Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Springback effect and structural features during the drying of silica aerogels tracked by in-situ synchrotron X-ray scattering

MPG-Autoren
/persons/resource/persons208551

Scoppola,  Ernesto       
Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

/persons/resource/persons121980

Wagermaier,  Wolfgang
Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

Article.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zemke, F., Scoppola, E., Simon, U., Bekheet, M. F., Wagermaier, W., & Gurlo, A. (2022). Springback effect and structural features during the drying of silica aerogels tracked by in-situ synchrotron X-ray scattering. Scientific Reports, 12: 7537. doi:10.1038/s41598-022-11127-6.


Zitierlink: https://hdl.handle.net/21.11116/0000-000A-76BB-F
Zusammenfassung
The springback effect during ambient pressure drying of aerogels is an interesting structural phenomenon, consisting of a severe shrinkage followed by almost complete re-expansion. The drying of gels causes shrinkage, whereas re-expansion is believed to be linked to repelling forces on the nanoscale. A multi-scale structural characterization of this significant volume change is key in controlling aerogel processing and properties. In this work, hydrophobic, monolithic silica aerogels with high specific surface areas were synthesized by modification with trimethylchlorosilane and ambient pressure drying. Here, we report a multi-method approach focusing on in-situ X-ray scattering to observe alterations of the nanostructured material during the drying of surface-modified and unmodified silica gels. Both show a porous fractal nanostructure, which partially collapses during drying and only recovers in surface-modified samples during the springback effect. Distinct changes of the X-ray scattering data were reproducibly associated with the shrinkage, re-expansion and drying of the gel network. Our findings may contribute to tailor aerogels with specific functionality, as the springback effect has a direct influence on properties (e.g., porosity, pore size distribution), which is directly affected by the degree of re-expansion.