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ABSTRACT
We analyse 829, 481 stars from the Next Generation Transit Survey (NGTS) to extract vari-
ability periods. We utilise a generalisation of the autocorrelation function (the G-ACF), which
applies to irregularly sampled time series data. We extract variability periods for 16, 880 stars
from late-A through to mid-M spectral types and periods between ∼ 0.1 and 130 days with no
assumed variability model. We find variable signals associated with a number of astrophysi-
cal phenomena, including stellar rotation, pulsations and multiple-star systems. The extracted
variability periods are compared with stellar parameters taken from Gaia DR2, which allows
us to identify distinct regions of variability in the Hertzsprung-Russell Diagram. We explore
a sample of rotational main-sequence objects in period-colour space, in which we observe a
dearth of rotation periods between 15 and 25 days. This ‘bi-modality’ was previously only
seen in space-based data. We demonstrate that stars in sub-samples above and below the period
gap appear to arise from a stellar population not significantly contaminated by excess multiple
systems. We also observe a small population of long-period variable M-dwarfs, which high-
light a departure from the predictions made by rotational evolution models fitted to solar-type
main-sequence objects. The NGTS data spans a period and spectral type range that links
previous rotation studies such as those using data from Kepler, K2 and MEarth.

Key words: Hertzprung-Russell and colour-magnitude diagrams – stars:rotation –
stars:activity – stars:variables:general – methods:data-analysis – techniques:photometric
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1 INTRODUCTION

Many of a star’s physical properties can be inferred from its bright-
ness variations over time. This variability can arise from a number
of mechanisms, either intrinsic to the star through changing phys-
ical properties of the star and its photosphere, or through external
factors such as orbiting bodies and discs. The rotation of magneti-
cally active stars will also cause visible brightness changes. Eyer &
Mowlavi (2008) categorises a large number of distinct variability
types which range in period from milliseconds to centuries and in
amplitude from a few parts-per-million (ppm) to orders of magni-
tude in the most explosive forms of variability.

Stellar rotation can be measured through photometric obser-
vation, as magnetic surface activity such as spots and plages cause
photometric brightness fluctuations over time that is modulated by
both the rotation of active regions across the star, as well as active
region evolution. Constraining stellar rotation rates is important, as
this provides insight into the angular momentum of the star. Sku-
manich (1972) first hypothesised that a star’s rotation rate could
be age dependant, obtaining the empirical relation between rota-
tion period 𝑃rot and age 𝑡: 𝑃rot ∝ 𝑡0.5. Knowing a star’s age is
fundamental to fully understanding its evolutionary state, and so
being able to infer this property from an observable quantity such
as rotation would greatly improve our understanding of stars in the
local neighbourhood. In Barnes (2003) a semi-empirical model for
deriving stellar ages from colour and rotation period was suggested,
and the term ‘gyrochronology’ was coined. This model was sub-
ject to further improvements in Barnes (2007), a model which is
commonly still used to age Solar-type and late-type main-sequence
stars. These models work especially well for stars older than the
age of the Hyades cluster, by which time we expect the initial an-
gular momentum of stars to have little effect on the rotation period,
and the angular momentum evolution to follow a Skumanich law
(Kawaler 1988). For low mass stars, it is widely accepted that late-
time angular momentum loss will be governed bymagnetised stellar
winds which depend on magnetic field topology and stellar mass
(Booth et al. 2017). For young stars (< 10Myr) angular momentum
evolution may be dependant on magnetic coupling between the star
and disc. Studies of pre-main-sequence stars in young clusters such
as T-Tauri stars in the Taurus-Auriga molecular cloud (Hartmann
& Stauffer 1989) or in NGC 2264 (Sousa et al. 2016) show high
levels of short period (< 10 day) photometric variability, but objects
with circumstellar discs present appear to rotate slower than those
without, highlighting the effect of star-disc coupling on angular
momentum evolution.

Understanding a star’s activity is important for exoplanet sur-
veys. Not only is stellar activity a large source of noise in both
transit and RV surveys (e.g. Queloz et al. 2001; Haywood et al.
2014; Dumusque et al. 2017), but stellar activity may also influence
the potential habitability of orbiting planets. Stars that rotate rapidly,
for example, often display higher flare rates than their more slowly
rotating cousins, and these flares can be important for potential ex-
oplanet habitability. On the one hand, flares can erode exoplanet
atmospheres and modify their chemistry (e.g. Segura et al. 2010;
Seager 2013; Tilley et al. 2019), while on the other, they can help
initiate prebiotic chemistry and seed the building blocks of life
(Ranjan et al. 2017; Rimmer et al. 2018), which may be especially
important for M dwarf systems.

The angular momentum of a host star and its planets are intrin-
sically linked. Gallet et al. (2018) demonstrate that tidal interactions
between a host star and a close-in planet can affect the surface ro-
tation of the star. They observe a deviation in rotation period from
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the expected magnetic braking law during the early MS phase of
low-mass stars in the Pleiades cluster, which the authors attribute to
planetary engulfment events. Conversely, angular momentum trans-
fer through tidal interactions must be considered in the context of
stellar spin-down through magnetic braking. The analysis by Dami-
ani & Lanza (2015) demonstrates that to accurately model tidal
dissipation efficiency and orbital migration the stellar angular mo-
mentum loss through magnetised stellar winds must be accounted
for.

Large scale photometric variability studies have recently al-
lowed for data-driven analysis of stellar variability in extremely
large samples. Stellar clusters allow studies of groups of stars with
similar formation epochs and evolutionary conditions, so histori-
cally have been targeted by systematic surveys. These observations
have come from ground-based surveys such as Monitor (Hodgkin
et al. 2006; Aigrain et al. 2007) with observations of NGC 2516
(Irwin et al. 2007), SuperWASP (Pollacco et al. 2006) with obser-
vations of the Coma Berenices open cluster (Collier Cameron et al.
2009) and HATNet (Bakos et al. 2004) with observations of FGK
Pleiades stars (Hartman et al. 2010). Recently, NGTS (Wheatley
et al. 2018) observed the ∼ 115 Myr old cluster Blanco 1, and a
study by Gillen et al. (2020a) demonstrated a well-defined single-
star rotation sequence which was also observed by KELT (Pepper
et al. 2012) and studied in Cargile et al. (2014). In both of these
works a similar sequence was observed for stars in the similarly
aged Pleiades, indicating angular momentum evolution of mid-F
to mid-K stars follows a well-defined pathway which is strongly
imprinted by ∼ 100Myr.

As part of the transient search conducted by the All-Sky Au-
tomated Survey for Supernovae (ASAS-SN; Shappee et al. 2014),
a catalogue of observed variable stars has been compiled. This cat-
alogue contains variability periods and classifications for 687,695
objects1 taken from a series of publications entitled ‘The ASAS-SN
catalogue of variable stars’ (e.g. Jayasinghe et al. 2018, 2021). Such
catalogues are not focused on specific clusters or stellar types, but
provide a broad view of different forms of stellar variability.

Space missions have allowed wide-field photometric variabil-
ity surveys of stars with high precision and continuous time cover-
age. CoRoT (Auvergne et al. 2009), Kepler (Borucki et al. 2010),
the extended Kepler mission (K2; Howell et al. 2014) and TESS
(Ricker et al. 2014) have provided a wealth of stellar photometric
data, which in turn has been the subject of extensive rotation studies
(Ciardi et al. 2011; Basri et al. 2011; Affer et al. 2012; McQuillan
et al. 2014; Davenport & Covey 2018; Canto Martins et al. 2020;
Gordon et al. 2021), revealing large scale trends in stellar variability
periods. In particular, studies by McQuillan et al. (2014) and Dav-
enport & Covey (2018) demonstrated a distinct bi-modal structure
in the rotation periods of main-sequence stars with respect to colour.
Gordon et al. (2021) followed up these studies with analysis of data
from the K2 mission, hypothesising the bi-modal structure arises
from a broken spin-down law, caused by an internal angular mo-
mentum transfer between the core and convective envelope. Further
details of this model are discussed in Section 5.

The Next Generation Transit Survey (NGTS; Wheatley et al.
2018) is a ground-based wide-field photometric survey achieving
routinely milli-magnitude range photometric precision with 12-
second sampling cadence and long observation baselines, typically
250 nights of data per target field. The primary science goal of
NGTS is to extend the wide-field ground-based detection of transit-

1 Accessed on 09/11/2021

ing exoplanets to at least theNeptune size range. Such high precision
photometry lends itself well to ancillary stellar physics such as clus-
ter rotation analysis (Gillen et al. 2020a) or stellar-flare detection
and characterisation (Jackman et al. 2019). Ground-based obser-
vation adds extra layers of difficultly in variability studies when
compared to space telescope data, as we must consider irregular
sampling and telluric effects. In this study, we employ a generalisa-
tion of the autocorrelation function (the G-ACF) which applies to
this irregular sampling. We elect to use an autocorrelation function
to extract variability as this has proven to be successful for extracting
stellar variability by McQuillan et al. (2013, 2014) & Angus et al.
(2018) and for NGTS data in Gillen et al. (2020a). An Autocorrela-
tion Function (ACF) also allows better detection of pseudo-periodic
and phase-shifting variability often seen in young, active stars in
comparison to more rigid variability extraction techniques such as
Lomb-Scargle periodograms (Lomb 1976; Scargle 1982).

The paper is organised as follows. In section 2 we discuss the
Next Generation Transit Survey and the data used, and in section 3
we outline the methods used in this study to extract rotation periods.
Our results are summarised in section 4, with a discussion of these
results in section 5 and a brief summary of our findings in section
6.

2 THE NEXT GENERATION TRANSIT SURVEY (NGTS)

NGTS is an array of twelve 20cm telescopes based at ESO’s Paranal
Observatory in Chile. Each telescope is coupled to a 2K × 2K e2V
deep-depleted Andor IKon-L CCD camera with 13.5 𝜇m pixels,
corresponding to an on-sky size of 4.97”. The data for this study
were taken with the array in survey mode, where each telescope
observes a sequence of survey fields (generally 2 per night), each
field having an on-sky size of ∼ 8 deg2. These fields are spaced
such as one field rises above 30° the previous field sets below 30°.
This typically results in approximately 500 hours coverage per field
spread over 250 nights.

Fields are selected based on the density of stars, the proportion
of dwarf stars, the ecliptic latitude and proximity to any bright or
extended objects. Fields are typically selected with ≤ 15,000 stars
brighter than an 𝐼 band magnitude of 16, of which ≥ 70% are dwarf
stars. These fields will be more than 20° from the Galactic plane.
Fields within 30° of the ecliptic plane are also avoided due to the
Moon affecting readings during about three nights per month.

In this study, we use the final light curves, associated metadata
and quality flags of the standard NGTS pipeline as described in
Wheatley et al. (2018). The data for each field is reduced and pho-
tometric measurements are made on source apertures to assemble
a light curve per target star. As a part of the pipeline, these light
curves are passed through a custom implementation of the SysRem
algorithm (Tamuz et al. 2005) which removes signals common to
multiple stars arising from various sources including the instrument,
reduction software and the atmosphere.

2.1 Light Curve Extraction

Photometric light curves are extracted for all sources detectedwithin
each NGTS field. Source detection is done using the imcoremodule
in casutools (Irwin et al. 2004) to generate an object list that is
cross-matched against a number of catalogues. NGTS generates its
own input source catalogue, as explained in Section 5 of Wheat-
ley et al. (2018). This source catalogue is cross-matched against a
number of external catalogues. Cross-matching is done in position,

MNRAS 000, 1–20 (2021)



4 J. T. Briegal et al.

as well as in colour and separation to limit spurious matches. This
allows flagging of potential unresolved binaries in NGTS apertures.

A soft-edged circular aperture with a radius of 3 pixels (15
arcsec) is placed over each of these sources and placed in pixel
coordinates using per-image astrometric solutions to account for
radial distortion in addition to the autoguiding system. The sky
background is estimated using bilinear interpolation of a grid of
64 × 64 pixel regions for which the sky level is determined using
a k-sigma clipped median. These raw light curves are then passed
through the detrending pipeline described in section 2.2 (Section 6
of Wheatley et al. (2018)).

2.2 Systematics Correction

In order to correct first-order offsets common to all light curves the
detrending algorithm calculates a mean light curve for all objects
to be used as an artificial ‘standard star’. This detrending algorithm
is based on the SysRem algorithm first described in Tamuz et al.
(2005) and adapted from the WASP project (Collier Cameron et al.
2006).Of note, this approachmay not fully remove systematic trends
which correlate with Moon phase and sidereal time. In particular,
Moon phased signals will show artefacts of imperfect background
subtraction and any non-linearity in the detectors.

2.3 Data Selection

The NGTS pipeline provides flags per image and per timestamp
per object light curve which we use to pre-process light curves for
variability analysis. These flags alert us to bad-quality data points
as a result of pixel saturation, blooming spikes from nearby bright
sources, cosmics and other crossing events (including weather and
laser guide stars) and any sky background changes.We removed any
flagged data point from our light curves, and additionally checked
if the majority of the light curve had been flagged (> 80% of data
points). If thiswas the case,we removed the objects fromprocessing.

We clipped our flux data to remove any points lying further
than 3 median-absolute-deviations (MAD) from the median to re-
move any outliers not caught by the NGTS pipeline flags. This cut
may remove some variability signals such as long-period eclipsing
binaries where the variability is a small fraction of the phase curve.
Manual inspection of a single field confirmed this was not the case,
however, this cannot be guaranteed for all fields processed. Finally,
in order to speed up data processing, we binned our light curve into
20-minute time bins. This reduced the number of data points to pro-
cess per light curve from 200,000 to roughly 10,000. The G-ACF
computation time scales as O(𝑛2𝑚) for 𝑛 data points with 𝑚 lag
time steps, so reducing the number of timestamps in our light curve
significantly improved processing time with a caveat that we will be
unable to detect any periods below 40 minutes. For this study that
is focused on longer period variability, this limit is not of concern.

We removed 6 fields identified as containing large open cluster
populations. This studywill focus on stars in the field and this avoids
contamination of large numbers of young variable stars in known
open clusters. Removing these 6 fields left a total of 829, 481 light
curves to process. The positions of the 94 NGTS fields in RA and
Dec used in this study are shown in Figure 1. In this Figure, we plot
the Kepler and K2 field centre pointings, as well as the position of
the galactic plane.

The 94 fields used in this study were observed for an average
of 141 nights during different observation campaigns (lasting an
average of 218 days) between September 2015 and November 2018.

14h 16h 18h 20h 22h 0h 2h 4h 6h 8h 10h

-75°
-60°

-45°

-30°

-15°

0°

15°

30°

45°

60°
75°

Galaxy

Kepler

K2

NGTS

Figure 1. An ICRS plot of the position of the 94 NGTS fields used in this
study (solid dark blue squares). The Kepler and K2 fields are included as
blue and orange squares, respectively, as well as the galactic plane as a thick
grey line.

The shortest observational baseline for this data set was 84 days
and the longest 272 days. 73 of the 94 fields had observational
baselines over 200 days. We detected periodic variability in light
curves spanning 8 < 𝐼NGTS < 16 mag with 50% (90%) of our
detections being brighter than 13.5 (15.4) mag.

3 PERIOD DETECTION

The period detection pipeline is outlined in the flowchart in Figure
2. Further details of each step are given in the subsequent sections.

The open-source code of the periodicity detection pipeline can
be found on GitHub2.

3.1 Generalised Autocorrelation Function (G-ACF)

The G-ACF is essentially an extended and generalised form of the
standard auto-correlation function (ACF) which can be applied to
any time series, regardless of sampling. A complete and detailed
mathematical description of this algorithm is available in a separate
paper by Kreutzer et al. [submitted]. This generalisation is done
by (a) generalising the lag time 𝑘 to a generalised lag �̂� which is
a continuous variable within the range of our time series and (b)
defining a selection function 𝑆 and a weight function �̂� .

Taking a standard definition of the ACF (e.g. Shumway &
Stoffer 2006):

𝜌(𝑘) := 1
𝑁

𝑖max−𝑘∑︁
𝑖=1

(𝑋𝑖 − 〈𝑋𝐼 〉) × (𝑋𝑖+𝑘 − 〈𝑋𝐼 〉), (1)

where 〈𝑋𝐼 〉 denotes the mean of the time series values and the
normalisation 𝑁 is the total sum of squares 𝑁 :=

∑
𝑖∈𝐼

(𝑋𝑖 − 〈𝑋𝐼 〉)2.

We can generalise this to:

�̂�

(
�̂�; �̂�, 𝑆

)
:=
1
𝑁

∑︁
𝑖∈𝐼

𝑡𝑖+�̂�≤max(𝑇𝐼 )

[(
𝑋 (𝑡𝑖) − 〈𝑋𝐼 〉

)
×
(
𝑋 (𝑆(𝑡𝑖 + �̂�)) − 〈𝑋𝐼 〉

)

× �̂�

(
|𝑆(𝑡𝑖 + �̂�) − (𝑡𝑖 + �̂�) |

)]
, (2)

2 https://github.com/joshbriegal/periodicity_detection
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Figure 2. A schematic of the period detection pipeline, per NGTS light curve. ∗𝜎 refers to the median absolute deviation (MAD).
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where 𝑁 :=
∑
𝑖∈𝐼

(𝑋𝑖 − 〈𝑋𝐼 〉)2 denotes the total sum of squares and

〈𝑋𝐼 〉 is the mean of the time series values set.

3.2 The selection function, 𝑆

The selection function 𝑆 provides a mapping between time labels
within the original time series and the lagged time series at each lag
time step. The most natural choice of a selection function would be
to select the point closest in time within the original time series for
each point in the lagged time series. Further details of this selection
function, including a cartoon outlining the method, are detailed in
Kreutzer et al. [submitted].

3.3 The weight function, �̂�

The weight function, �̂� , should be a function �̂� : [0,∞) → [0, 1]
with �̂� (0) ≡ 1 to ensure that for a regular time series the G-ACF
reduces back to the standard ACF. One such example is a rational
weight function such as

�̂� (𝛿𝑡) = 1
1 + 𝛼𝛿𝑡 , 𝛼 > 0, 𝛿𝑡 ≥ 0, (3)

in which 𝛿𝑡 is the time difference between the time label in the orig-
inal time series and the lagged time series mapped by the selection
function 𝑆. The parameter 𝛼 was taken as the median value of the
time series (as a time difference from the first data point), as pre-
scribed in Kreutzer et al. [submitted]. We experimented with two
different weight functions and elected to use the rational function
as the final extracted periods were not dependant on this choice and
this function is very simple. We used the minimum gap between
time stamps as our lag resolution (time steps in generalised lag, �̂�);
this was 20 minutes as we bin the data prior to analysis (Section
2.3).

3.4 Fast Fourier Transform (FFT)

In order to extract a period from the G-ACF, we elected to use a Fast
Fourier Transform (FFT; Cooley et al. 1969). Extracting periods
from an ACF can be done in a number of ways, most simply by
selecting the first (or largest) peak in the ACF (e.g. as in McQuillan
et al. 2014). This can lead to inaccuracies, in particular for weaker
signals as this relies on the first peak being prominent in the ACF.
We elected to use an extraction method that relies on the periodicity
of the ACF, and the regular sampling of the G-ACF lends itself
to an FFT. Other more complex methods such as fitting a damped
harmonic oscillator to the ACF have been used previously (Angus
et al. 2018). This in general did not alter extracted periods enough
to warrant the additional complexity for such an exploratory work.
We also experimented with using fewer ACF peaks rather than the
entire signal in order to refine the period, but again the additional
complexity was deemed unnecessary for a large scale rotation study.

The FFT is a robust and well-documentedmethod of extracting
periodic signals. In this study we used the implementation in the
numpy.fft package (Harris et al. 2020). We calculated the FFT
with a padding factor of 32, to allow precise resolution of peaks
in the Fourier transform. As phase information is lost in taking the
ACF of the initial data, a real Fourier transform is sufficient.

To extract the most likely frequencies, we searched for peaks
in the Fourier transform. A peak is defined as the central point in
a contiguous sequence of 5 points which monotonically increases

to the peak, followed by a monotonic decrease from the peak. Ad-
ditionally, the amplitude of a peak must be greater than 20% of
the highest peak in the periodogram to be included. Here an au-
tomated cut was made - any Fourier transforms with more than 6
peaks were removed as noise. This threshold was selected based on
a manual vetting process for one NGTS field (10,000 objects) which
demonstrated that for these objects with ‘noisy’ Fourier transforms
less than 1% had genuine periodic signals. Removing these objects
entirely greatly reduced the number of false positives extractedwith-
out removing many ‘real’ signals. 63% of processed objects were
flagged as having no significant periodicity based on this FFT check.

3.5 Long Term Trend Assessment

A time baseline of ∼ 250 days allows for the extraction of peri-
odic signals up to ∼ 125 days long. Signals longer than this may
be present in the data, however observing one or fewer complete
variability cycles cannot definitively characterise a periodic signal.
This variability may not be periodic, but rather a long term trend
in the data arising from instrumental or telluric changes over these
timescales. These objects may still contain interesting periodic vari-
ability at a shorter timescale, so by detecting and removing a long
term trend we can more accurately calculate the period and ampli-
tude of this variability.

If the most significant peak in the FFT (see Section 3.4) was
at a period greater than half the length of the signal baseline it
was flagged as a long term trend. When this occurred we computed
a high-pass filter for the signal by calculating the median flux at
each time step in a rolling window which is 10% of the time extent
of the light curve. This captures any long term behaviour without
removing any shorter period variability. We divided this median
filter from our signal and re-ran the cleaned light curve back through
the signal detection pipeline. If no signal of interest was detected at
this stage (either we found noise or residuals of our median filter),
the object was flagged as having a long term trend and removed
from processing.

3.6 Moon Signal Assessment

During initial testing of the period extraction algorithm, it was
noted that a large number of periods between 27 and 30 days were
identified by the period search algorithm. Upon closer inspection,
these periods had very similar phases and could be split into two
groups of signal shapes. The two signal shapes, when phase folded
on a new Moon epoch, appeared as a slight increase or decrease
in flux at 0.5 phase, i.e. full Moon. This was accompanied by an
increase in scatter in the flux measurements at full Moon. Examples
of contaminated signals are shown in Figure A1.

We fitted a model to these Moon correlated noise signals
(‘Moon signals’) and flagged and removed any objects which fitted
the expected trend. A detailed description of the model and removal
process is given in Appendix A.

3.7 Alias Checks

As we are using an FFT to extract periodicity from our G-ACF, we
are prone to aliasing. Aliasing is a well known and well-described
problem in signal processing, and if the true frequency of the signal
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and the sampling frequency are known it is trivial to calculate the
frequency of aliases as

𝜈alias = 𝜈true ± 𝑛 · 𝜈sampling (4)

where 𝑛 is an integer. We define period as the inverse of frequency,
i.e. 𝑃 = 1𝜈 . In the case of ground-based observation, the most com-
mon sampling period will be 1 day. In addition, although the back-
ground correction should remove this, there will remain residuals
of the brightness trend expected throughout the night’s observation.
Although the sampling of the G-ACF is regular, the sampling of the
inputted light curve will affect the shape of the G-ACF. We thus
expect peaks in the FFT associated with 1-day systematic signals,
as well as the true signal aliased with the 1-day sampling.

For each light curve we first removed any periods arising from
the 1-day sampling. We removed periods within 5% of 1 day, as
well as within 5% of integer multiples of 1 day in period and integer
multiples of 1 / day in frequency. We then assessed whether groups
of periods were aliases of one another with respect to common
sampling periods using basic graph theory. We construct a graph
of frequencies connected by the standard alias formula in Equation
4, using sampling periods of one day, 365.25636 days (one year),
27.32158 days (Lunar sidereal period) and 29.53049 days (Lunar
synodic period). Each vertex in the graph represents an FFT peak
frequency, with connections (edges) made if two frequencies can
be related to one another through Equation 4 given one of our sam-
pling frequencies. Note we considered aliases arising from both the
synodic and sidereal Lunar period, however, given the 5% toler-
ance used for assessing similarity, these two sampling frequencies
connected the same frequencies in the majority of examples.

For each connected sub-graph (i.e. a group of frequencies con-
nected by the same sampling aliases) we determined the frequency
for which the phase folded light curve had the lowest spread in flux
and took this to be the correct period. We calculated the 5th − 95th
percentile spread in flux within bins of 0.05 width in phase and
then calculated the average of these values weighted by the number
of points within each flux bin. In addition to the FFT peak peri-
ods, we also checked the RMS of twice and half the periods, as
in some cases we found twice the FFT peak period was the cor-
rect period. This was assessed by-eye initially, and appeared to be
much more common for short period objects due to aliasing from
the 1-day sampling. This same approach was taken by McQuillan
et al. (2013), however, we elected to automate the process rather
than by-eye confirmation.

3.8 Further Signal Validation

Due to the ground-based nature of NGTS, some fields were not
continuously observed for the entirety of the field time-baseline. As
a result of bad weather and technical downtime, there were gaps
in observations lasting several weeks for a number of the fields
used in this study. In these cases it is no longer correct to use
the entire time baseline as a cut-off for robust periods. Instead, we
elected to find the longest period of continuous observation within
these fields and remove any periods greater than half this time
length. We define a period of continuous observation as a period
in which there are no observation time gaps of greater than 20%
of the entire field baseline. For our 250-night observation baseline,
this equates to gaps of 50 days or longer. This removed 907 detected
periodic signals from 11 different fields, and manual inspection of
the removed signals confirmed that many of the removed detections

were systematic periods arising from the long sampling gaps, rather
than astrophysical variability.

Additionally, a number of detected periodic signals with un-
physically large amplitudes were detected. On inspection it appears
these signals were incorrectly processed by the NGTS pipeline, re-
sulting in non-physical flux values. In our final sample, we elected
to remove any signals with a relative amplitude > 1.0. This removed
58 signals, and manual inspection of the removed signals confirmed
the majority of signals removed were non-physical; especially for
the largest amplitude signals. The cut-off was chosen empirically
based on the signal amplitude distribution of our sample.

Our initial search resulted in 17,845 periodic detections. Re-
moving 907 long term trends left 16,938 detections. Finally, re-
moving 58 unphysically large amplitude signals resulted in 16,880
detections.

3.9 Cross-matching with Gaia DR2 & TICv8

In order to assess our variability period sample within a meaningful
scientific context, we elected to use Gaia Data Release 2 (DR2, Gaia
Collaboration et al. 2018a) for cross-matching and to identify the
nature of corresponding objects and their stellar parameters. The
NGTS database contains cross-matching information with many
external catalogues, including Gaia DR2. Detail on how the cross-
matches are found is given in Section 5 of Wheatley et al. (2018)
and briefly in Section 2.1 of this paper.

As an extension of the Gaia DR2 data, the most recent Tess
Input Catalogue (TICv8, Stassun et al. 2019) contains Gaia DR2
data relevant to this study plus additional calculated values and
cross-match data. These include more accurate calculated distances
from Bailer-Jones et al. (2018) and reddening values which have
been used to calculate absolute magnitudes.

More recently, the Gaia Early-DR3 (Gaia Collaboration et al.
2020) contains improved precision on the astrometric fits to many
objects from Gaia DR2, however as we are using many derived
parameters from external catalogues we elected to continue to use
the DR2 parameters throughout this study.

3.10 Extinction Correction

In the final data products, we assess variability in the context of the
colour-magnitude diagram which requires the calculation of abso-
lute magnitudes. In order to be as accurate as possible, we combined
Gaia G magnitudes (𝐺) with distance estimates and accounted for
extinction. We used the per-object reddening values from TICv8,
multiplied by a total-to-selective extinction ratio of 2.72 to account
for the Gaia G-band extinction (𝐴𝐺). Further details on how the
reddening values and the total-to-selective extinction ratio were
calculated can be found in Section 2.3.3 of Stassun et al. (2019).
Our final value for absolute magnitude was calculated using the
formula:

𝑀𝐺 = 𝐺 − 5 log10 (distance) + 5 − 𝐴𝐺 . (5)

4 RESULTS

Using the G-ACF period extraction pipeline, we derived variability
periods for 16, 880 stars observed with NGTS. A subset of these
results is shown in Table 2, along with positions and cross-match
data. The format of the results table is shown in Table 1.

MNRAS 000, 1–20 (2021)
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Table 1. Variability periods, amplitudes, positions and catalogue cross-match identifiers for all variable objects in the NGTS data set (table format).

Column Format Units Label Description

1 A18 — NGTS_ID NGTS source designation
2 F9.5 deg NGTS_RA Source right ascension (J2000)
3 F9.5 deg NGTS_DEC Source declination (J2000)
4 F8.5 mag NGTS_MAG NGTS I-band magnitude
5 F9.5 days PERIOD Extracted variability period
6 F7.5 — AMPLITUDE 5-95 percentile relative flux
7 I19 — GAIA_DR1_ID Cross-matched Gaia DR1 identifier
8 I19 — GAIA_DR2_ID Cross-matched Gaia DR2 identifier
9 I10 — TIC_ID Cross-matched Tess Input Catalogue (v8) identifier
10 A16 — TWOMASS_ID Cross-matched 2MASS identifier
11 A19 — WISE_ID Cross-matched WISE identifier
12 A10 — UCAC4_ID Cross-matched UCAC4 identifier

Table 2. A sample of variability periods, amplitudes, positions and catalogue cross-match identifiers in the NGTS data set. A number of catalogue cross-match
columns have been excluded for publication clarity. The full table will is available at CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or
via https://cdsarc.unistra.fr/viz-bin/cat/J/MNRAS, or as supplementary material.

NGTS ID NGTS RA NGTS Dec NGTS Mag Period Amplitude Gaia DR2 ID TICv8 ID

NG0613-3633_231 94.88721 -35.20762 14.77188 117.30427 0.07218 2885392740653834368 124854845
NG0613-3633_234 91.91176 -35.20084 15.86231 128.42220 0.18731 2885953869540806656 201389809
NG0613-3633_235 94.93884 -35.20675 12.91320 117.53460 0.04857 2885392878092780544 124854842
NG0613-3633_262 94.95269 -35.20598 14.51873 109.77205 0.11461 2885392225257749760 124854841
NG0613-3633_481 93.77213 -35.22205 13.69049 0.29365 0.13175 2885521658392050944 124689517
NG0613-3633_598 93.31896 -35.22787 11.48757 92.88398 0.00860 2885530999944081792 201530507
NG0613-3633_773 95.01907 -35.23832 12.55225 110.36974 0.07016 2885380160692365824 124855736
NG0613-3633_1101 95.06110 -35.25333 15.16207 128.42220 0.22943 2885381333220681216 124855723
NG0613-3633_1181 95.06864 -35.25766 13.60488 100.74969 0.08537 2885380577306436736 124855720
NG0613-3633_1479 95.12023 -35.27187 14.86311 100.46635 0.25487 2885380439867479040 124922604

Table 3. A table of the output states of the 829, 481 NGTS objects analysed
by the signal detection pipeline. Note a further 907 objects were removed
due to large observation gaps in a number of fields, and an additional 58 with
spuriously large amplitudes resulting in a final total of 16, 880 variability
periods (see Section 3.8).

Output State Count % of total % of detections

Bad Data 43,358 5.227 -
Noisy FFT 528,105 63.667 -
Moon 175,565 21.166 67.043
Alias 57 0.007 0.022
Long Term Trend 64,551 7.782 25.018
Periodic Signal 17,845 2.151 6.916

4.1 Periodicity in Colour-Magnitude Space

Figure 3 shows our variability sample in colour-magnitude space,
commonly known as a Hertzsprung-Russell (HR) Diagram or a
colour-magnitude diagram (CMD). Table 3 details the breakdown
of outputs from the pipeline. Once cross-matched with TICv8, we
were left with a total of 16, 880 variable light curves from the initial
sample of 829, 481 light curves. This gives a final detection percent-
age of 2.04%. The detection percentage varies in colour-magnitude
space as shown in Figure 3a, highlighting potential regions of in-
creased variability or increased sensitivity of NGTS and the signal
detection pipeline.

All conversions between 𝑇eff, 𝐺𝐵𝑃 − 𝐺𝑅𝑃 and 𝐺 − 𝐺𝑅𝑃 in
the following sections are calculated using relations defined in the
‘Modern Mean Dwarf Stellar Colour and Effective Temperature

Sequence’ (Pecaut & Mamajek 2013)3, interpolated using a uni-
variate cubic spline. The isochrones in the HR diagrams are taken
from PARSEC v1.2S (Bressan et al. 2012). We elected to use these
isochrones as they have been proven to fit the Gaia DR2 main
sequence well in Gaia Collaboration et al. (2018b). We produce
isochrones using PARSEC v1.2S, selecting the Gaia DR2 pass-
bands from Evans et al. (2018)4. The isochrone at 1 Gyr gives a
good indication of where the main sequence lies, with the earlier
age isochrone at 10 Myr indicating locations on the HR diagram
of potentially younger stellar populations. We note, as shown in
Gillen et al. (2020b), that the PARSEC v1.2 models appear to be
less reliable at pre-main-sequence ages, but should be sufficient for
their indicative use in this study.

Figure 3a highlights regions of interest in terms of detection
percentage. Additionally, Figure 3b shows the number of detections
in each bin. Where detection percentage approaches 100% this is
often indicative of a single variable object falling in this colour-
magnitude bin. As in Gaia Collaboration et al. (2019), we identify
distinct regions of variability within the HR diagram and suggest
the types of variable objects which may lie at each location.

The region at the top of the main sequence (𝐺𝐵𝑃−𝐺𝑅𝑃 ∼ 0.4,
𝐺 ∼ 1.0) reveals a high proportion of variable objects. We also see
a region of increased variability at the ‘elbow’ of the main sequence
and the Red-Giant Branch (RGB) (𝐺𝐵𝑃 − 𝐺𝑅𝑃∼ 1.5, 𝐺 ∼ 4).

3 A more recent version of the table including Gaia DR2 colours is main-
tained at http://www.pas.rochester.edu/~emamajek/EEM_dwarf_
UBVIJHK_colors_Teff.txt
4 using the CMD 3.4 input form at http://stev.oapd.inaf.it/
cgi-bin/cmd
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(a) The empirical detection percentage per bin. This is defined as
the ratio of the number of detected periodic signals to all observed
objects per bin. 0 detections within bins are coloured grey.
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(b) The number of objects with detected variability within each
colour-magnitude bin.
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(c) The median variability period within each colour-magnitude bin.

Figure 3. Binned colour-magnitude (HR) diagrams of the NGTS variability
sample. PARSEC v1.2 (Bressan et al. 2012) Solar metallicity isochrones
of ages 10 Myr and 1 Gyr are included as solid black and orange lines,
respectively.
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Figure 4. Histogram of the empirical detection percentage (left y-axis) for
all sources against luminosity, as well as the luminosity distribution for all
observations (right y-axis).

These objects may be young, massive objects with high levels of
activity.

In Figure 3c we plot the median period in each colour-
magnitude bin. Of particular interest, we see distinct regions of
different variability periods on the HR diagram. There is a region of
short median period at the top of the main sequence (𝐺𝐵𝑃 − 𝐺𝑅𝑃

∼ 0.4, 𝐺 ∼ 1.0). Typical spot-driven photometric modulation will
not be present on these hotter, radiative stars. The majority of vari-
ability seen in this region likely arises from pulsations. There may
also be a number of magnetic OBA or chemically peculiar Ap
stars within this region. In these stars, photometric brightness fluc-
tuations are seen as a result of fossil magnetic fields imprinting
chemical abundance inhomogeneity on the stellar surface (Sikora
et al. 2019; David-Uraz et al. 2019). These targets are prime can-
didates for future spectropolarimetric observations (e.g. Grunhut
et al. 2017).

A large number of the longest period variability signals lie on
the RGB (𝐺𝐵𝑃 − 𝐺𝑅𝑃 ' 1.0, 𝐺 / 2.0. These signals could indi-
cate extremely slowly rotating large stars or other photometrically
varying sources such as giant star pulsations.

We also see a clear trend of increasing period as we move
perpendicular down towards the main sequence along the Hayashi
tracks (Hayashi 1961). There are potentially a number of effects at
play here:

1) We would expect a population of equal mass binary stars with
short rotation periods to lie 0.75 in absolute magnitude above the
main sequence, contributing to the shorter median period in this
range.
2) We would also expect a population of young stars to lie in this
region of colour-magnitude space. In particular, we see short period
objects which lie between the 10 Myr and 1 Gyr isochrones.

In this region of the HR diagram potentially lie pre-main-sequence
(PMS) Young Stellar Objects (YSO) such as T-Tauri stars with
protostellar debris discs, which we expect to have shorter rotation
periods than main-sequence stars of the same mass (colour). The
median period observed for the bulk of main-sequence objects is 20
to 30 days, as expected.

We plot detection percentage vs. luminosity in Figure 4. Lumi-
nosity values are taken from TICv8 (Stassun et al. 2019), calculated
using Equation 6.

𝐿

𝐿�
=

(
𝑅

𝑅�

)2
·
(
𝑇eff
5772

)4
(6)

We use the radii values provided by TICv8. These radii values
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are either taken from pre-existing dwarf catalogue values (from
Muirhead et al. 2018), or when these are not available (as is the
case for a large majority of the NGTS sources) they are calculated
from distance, bolometric corrections, G magnitude and a preferred
temperature. Full details of this calculation are given in Stassun
et al. (2018). 𝑇eff values come from spectroscopic catalogues where
available, otherwise they are derived from the de-reddened 𝐺𝐵𝑃 −
𝐺𝑅𝑃 colour.

As expected, we recover a much higher fraction of variable
signals from more luminous stars, with up to 15% of the most
luminous objects in our sample having detectable variability signals.
These objects will correspond to luminous giant stars, where we
would expect large-amplitude variability arising from pulsations.
The lowest number of variable objects coincides with the peak in the
number of objects (at 1.5–2.5 𝐿�), where we detect variability in <
2% of objects. We also observe an increase in detection percentage
for the faintest objects. Here we should expect to be observing
cooler dwarf stars and young stars which generally have higher
levels of magnetic activity and could lead to increased detection
of photometric variability. Additionally, close binaries may appear
more luminous than single stars and from their position above the
main sequence in the HR diagram (Figure 3 (a)) appear to have
a higher detection percentage than equivalent single stars. Given
the width of the luminosity bins used is larger than the expected
luminosity increase from a single star to an equal luminosity binary
(0.2 dex, a factor ∼ 1.6 in luminosity), this will not have a large
effect on the plotted distribution.

We assessed the distribution of detection percentage against
on-sky RA and Dec for our population. The distribution of detec-
tion percentage for field stars did not appear to have any obvious
correlation with on-sky position.

4.2 Example Variability Signals

We show six examples of variability signals in Figure 5. A table
of stellar parameters for each object is included for reference. We
selected the included objects to demonstrate a small selection of
the variability we are able to extract from NGTS light curves. The
stars are selected to have a range of spectral types, and demonstrate
variability with different periods, amplitudes and signal shapes. In
particular, using the object numbering as in Figure 5 (1 to 6, top to
bottom):

1) An extremely short period, semi-detached eclipsing binary.
This object lies above the main sequence, as expected for a near-
equal mass binary system.
2) A typical short period pulsation signal from an RR-Lyrae

object.
3) A candidate young stellar object (YSO). Objects above the

main sequence with periods of 1 to 10 days are excellent YSO
candidates, suitable for follow-up infrared and spectroscopic obser-
vations.
4) An example of a variable red-giant star. These are stars such as

Cepheids, semi-regular variables, slow irregular variables or small-
amplitude red-giants.
5) A main-sequence late-G dwarf star, with small amplitude 20-

to 30-day variability.
6) A long period M-dwarf.

Within the observed G-ACF signals we see artefacts arising
from 1-day sampling aliases. These aliases are particularly relevant
for signals of period < 1 day, where it was necessary to perform the
additional verification steps outlined in Section 3.7.

4.3 Cross-matching with previous catalogues

We cross-matched our NGTS variability periods with photometric
variability catalogues in the literature. The ASAS-SN variability
catalogue is a large catalogue of photometric variability. We took
the latest available data, containing 687,695 variable stars from
Jayasinghe et al. (2018) through to Jayasinghe et al. (2021)5. We
cross-matched our catalogue with the ASAS-SN catalogue, match-
ing on TICv8 ID and Gaia DR2 ID. We found 2,439 matches with
periods in both catalogues. A period-period comparison is shown in
the left panel of Figure 6. The majority (about 1,500 stars) had sim-
ilar periods from both catalogues. For approximately 750 stars, the
periods differed by a factor of 2. Thiswasmost common for eclipsing
binary targets in which the primary and secondary eclipses were of
similar depths, and either the NGTS or ASAS-SN period was half
the correct period. Periods with large discrepancies appear to be
long term trends within the NGTS or the ASAS-SN data masking
any shorter-term variability, or period aliasing resulting from the
1-day sampling seen in both surveys. The NGTS period extraction
pipeline will not return periods close to 1 day or multiples thereof
to reduce the number of systematic false positive detections. We
see a number of periods in the ASAS-SN catalogue falling on exact
fractions of 1 day, resulting in the ‘stripes’ of periods seen in the
lower right of the Figure.We see structures within the period-period
diagram resulting from objects for which the NGTS and ASAS-SN
detections are aliases of one another with respect to 1-day sampling.
Equation 4 can be used to calculate these connections and relations
of the form

𝑃ASASSN =
1

𝑃sampling ± 1
𝑃NGTS

(7)

are shown in Figure 6. Three obvious sets of aliased periods ex-
ist which trace these relations, accounting for approximately 114
matches. We see two sets of related periods arising from 1-day
sampling, with the same double phase folding for eclipsing binaries
resulting in the set of periods approaching 2 days. There is also
a small group of periods connected by aliases arising from 2-day
sampling, however, the form of the relation is not shown in the
Figure.

We were able to find three cross-matches with the MEarth
rotation catalogue from Newton et al. (2018). Of these, NGTS was
able to extract a short 0.4 day rotation period for an object which not
present in the MEarth catalogue (NG1444-2807.12982). The two
other objects (NG1214-3922.6732 &NG0458-3916.13434), NGTS
detected a near 100 day period, similar to MEarth. The length of
these periodswould require extended observation from either survey
to improve the accuracy as both surveys were only able to observe
two to three complete variability cycles.

A variability study was conducted as part of the Gaia Data
Release 2 (DR2, Gaia Collaboration et al. 2018a), where photomet-
ric time-series data was processed to detect and classify variable
sources (as described in Holl et al. 2018). Photometric time series
from Gaia are sparsely sampled and not optimised to detect photo-
metric variability, so may produce an incorrect period. We cross-
matched 126 objects against the rotation period database provided
by the Gaia Collaboration on VizieR6, these period comparisons
are shown in the right panel of Figure 6. For 60 of the 126 periods

5 The full catalogue is available at https://asas-sn.osu.edu/

variables
6 https://vizier.cds.unistra.fr/viz-bin/VizieR-3?

-source=I/345/rm
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Parameter Value
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Parameter Value

NGTS ID NG2028-2518.15457

G-ACF Period 6.85 days

Signal Amplitude 21.4 %
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Parameter Value

NGTS ID NG1444-2807.58383
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Figure 5. Example variable star signals across the HR diagram. From left to right: A table of stellar parameters. The NGTS light curve, binned to 20 minutes.
The G-ACF of the light curve. The light curve phase folded on the extracted period, each successive period is coloured according to a perceptually uniform
sequential colourmap.
The position of each star on the HR diagram is shown, the numbered labels 1 to 6 correspond to the stars top to bottom. Solar metallicity PARSEC isochrones
of ages 10 Myr and 1 Gyr are included as solid black and orange line on the HR diagram, respectively.
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Figure 6. NGTS variability periods from this study compared with ASAS-SN periods (left) and Gaia (right). Lines of equal period from both surveys are
plotted in light grey, and for the ASAS-SN comparison lines showing periods differing due to incorrect phase folding by a factor two shorter or longer are
also plotted in light grey. The red dashed lines and associated equations indicate relations between periods arising from 1-day sampling. Light grey dotted
horizontal lines in the left-hand figure and corresponding periods indicate where ASAS-SN has recovered periods corresponding to exact fractions of a day.

that differed, we phase folded the NGTS data on both periods and
manually inspected which phase fold appeared to be favourable.
The NGTS period was favoured in the majority of cases through
visual inspection. As expected for space-based data we do not see
any aliasing artefacts in the Gaia periods as in the cross-matching
with ASAS-SN. This is a clear demonstration that the NGTS period
recovery pipeline is well suited to deal with aliases arising from
1-day sampling

Finally, we cross-matched our sample with the variability cat-
alogue from Canto Martins et al. (2020), which searched for rota-
tion periods in 1000 TESS objects of interest. We found six ob-
jects in both catalogues by matching on TIC id. These come from
three different results tables from Canto Martins et al. (2020): TIC
14165625 and 77951245 contain ‘unambiguous rotation periods’,
TIC 100608026 and 1528696 contain ‘dubious rotation periods’ and
TIC 150151262 and 306996324 contained no significant variability
in the TESS data. Manual inspection of these objects confirmed
the NGTS light curves contained variability at the reported period
from this study. For TIC 14165625, the reported TESS period was
approximately half the NGTS period, and for TIC 77951245 the
reported periods were similar (5.8 days and 5.4 days for NGTS and
TESS, respectively), although the phase fold on the NGTS data was
cleaner using the NGTS period.

Although a large number of photometric variable stars are
known in the Kepler field, we are unable to cross-match with these
catalogues as we do not observe this part of the sky. Additionally,
we do not attempt to cross-match with small catalogues and pa-
pers reporting detections of individual variable objects. Two large
variability catalogues we do not attempt cross-matches with are The
Zwicky Transient Facility (ZTF) catalogue of periodic variable stars
(Chen et al. 2020) or the catalogue of variable stars measured by the
Asteroid Terrestrial-impact Last Alert System (ATLAS) (Heinze
et al. 2018). The ZTF catalogue contains 4.7 million candidate vari-
ables and the ATLAS catalogue 621,702 candidate variables. Both
surveys target much fainter objects than NGTS: the brightest can-
didates in both surveys are approximately as bright as the faintest

objects observed by NGTS (Masci et al. 2019; Tonry et al. 2018).
Due to the small overlap in brightness and a large number of can-
didates in each catalogue, we elected not to perform a cross-match.
Further cross-matching with smaller catalogues is possible, as we
provide the position in RA and Dec, as well as TICv8 and Gaia DR2
identifiers (where available) for all 16, 880 variable sources.

4.4 Period ranges of interest

We break our results down into unevenly spaced intervals in vari-
ability period in order to assess how samples of similar variability
periods are distributed in colour-magnitude space in Figure 7. This
reveals more information than Figure 3 as we are able to probe into
the high-density main sequence. We have selected the period ranges
empirically taking into account the sampling gaps at 14 and 28 days
arising from Moon contaminated signals.

The majority of the shortest period variability lies at the top of
the main sequence. This could be indicative of 𝛿-Scuti, RR-Lyrae
or rapidly oscillating Ap stars in the instability strip. Typically, RR-
Lyrae type objects lie in this region at the lower end of the instability
strip and pulsate with periods of less than 1 day. The peak density
for less evolved stars is above themain sequence at this period range.
Between 1 and 10 days, we would expect to observe the rotation
of YSOs such as T-Tauri stars or young main-sequence stars (e.g.
as seen in Gaia Collaboration et al. 2019). We may also observe
short-period binary star systems at this period range, which would
also lie above the main sequence on the HR diagram. In the period
range 3 to 14 days we continue to see a peak density above the
main sequence, though the bulk moves towards later spectral types
compared to the very short periods.

Between 16 and 26 days, we see the peak density move towards
themain sequence aswell as a distinct lack of objects above themain
sequence. At > 30 days, we start to see detections into the RGB as
well as more M-type stars. We would expect giant, evolved stars to
have longer period rotation or pulsations. Moving from between 32
and 50 day to > 50 day periods we see the bulk of objects move
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further up the RGB and down the main sequence towards cooler
temperatures and redder colours.

4.5 Period-colour distribution

We plot our variability periods against colour in Figure 8 and see a
number of prominent features. Most striking is the high density of
stars known in the literature as e.g. the ‘I-Sequence’ (Barnes 2003)
or the ‘Ridge’ (Kovács 2015) spanning a period range from 4 − 40
days and 𝐺𝐵𝑃 − 𝐺𝑅𝑃 0.75 − 3.5. The shape of this envelope has
been empirically defined by Angus et al. (2019), using a broken
power-law gyrochronology model calibrated against the ∼ 800 Myr
old Praesepe cluster.

We see a large number of long-period (> 40 days) objects
between 𝐺𝐵𝑃 −𝐺𝑅𝑃 of ∼ 0.7 to ∼ 1.4. We would expect a higher
density of detections at this colour range due to the high-density
main-sequence turnoff and red clump, as shown inFigure 3(b).Older
main-sequence stars at this colour range may exhibit long period
rotational modulation. The Cepheid instability strip lies within this
colour range, and we would expect to see long-period oscillations
from evolved stars driven by the 𝜅 mechanism (Saio 1993).

Far below the I-sequence we see a high density of much shorter
period, high amplitude variability amongst hot objects at 𝐺𝐵𝑃 −
𝐺𝑅𝑃 ∼ 0.5→ 1.5, and Period< 1 day. This population corresponds
to the top of the main sequence on an HR diagram.

We see two distinct groups of objects in period range shorter
than 1 day, trending to short periods with increasing colour index
(𝐺𝐵𝑃 − 𝐺𝑅𝑃 0.75 → 1.5). The two distinct groups are from
the same region of the HR diagram - the equal-mass binary main
sequence. The light curves showed distinct eclipsing binary signals
(as seen in object 1 in Figure 5), however, the longer period branch
contained light curves phase folded on the correct period and in the
shorter period branch light curves phase folded on half this period.
This is an artefact of the RMS minimisation step described in Sec-
tion 3.7. For eclipsing binaries with slightly different primary and
secondary eclipse depths the full period will show a ‘cleaner’ phase
folded light curve with separate primary and secondary eclipses. In
comparison, for an equal depth binary the phase folded light curve
will have a similar RMS if folded on the correct period or half the
period, with the primary and secondary plotted over one another in
phase space.

Finally, we observe an increasing upper period envelope with
increasing colour for 𝐺𝐵𝑃 − 𝐺𝑅𝑃 > 1.5. We see a number of
objects with 𝐺𝐵𝑃 − 𝐺𝑅𝑃 > 2.5 having variability periods up to
and exceeding 100 days. These objects are discussed in detail in
Section 5.2.

4.6 Period Bi-modality

Within the I-sequence envelope we see a hint of a region lacking
in periodic signals between ∼ 3500K and ∼ 4500K (𝐺𝐵𝑃 − 𝐺𝑅𝑃

2.5–1.5) and ∼ 15–30 days. This gap has been the topic of extensive
discussion in recent papers (such as McQuillan et al. (2014); Dav-
enport & Covey (2018)), and although faint, we do observe this gap
in this ground-based data set. This gap has previously been fitted
using a gyrochrone, roughly following a 𝑇eff1/2 relation (Davenport
&Covey 2018), as well as an empirical model using a similar𝑇eff1/2
relation (Gordon et al. 2021).

To demonstrate the gap is present in our data we conduct
the same analysis as in Figure 3 of Davenport & Covey (2018).
We subtract model periods calculated with a 600 Myr gyrochrone

defined in Meibom et al. (2011) from our periods. We constrain our
data set to objects such that 1.4 < 𝐺𝐵𝑃 − 𝐺𝑅𝑃< 2.2 to avoid the
gyrochrone crossing the Moon signal sampling gaps. In Figure 9
we observe a dearth of objects along the gyrochrone, demonstrating
the same gap as in the Kepler field is present within the NGTS data.

In Figure 10 we separate our sample into three sub-samples
based on a bi-modality gap model and empirical short-period lower
limit from Gordon et al. (2021). We observe how far these ob-
jects lie in absolute magnitude from an approximate main-sequence
isochrone defined at 1 Gyr with Solar metallicity (Δ𝐺), as plotted
in Figure 3. We use this to assess where the three sub-samples lie on
the CMD, to ascertain if they arise from distinct stellar populations
in terms of colour and intrinsic brightness. We elect to remove po-
tentially evolved stars, giants and sub-giants to ensure the models
fromGordon et al. (2021) and Angus et al. (2019) which are fitted to
main-sequence stars from Kepler and K2 are applicable. We use the
evolstate code described in Huber et al. (2017) and Berger et al.
(2018). The code gives crude evolutionary states for stars based on
temperature and radius, with the models derived from Solar-type
stars. We remove objects with the ‘subgiant’ or ‘RBG’ flags.

We define our 3 sub-samples using a number of model con-
straints in period-colour space. We use the fifth-order polynomial
model defined in Angus et al. (2019) to constrain the long-period
upper envelope of stars, and the edge-detection based fit from Gor-
don et al. (2021) to constrain the short-period lower envelope. We
calculate the upper and lower edge of the gap using the model de-
fined in Gordon et al. (2021), and select stars from our I-sequence
envelope on either side of this branch. This model was only defined
for 0.8 < 𝐺 − 𝐺𝑅𝑃 < 1.05, so we only use objects within this
bound to define the sub-samples. Our third sub-sample is defined
as all objects below this boundary in period and will consist of stars
not included in the Kepler and K2 data sets which fall well below
the well defined I-sequence in period. The model fits used in this
section are detailed in Appendix B and plotted in Figure 10a.

The histograms in Δ𝐺 plotted in Figure 10b show two similar
single-peaked distributions fromour two longer period sub-samples,
and a distinct double-peak distribution for the shorter period sub-
sample. We note that this second peak lies approximately 0.75 mag-
nitudes above the peaks of the two longer period sub-samples which
could indicate a population of binary objects which is not present
in the upper two sub-samples. This confirms our previous obser-
vation from the HR diagram: a group of very short period objects
just above the main sequence, which could correspond to a sample
heavily contaminated by binary sources. The two longer period sub-
samples appear to have by-eye similar distributions of Δ𝐺, which
leads us to believe the two branches are drawn from similar stellar
populations in terms of colour, intrinsic brightness and multiplicity.

5 DISCUSSION

5.1 Comparison to similar studies

The NGTS data set demonstrates that we are able to use ground-
based photometry to conduct stellar variability studies matching the
scale of space-based data. In contrast to, for example, the Kepler
data set used by McQuillan et al. (2014) and Davenport & Covey
(2018), NGTS sources are not pre-selected. This provides a much
more representative sample of field stars which is demonstrated in
the much higher number of objects which lie away from the high-
density I-sequence envelope of stars in period-colour space. Objects
which lie within the I-sequence will encompass a selection of stars
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Figure 7. HR diagrams for the NGTS variability sample broken down into period ranges. Periods in the sample range from ∼ 0.1 to 130 days. The colour bar
indicates the percentage of all variable objects across all period ranges which lie in this specific colour-magnitude-period bin. The sum of each bin across all 5
subplots will equal 100%. Solar metallicity PARSEC isochrones of ages 10 Myr and 1 Gyr are included as solid black and orange lines, respectively.
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Figure 8. Effective temperature and Gaia𝐺𝐵𝑃 −𝐺𝑅𝑃 colour against period for 16, 880 stars. The colour indicates the 5th −95th percentile spread of the signal
in relative flux. To aid the eye, horizontal strips indicate regions of period space likely affected by systematics arising from the Moon or the 1-day sampling
alias, with multiples of these periods more transparent.
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distribution, with a reduced number of rotation periods along the model
gyrochrone (grey vertical line). The range of distances from the model to the
Moon and half Moon period are included to demonstrate the lower density
of objects does not arise from a gap due to the Moon.

most likely to be main-sequence, single objects similar to theKepler
input catalogue. We overlay data from the Kepler rotation study by
McQuillan et al. (2014) with our data in Figure 11. In particular,
we see a high density of objects at 𝐺𝐵𝑃 −𝐺𝑅𝑃 ∼ 1.0 with periods
longer than roughly 40 days not present in the Kepler data set. These
objects lie in the RGB and AGB on the HR diagram, so will be giant
objects which have not been removed from the NGTS study.We also
see a large number of objects with much shorter periods than the
I-Sequence envelope. These objects lie above the main sequence on
the CMD and will be either short-period binary sources or potential
YSOs.

In addition to finding astrophysical signals of interest, we were
also able to observe systematic periodicity down to amplitudes of
0.3%.

This study highlights the power of ground-based photometric
surveys in terms of the size and precision of the data set. We are
able to extract a data set which rivals that of the Kepler and K2
missions, with amuch longer baseline (in the case ofK2) and amuch
greater range of pointings (in the case of Kepler). As a corollary,
this study also serves as an exercise that ground-based photometric
data may prove more difficult to analyse systematically than space-
based data due to increased sources of noise and aliasing. We note a
lower recovery rate of periodic signals than other studies.McQuillan
et al. (2014) found variability in 25.6% of their ∼ 130, 000 objects,
Gordon et al. (2021) found variability in almost 13% of their 69, 000
objects, and NGTS was able to find variability in about 2% of
829, 481 objects. We note that 21% of all objects were flagged as
having signals arising fromMoon contamination, our largest source
of systematic noise in the study.

The combination of a relatively long baseline (∼ 250 days) and
multiple pointings (94 used in this study) allows the NGTS data set
to probe out to reasonably long period regimes ( 0.1–130 days) and
across a range of spectral types (late-A to mid-M).

5.2 Long Period M-Dwarfs

Previous studies such as Newton et al. (2018) have used targeted
ground-based photometry to extract very long period variability for
M dwarfs. We also observe these extremely long periods (> 100
days) in our M-dwarf sample. Figure 8 shows an upwards trend in
period in the mid-M dwarf sample at 𝑇eff < 3500𝐾 . In order to
provide a useful comparison to the MEarth rotation study, we also
assessed this trend for just dwarf stars (as defined by evolstate).
Our sample contains 751 non-evolved, dwarf objectswith variability
periods with Gaia 𝐺𝐵𝑃 − 𝐺𝑅𝑃> 2.21, which is the bluest limit of
the MEarth rotation study catalogue.

In this study, the fields chosen had at most a 250-day time
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Figure 10. Panel (a): Period-colour diagram of our sample, with three sub-samples defined by empirical models from Gordon et al. (2021) and Angus et al.
(2019). Panel (b): Histograms of the magnitude difference in each of the three sub-samples from a main-sequence isochrone.
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Figure 11. Effective Temperature vs Period data compared for this study (NGTS data, green circles), McQuillan et al. (2014) (Kepler data, grey squares) and
Newton et al. (2018) (MEarth data, blue squares).
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series, which allows us to robustly extract periods up to roughly
125 days in length. Newton et al. (2018) observed periods up to
140 days long for some of these objects, hypothesising that an up-
per limit close to this period would occur through Skumanich-like
angular momentum loss for stars of the ages observed in the local
thick disc. Using the Skumanich 𝑡1/2 relation and taking the age
of the local thick disc to be 8.7 ± 0.1 Gyr (Kilic et al. 2017) we
calculate the longest Skumanich relation period to be approximately
145 days. The NGTS rotation periods qualitatively agree with the
distribution of rotation periods seen in M dwarfs by Newton et al.
(2018), however, we reach the period limit of the NGTS data just
shy of the ∼ 140 day limit in the MEarth detections. It is interest-
ing to note the Skumanich relation still appears to hold from the
longest period objects across samples, even into the fully convec-
tive M-dwarf population for which the physics of spin-down is not
fully understood. Further observations of much older open clusters
could shed light on this interesting long-period M-dwarf sample,
and observations with much longer time baselines would allow us
to probe into period regimes where spin-down could be more effi-
cient than the Skumanich relation.We note that current photometric
space missions such as TESS (Ricker et al. 2014) may be useful to
shed light on this long term variability across the sky, but only at
the ecliptic poles where objects will be observed for up to 1 year
continuously, with a one year gap before another year of continuous
observation. Most of the sky will only be observed for 28 days at
a time, meaning a maximum of 14 day periods could be reliably
extracted.

This NGTS study overlaps both theKepler rotation period data
and the MEarth rotation period data, allowing more robust compar-
isons to be made between the two previously disjoint samples. The
NGTS data set provides a broad view into stellar rotation, target-
ing similar Solar-type stars as observed by Kepler, as well as more
diverse populations across the HR diagram and across a range of
pointings.

5.3 Period Bi-modality

We continue the ongoing discussion regarding the rotation period
gap (McQuillan et al. 2014; Davenport & Covey 2018; Reinhold
et al. 2019; Reinhold & Hekker 2020; Angus et al. 2020; Gordon
et al. 2021), including the first ground-based data set to have ob-
served this feature in period temperature space. Although the gap
is not as clear as in the space-based data, we align models from a
number of previous works to a region of lower density in the NGTS
data, as shown in Figure 9.

By utilising empirical models from previous studies on Kepler
and K2 data, we separated our sample into three sub-samples: this
is seen in Figure 10. Within the two upper sub-samples, we see
the highest period objects are on average further above the main
sequence in 𝐺 than the lower period objects. This effect has been
previously observed, as Davenport & Covey (2018) saw a small
increase in period as we move up in magnitude from the main se-
quence, but not as far as to be influenced by large numbers of binary
objects. We note, similar to the Davenport & Covey (2018) study
that we do not account for metallicity or age when considering the
distance from a Solar metallicity defined main-sequence isochrone
at 1Gyr. Metallicity has been shown to affect the amplitude of vari-
ability signals and additionally may lead to observational biases
whereby for a given mass, higher metallicity stars’ variability is
more easily detected (See et al. 2021). There is also the possibil-
ity of contamination by lower mass-ratio binary systems. Further
observations of open clusters with defined stellar ages and a tight

single-star main sequence may afford more conclusive evidence to-
wards this period gradient across the main sequence. Such studies
have been conducted on open clusters across a large range of ages
such as Blanco 1 (∼ 100Myr) (Gillen et al. 2020a), Praesepe (∼ 800
Myr) (Rebull et al. 2016, 2017), Ruprecht 147 (∼ 3 Gyr) (Gruner
& Barnes 2020) and M67 (∼ 4 Gyr) (Barnes et al. 2016).

The two sub-samples do not appear to be significantly contam-
inated by multiple systems and arise from similar locations on the
HR diagram. Combined with the knowledge that these objects are
from a range of pointings, this supports the conclusion of Gordon
et al. (2021) that these two sub-samples do not derive from two
distinct star formation epochs.

A broken spin-down law as discussed in Gordon et al. (2021)
would be explained well by our data, including the possibility that
the (very few) objects observed within this gap are currently transi-
tioning between the two longer period sub-samples. In this broken
spin-down law, the angular momentum change of the star will devi-
ate from the expected 𝑡1/2 relation proposed by Skumanich (1972)
due to the transfer of angular momentum between the envelope and
the core. Prior to this transfer of angular momentum, the core and
envelope are decoupled, resulting in the expected 𝑡1/2 spin-down
of the envelope but with a rapidly rotating core which will then
reduce or even stop the spin-down once the core and envelope re-
couple. This model has been suggested to fit Kepler data in addition
to K2 data (Angus et al. 2020; Gordon et al. 2021), and theorists
such as Lanzafame & Spada (2015) and later Spada & Lanzafame
(2020) have incorporated these effects into stellar evolution mod-
els which have been shown to fit observed cluster data of different
ages. The proposed models include a two-zone model of internal
stellar coupling, with a parameter describing the mass dependence
of the coupling. The recent analysis of the ∼ 3 Gyr old open clus-
ter Ruprecht 147 by Gruner & Barnes (2020) demonstrates that
the model from Spada & Lanzafame (2020) incorporating internal
angular momentum transfer is best suited to model the rotational
evolution of stars redder than K3 in comparison to more naive gy-
rochronology models.

Another suggestion for the origin of this gap comes from an
analysis by Reinhold et al. (2019) and Reinhold & Hekker (2020)
of K2 data. In their proposed model, the gap arises from objects
in which the photometric variability arising from spots and facu-
lae is of similar magnitude, thus cancelling out resulting in lower
amplitude variability that is correspondingly harder to detect. They
observed a slight decrease in signal amplitude on either side of the
gap in period, and hypothesised objects of this period could exhibit
spot-faculae photometric cancellation. We do not observe such an
obvious decrease in signal amplitude in our full sample, and when
considering a smaller range of amplitudes more aligned with the K2
sample we again did not see this amplitude gradient. This may be
attributed to NGTS photometry being less precise than Kepler, and
a small change on a signal of 1% amplitude may not be detectable.
To accurately determine the dominant surface feature of a star re-
quires observations of spot-crossing events during planetary transits
or Doppler images, neither of which are appropriate for follow-up
from a large-scale photometric study.

6 CONCLUSIONS

In this study we extract robust variability periods for 16, 880 stars
out of 829, 481 stars observed with the Next Generation Transit
Survey (NGTS), based in Paranal, Chile. This is the largest ground-
based systematic photometric variability study conducted to date
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with such precise and high-cadence photometry and highlights both
the advantages of such studies as well as the challenges. Using pre-
cise ground-based photometry, plus a generalisation of the autocor-
relation function to irregularly sampled data, we are able to detect
variability amplitudes down to levels of 0.3%. The contamination of
signals by systematics demonstrates that using ground-based pho-
tometry requires further thought than using much cleaner space-
based data in order to avoid false positives arising through aliases.
The most common source of aliases arose fromMoon contaminated
signals as well as aliasing from the 1-day periodic sampling intrin-
sic to ground-based observations. We demonstrate we are able to
overcome these limitations and produce robust variability signals
across our sample.

In comparison to previous large-scale stellar variability stud-
ies, we note that with NGTS we are able to observe across the
Southern sky (in comparison to Kepler’s single pointing, as in Mc-
Quillan et al. (2014) and Davenport & Covey (2018)). We do not
pre-select our targets as is the case for Kepler and K2, and so we are
able to observe variability across a more varied stellar sample. In
particular, we extract long term variability periods for a population
of cool dwarfs, similar to a population observed by Newton et al.
(2018) using MEarth. This is made possible through our longer ob-
servation baseline than space-based missions such as K2. This large
population, sampled across the sky over a long (250 day) base-
line allows this study to connect previous space-based studies on
main-sequence, predominantly Solar-type stars with ground-based
M-dwarf studies, which were previously unconnected.

Within the bulk of our rotation period ‘I-Sequence’, we observe
a gap between 15 and 25 days, first observed by McQuillan et al.
(2014), and later studied in detail by Davenport & Covey (2018),
Reinhold et al. (2019), Reinhold & Hekker (2020), Angus et al.
(2020) and Gordon et al. (2021). Using models from Gordon et al.
(2021), Angus et al. (2019) and Meibom et al. (2011) we are able
to demonstrate that the gap is present in our data set, and also
show that the two sub-samples of main-sequence objects above and
below this gap appear to arise from similar stellar populations on the
CMD which are not contaminated by high levels of binarity. This
supports the hypothesis of a broken spin-down model as proposed
by Lanzafame & Spada (2015) and Spada & Lanzafame (2020)
rather than distinct populations of star formation.

We also conclude that although a large population study of field
stars is useful for assessing trends in the wider stellar population,
without well-defined ages of target stars it is difficult to confirm an-
gular momentum models. We suggest that studies of open clusters
with well-defined ages and tight rotation sequences such as the re-
cent study byGruner&Barnes (2020)will yield themost conclusive
evidence towards how stellar angular momentum evolves over the
lifetime of a star. Additionally, we observe a number of interesting
non-main-sequence populations, including a small population of
objects which lie well above the main sequence with short rotation
periods. Follow-up observations of these targets would allow us to
ascertain whether these stars are young, single stars such as T-Tauri
objects, or multiple star systems. This data set presents a wealth
of additional data with many avenues for follow-up science. These
include both continued systematic variability analysis of the NGTS
data and also more in-depth analysis of interesting sub-populations
of variable objects not explored in this cardinal NGTS variability
study.
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APPENDIX A: DETAILED MOON SIGNAL ANALYSIS

In order to systematically detect Moon contaminated signals (for
example as shown in Figure A1), we fit a model to the flux data,
phase folded on the expectedMoon period for each NGTS field. The
expected Moon period is calculated from a scaled expected Moon
brightness curve, calculated as a product of the on-sky separation
of the field from the Moon and the Moon illumination fraction,
𝐼 = (1 + cos (𝜃𝑝ℎ𝑎𝑠𝑒))/2. 𝜃𝑝ℎ𝑎𝑠𝑒 is the Moon phase angle defined
for a time and ephemeris. For most fields, this gave a period of
approximately 28.5 days, between the synodic and sidereal periods
as expected.

The model is a simple three-parameter, piecewise model de-
scribed in Equation A1, where the parameter 𝑥 is the location in
half phase 𝑥 ∈ [0, 1].

{
flux0 0 ≤ 𝑥 ≤ turnover
𝑚𝑥 + 𝑐 turnover < 𝑥 ≤ 1

(A1)
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Figure A1. Two examples of typical Moon tainted signals. For each object,
the light curve is phase folded on the expected Moon period and epoch. 0.0
& 1.0 phase are at new Moon, 0.5 phase is at full Moon. We see an example
of an over-corrected signal with a typical decrease in flux at full Moon (top).
An under-corrected signal demonstrates the opposite trend (bottom). Both
signals exhibit an increase in scatter at full Moon, with an otherwise fairly
flat light curve.
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Figure A2. The three-parameter Moon model fit is used to assess if a signal
is contaminated by the Moon. The flux data is phase folded on the period of
the Moon and then again in half such that 0.0 in phase corresponds to new
Moon and 1.0 in phase corresponds to full Moon.

Where

𝑚 =
flux1 − flux0
1 − turnover

𝑐 = flux1 − 𝑚

We fit for the 3 parameters flux0, flux1 and turnover. This model
fit is assessed by checking the following criteria, with an example
shown in Figure A2.

• Is the model turnover point at the expected point in phase?
(between 0.2 and 0.8 in half-phase).

• Is there a flux RMS increase after the model turnover point?
• Is there a noticeable (i.e. > 1𝜎) change in flux from new to

full Moon?
• Is there any missing data at full Moon?

If 3 or more of these criteria are met, the object is flagged as
Moon contaminated and removed from the processing.

APPENDIX B: MODEL PARAMETERS

In Figure 10a we use empirical models defined in Angus et al.
(2019) and Gordon et al. (2021). In this section, we provide the
model equations and the parameters used.

B1 Angus model

We use the Praesepe-calibrated gyrochronology relation defined
in Angus et al. (2019). The mathematical form of this fifth-order
polynomial relationship is given in Equations B1 & B2 below for
two different 𝐺𝐵𝑃 − 𝐺𝑅𝑃 regimes:

log10 (𝑃rot) = 𝑐𝐴 log10 (𝑡) +
4∑︁

𝑛=0
𝑐𝑛 [log10 (𝐺𝐵𝑃 − 𝐺𝑅𝑃)]𝑛 (B1)

for stars with 𝐺𝐵𝑃 − 𝐺𝑅𝑃 < 2.7 and

log10 (𝑃rot) = 𝑐𝐴 log10 (𝑡)+
1∑︁

𝑚=0
𝑏𝑚 [log10 (𝐺𝐵𝑃 − 𝐺𝑅𝑃)]𝑚 (B2)

for stars with 𝐺𝐵𝑃 − 𝐺𝑅𝑃 > 2.7. Here 𝑃rot is the rotation period
in days, and 𝑡 is age in years. We use the best-fit coefficients from
Table 1 of Angus et al. (2019).

B2 Gordon Model

We use the K2 calibrated model from Gordon et al. (2021) to define
the upper and lower edges of the bi-modality gap seen in the I-
sequence envelope. The gap edges are fitted using a function of the
form:

𝑃 = 𝐴(𝐺 − 𝐺𝑅𝑃 − 𝑥0) + 𝐵(𝐺 − 𝐺𝑅𝑃 − 𝑥0)1/2 (B3)

where 𝑃 is the rotation period in days. This equation is defined
empirically for K2 stars with 0.8 < 𝐺 − 𝐺𝑅𝑃 < 1.05. We use the
best fit coefficients defined in Table 7 of Gordon et al. (2021).

The lower edge of the K2 sample from Gordon et al. (2021)
used an edge-detection method, and as such no parametric model
form was given. We instead define our lower edge by eye, taking the
edge-detection fit line from the Gordon et al. (2021) paper.
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