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Section 1. Statistics of datasets 

a. The Mice Dataset construction  

The Mice dataset(Lange, et al., 2016) is constructed according to the SPO11-oligo maps from 

C57BL/6J. Soluble protein is subjected to two successive rounds of affinity purification with 

a monoclonal anti-mSPO11 antibody and protein A-agarose beads. Sampled hotspots are 

identified with 0.000377 RPM/bp, which is 50 times of the average reads per million (RPM) 

within the mappable GRCm38/mm10 genome. The selected hotspots are further cropped into 

1000bp for deep learning purposes, resulting in 9,620 hotspot sequences. Similarly, the 

coldspot region is equally selected with 1 ∗ 10−7 times of the average reads per million 

(RPM) within the mappable GRCm38/mm10 genome region and cropped with the same 

length 

 

b. The Yeast Dataset construction  

In order to verify our method’s generalization ability on species lacking the PRDM9 gene, we 

further construct Yeast(Mancera, et al., 2008)  (Saccharomyces cerevisiae) hotspots from 

nearly 52,000 markers in all the four viable spores derived from 51 meiosis of an 

S288c/YJM789 hybrid strain. Pairs of genotype changes isolated from all other changes are 

called NCOs if they appear on the same spore, or COs if they appear on two spores. In total, 

468 meiotic hotspots (averaging 842bp in length) that contain 92 COs and 74 NCO are 

cropped from the S288C Yeast reference genome. As S288C Yeast reference genome is 

much shorter than that of humans and mice, we define the corresponding recombination 

coldspots as the gap sequences between two recombination hotspots with at least 1000bp 

away from hotspots. Statistical comparison between the hotspots data across different species 

can be found in Supplementary Table S2. 

 

c. The 1000 Genome Dataset construction  

We utilize the population-wise recombination maps generated from the 1000 Genomes 

Dataset(Genomes Project, et al., 2015) to conduct the direct meiotic recombination hotspot 

prediction as well as downstream analysis. Fine-scale maps having an average resolution of 

711 bp based on 26 diverse human populations are further merged into five super-

populations: African (AFR), admixed American (AMR), East Asian (EAS), European (EUR), 

and South Asian (SAS). The merged five super-populations share a high Spearman 

correlation ranging from 𝜌 =  0.986 to 𝜌 =  0.998 within each category. Therefore, we 

further map the recombination hotspot regions within each super-population category to the 

GRCh38 reference genome, and generate corresponding hotspots for each population (AFR 

50,049 hotspots avg 27.46cM/ Mb; AMR 18,160 hotspots avg 27.32cM/Mb; EAS 27,030 

hotspots avg 38.44cM/ Mb; EUR 31,283 hotspots avg 35.05cM/ Mb; SAS 32,593 hotspots 

avg 33.92cM/ Mb). Similar to the Icelandic(Halldorsson, et al., 2019) dataset, we select the 

coldspot sequences from the lowest recombination rate regions of the recombination map 

(AFR 50,049 coldspots avg 0.0378cM/Mb; AMR 18,152 coldspots avg 0.039cM/Mb; EAS 

27,020 coldspots avg 0.094cM/Mb; EUR 31,273 coldspots avg 0.038cM/Mb; SAS 32,583 

coldspots avg 0.033cM/Mb). Statistical comparison between the generated hotspots and 

coldspots data across different populations can be found in Supplementary Table S3. 

d. Sex-specific Feature  

 

When targeting sex-specific recombination prediction, we use the ChIP-seq features as extra 

information for the proposed RHSNet. Following the previous research(Halldorsson, et al., 

2019), we use histone modifications from ovary for the maternal map and testis for the 



Page 3 of 28 
 

paternal map. On the Icelandic(Halldorsson, et al., 2019) dataset, we define the hotspot ChIP-

seq feature as the closest narrow peak next to the hotspot sequence found in six different 

kinds of histone modifications(Dekker, et al., 2017) (H3K4me1(Yamada, et al., 2013), 

H3K4me3, H3K27ac(Chen, et al., 2020), H3K9me3, H3K36me3, H3K27me3). Similarly, we 

define the coldspot feature as the closest narrow peak next to the coldspot sequence. 

Specifically, the feature vector is set to zero when the actual distance exceeds 10kbp. 

 

 

 5-fold Cross-validation Imbalanced Testing 

 Hotspots Coldspots Hotspots Coldspots 

Icelandic 

2019(Halldorsson, 

et al., 2019) 

20,000 20,000 5,467 95,733 

 
51.07cM/Mb 1.78e10-10 cM/Mb 43.18cM/Mb 0.07 cM/Mb 

HapMap II  

2008(Frazer, et 

al., 2007) 

17,552 
10.5cM/Mb 

17,547 
0.5cM/Mb 

—— —— 

 
    

Sperm 2020(Bell, 

et al., 2020) 

5,000 
19.96cM/Mb 

5,000 
1e10-20 cM/Mb 

—— —— 

Supplementary Table S1. Statistical comparison of our hotspots/coldspots construction across 

different studies on the human genome, with an imbalanced testing dataset on Icelandic(Halldorsson, 

et al., 2019) 2019 dataset. The average recombination rate of each study is attached under each row. 

 

 

 Hotspots Coldspots 

Icelandic Paternal     15,000 15,000 

 44.13cM/Mb 1.2e10-14cM/Mb 

Icelandic Maternal     20,000 
48.28cM/Mb 

20,000 
1.8e10-11cM/Mb 

   

Mouse(Lange, et al., 2016) 9,620 

 

9,620 

 

Yeast 468 

 

468 

 

Supplementary Table S2. Statistical comparison of dataset construction across different sexes and 

different species. 
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Population Code Population Hotspots Coldspots 

AFR African 
50,049 

27.45cM/Mb 

50,035 

0.0378cM/Mb 

AMR Admixed American 
18,160 

27.32cM/Mb 

18,152 

0.0390cM/Mb 

EAS East Asian 
27,030 

38.44cM/Mb 

27.020 

0.094cM/Mb 

EUR European 
31,283 

35.50cM/Mb 

81,273 

0.0380cM/Mb 

SAS South Asian 
32,593 

33.91cM/Mb 

32,583 

0.0383cM/Mb 

Supplementary Table S3. Statistical comparison of the 1000 Genome(Genomes Project, et al., 2015) 

dataset construction across five populations with corresponding recombination rate over each 

population. 

 

 

 

 
Supplementary Figure S1. The recombination rate distribution over chromosome 13 from the 

Icelandic dataset. The resolution is set as 100kbp. 
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Section 2. Supplementary methods 

a. The deep learning network architecture  

 

The deep learning network architecture consists of two independent feature extractors. The 

sequence feature extractor first encodes DNA sequences into one-hot matrices. To represent 

each nucleotide, we define the encoding as a vector of size 4, A as (1 0 0 0), T as (0 0 0 1), G 

as (0 0 1 0), and C as (0 1 0 0). Next, two convolution layers are introduced as a feature extractor 

to encode the one-hot matrix into a relatively shorter feature vector. Utilizing sequential neural 

networks known as Gated Recurrent Units (GRU) and multi-head Attention mechanism, we 

take advantage of the combination of sequential model and attention model to capture the deep 

contextual information of the input sequence. 

The ChIP-seq feature extractor takes the sequence's nearest corresponding ChIP-seq(Roadmap 

Epigenomics, et al., 2015) information (including the peak value, score, and signal value from 

6 different histone modifications: H3K4me1, H3K4me3, H3K27ac, H3K9me3, H3K36me3, 

and H3K27me3) as input. The ChIP-seq information is encoded as high-dimensional feature 

vectors and fed into the network. We apply fully connected layers with dropout at this part of 

the network to prevent over-fitting during training. Finally, high-dimensional features 

containing both sequences and their surrounding histone H3 protein information are passed to 

the final SoftMax layer, producing the final prediction. 

 

 
Supplementary Figure S2. The detailed identification model of our proposed RHSNet-chip framework. 

The input sequence would first go through two 1-D convolutional layers as the sequence feature 

extractor. Then it will go through a Gated Recurrent Unit (GRU) for capturing long-range information, 

and a multi-head attention layer for detecting interactions within the sequence. In parallel, the ChIP-seq 

information would go through a fully connected network. Finally, the sequence feature and the ChIP-

seq feature would be merged and give out the final prediction via the SoftMax activation. 

 

 

b. Parameter settings and implementation details 
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The baseline CNN has two plain convolution layers connected with the final SoftMax layer. 

The first 1D convolution layer is designed with a filter of length16 and a kernel size of 30 with 

ReLU activation. The proposed RHSNet connects a Gated Recurrent Units (GRU) and a Multi-

head attention layer after the 2-layer feature extractor. The number of neurons assigned in GRU 

is designed as 16. We use four multi-heads with the head size as 4 in the multi-head Attention 

mechanism. 

Stochastic gradient descent with the momentum parameter as 0.9 and dynamically updated 

weight decay is used to optimize the learning process. The batch size is selected to be 64. The 

initial learning rate is set to be 1 ∗ 𝑒−3. The dropout ratio is set to be 0.1 after the first and the 

second convolution layer to prevent over-fitting. 

c. ChIP-seq feature extraction and importance score board 

We quantify the distribution of three Chromatin Immunoprecipitation Sequencing (ChIP-seq) 

features (Score, Signal Value, Peak Value) extracted from the peaks of signal enrichment based 

on six different kinds of histone modifications(Dekker, et al., 2017) (H3K4me1(Yamada, et al., 

2013), H3K4me3, H3K27ac(Chen, et al., 2020), H3K9me3, H3K36me3, H3K27me3), on 

different cell lines. Specifically, for paternal recombination map, we select the histone 

modifications from homo sapiens testis tissue (male adults, see Supplementary Fig. S8A). For 

maternal recombination map, we select the histone modifications from homo sapiens ovary 

tissue (female adults, see Supplementary Fig. S8B).  Score is an integer value ranging from 0 

to 1000, representing the significant score of each peak. Signal Value measures the average 

enrichment for the related peak region. Peak Value is the point-source called for this peak. It 

is the 0-based offset from the chromosome starting point and is set to -1 if no point-source is 

called. We take the log mean feature values of each histone modification and choose the nearest 

conservative peaks of each hotspot/coldspot clip. 

Within each type of histone modification, p-values are obtained using the two-tailed Student’s 

t-test. The calculated t-statistics of H3K4m3-signalValue (8.03 ∗ 10−7 ), H3K4m3-peakValue 

( 1.16 ∗ 10−9 ), and H3K36me3-peakValue ( 3.91 ∗ 10−2 ) show the significant statistical 

difference between hotspots and coldspots within 18 features. 

To further quantitively perceive the difference between the above 18 features and provide a 

more intuitive impression of their significance, we define the importance scoreboard not only 

as an index for measuring the usefulness of each feature, but also as an important index for 

measuring the quality and statistical significance of the feature’s contribution to the 

improvement of the final prediction. The score is calculated by backpropagating the activation 

through the entire network to the ChIP-seq feature extraction branch of the RHSNet deep 

learning model. The greater the contribution score, the higher likelihood that this feature, along 

with its histone modification, plays a critical role in the prediction process. 

d. Motif embedding and outlier detection  

To intuitively visualize the discovered motif, we utilize DNABERT(Ji, et al., 2021), which 

extracts the short- to long-term patterns of each enriched motif into a fixed-size embedding 

vector. The embedded vector is further fitted into t-distributed Stochastic Neighbor 

Embedding(van der Maaten and Hinton, 2008) (t-SNE) to visualize the 2-dimensional 

embedding vector and investigate their divergence across different sexes, populations, and 

species. We use heatmaps of 2-mers to illustrate the physical meaning of each motif embedding 

cluster. Practically, we calculate the frequency of the 16 possible 2-mers within the [A, T, C, 

G] alphabets that appear in each population, sex and species, and visualize them with the 

saliency heatmap. 

The outliers within each cluster are defined by the Local Outlier Factor (LOF)(Breunig, et al., 

2000). This algorithm is an unsupervised anomaly detection method that computes the local 

density deviation of a given data point with respect to its neighbors. It considers as outliers the 

samples that have a substantially lower density than their neighbors. During the outlier 
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detection, we compute the locality based on the given k-nearest neighbors, whose distance is 

used to estimate the local density. By comparing the local density of a sample to the local 

densities of its 50 neighbors, we can identify samples that have a substantially lower density 

than their neighbors. These motifs are considered outlier motifs. 

Regarding calculating the divergence of the embedded vectors distributing within 2-D space, 

we calculate the average distance of each embedded vector of selected species/sex/population 

to the central point of each embedding space. For example, the vectors of maternal crossover 

sequences have an average distance of 0.0447 (±1.9 ∗ 10−2), which is much larger and has 

grater dispersion than that of paternal crossovers: 0.0355 ± 1.6 ∗ 10−2. 

 

e. Evaluation Criteria 

We use multiple evaluation methods to quantify the prediction results generated by different 

prediction methods according to the number of TP (True Positives), FP (False Positives), FN 

(False Negatives), and TN (True Negatives) samples.  

 

Accuracy (ACC) can judge the performance of our model, but there is a serious flaw: in the 

case of imbalanced positive and negative samples, the category with a large proportion will 

often become the most important factor affecting accuracy. Therefore, sometimes, it might not 

reflect the overall prediction performance of the model. Accuracy is defined as follows: 

 

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

  

F1 score (F1-Score) is a weighted average of recall and precision, and is defined as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(4) 

  

 

Matthews correlation coefficient (MCC) is an index used in machine learning to measure the 

binary classification performance of the predictor. It is generally considered to be a relatively 

balanced evaluation metric, and it can be applied even when the number of positive and 

negative classes is extremely imbalanced. MCC is essentially a coefficient describing the 

correlation between the actual classification and the predicted classification. Its value range is 

[-1,1]. A value of 1 indicates a perfect prediction of the subject, and a value of 0 indicates that 

the predicted result is not as good as the random predicted result. -1 means that the predicted 

classification is exactly the opposite of the actual classification. MCC is defined as: 

 

𝑀𝐶𝐶 =  
𝑇𝑃 ∗ 𝑇𝑁 − 𝑇𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 (5) 

  

ROC curve and the corresponding AUROC score are other evaluation indexes. The larger the 

area under the curve (AUC), or the curve closer to the upper left corner (true positive rate=1, 

false-positive rate=0), the better the model’s prediction in the task. 
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f. Imbalanced Testing 

The recombination hotspots prediction is a problem that the number of positive samples 

(hotspots) is much less than that of negative samples (coldspots), which makes it difficult for 

the predictor to achieve high sensitivity. In average maps of the Icelandic2019(Halldorsson, et 

al., 2019) dataset, we found 130,172 hot spots and 755,041 cold spots with extreme diverse 

recombination rate from1.7e10−17cm/Mb to 56,242.73cm/Mb. Those sequences with lengths 

longer than 1kb were discarded during training, and the remaining hotspot samples are 17 times 

less than the cold spots samples (see Supplementary Table S1). 

 

As shown in Supplementary Figure S4, after the balanced training, we test our model 

throughout all the sequence samples across the entire genome from the paternal and maternal 

maps at the Icelandic 2019(Halldorsson, et al., 2019) dataset. The area under the receiver 

operating characteristic (AUROC) was calculated to evaluate the algorithm’s performance 

under an imbalanced prediction task. The RHSNet approach achieves the best AUCROC score 

of 0.689. 

 

 

g. Recombination Rate Comparison 

The illustration of the recombination rate distribution over the detected paternal and maternal 

motifs (Supplementary Figure S14) shows that the maternal recombination rates are relatively 

higher than that in paternal crossovers within each rate interval.  

 

h. Hit@20,50,100 Evaluation 

Similar to the Recommendation System (RS) ranking evaluation index, the motif detection 

method proposed in RHSNet that recommends prediction motifs could be evaluated similarly.  

First, we calculate the enrichment factor for each detected motif through the contribution score 

of that slot over the entire input sequence. In this way, each detected motif will get an 

enrichment factor score. Furthermore, we sort these scores in descending order so that the 

motifs with the highest enrichment factor would be ranked in the front. 

 

According to the above ranking function, we can count whether the PRDM9-A/C allele exists 

for each detected motif is in the top 20 of the sequence, and if so, we add one count to Hit@20. 

In the end, the top 20 number/total is Hit@20. Similarly, Hit@50 and Hit@100 are the top 

50/100 detected PRDM9-A/C alleles over the total number of motifs. Furthermore, the value 

of Hit@20 may exceed 20 because the detected motif is usually 21bp long, and it might contain 

more than one 12-bp motifs in one sequence. 

 

Intuitively speaking, the key factor of predicting an input sequence as the recombination 

hotspot will give much credit to the PRDM9-A/C allele. As showed in Supplementary Table 

S6, the PRDM9-A allele is ranked pretty high in Hit@10/20/100 evaluation, demonstrating that 

RHSNet could precisely identify the key factor of the recombination hotspot determinant. Also, 

the number of the RHSNet-detected PRDM9-A allele is approximately nine times larger than 

that of the PRDM9-C allele. Such a result is consistent with previous studies that the PRDM9-

A motif plays a role in approximately 40% of hotspots and is proposed to be involved in 

initiation specification or other aspects of recombination activity. 

 

i. Maximum Mean Discrepancy (MMD) calculation 

As a kernel-based distance calculation metric, Maximum Mean Discrepancy (MMD) can 

accurately quantify the similarity and the distance between two vector distributions. When 

measuring the difference between two embedding distributions, because we need to measure 
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the non-parametric distribution distance between the source and target data, namely, P and Q, 

we use MMD. The calculation is done by the following equation: 

𝑀𝑀𝐷(𝑃, 𝑄) =  ‖
1

𝑛
 ∑ ∅(𝑥𝑖) −

1

𝑚
∑ ∅(𝑦𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

‖

𝐻

2

(6) 

 

For example, when comparing the embedding distance between paternal motif vectors (P) and 

maternal motif vectors (Q), we map P and Q (Original 𝑿 space) from the original embedding 

space to another space 𝐇 (𝐇𝐢𝐥𝐛𝐞𝐫𝐭 𝐬𝐩𝐚𝐜𝐞) through the function ∅: 𝑿 → 𝑯. Then, we can 

calculate the mean difference between P and Q in the H space feature dimension. When 

utilizing MMD as the evaluation metric for calculating the distance between two distributions 

within the embedding space, we can determine whether the two distributions are similar. 

Quantitatively, the 𝑴𝑴𝑫(𝑯𝒖𝒎𝒂𝒏, 𝑴𝒐𝒖𝒔𝒆) is 0.0221 (𝑝 = 0.9774), which is much smaller 

than 𝑴𝑴𝑫(𝑯𝒖𝒎𝒂𝒏, 𝒀𝒆𝒂𝒔𝒕)=0.3729 (𝑝 = 8.5 ∗ 10−3). 

 

j. PRDM9-A/C allele identification 

All the PRDM9-A/C alleles are identified through rigorous multiple sequence alignment from 

both ground-truth hotspots and detected binding motifs. The major PRDM9-A allele: 

CCNCCNTNNCCNC and its reverse: GGNGGNANNGGNG, as well as PRDM9-C allele: 

CCGCNGTNNNCGT and its reverse: GGCGNCANNNGCA, are selected as the reference 

sequences. Each discovered motif would be conducted a pairwise sequence alignment with 

each allele using a dynamic programming algorithm. The selected motif would only be 

considered containing the major allele A when having the minimum alignment score of 8, 

which is chosen as the certainty of the 8 certain bases:  CC-CC-T--CC-C and GG-GG-A--GG-

G. The identification rule is also applied for the identification of the rare allele C. 

 

k. Explanation for back-propagation based reference sequence selection 

Base on the Homo sapiens (human) genome assembly GRCh38 (hg38) from Genome 

Reference Consortium . We have calculated the frequencies of A, C, G, T, N nucleotides(where 

N represents any nucleotide)  for 22 autosomes as:  

'A': 812507870, 'C': 563229147,'G': 565528321, 'T': 815065703, 'N': 118670481,'all': 

2875001522. 

Therefore, we have calculated the corresponding frequency:  

A:0.2826, C:0.1959,G:0.1967, T:0.2835,N:0.0412.  

Since we don’t indicate N nucleotides in our filter-based back propagation, we approximate 

the frequencies for A,C,G and T nucleotides of 0.3, 0.2, 0.2, and 0.3. 

 

l. Explanation for choosing Wn from [0.1,0.2,0.4] 

In this manuscript, we have all the data represented as 1000bp sequence. Therefore, the sample 

signal can be considered a 1 second signal with 1000hz sampling frequency ( 𝑓𝑠 = 1000).  

For example, when the users are looking for 10bp-length motif, we want to filter out the 

insignificant peaks with length less than 10bp. Therefore, we can select the cut-off frequency:  

fc= 
1

10

1000

= 100Hz. So, the user can select 𝑊𝑛 = 2 ∗ 𝑓𝑐  / 𝑓𝑠= 2*(100)/1000 = 0.2 to capture 

interesting motifs with approximately 10bp length. Similarly, the user can set 𝑊𝑛 =0.1 to 

capture motifs close to 50bp length, and 𝑊𝑛=0.4 for motifs close to 5bp length.  
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Section 3. Supplementary identification results 

a. Detailed overall classification performance statistics on different datasets 

 

Data Method F1 Score % Accuracy % MCC % 

Icelandic(Halldorsson, 

et al., 2019) 

RHSNet 63.61 (±1.94) 66.47 (±0.62) 33.45 (±1.41) 

Equivariant CNN(Brown 

and Lunter, 2019) 

62.66 (±2.09) 65.93 (±0.51) 32.54 (±1.35) 

CNN 60.30 (±2.51) 62.96 (±0.99) 26.29 (±2.09) 

PseDNC(Chen, et al., 

2013) 
53.79(±0.58) 55.13(±0.62) 10.3(±1.26) 

Paternal Map     

Icelandic(Halldorsson, 

et al., 2019) 

RHSNet-chip 64.66(±1.37) 66.20 (±0.58) 32.31 (±1.06) 

RHSNet 63.17 (±1.58) 66.11 (±0.72) 32.70 (±1.84) 

Equivariant CNN(Brown 

and Lunter, 2019) 

63.08 (±1.58) 65.79 (±0.92) 31.99 (±2.01) 

CNN 60.31 (±2.62) 61.80 (±1.57) 23.80 (±3.18) 

PseDNC(Chen, et al., 

2013) 
52.48(±0.40) 53.53(±0.30) 7.08(±0.58) 

Maternal Map     

Icelandic(Halldorsson, 

et al., 2019) 

RHSNet-chip 64.21 (±1.94) 66.09 (±0.85) 31.89 (±1.77) 

RHSNet 63.17 (±2.11) 65.47 (±0.75) 31.34 (±1.48) 

Equivariant CNN(Brown 

and Lunter, 2019) 

61.99 (±2.46) 64.74 (±0.66) 29.98 (±1.42) 

CNN 60.55 (±1.80) 62.35 (±0.98) 24.95 (±2.11) 

PseDNC(Chen, et al., 

2013) 
53.88(±0.46) 54.96 (±0.22) 9.95(±0.42) 

Hapmap II (Frazer, et 

al., 2007) 

RHSNet 61.49 (±1.72) 64.02 (±0.44) 29.39 (±1.08) 

Equivariant CNN(Brown 

and Lunter, 2019) 

60.07 (±2.09) 63.81 (±0.64) 28.25 (±1.54) 
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CNN 57.89 (±2.68) 60.28 (±1.37) 20.84 (±2.88) 

PseDNC(Chen, et al., 

2013) 

52.72(±0.48) 52.27 (±0.28) 4.56 (±0.58) 

Sperm(Frazer, et al., 

2007) 

RHSNet 68.92 (±3.51) 67.95 (±1.55) 36.55 (±3.0) 

Equivariant CNN(Brown 

and Lunter, 2019) 

67.87 (±2.41) 67.15 (±0.93) 34.62 (±1.71) 

CNN 68.33 (±2.43) 66.32 (±1.12) 33.21 (±2.43) 

PseDNC(Chen, et al., 

2013) 
66.08(±1.03) 63.25 (±1.32) 26.91 (±2.60) 

Mouse(Lange, et al., 

2016) 

RHSNet 87.31 (±0.78) 86.32 (±0.72) 73.59 (±1.54) 

Equivariant CNN(Brown 

and Lunter, 2019) 

73.93 (±4.48) 75.41 (±3.32) 51.32 (±6.52) 

CNN 76.77 (±1.71) 76.25 (±0.94) 52.07 (±1.94) 

PseDNC(Chen, et al., 

2013) 
64.04 (±1.01) 63.89 (±0.82) 27.85 (±1.669) 

Supplementary Table S4. Detailed classification performance of the proposed RHSNet-chip and 

RHSNet, compared with the baseline CNN model , PseDNC(Chen, et al., 2013) and Equivariant 

CNN(Brown and Lunter, 2019). RHSNet shows outstanding prediction performance on multiple 

benchmark datasets: Icelandic(Halldorsson, et al., 2019), HapMap II(Frazer, et al., 2007), Sperm(Frazer, 

et al., 2007), and Mouse(Lange, et al., 2016), which are across different studies, sexes, and species. 
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Supplementary Figure S3. Detailed data statistical performance of RHSNet across different studies 

and sexes. (a) Boxplot of accuracy (Acc) distribution that distinguishes RHSNet from Baseline CNN 

and Equivariant CNN(Brown and Lunter, 2019) in multiple trials of 5-fold cross-validation experiments. 

(b) Boxplot of Matthews correlation coefficient (MCC) distribution that distinguishes RHSNet from 

Baseline CNN and Equivariant CNN in multiple trials of 5-fold cross-validation experiments. 
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b. Imbalanced testing on Icelandic dataset 

 

Supplementary Figure S4. In the Icelandic 2019 dataset, we show the ROC curve and the AUROC 

score of 4 prediction methods during imbalanced testing. RHSNet achieves the best prediction 

performance with an AUROC score of 0.688. 

 

c. ROC comparison against Equivariant CNN(Brown and Lunter, 2019) PseDNC(Chen, 

et al., 2013) and  on multiple datasets across different studies and species 
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Supplementary Figure S5. In all the datasets, we show the ROC curve and the AUROC score of the 

proposed RHSNet and the existing state-of-the-art method Equivariant CNN and SVM based method 

PseDNC. RHSNet has relatively higher prediction performance in each dataset. 
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d. Detailed comparison against PseDNC with different parameters 
 

Data Method lambda weight Overall Accuracy% 

Icelandic(Halldorsson, 

et al., 2019) 

RHSNet -- -- 66.47 (±0.62) 

Equivariant CNN -- -- 65.93 (±0.51) 

CNN -- -- 60.30 (±2.51) 

PseDNC + SVM 3 0.05 55.13(±0.62) 

PseDNC + SVM 5 0.05 55.07 (±0.68) 

PseDNC + SVM 10 0.05 55.33(±0.76) 

Paternal Map     

Icelandic(Halldorsson, 

et al., 2019) 

RHSNet -- -- 66.23 (±0.87) 

Equivariant CNN -- -- 66.11 (±0.72) 

CNN -- -- 65.79 (±0.92) 

PseDNC + SVM 3 0.05 53.53(±0.30) 

PseDNC + SVM 5 0.05 53.16 (±0.38) 

PseDNC + SVM 10 0.05 54.63(±0.46) 

Maternal Map     

Icelandic(Halldorsson, 

et al., 2019) 

RHSNet -- -- 65.57 (±0.78) 

Equivariant CNN -- -- 65.47 (±0.75) 

CNN -- -- 64.74 (±0.66) 

PseDNC + SVM 3 0.05 54.96(±0.22) 

PseDNC + SVM 5 0.05 55.07 (±0.34) 

PseDNC + SVM 10 0.05 55.14(±0.36) 

HapMap II(Frazer, et 

al., 2007) 

RHSNet -- -- 64.02 (±0.44) 

Equivariant CNN -- -- 63.81 (±0.64) 

CNN -- -- 60.28 (±1.37) 

PseDNC + SVM 3 0.05 52.27(±0.28) 

PseDNC + SVM 5 0.05 52.53(±0.36) 

PseDNC + SVM 10 0.05 52.87(±0.42) 
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Sperm(Frazer, et al., 

2007) 

RHSNet -- -- 86.32 (±0.72) 

Equivariant CNN -- -- 75.41 (±3.32) 

CNN -- -- 76.25 (±0.94) 

PseDNC + SVM 3 0.05 63.25(±1.32) 

PseDNC + SVM 5 0.05 63.51 (±0.67) 

PseDNC + SVM 10 0.05 63.22(±0.72) 

Mouse(Lange, et al., 

2016) 

RHSNet -- -- 73.59 (±1.54) 

Equivariant CNN -- -- 51.32 (±6.52) 

CNN -- -- 52.07 (±1.94) 

PseDNC + SVM 3 0.05 63.89(±0.82) 

PseDNC + SVM 5 0.05 64.29 (±0.53) 

PseDNC + SVM 10 0.05 63.82 (±0.61) 

Supplementary Table S5. Statistical results on the multiple dataset, comparing the proposed RHSNet 

with multiple experimental settings of PseDNC(Chen, et al., 2013) + Support Vector Machine 

(SVM(Cherkassky, 1997)) classifier. Multiple experiments with different sets of parameter lambda for 

pseudo-feature extraction are conducted. The deep learning-based methods show a significant edge over 

the SVM-based classifier. 
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Section 4. Supplementary quantification results 

a. RHSNet’s sensitivity to sex differences 

The recombination differs between males and females of the same species, including 

humans and mice(Brick, et al., 2018; Halldorsson, et al., 2016). The females show a higher 

overall recombination rate and more complex crossovers than the males(Bherer, et al., 2017; 

Halldorsson, et al., 2019; Kong, et al., 2010), despite the elusive mechanisms behind the 

differences(Halldorsson, et al., 2019). Although most of the recombination hotspots (>88%) 

are shared between males and females, the strongest hotspots tend to be sex-specific(Brick, 

et al., 2018). In our study, the most significant motifs detected from the Icelandic males are 

conserved PRMD9 binding motifs (see Supplementary Figure S10B), which is consistent 

with the finding that the PRDM9-binding sites are frequently methylated at male-biased 

hotspots(Brick, et al., 2018), although the motifs can be different in different species. On 

the other hand, the contributing determinant motifs of the Icelandic females are less 

conservative (enrichment factor: 8.76 ± 1.31) than the paternal ones (enrichment factor: 

15.31 ± 2.01). Also, in the female, the determinant motifs are much more diverse than 

those in males, which may result from the distinct methylation mechanism (unlike males, 

DNA methylation increases in the region ±75bp adjacent to the PRDM9-binding sites), 

more complex crossover, and higher evolution speed(Baudat, et al., 2013; Brick, et al., 

2018; Halldorsson, et al., 2019) (see Figure 3C, Supplementary Figure S11, female rate: 

52.48 ± 67.29 𝑐𝑀/𝑚𝑏 ; male rate: 39.53 ± 40.63 𝑐𝑀/𝑚𝑏 ).  Although the data 

themselves may not be sufficient to illustrate the mechanism behind the sex biases in 

recombination, the identified and quantified determinants suggest that, in females, diverse 

factors, including PRDM9 and SPO11 (the rank 2 motifs), control the female-biased 

hotspots, while, in males, the hotspots tend to be PRDM9-directed.  

 

 

 
Supplementary Figure S6. Statistical comparison of GC content across different species. 
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Supplementary Figure S7. Statistical comparison of GC content across different sexes. The result is 

calculated from Icelandic(Halldorsson, et al., 2019) Human genetic maps. 

 

Interestingly, the GC content of the coldspots (40.72%~41.88%), where the recombination 

rates are the lowest in the genome, is not lower than that of the entire genome, although it 

is lower than that of the hotspots. For some datasets, such as HapMap II, the result is 

expected because the coldspot set was constructed to match the GC content of the hotspot 

one.  However, for the other datasets, the coldest coldspots show similar GC content, which 

suggests that GC content itself may not be the causation of hotspots. Instead, the higher GC 

content in hotspots may be the consequence of the determinant motifs, which are GC-rich, 

such as the PRDM9 binding motif. In the HapMap II dataset and the Icelandic dataset, 

where the resolution is high enough (up to 642bp), the determinant motifs identified by our 

model have much higher GC content than that of the overall hotspot regions. Furthermore, 

as we increase the filter factor, which forces our method to output shorter motifs with higher 

enrichment factors, the GC content increases further in these motifs (up to 65.3%). The 

separated paternal map and maternal map show a similar trend as the average map in the 

Icelandic dataset (see Supplementary Figure S7), although the signal is reduced because 

fewer people are included in each map. Intuitively, the results are consistent with the 

previous discoveries, as the PRDM9 motif, which is GC-rich, is the most popular motif in 

the hotspot region. 
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b. The histone modification feature distribution comparison on ovary tissue between 

hotspots and coldspots on maternal recombination map 

 
Supplementary Figure S8. The normalized log mean value comparing the different distributions 

between hotspots and coldspots from the ChIP-seq features (signal Value, peak Value, Score) extracted 

from the ovary and testis tissues of Homo sapiens female and male adults. Here, we show the 

comparison over three different histone modifications: H3K27ac, H3K27me3, and H3K9me3. 
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c. PRDM9 alleles identification across different datasets 

Study PRDM9 allele hit@20 hit@50 hit@100 

Icelandic 
PRDM9-A 9 35 83 

PRDM9-C 0 6 10 

HapMap II 
PRDM9-A 5 16 49 

PRDM9-C 3 7 18 

Sperm 
PRDM9-A 19 35 69 

PRDM9-C 1 5 6 

Supplementary Table S6. The hit@20/50/100 results of the RHSNet’s identification across different 

studies. 

 

Population PRDM9 allele hit@20 hit@50 hit@100 

African 
PRDM9-A 20 58 124 

PRDM9-C 0 0 8 

American 
PRDM9-A 19 25 44 

PRDM9-C 0 4 12 

East Asian 
PRDM9-A 0 2 7 

PRDM9-C 0 2 3 

European 
PRDM9-A 14 24 48 

PRDM9-C 0 3 4 

South Asian 
PRDM9-A 30 71 90 

PRDM9-C 0 2 2 

Supplementary Table S7. The hit@20/50/100 results of the RHSNet’s identification across different 

populations. 
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Supplementary Figure S9. Across five different populations from the 1000 Genome Project(Genomes 

Project, et al., 2015), we draw the recombination rate distribution of PRDM9-A/C alleles over 22 

autosomes on the ground truth genetic maps. 

 

 

 

 

 

 

 

 

 

 

 



Page 22 of 28 
 

e. The most important motifs detected in different species and sexes 

In the Icelandic population, within the central region of the embeddings, the motifs in both 

the maternal population and the paternal population are PRDM9-related motifs (see Figure 

6E). However, regarding the outliner motifs, they are very different. For males, the motifs 

tend to be short and strong, while the motifs are long and diverse in the females. 

By calculating the difference between two embedding distributions, we quantify the 

difference between two species via Maximum Mean Discrepancy(Tolstikhin, et al., 2016) 

(MMD) (see Supplementary Section 2: Methods). For example, using our method, the 

evolutionary distance between Human and Mice (0.0221, 𝑝 = 0.9774) is much smaller 

than that between Human and Yeast (0.3729, 𝑝 = 8.5 ∗ 10−3).   

 

 

 
Supplementary Figure S10. (A)The top 3 detected motifs from the Mouse(Lange, et al., 2016) and 

Yeast(Mancera, et al., 2008) datasets. 
(B)The top 3 detected motifs from the paternal and maternal genetic maps, respectively. 
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e. Recombination rate comparison between paternal and maternal motifs 

 
Supplementary Figure S11. Statistical comparison of the recombination rate between the detected 

paternal and maternal motifs.   
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f. Detailed motif embedding and clustering results 

 

  
Supplementary Figure S12. Embedding vectors in 2D space across different species. The central 

region is bounded by a red bounding box, and the outliers are defined by comparing the local density 

of a sample to the local densities of its 50 neighbors. The top 5 ranked motifs are visualized for both 

central and outlier motifs. 
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Supplementary Figure S13. Embedding vectors in 2D space across different sexes. The central region 

is bounded by a red bounding box, and the outliers are defined by comparing the local density of a 

sample to the local densities of its 50 neighbors. The top 5 ranked motifs are also visualized for both 

central and outlier motifs. 

 

g. Motif visualization of the entire genome 

 
Supplementary Figure S14. Heatmaps of 2-mer distributions over the entire genome. Each grid 

represents the 2-mer appearance frequency (AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, 

TA, TC, TG, TT) across GRCh38 human reference genome, GRCm38/mm10 reference genome, and 

S288C Yeast reference genome. 
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Supplementary Figure S15. The embedding results with regression models for five different 

populations. 
 

 

 
Supplementary Figure S16. The overall embedding results within the same 2D space for five different 

populations. 
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