MDI model
Hamiltonian for the {3, 7} MTN boundary states: at low energy and momentum, the MDI
and Ising spectrum overlap, but unlike the latter, the former does not saturate at large
momentum but continues an approximately linear growth. At large system size N , we
find that both spectra exhibit a vanishing energy gap, i.e., become critical. We therefore
arrive at the surprising result that both models describe the same low-energy physics, even
though the disorder vector g contains contributions on all length scales. This result was
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(a) Energy spectra for normalized Hamiltonians
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(b) Energy spectra for rescaled Hamiltonians
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Figure 11. (a) Spectrum of the critical Ising Hamiltonian (2.11) vs. the mode-disordered Ising
(MDI) Hamiltonian (3.5) for the {3, 7} MTN at the critical Ising point, the latter with normalized
disorder 1

2N

∑
k gk = 1, at three successive inflation steps on N = 12, 33, and 87 sites (n = 1, 2, 3

inflation steps, respectively). (b) Overlaid spectrum of MDI Hamiltonian for various N with rescaled
energies 2Nλk, along with the dispersion relation of the continuum Ising model. The MDI spectra
overlap up to finite N effects, indicating an RG flow between inflation steps.

already foreshadowed by our observation that the disordered covariance matrices of the
{3, 7} MTN boundary states can be mapped to the translation-invariant ones only up to
deviations at small scales or equivalently, large energies (compare figure 3). In other words,
the two models are dynamically equivalent in the IR.

Overlaying the MDI energy spectra for different system sizes N and rescaling each by
N , as done in figure 11(b), we find that spectra closely match up to small deviations at the
high-momentum end of each set. This supports our earlier claim that the vertex inflation
steps define a renormalization group (RG) flow towards the high-energy (UV) limit: each
step only modifies the high-energy part of the model while leaving the low-energy part
unchanged. Thus, similarly to the MERA [7, 54–56], the emergent dimension (radial
direction) of the critical Ising MTN can be interpreted as an energy/length scale. At large
N , the spectra approach the continuum limit of the critical Ising model; intriguingly, the
spectrum of the disordered Hamiltonian appears to approach this limit of linear dispersion
better than the translation-invariant spectrum of (2.11), as the former does not gradually
saturate.

We now consider the second limit necessary to approach continuum boundary states,
that of large bond dimension χ. The previous MTN computations assume a tensor network
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with χ = 2, i.e., where each tiling edge is associated with a single spin or fermion degree
of freedom. We can extend the parameter space of this model by increasing the internal or
bulk bond dimension χbulk = 2k to any k ∈ N, effectively associating k fermionic degrees of
freedom with each n-gon edge. At the same time, we wish to leave the size of the boundary
local Hilbert space unchanged, as we wish to approach the continuum Ising model (rather
than some higher-spin CFT). We thus keep the boundary bond dimension fixed to χbdy = 2.
This necessitates an additional local k+1-leg matchgate tensor on each of the N boundary
sites, called the cap tensor, that reduces χbulk to χbdy, introducing additional degrees of
freedom.

Figure 12 shows the resulting tensor network geometry as well as the (decay-adjusted)
covariance matrix after an optimization with respect to the translation-invariant Ising
Hamiltonian HI. As χbulk is increased, the quasiperiodic disorder is gradually washed out
on all scales, approaching the translation-invariant result. This is also reflected in the dis-
order vector g extracted from each covariance matrix via (3.4): subsystems of g become
increasingly translation-invariant at larger χbulk, with the fidelity F under subsystem trans-
lation approaching unity. In addition, one can compute the state fidelity f between the
exact Ising ground state on N sites and the MTN result for varying χbulk. For Gaussian
states with covariance matrices Γ and Γ′, it is defined as [57]

f(Γ,Γ′) =
(

det Γ + Γ′

2

)1/2
. (3.25)

This definition of the fidelity is exactly the overlap tr(ρρ′) between the two pure Gaussian
states with density matrices ρ and ρ′ (fulfilling trρ = trρ′ = 1). For N = 87 and χbulk = 2,
the fidelity f(ΓI,ΓMTN) between Ising and MTN states is 0.641; at χbulk = 4 and 8 it
increases to f = 0.970 and 0.995, respectively, showing a fast convergence of the MTN
ansatz to the exact Ising ground state. The numerical effort to compute these large χbulk
models is still moderate: using the tiling symmetries, the number of free parameters in the
bulk triangle tensors and the boundary layer increases to 6 and 12 for χbulk = 4 and 8,
respectively, and numerical optimization over such a small set of parameters is still feasible
within a few minutes of computation time.

To summarize, in the scaling limit n → ∞ the {3, 7} MTN ansatz produces ground
states of a nearest-neighbor parent Hamiltonian whose spectrum matches with the contin-
uum limit of the Ising model. In the additional large bond dimension limit χbulk → ∞
these states appears to converge to the translation-invariant Ising ground state, with the
disorder being gradually suppressed out on all scales.

3.5 Disordered correlation functions

The boundary states of MTNs at the critical Ising point have been shown to reproduce the
correct Ising correlation functions of CFT primary operators (or suitable lattice versions
thereof) when performing site-averaging as defined in eq. (2.10). [40]. We now show more
precisely how the correlators of the boundary states with quasiperiodic disorder indeed, on
average, reproduce the continuum CFT values. Here we restrict ourselves to the case with
minimal bulk bond dimension χbulk = 2, where the disorder is strongest.
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(a) Higher bond dimension {3, 7} MTN at n = 3, N = 87
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Figure 12. Construction of matchgate tensor networks (MTN) with higher bond dimension χbulk.
(a) Tensor network construction on a {3, 7} tiling with χbulk = 2, 4, 8, represented by log2 χbulk
fermionic bonds in the matchgate formalism. For χbulk ≥ 4, additional cap tensors on the boundary
legs reduce the boundary bond dimension to χbdy = 2. (b) Decay-adjusted covariance matrix Γ̃
of the MTN boundary states at the critical Ising point (minimum energy with respect to HI). (c)
Fidelity F of subsystems of the disorder vector g extracted from each covariance matrix (via (3.4))
under translations (compare figure 10). At large χbulk the disorder approaches the translation-
invariant case F = 1.
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Figure 13. Auto-correlation of the disorder vector g for the {3, 7} MTN at the critical Ising point
between 1- and 2-site blocks at distance 0 ≤ d ≤ N/3, for a boundary system of N = 597 sites.
Both auto-correlations are independent of d up to small fluctuations.

We first consider, for illustration, the two-point functions of fermionic fields ψk and
ψ̄k, which can be defined in terms of complex combinations of the odd and even Majorana
operators γ2k−1 and γ2k in a consistent manner3 so that [40]

〈ψjψk〉 = 〈ψ̄jψ̄k〉 = 1
4 (Γ2j,2k−1 + Γ2j−1,2k) (3.26)

= 1
4
(
g2j g2k−1 Γ′2j,2k−1 + g2j−1 g2k Γ′2j−1,2k

)
, (3.27)

where in the second line we have expressed the matchgate covariance matrix Γ in terms of
the approximately translation-invariant Γ′ and the disorder vector g, following (3.3). Using
this approximate translation invariance to rewrite Γ′j,k ≈ Γ′(k − j), we find that boundary
site averages over the two-point functions lead to

1
N

N∑
k=1
〈ψkψk+d〉 ≈

1
4N

Γ′(2d− 1)
N∑
k=1

g2k g2k+2d−1︸ ︷︷ ︸
=:G2

1-site(2d−1)

+Γ′(2d+ 1)
N∑
k=1

g2k−1 g2k+2d︸ ︷︷ ︸
=:G2

1-site(2d+1)

 . (3.28)

where we have defined the two-point auto-correlation G2
1-site(d) of the disorder vector g

between two single sites at distance d. The quasiperiodicity of g ensures that G2
1-site must

be independent of d, as the converse would imply a periodicity inherent to g. Numerical
evidence of this is shown in figure 13. From this, we conclude that site-averages over the
two-point correlator of the fields ψ and ψ̄ of the quasiperiodic Ising model yield the value
of the correlator for the translation-invariant Ising model, up to numerical fluctuations at
small scales where (3.3) no longer holds.

3Ref. [58] recently suggested a more refined approach to identifying lattice operators in critical spin
chains corresponding to CFT primaries, leading to additional corrections. These do not affect the averaging
argument in this section.
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The same logic applies to higher-order correlation functions. Consider for example the
two-point function of the ε field, which can be written as [40]

〈εjεk〉 − 〈εj〉〈εk〉 = 1
4Γ2j−1,2kΓ2j,2k−1 (3.29)

= 1
4g2j−1 g2j g2k−1 g2kΓ′2j−1,2kΓ′2j,2k−1 , (3.30)

the average over which becomes

1
N

N∑
k=1

(〈εkεk+d〉 − 〈εk〉〈εk+d〉) ≈
1

4N Γ′(2d− 1)Γ′(2d+ 1)
N∑
k=1

g2k−1 g2k g2k+2d−1 g2k+2d︸ ︷︷ ︸
G2
2-site(2d)

,

(3.31)

which now depends on the auto-correlation G2
2-site between blocks of two sites. Again,

quasiperiodicity of g ensures that G2
2-site remains independent of the distance d (see fig-

ure 13) and the averaged correlation functions lead to the expected Ising behavior, as
previously observed numerically. This logic can be extended to arbitrary expectation val-
ues, including non-local observables such as correlators of the σ primary field, which then
become dependent on higher-order auto-correlation functions of g that also remain con-
stant. More generally, we therefore conclude that the MDI model preserves the correlation
functions of the critical Ising model as long as the disorder is quasiperiodic. Note that this
requirement is weaker than the specific multi-scale quasiperiodicity produced by our MTN
ansatz, and should hold for a much more general class of models.

3.6 Excitations and holography

Our current discussion of the boundary states produced by hyperbolic MTNs focused on
their relationship with ground states of the critical Ising model. On the bulk side, this led
us to consider MTNs with the same tensor on each site of the hyperbolic {p, q} lattice to
preserve the maximum amount of lattice symmetry; in AdS/CFT language, this would cor-
respond to the identification of “pure AdS” geometry without massive perturbations with
the boundary CFT ground state. To consider excited states in the MTN framework, let us
therefore consider breaking some of these symmetries by modifying individual tensors in
the hyperbolic lattice while leaving the rest with the same matchgate input that previously
led to the MDI/MQI ground state. We refer to the modified tensors as “defects” in the
uniform tensor network. As we will show, there exists a simple correspondence between
the energy of the excitations and the distance of the defect tensors from the boundary. We
illustrate this correspondence in both directions: first, we explore what boundary eigen-
states are excited when we add simple defects in the {3, 7} MTN bulk; adding these defects
creates superposition of low-energy eigenstates. Conversely, we explored what defects must
be added in order to approximate specific excited eigenstates at the boundary.

To begin, we study which boundary eigenstates are generated when we modify only
a single tensor in a simple way. As a first example, we apply sign flips a 7→ −a on the
generating matrix component) for a single matchgate tensor as defined in (2.9). We now

– 30 –



J
H
E
P
0
4
(
2
0
2
2
)
1
1
1

examine the covariance matrix Γflip of the state resulting from such a defect MTN. To
diagnose whether the defective state is an eigenstate, we transform Γflip to the eigenmode
basis Γflip = OΓ̃OT (see appendix A for details), where O ∈ SO(2N) is the same trans-
formation matrix that block-diagonalizes the mode-disordered Ising Hamiltonian HMDI for
the ground state, i.e., the parent Hamiltonian of the boundary state without the defect. In
other words, we determine whether including the defect preserves the eigenspace of HMDI,
in which case Γ̃ remains block-diagonal.

Numerically, we find that these flip defects largely preserve the block-diagonal structure
of Γ̃, but generally act on many eigenmodes of HMDI at once, creating soft but complicated
excitations. We identify which eigenstates are excited by considering the N eigenmode
occupations numbers

ek = Γ̃2k,2k−1. (3.32)

The ground state is identified with ek = 1 for all k (see 14(a)), with all eigenmodes
unoccupied. Similarly, the first excited state is characterized by e1 = −1 and ek = 1
for all 1 < k ≤ N , occupying only the first mode. Whenever a defect in the bulk does
not produce an eigenstate, the eigenmode occupation numbers is somewhere between the
values +1 and −1, similar to thermal states. By varying the position of a single flip defect
from the center of the tensor network towards the boundary, we find a simple relationship
between excitation energy and the distance of the defect from the boundary, as illustrated
in 14(b)–(d): a defect at the center of the tensor network only changed the two lowest-lying
energy eigenvalues, but positioning the defect closer to the boundary affects eigenstates with
increasingly higher energy. Note, however, that the change in eigenstate contributions
is always small relative to the ground state; that is, a single flip defect creates states
that are only slightly different from the ground state. We find more generally that as
long as only the low-energy subspace is excited (as in 14(b) and (c)), eigenmodes are
always excited in pairs. Comparison with the MDI spectrum in figure 11 shows that
this occurs because these energy eigenvalues are twofold degenerate as modes come in
left- and right-moving pairs, equally excited by our real-valued matchgate input. We
therefore define the non-chiral energy eigenstate vectors |Ek 〉 in the following manner: the
ground state vector |E0 〉 = |0〉1 |0〉2 . . . corresponds to all eigenmodes unoccupied (ek = 1
for all k). The first non-chiral excitation |E1 〉 = |1〉1 |1〉2 |0〉3 |0〉4 . . . corresponds to
occupying only the first two modes (e1 = e2 = −1, ek = 1 for k > 2), while the next
two excitations |E2 〉 = |0〉1 |0〉2 |1〉3 |1〉4 |0〉5 . . . and |E3 〉 = |1〉1 |1〉2 |1〉3 |1〉4 |0〉5 . . .
continue the pairwise occupation patterns leading to increasingly higher energy.

We now consider defects with more a precise control over the specific bulk input to
reproduce the |Ek 〉 for small k. Once again, we alter the parameter a = a0 only on
the central tensor of the {3, 7} MTN, but instead of just flipping its sign we consider a
general real number as input. We find again that only the lowest two energy eigenstates
are excited at the boundary, allowing us to manipulate the low-energy boundary subspace
in a controlled way. Denoting the resulting covariance matrix (in the eigenmode basis) Γ̃,
we find that for any a0 ∈ R

Γ̃1,2 = Γ̃3,4 , Γ̃1,3 = −Γ̃2,4 , Γ̃1,4 = Γ̃2,3 ≈ 0 . (3.33)
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Figure 14. Ground-state mode contributions ek for local bulk excitations in the {3, 7} matchgate
tensor network at different bulk sites. (a) No excitation. (b)-(d) Excitation on single tile (red dot)
belonging to different inflation layers. Modes are sorted by their energy eigenvalue λk relative to
the mode-disordered Ising Hamiltonian HMDI corresponding to the tiling with N = 33 boundary
sites (n = 2 inflation steps).

Tuning a0 allows for a range of different boundary states to be produced, as shown in
figure 15(a). At a0 = aIsing ≈ 0.58 we find the ground state |E0 〉, as excepted. At
a0 ≈ −3.0 the first two eigenmode contributions are flipped to the excited state vector
|E1 〉, appearing as |1〉1 |1〉2 along the first two eigenmodes (in a product state with the
remaining ones). Additionally, at a0 ≈ −1.4 we find a Bell pair superposition |E0 〉+ i |E1 〉
of these two outputs.

Similar behavior is also seen when adding multiple identical defects around the central
tensor. For example, by changing the tiling parameter a = a1 on the three neighbors of the
central tensor, also shown in figure 15(a), we find that the third and fourth lowest-lying
eigenmodes are simultaneously excited. By choosing an appropriate a1, these two states
can be superimposed or a specific eigenmode can be excited. However, tuning a1 also
affects the contributions to the first two eigenmodes. If, for example, we wish to determine
the value of a1 for which the first four eigenmodes are fully occupied, i.e., to produce |E3 〉,
we have to first tune a1 ≈ −4.306 and only then choose an optimal a0 ≈ −0.069. Note
that this particular value for a0 differs from the case where we only modified the central
tensor. We can also tune a0 ≈ 0.071 to occupy only the second pair of eigenmodes, thus
creating the energy eigenstate vector |E2 〉.

Next, we invert this approach to determine the defects that produce specific excited
eigenstates. For this we numerically optimize the matchgate tensors (their respective pa-
rameter a on each tile) to maximize the state fildelity f (as defined in (3.25)) with respect
to the exact excited states of HMDI. In our numerical optimization, we choose local param-
eters a that preserve the D3 symmetry group (2π/3 rotations and reflections along three
axes) of the {3, 7} tiling centred around a central triangular tile. The numerical results
of this optimization are visualized in figure 15(b) for N = 33 boundary sites, where this
optimization can be performed with small computational effort. We obtain a high fidelity
for the lowest-lying excited states, but our numerical approach becomes less accurate for
higher-energy states that involve optimizing more tensors closer to the boundary.
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Figure 15. (a) Dependence of covariance matrix entries Γ̃j,k in the eigenbasis of HQI under
variation of the tiling parameter on the central tile (left) or its neighboring tiles (right) in the {3, 7}
tiling. The modified tiles are marked as red dots in the inset. The boundary consists of N = 33
sites (n = 2 inflation steps). (b) The bulk input corresponding to various excited states color-coded
for each tile. The state fidelity f with respect to the exact excited state of HMDI is also given.

We conclude this section with some remarks pertaining to a holographic interpretation
of these plots. In the interpretation as a holographic model, where the tensors encode the
strength of local bulk correlations, one may interpret these bulk “excited states” as defor-
mations from the pure AdS time-slice geometry. The excitations produced by local bulk
operations on the matchgate tensor content only reliably change the low-energy eigenmode
contributions while leaving the high-energy part of the ground state intact. We thus inter-
pret these bulk operations as being equivalent to acting with low-energy operators on the
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boundary state. This follows from a simple counting argument: the number of bulk tiles
(or bulk-symmetric sets thereof) is smaller than the number of boundary sites, so it is only
possible to describe a boundary subspace using generic input in the bulk. This a feature
general for holographic dualities wherein the hyperbolic bulk is ‘smaller’ than the bound-
ary and hence boundary subspace restrictions follow, which may be interpreted as a code
subspace [25]. It should be noted that within our approach it is also possible to consider
complex valued tensors a ∈ C and possibly an entire Bloch sphere of the two lowest lying
eigenmodes {α00 |0〉1 |0〉2 + α11 |1〉1 |1〉2} can be realized via MTN. This would have the
meaning of encoding a single qubit in two lowest-lying eigenstates of the boundary CFT.
While various multi-mode superpositions are possible encoding more qubits can no longer
be possible just within MTNs, as non-Gaussian states become necessary for generically
entangled qubit states. Nonetheless, one can consider the basis of a full quantum error
correction code to arise from MTNs tuned to the vicinity of the Ising CFT and then a
non-Gaussian tensor network could be used to explore the entire encoded space. This is
similar to the HaPPY code [26] because MTNs suffice to study the product states of bulk
qubits, as was shown in ref. [33]. In other words, our MTN investigations point to the pos-
sibility that holographic quantum error correction-codes encoded in low-energy subspaces
of critical quantum systems can be explored in a constructive way using tensor networks.

4 Discussion

In this work, we studied the physical theories arising from hyperbolic tensor network mod-
els based on matchgate tensors. For suitable chosen parameters, these matchgate tensor
networks (MTNs) were shown to produce a boundary theory described by a critical mode-
disordered Ising (MDI) model, which differs from the critical Ising model by a disorder
applied to each individual Majorana mode in the fermionic representation of the model.
We found that the disorder vector for these states, which completely captures the disorder
present in the system, exhibits quasiperiodicity on all length scales and can be captured by
an analytical multi-scale quasicrystal Ising (MQI) model. This model also includes the ap-
pearance of discretely broken symmetries of conformal ground states, concretely realizing
the recent proposal of a quasiperiodic conformal field theory (qCFT) [37] which predicted
specific symmetries of boundary states of tensor networks with regular hyperbolic tilings.

We calculated explicit MDI and MQI Hamiltonians whose ground states are given
by the MTN boundary states using an analytical technique, providing a rare example
of a tensor network ansatz whose parent Hamiltonian can be efficiently constructed: in
the MDI approach, this Hamiltonian can be directly computed from the boundary state
disorder, while the analytical MQI model relies only on a single parameter, assuming its
consistency in the scaling limit. By an analytical argument, we have shown that the
quasiperiodic nature of such states leads to site-averaged correlation functions that match
the critical Ising model, implying that hyperbolic tensor networks are effective at studying
the properties of translation-invariant critical models with a continuum CFT limit. We
also showed that the disorder disappears in the large bond dimension limit for suitably
optimized MTNs, yielding good approximations of the translation-invariant ground states
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of the critical Ising model. At large bond dimension, the effects of bulk discretization are
thus diminished, leading to boundary states more alike those of a continuum CFT.

Finally, excitations in our tensor network ansatz can be related to tuning the matchgate
parameters away from their critical value on individual tensors in the hyperbolic tiling,
leading to a numerical dictionary between bulk tensor input and low-lying excited states
on the boundary. Here we found that the energy scale of the excitation can be related to
the distance of such bulk deformations from the boundary. In the accessible low-energy
regime, the energy spectrum of the disordered models matches that of the Ising model,
implying that the low-energy physics of these models is insensitive to the discrete nature
of the bulk lattice.

Our MTN ansatz shares many of the features of the more widely studied MERA tensor
networks, such as a hierarchical structure describing the boundary state on different length
scales [7, 59] and an effective map between low-energy boundary excitations and bulk
input configurations [60]. However, the regular hyperbolic tilings considered here naturally
discretize AdS time-slices, i.e., the hyperbolic plane, and may thus be more useful for
constructing new types of holographic models. Indeed the boundary symmetries resulting
from such a bulk geometry largely determined the boundary state properties we studied in
this work.

The results in this paper appear to hold generally for MTNs on regular hyperbolic {p, q}
tilings, though we focused on the {3, 7} case for explicit results. In appendix D, we show
that the main results carry over to {4, 5} tilings analogously. Beyond our tensor network
construction, it appears that disordered Ising models with properties like those discussed
here can be constructed from any multi-scale quasiperiodic sequence; such theories may
therefore be studied independently from the tensor network approach.

While our current numerical techniques assume Gaussianity, the symmetry setup is
independent of the choice of tensors and we expect that tensor networks on these geome-
tries can be used to study critical theories more complicated that the Ising model. The
lack of constraints on the tensor content, as those required by the MERA, allows for much
more general models to be constructed. We should expect such models to be more com-
putationally challenging that the MERA in general, as the evaluation of local expectation
values can no longer be simplified through the use of such constraints. Fortunately, our
results show that averages over hyperbolic MTN boundary states at small bond dimension,
requiring little computational effort, already capture crucial properties of the continuum
model. Another potential solution, in particular in the context of strongly-coupled models
relevant for holography, may be to build experimental quantum architectures with qubits
on regular hyperbolic geometries [61].

As matchgate tensor networks can now be used to build holographic toy models with
a well-defined local boundary Hamiltonian, an important question that we will explore
in further work concerns time evolution, in particular whether boundary dynamics can
be understood in terms of operations on the bulk tensors. Similar questions concerning
bulk dynamics of excitations were previously explored using the MERA [60]. This line
of research is related to one of the key goals of the field of tensor network holography:
finding tensor network models reproducing aspects of gravity and gravitational dynamics.
We hope that our work will contribute to such future endeavours.
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A Derivation of the mode-disordered Ising model

We here show that ground states of the mode-disordered Ising (MDI) Hamiltonian (3.5)
with disorder vector g are approximately described by the covariance matrix (3.3). To arrive
at these findings, we start with a generic free-fermion (Gaussian) Hamiltonian expressed
as a quadratic polynomial in Majorana fermions

H = i
2N∑
j,k=1

Mj,k γj γk , (A.1)

which can be block-diagonalized by transforming the 2N ×2N coupling matrix M into the
form M = OTM̃O, with

M̃ =
N⊕
k=1

(
0 λk
−λk 0

)
(A.2)

using a mode transformation O ∈ SO(2N), with real {λk}. We can choose O so that λk > 0.
Expressed in terms of the new modes, the ground-state covariance matrix Γ0 = OΓ̃0OT of
H takes the simple form

Γ̃0 =
N⊕
k=1

(
0 −1
1 0

)
. (A.3)

As a specific choice for M , we first consider the translation-invariant Ising Hamilto-
nian (2.11). Its coupling matrix is given by

Mj,k = 1
2 (δj+1,k − δj,k+1) . (A.4)

Here, we have defined the indices modulo 2N so that, e.g., δ2N+1,2N ≡ δ1,2N (the lack
of a sign flip corresponds to antisymmetric boundary conditions). The coefficients λk
of the block-diagonal decomposition of M correspond to the eigenvalues of the problem
iM~vk = λk~vk. Under the given boundary conditions, this problem is solved with an
exponential ansatz

(
~v±k

)
j

= e∓ iπj(2k−1)/2N , λ±k = ± sin (2k − 1)π
2N . (A.5)
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Each eigenvalue is twofold degenerate as λ±N+1−k = λ±k . One can explicitly construct the
orthogonal transformation O by stacking the real and imaginary parts of the eigenvectors
~v±k , leading to

Ok,j =


1√
N

cos
(
π j k

2N

)
for odd k

−1√
N

sin
(
π j(k−1)

2N

)
for even k

. (A.6)

Applied to the ground state covariance matrix Γ̃0 in the mode basis, which contains equal
contributions from all negative eigenmodes, this gives an analytical expression of the co-
variance matrix of the ground state of the free-fermionic Ising model,

Γ0
i,j = (OTΓ̃0O)i,j =

N∑
k=1

(O2k−1,iO2k,j −O2k,iO2k−1,j)

= −1
N

N∑
k=1

sin
(
π

(2k − 1)(i− j)
2N

)

=

0 for even i− j
−1

N sin( π
2N (i−j)) for odd i− j

. (A.7)

Note that in the infinite system limit N →∞ we find Γ0
i,i+2d−1 = 2/(π(2d−1)), as expected

from the two-point function decay of the fermion fields ψ, ψ̄ with scaling dimension ∆ = 1
2 .

We also see that the covariance matrix is manifestly translation-invariant.
Now consider a mode-disordered Ising model with Hamiltonian (3.5) where each Ma-

jorana mode γk is associated with a weight gk. This leads to a family of coupling matrices
g 7→M(g) in (A.1) of the form

Mj,k(g) = 1
2gjgk

(δj+1,k − δj,k+1) . (A.8)

An eigenvector (~vk)j of iM has to solve the equation

− iλk(~vk)j = (~vk)j+1
2gjgj+1

− (~vk)j−1
2gj−1gj

. (A.9)

In the continuum limit where we replace indices j by a continuous coordinate x = j/(2N),
leading to an eigenfunction ~vk → vk(x) and a continuum disorder gj → g(x) on x ∈ [0, 1],
this equation becomes

− iλkg(x)vk(x) = d
dx

(
vk(x)
g(x)

)
, (A.10)

which can be solved by an exponential ansatz in x 7→ vk(x)/g(x), yielding the solution

vk(x) = g(x) exp (− iλkh(x)) , h(x) =
∫ x

0
dy g(y)2. (A.11)

While the disorder function fulfills periodic boundary conditions g(0) = g(1), the eigen-
functions need to fulfill anti-periodic ones, leading to

λk = (2k − 1)π
h(1)− h(0) , (A.12)
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where we are keeping the number N of eigenmodes finite. Now extending (A.6) and (A.7)
to arbitrary eigenvectors, we find

Γ0[g](x, y) = 1
N

N∑
k=1

Im (v?k(x)vk(y)) = −g(x)g(y)
N

N∑
k=1

sin
(

(2k − 1)πh(x)− h(y)
h(1)− h(0)

)

= −g(x)g(y)
N

sin2
(
Nπ h(x)−h(y)

h(1)−h(0)

)
sin
(
π h(x)−h(y)
h(1)−h(0)

) . (A.13)

If x 7→ g(x) varies mostly on small scales and stays approximately constant over large ones,
we can write

h(x)− h(y)
h(1)− h(0) ≈ x− y . (A.14)

Reintroducing the lattice, this gives us the approximate covariance matrix

Γ0
i,j [g] ≈ −gigj

N

sin2 (π
2 (i− j)

)
sin
(
π

2N (i− j)
) =

0 for even i− j
−gigj

N sin( π
2N (i−j)) for odd i− j

. (A.15)

We have thus arrived at (3.3) and find that this approximation is valid at sites i, j where
|i− j| is larger than the typical fluctuation scale of g. We can immediately check that this
reproduces (A.7) at all scales for the case of no disorder.

Note that for more general deformations of an Ising model it may not be possible to
find a faithful disorder function because the number of needed parameters scales linearly
in the system size while a generic non-translation invariant covariance matrix depends on
quadratically many independent parameters. This compressibility is an early indication
that tensor networks on hyperbolic tilings produce structured deviations from translation
invariance.

It is also interesting to note that the disorder created by a replacement γk 7→ γk /gk
in the coupling matrix led to a transformation Γj,k 7→ gjgkΓj,k in the covariance matrix. If
we introduced a new set of Majorana modes γ′k = γk /gk with anti-commutation relation

{γ′j , γ′k} = 2δj,k
gjgk

, (A.16)

then it follows that Γj,k = gjgkΓ′. The above approximation (A.14) is then equivalent
to approximating Γ′ by the Ising ground state covariance matrix (A.7), i.e., neglecting
contributions from the non-canonical commutator. Ising models with such nonstandard
fermionic algebras may provide an interesting direction for further study.

B Quasiperiodic parent Hamiltonians from convex optimization

The boundary states of matchgate tensor networks on hyperbolic {3, 7} tilings at the critical
Ising point were shown to be ground states of a Hamiltonian (3.5) with a disorder vector
g extracted from fluctuations in the state’s covariance matrix. Such a parent Hamiltonian,
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a Hamiltonian whose ground state matches the given quantum state (a concept that is
ubiquitous in the theory of tensor network states), is not unique, as different Hamiltonians
can give rise to the same ground state. Generally speaking, all possible parent Hamiltonians
can be easily classified. Let Γ0 be the covariance matrix of a pure fermionic Gaussian state,
so that

(Γ0)T Γ0 = I. (B.1)

Expressed in terms of these modes, the ground-state covariance matrix Γ0 = OΓ̃0OT of H
takes the simple form

OT Γ0O = Γ̃0 =
N⊕
k=1

(
0 ak
−ak 0

)
(B.2)

with ak ∈ {−1, 1} for k = 1, · · · , N . The family of parent Hamiltonians of Γ̃0 can be easily
identified and in fact fully classified. Consider the family of Hamiltonians H̃ of the form

H̃ = i
2N∑
j,k=1

Mj,k γj γk , (B.3)

with

M =
N⊕
k=1

(
0 λk
−λk 0

)
(B.4)

where
λk

{
> 0, if ak = −1,
< 0, if ak = 1.

(B.5)

The case of λk = 0 for some k leading to degenerate ground states is hence avoided. The
parent Hamiltonians of the pure states governed by Γ0 are hence all Hamiltonians H of
the form

H = OΓ̃0OT, (B.6)

for the above fixed given O ∈ SO(2N) that back-rotates to the original basis. That is to say,
the freedom one has is precisely the one of choosing the N real parameters {λk}, under the
sign constraint as in eq. (B.5). This form allows to easily find parent Hamiltonians under
additional constraints of locality. For example, one can ask for nearest-neighbor parent
Hamiltonians H by solving the linear feasibility problem that asks, given a O ∈ SO(2N)
and a collection of ak ∈ {−1, 1} for k = 1, · · · , N , whether real {λk} can be found, subject
to eq. (B.5), and the further linear constraints such that

(OΓ̃0OT)j,k = 0, |j − k| > 1. (B.7)

This linear program can be solved efficiently, and practically to any system size. What is
more, for a given vector ~a = (a1, · · · , aN ) and O ∈ SO(2N), one can minimize the vector
~λ = (λ1, · · · , λN ) of Hamiltonian weights, to give rise to a semi-definite problem [62], as

minimize ‖~λ‖2, (B.8)
subject to (OΓ̃0OT)j,k = 0, ∀j, k = 1, · · · , N with |j − k| > 1, (B.9)

λk

{
> 0, if ak = −1,
< 0, if ak = 1.

∀k = 1, · · · , N. (B.10)
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Figure 16. Coupling terms {Jk} of the parent Hamiltonian (3.8) for the {3, 7} MTN ground state,
obtained analytically as in (3.5) from the disorder vector g (orange bars) and numerically through
the optimization of a nearest-neighbor Hamiltonian (blue points). Both couplings closely match
for systems of different size N at various inflation steps. The couplings are normalized so that

1
2N

∑
k Jk = 1.

This semi-definite program then produces the unique Gaussian parent Hamiltonian with
local couplings being only non-zero between neighboring sites. Rather than this more
general program, we now assume that a local Hamiltonian (3.8) fulfilling these conditions
already exists, and numerically determine its 2N nearest-neighbor coupling terms {Jk}
using a simple conjugate gradient code. As our optimization function to be maximized,
we choose the state fidelity f (defined in (3.25)) relative to the given boundary state of
the matchgate tensor network. This algorithm produces a unique solution plotted in fig-
ure 16 for various system sizes, matching almost exactly with the values for the couplings
Jk = 1/(gkgk+1) with the disorder vector g extracted from of the corresponding bound-
ary state. This confirms our claim that there exists a unique nearest-neighbor model,
a mode-disordered Ising model (or more specifically, a close approximation of a multi-
scale quasiperiodic Ising model), which describes the boundary states of regular hyperbolic
matchgate tensor networks.

C Non-Ising matchgate boundary states

We have previously considered matchgate tensor networks at the critical Ising point, i.e.,
where average boundary correlations between fermionic modes decay inversely with the
boundary distance. However, the matchgate ansatz can produce much more general bound-
ary states: for the case of hyperbolic regular tilings with isotropic bulk input, any polyno-
mial decay of correlations with power p ≥ 1 corresponds to some value of the matchgate
parameter a considered in the main text [40]. As an example, we consider a bulk input
parameter a = 0.3, which produces an average correlation falloff (as defined in (2.10)) of
approximately c(d) ∝ 1/d5. Unsurprisingly, the resulting boundary states exhibit multi-
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Figure 17. Decay-adjusted covariance matrix Γ̃ of the {3, 7} MTN boundary state for a non-Ising
bulk input a = 0.3. (a) Original covariance matrix with disordered correlation pattern. (b) Nearly
translation-invariant matrix Γ̃′ after applying a disorder vector g on every site. Deviations from
translation invariance are stronger than in the critical Ising case of figure 3(b).

scale quasiperiodic boundary symmetries very similar to the critical Ising case, as their
geometrical construction still enforces the qCFT symmetries following from the multi-scale
quasicrystal ansatz as shown in figure 9. This allows us to extract a disorder vector g in
the same way as at the critical Ising point. As shown in figure 17, we can use g to map the
covariance matrix to one that is nearly translation-invariant at large scales, analogously to
figure 3. In direct comparison of both plots, one finds that the resulting g function varies
more strongly away from the Ising point, and that the “reordered” decay-adjusted covari-
ance matrix Γ̃′ shows stronger deviations from translation invariance at small separations.

Unfortunately, the identification of such a model with a Hamiltonian is unclear. It
appears plausible that various choices for a can be used to approximate a translation-
invariant chain of fermions at a critical point, for example of Hamiltonians with couplings
more complicated than nearest-neighbor ones. However, we cannot a priori determine if
the low-energy spectrum of such models matches with that of an equivalent model without
disorder, as we have found for the critical Ising case. This leaves the non-Ising case to be
explored further in future work.

D The {4, 5} matchgate tensor network

The MTN setup in the main text focused on a hyperbolic {3, 7} tiling with triangles
corresponding to 3-leg tensors. In this appendix, we show that some key results of the
{3, 7} case can also be reproduced with an MTN on a the hyperbolic {4, 5} tiling, i.e., with
4-leg tensors. We first review the vertex inflation rule for this tiling, shown in figure 18.
Unlike the {3, 7} case, the tiling boundary at each inflation step can be fully characterized
in terms of only two letters b and g. As in the {3, 7} case, we define a b vertex as being
only connected to vertices that are also boundary vertices, i.e., to zero “interior vertices”
(considering only vertices in the tiling up to the given inflation step). The g vertex is again
defined as a boundary vertex connected to one interior vertex. We find that no r boundary
vertices with more interior connectivity exist, as the boundary produced by vertex inflation
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Figure 18. Iterative construction of a regular hyperbolic tiling through inflation rules (2.2) of a
{4, 5} square tiling. As in the {3, 7} case in figure 2, the number of boundary sites N increases
exponentially with the number of iterations n. The vertex types b, g denote boundary vertices with
zero and one adjacent edges connected to the previous inflation layer, respectively.

is convex. One then finds the following vertex inflation rule [47]

b 7→ gbgbg , g 7→ gbg . (D.1)

Starting with a single tile corresponds to the initial letter sequence bbbb (figure 18, top
left). The asymptotic scaling factor of the number of boundary vertices in each inflation
is step is found to be λ{4,5} = 2+

√
3.

The matchgate tensor corresponding to each square tile can be constructed similarly
to the triangular case. The tensor T is defined by a 4× 4 generating matrix A as

Ti,j,k,l(A) = 〈i, j, k, l | c exp

1
2

3∑
a,b=1

Aa,b f†a f†b

 |∅〉3 , (D.2)

with c again being a normalization constant and the fermionic basis vector

|i, j, k, l 〉 := (f†1)i(f†2)j(f†3)k(f†3)l |∅〉4 , (D.3)

each index being either zero or one. Choosing a matrix A that preserves rotational sym-
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metry now leads to two free parameters a and b in the form

A =


0 a b a

−a 0 a b

−b −a 0 a

−a −b −a 0

 . (D.4)

In the course of the optimization, we again choose 0 ≤ a, b ≤ 1 to ensure a well-behaved
decay of correlations. Numerically minimizing the energy of the resulting MTN boundary
states with respect to the Ising Hamiltonian HI yields a set of minimal solutions, one of
which is given by a = b ≈ 0.46. Boundary correlations of this state are again disordered
with multi-scale quasiperiodicity, and it is possible to construct a mode-disordered Ising
(MDI) Hamiltonian HMDI[g] whose ground state closely matches the {4, 5}MTN boundary
state. As an estimator for the disorder vector g, we generalize (3.4) to

gj ≈
∑N
k=1 Γ̃j,N2 +j+k

Ng
, Ng = 2

N

N/2∑
j=1

N∑
k=1

Γ̃j,N2 +j+k . (D.5)

As with the {3, 7} MTN, the {4, 5} MDI model represents a disordered Ising model whose
average correlation functions closely approximate that of the original Ising model. As we
show in figure 19, the disorder vector g corresponds to coupling terms Jk = 1/gkgk+1
that can again be close approximated by a multi-scale quasicrystal ansatz (MQA) with
two coupling parameters jb and jg, associated with the vertex types b and g, defining a
multi-scale quasicrystal Ising (MQI) model.

Similarly to the analysis in section 3.2, the values of jb and jg can be shown to be
constrained by the requirement of finiteness in the scaling limit. For this purpose, we first
define the (modified) substitution matrix

M{4,5} =
(

2 3
1 2

)
, M ′{4,5} =

(
2jb 3jg
1jb 2jg

)
, (D.6)

which leads to an inflation step

~v
(n)
{4,5} 7→ ~v

(n+1)
{4,5} = ~v

(n)
{4,5}M{4,5} (D.7)

for a state vector ~v(n)
{4,5} with two entries that counts the number of b and g vertices at each

inflation step. For example, the starting sequence b evolves through two inflation steps as

~v
(0)
{4,5} =

(
1
0

)
7→
(

2
3

)
7→
(

7
12

)
. (D.8)

We again define the analogous MQA inflation step as

~v
′(n)
{4,5} 7→ ~v

′(n+1)
{4,5} = ~v

′(n)
{4,5}M

′
{4,5} (D.9)

for a modified state vector ~v′(n)
{4,5} that stores the sum of all multi-scale products (see fig-

ure 19(a) and (b)) with a final jb and jg coupling, respectively. By requiring that ~v′(n)
{4,5}
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Figure 19. Construction of a multi-scale quasicrystal ansatz (MQA) for coupling sequences of
the {4, 5} tiling. (a) The MQA of ref. [37] composed of inflation layers following the rule (D.1).
(b) A point-wise (vertical) product of couplings jl corresponding to each letter l ∈ (g, r) of the
inflation sequence. Each bar corresponds to the product of blocks directly above it in (a). (c)
The inflation layers embedded into the {4, 5} tiling, with the path between layers highlighted for
three point-wise products. (d) For a suitable choice of the jl the couplings closely reproduce the
effective Hamiltonian couplings for the {4, 5} MTN states at the critical Ising point. The couplings
are shown normalized so that 〈v〉 = 1.

grows with the same asymptotic scale factor as ~v(n)
{4,5}, given by λ{4,5}, we ensure finiteness

of the average multi-scale coupling in the limit n→∞ of many inflation steps. This leads
to the constraint

jg =
7 + 4

√
3− 2

(√
3 + 2

)
jb

4 + 2
√

3− jb
. (D.10)

Again, a choice vb ≈ 1.55, vg ≈ 0.40 fulfilling this constraint leads to a final sequence of
couplings closely resembling the matchgate results (figure 19(d)).
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