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Abstract

Population size has long been considered an important driver of cultural diversity and com-

plexity. Results from population genetics, however, demonstrate that in populations with

complex demographic structure or mode of inheritance, it is not the census population size,

N, but the effective size of a population, Ne, that determines important evolutionary parame-

ters. Here, we examine the concept of effective population size for traits that evolve cultur-

ally, through processes of innovation and social learning. We use mathematical and

computational modeling approaches to investigate how cultural Ne and levels of diversity

depend on (1) the way traits are learned, (2) population connectedness, and (3) social net-

work structure. We show that one-to-many and frequency-dependent transmission can tem-

porally or permanently lower effective population size compared to census numbers. We

caution that migration and cultural exchange can have counter-intuitive effects on Ne. Net-

work density in random networks leaves Ne unchanged, scale-free networks tend to

decrease and small-world networks tend to increase Ne compared to census numbers. For

one-to-many transmission and different network structures, larger effective sizes are closely

associated with higher cultural diversity. For connectedness, however, even small amounts

of migration and cultural exchange result in high diversity independently of Ne. Extending

previous work, our results highlight the importance of carefully defining effective population

size for cultural systems and show that inferring Ne requires detailed knowledge about

underlying cultural and demographic processes.

Author summary

Human populations show immense cultural diversity and researchers have regarded pop-

ulation size as an important driver of cultural variation and complexity. Our approach is

based on cultural evolutionary theory which applies ideas about evolution to understand

how cultural traits change over time. We employ insights from population genetics about

the “effective” size of a population (i.e. the size that matters for important evolutionary

outcomes) to understand how and when larger populations can be expected to be more

culturally diverse. Specifically, we provide a formal derivation for cultural effective
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population size and use mathematical and computational models to study how effective

size and cultural diversity depend on (1) the way culture is transmitted, (2) levels of migra-

tion and cultural exchange, as well as (3) social network structure. Our results highlight

the importance of effective sizes for cultural evolution and provide heuristics for empirical

researchers to decide when census numbers could be used as proxies for the theoretically

relevant effective numbers and when they should not.

Introduction

Cultural evolutionary dynamics are governed by individual-level cognitive processes and

demographic properties of the population [1, 2]. Archaeologists and anthropologists have

been particularly interested in the ways population size might shape cultural processes (see [3,

4] for recent reviews). When researchers consider the impact of population size on cultural

evolution, they predominantly refer to the number of individuals in a population. This census

population size N is readily observable in real-world situations and can be quantified by count-

ing how many people are present at a certain place and time. Results from population genetics,

however, have long demonstrated that in most real-world populations it is not this census size,

but the effective size, Ne, that is the correct measure to use when calculating important evolu-

tionary parameters such as genetic diversity and divergence times between populations [5].

What is effective population size and why do we need it?

The effective population size is a theoretical construct that links complex populations to sim-

pler, idealised models. This way, the effective size makes it possible to directly compare any

number of complex populations—each with their own complicating factors—in a way that

would otherwise be impossible. A commonly used simplified model in population genetics is

the Wright-Fisher model [5–7], and much of what we understand about evolution comes from

our understanding of evolution in such idealised models. The effective population size is

defined in relation to this model as the size of an ideal Wright-Fisher population that experi-

ences genetic drift at the same rate as a particular study population (see below for details).

To understand what we gain from the effective size, even if we are not particularly inter-

ested in Wright-Fisher models, let us assume there are two populations, A and B, that produce

a particular cultural trait with infinitely many possible variants. We now want to know

whether population size affects the number of different variants in a population. Population A

has a larger census population size of 1000 individuals, population B has a smaller census size

of just 500. Based on some theoretical model of a cultural evolutionary process, we might be

led to expect population A to display a greater number of variants than population B at that

trait. Can we expect to find this demographic relationship in data on census population sizes

and cultural diversity indices from both populations? The answer is that—regardless of how

good the model is—the relationship is unlikely to be found unless the ways in which the trait

of interest is transmitted in these real populations are otherwise identical in evolutionarily

important ways. Two populations with the same census size might not display the same num-

ber of cultural variants at a trait if they are marked by different demographic histories or if the

way in which the trait is transmitted differs among the populations (see [8, 9]). In other words,

the number of variants displayed in the two populations of equivalent census size will differ if

the effective population size of the trait in question differs between the two populations. In

such cases, the populations are not directly comparable, except through their relation to a sim-

pler model—through their effective population sizes.

PLOS COMPUTATIONAL BIOLOGY Effective population size for culturally evolving traits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009430 April 8, 2022 2 / 22

GitHub: https://github.com/DominikDeffner/

CulturalEffectivePopulationSize.

Funding: This research has been supported by the

Max Planck Society and by the Deutsche

Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany’s Excellence Strategy

– EXC 2002/1 ”Science of Intelligence” – project

number 390523135. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009430
https://github.com/DominikDeffner/CulturalEffectivePopulationSize
https://github.com/DominikDeffner/CulturalEffectivePopulationSize


Imagine we now discover that, 10 generations ago, population A had a population bottle-

neck where its census size fell to only 10 individuals before recovering to its current value of

1000. Genetic evolution will be affected by this bottleneck for a number of generations (culture

might recover from such events much faster than genetics [10]). Both populations are other-

wise identical and conform to the assumptions of the Wright-Fisher model, which we detail

below. Accordingly, the effective population size of the small, stable population B is 500, the

same as its census size. The effective size of population A, however, is only around 92 (see S1

Text for calculation). We can now use results from population genetics to calculate how many

cultural variants we expect to see in each population, given certain transmission mechanisms

and innovation rates. For population B with Ne = 500, the expected number of unique variants,

with unbiased transmission and an innovation rate of μ = 0.1, is 223. For population A with Ne

� 92, we expect to see on average 41 variants in a given generation (see S1 Text for full details).

Thus, although a relationship exists between effective population size and cultural diversity, a

straightforward relationship does not exist between census size and diversity. Employing cen-

sus size or more informal definitions—rather than effective population size—to predict cul-

tural diversity is bound to lead one astray in any empirical population that violates one or

more of the conditions of the Wright-Fisher model. As real populations differ from one

another and from the assumptions of an ideal Wright-Fisher model in numerous evolution-

arily important ways, the ability to unify and compare them is invaluable. This is relevant for

any question where we need to understand the effects of drift, innovation, migration (inter-

group transmission), and selection in cultural processes across populations.

For many animal and plant species, researchers have investigated the relationship between

observed census size N and calculated (genetic) effective size Ne. In one large-scale study, ratios

of Ne to N were found to vary between 0.19 in a species of pine tree to 3.69 in a species of mos-

quito [11]. This demonstrates that, across species, a large range of relationships between census

and effective sizes are possible and Ne can also exceed the census size N [12]—a possibility we

expand on below. Estimates of this ratio for humans suggest that the genetic effective size is

considerably lower than our census size with an Ne of around 10,000 compared to a census size

of almost 8 billion [13], possibly reflecting population bottlenecks in the past. All of this

strongly suggests that in order to understand how demography affects cultural evolution, and

which empirical comparisons are meaningful, we need to gain a better understanding of the

cultural equivalent of Ne.

Cultural effective population size—History and outline

The importance of effective population size has been partially acknowledged in the cultural

evolution literature and the concept is often invoked. Henrich and colleagues [14], for exam-

ple, write: “The theory explicitly predicts that it is the size of the population that shares infor-

mation—the effective cultural population size—that matters, and if there is extensive contact

between local or linguistic groups, there is no reason to expect census population size to corre-

spond to the theoretically relevant population”. More recently, Derex and Mesoudi [3] also

claim that effective population size “depends on both population size and interconnectedness”.

However, the definition of Ne as “the population that shares information” is not always correct

and corresponds more closely to the ‘breeding population’ rather than the effective size. We

hope to show that it is not only the number of individuals sharing information, also called

“cultural equivalent N” [1], or the “number of teachers” [15], but the exact details of how infor-

mation is passed on between individuals that should be expected to influence cultural effective

population size. Furthermore, it remains unclear whether and how different forms of popula-

tion interconnectedness as well as social network characteristics might influence effective
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population size for culture, though intuition suggests that this influence may be strong. In a

first formal treatment for cultural evolution, Premo [8] used simulation models to investigate

the relationship between census size, effective population size, and the rate of change in mean

skill level under non-ideal conditions. In the context of models by Shennan [16] and Henrich

[17], the results show that natural and cultural selection can weaken the relationship between

census population size and the rate of change in mean skill level. Further, Rorabaugh [15] and

Premo [9] studied the accumulated copying error model (ACE) and investigated the relation-

ship between the effective size and the coefficient of variation of a continuous trait passed via

different transmission pathways. Importantly, every cultural trait has its own effective number

depending on how it is transmitted [8, 9]. This adds a further complication, because each trait

needs to be studied on its own and data regarding how trait X is passed may not be pertinent

to trait Y even if both traits are in the same population. This work did not formally derive an

appropriate measure for cultural effective size and examined the influence of selection and

transmission pathways within the scope of rather domain-specific models.

Here we aim to provide this formal derivation and systematically examine the concept of

effective population size for cultural evolution. We first introduce drift and effective popula-

tion size as employed in standard models of population genetics. After deriving appropriate

formulations of Ne, we use mathematical models and simulation to investigate how cultural Ne

depends on (1) the way traits are learned, namely one-to-many and frequency-dependent (i.e

conformist and anti-conformist) transmission, (2) population connectedness through either

migration or cultural exchange, and (3) social network structure. In each case, we relate effec-

tive numbers to the emerging levels of cultural diversity. We conclude by discussing implica-

tions for the role of demography in cultural evolution and provide heuristics for empirical

researchers to decide when census numbers might be used as proxies for the theoretically rele-

vant effective numbers.

Drift and effective population size in population genetics

We first provide a basic introduction to the Wright-Fisher population, genetic drift, and the

concept of effective population size as developed for genetic evolution.

The Wright-Fisher population and genetic drift

The classic Wright-Fisher population is a closed, randomly mating population of N individuals

without selection and mutation [5–7, 18]. For each discrete generation, new individuals are

formed by random sampling, with replacement, of gametes produced by the previous genera-

tion. The number of offspring for a given member of the parental generation is a binomially

distributed random variable with both mean and variance of approximately 1 (for haploid

populations; see S2 Text for explanation). Genetic drift describes the random change in allele

frequencies from generation to generation by the chance success of some alleles relative to oth-

ers [19–21]. While per definition unpredictable in any particular instance, on average, drift

causes populations to change in broadly systematic ways: drift reduces the number of alleles in

a population, increases the differences among populations and results in higher variability of

allele frequencies over time. Crucially, the magnitude of allele frequency changes due to

genetic drift is inversely related to the size of the Wright-Fisher population—the larger the

number of individuals, the smaller the effects of genetic drift. These consequences are illus-

trated in Fig 1 which shows the frequency of one allele in populations of different sizes, N = 10

(Fig 1A), N = 100 (Fig 1B), N = 1000 (Fig 1C) or N = 10000 (Fig 1D). Colored lines show trajec-

tories for 8 separate populations evolving over 100 generations. In small populations, random

sampling of alleles leads to strong fluctuations in allele frequencies over time. After relatively
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few generations, populations diverge and the allele either becomes fixed or goes extinct with

equal probability given a 0.5 initial frequency [7]. The larger the population, the smaller are

temporal fluctuations in allele frequency and the longer it takes for isolated populations to

diverge. Given enough time, in the absence of other evolutionary forces, even very large popu-

lations will diverge as much as smaller populations. Population size, thus, affects the rate of

drift but not its eventual outcome.

Effective population size

The effective size of a population, Ne, is a fundamental concept in population genetics that

allows researchers to quantify the effect of drift on evolution [7, 22, 23]. Ne is defined as the

size of an idealized Wright-Fisher population that is identical in some key measure of genetic

drift to a particular study population. Jointly with the mutation rate, Ne determines the

expected number of neutral or weakly selected genetic variants maintained at a locus for a

given population and is thus important for correctly calculating the variability in a population.

In combination with the strength of selection, Ne also governs how effective selection can be in

Fig 1. Drift. Frequency of a focal allele over 100 generations. Each line shows evolution in a separate population of size N = 10 (A), N = 100 (B),

N = 1000 (C) or N = 10000 (D). All simulations start at the same initial allele frequency of 0.5.

https://doi.org/10.1371/journal.pcbi.1009430.g001

PLOS COMPUTATIONAL BIOLOGY Effective population size for culturally evolving traits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009430 April 8, 2022 5 / 22

https://doi.org/10.1371/journal.pcbi.1009430.g001
https://doi.org/10.1371/journal.pcbi.1009430


spreading favourable mutations and eliminating deleterious ones thus shaping the course of

adaptive evolution [23].

Different aspects of the evolution of the Wright-Fisher population have been used to define

Ne. These most often agree but diverge under some circumstances relevant to cultural systems.

Therefore, we consider two commonly used measures, inbreeding effective population size,

Ni
e, and variance effective population size, Nv

e . In S3 Text, we provide derivations for haploid

populations for situations when (1) there is variation in offspring numbers and (2) population

sizes might differ between parental and offspring generation. The identity-by-descent (or

inbreeding) effective population size Ni
e utilizes the fact that, for finite populations, there is a

certain probability for two randomly selected individuals to come from the same parent. It is

calculated as:

Ni
e ¼

Nt� 1
�k � 1

�k � 1þ s2

�k

; ð1Þ

where Nt−1 is the census size in the parental generation, �k is the mean number of offspring and

σ2 is the variance in offspring number among members of the parental generation.

The variance effective population size Nv
e , in contrast, focuses on the amount of random

variation in allele frequencies from one generation to the next and can be calculated as:

Nv
e ¼
ðNt� 1 � 1Þ�k

s2

�k

: ð2Þ

Note that the inbreeding effective number is intimately related to the size of the population

in the parental generation, while the variance effective number is related to the size of the pop-

ulation in the offspring generation (see also [12] for equation that uses Nt, rather than Nt−1).

To understand why, imagine two parents, one carrying allele A, one carrying allele B, ran-

domly producing a large number of offspring. In this scenario, two offspring will have a large

probability of sharing the same parent (resulting in relatively low inbreeding effective size),

but the frequency of both alleles will still be close to 50% in the offspring generation (resulting

in relatively high variance effective size). If, on the other hand, a large number of parents pro-

duces only a small number of offspring, there will only be a small probability that two offspring

share the same parent, while allele frequencies will differ greatly among generations (i.e. high

inbreeding effective size and low variance effective size).

The inbreeding effective number is appropriate when researchers are interested in the

change in homozygosity due to random drift. The variance effective number, in contrast, is

appropriate when researchers are interested in the amount of gene-frequency drift or the

increase in variance among subgroups [22, 24]. Despite these differences, for constant popula-

tion sizes (i.e. �k ¼ 1), both effective numbers agree and equations simplify to:

Ne ¼
N � 1

s2
: ð3Þ

In the following, we will only differentiate between the two formulations when necessary

and otherwise use the simplified version given by Eq (3).

Methods—Effective population size in cultural evolution

Researchers have identified several factors influencing Ne in genetic evolution (see e.g. [23]).

In the case of cultural evolution, the relationship between census population size and the effec-

tive size may be considerably more complex. For example, the mode of transmission has been

shown to be an important factor in determining effective size in genetic systems. In the case of
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culture, there are many more possible modes of transmission [1, 2, 25] each of which may

have unique effects. Therefore, in order to correctly use the concept of an effective size in cul-

tural systems, a uniquely cultural theory must be developed.

Traits that evolve culturally do so through processes of innovation and cultural transmis-

sion. So, we now consider cultural transmission rather than biological inheritance and allow �k
to represent the average number of naive individuals to which role models transmit their cul-

tural variant. Similarly, σ2 represents the variance in this ‘cultural influence’. Eq (3) implies

that, in general, increasing the variance among individuals in the number of cultural offspring

they leave reduces the effective population size, and decreasing that variance increases Ne.

Thus, it is clear that any process that systematically alters the way in which cultural role models

are chosen, through the mode of transmission, demography or social network structure, will

change the variance in cultural influence and the effective population size for culturally evolv-

ing traits. As noted before, if different traits are passed via different mechanisms within the

same population, they might each exhibit different effective population sizes even though the

population has the same census size.

Simulation set-up

As the derivation of analytical results for effective population sizes becomes unfeasible for

most of the situations considered in this paper, we develop a simulation framework based on

the Wright-Fisher dynamic [26]. We consider a population of census size N where individuals

are characterized by the variant of a single cultural trait they have adopted. In each time step, a

new generation of individuals is formed and each naive individual adopts its cultural variant, if

not specified differently, through unbiased cultural transmission from the previous generation.

In more detail, the probability that a naive individual chooses variant i of M cultural variants

present in the previous generation is given by:

pi ¼
ni

PM
m¼1

nm

ð1 � mÞ; ð4Þ

where ni is the frequency of variant i in the appropriate pool of role models. With probability μ
an innovation takes place and a new, not previously seen variant is introduced into the cultural

system. To calculate the effective population size in various scenarios, we first let the system

evolve through unbiased transmission until it reaches its equilibrium state (see S4 Text for

details). We then run 300 generations assuming the transmission dynamics described below

and record the “cultural influence” of each individual in a specific generation by determining

its number of cultural offspring in the next generation. This provides us with estimates for �k
and σ2 (conditioned on the assumed transmission dynamic) needed to calculate effective pop-

ulation sizes according to Eqs (1) and (2). Additionally, to relate effective population sizes to

resulting levels of cultural diversity, we record two diversity measures, the Simpson diversity

index (SDI) and the number of unique cultural variants. The SDI is calculated as

D ¼ 1 �
PS

i¼1
ðni=NÞ

2
, where ni is the frequency of individuals carrying variant i in the popu-

lation and S is the total number of unique cultural variants [27]. This index ranges from 0 to 1,

where high scores indicate high cultural diversity (a large number of variants each displayed at

a low frequency) and low scores indicate low cultural diversity (few variants, some of which

are displayed at relatively high frequencies).

To account for transmission processes different from unbiased transmission, we adapted

Eq (4). For one-to-many transmission, we assign, in each generation, R individuals at random

as role models and record the frequency ni in Eq (4) only from these R individuals. For fre-
quency-dependent transmission, we assume that the probability for adopting variant i of M
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cultural variants present in the population is given by:

pi ¼
nyiPM

m¼1
nym
ð1 � mÞ; ð5Þ

where ni is the frequency of variant i in the whole population and θ controls the direction and

strength of frequency-dependent bias [28]. When θ = 1, cultural transmission is unbiased; as θ
becomes larger than 1, individuals become increasingly likely to adopt high-frequency vari-

ants. When 0< θ< 1, individuals disproportionately adopt low-frequency variants.

To account for migration or cultural exchange, we use two, initially independent, popula-

tions evolving through unbiased transmission. In case of migration, per time step, an average

of mN randomly chosen individuals from one population permanently migrate to the other

population; they carry their cultural variants with them and consequently serve as potential

role models for the next generation. The variable m controls the migration rate. To keep popu-

lation sizes constant, the same number of individuals immigrates from the other population.

In the case of cultural exchange, per time step, an average of eN randomly chosen individuals

do not permanently migrate between populations, but are available as additional role models

and, thereby, increase the size of the parental generation in both populations. The variable e
controls the cultural exchange rate.

To account for social network structure, we arrange the N individuals in the population

according to different network topologies (random networks, scale-free networks and small-

world networks); this restricts the pool of role models for each individual: the probability of

choosing cultural variant i, pi as given in Eq (4), is determined only from its direct neighbours

in the network. Our aim here is not to replicate realistic social networks but to use prototypical

network types to illustrate potential effects of network structure on effective population sizes.

Such extreme cases are often useful to identify causal effects and school intuition (see [29, 30]

for similar analyses for genetic evolution). All networks considered here are undirected and

are generated as follows:

1. Random networks: In random networks, any two individuals have the same probability of

being connected. The Erdős-Rényi model generates such a graph by starting with a set of N
isolated nodes and creating every possible edge with the same constant probability p [31].

For undirected graphs, there are
NðN� 1Þ

2
possible ties and p gives the expected proportion of

those potential ties that are realized in the network (i.e. the network density).

2. Scale-free networks: A network is said to be scale free if the fraction of nodes with degree k
follows a power law k−α, where α> 1. The Barabási-Albert model is an algorithm that uses

a preferential attachment mechanism to generate such networks [32, 33]. Here, it is

assumed that new nodes are added to the network two at a time. New nodes are connected

to existing node i (out of J total nodes) with a probability Pi that is proportional to the num-

ber of links ki that a node already has: Pi ¼
kpiPJ

j¼1
kpj

. That is, well-connected nodes are likely

to get even more connected over time. The power of this preferential attachment is con-

trolled by a parameter π, where π = 1 produces linear preferential attachment, 0< π< 1

produces “sub-linear” attachment, and π> 1 produces “super-linear” attachment.

3. Small-world networks: Small-world networks are graphs with short average path lengths

between nodes and a high clustering coefficient. High clustering means that nodes that you

are connected to are also likely to be connected to each other (e.g. most of your friends are

also friends among themselves). The Watts-Strogatz model creates a small-world network

in two basic steps [34]: We start with a lattice of N nodes with each node being connected
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to its K closest neighbors on either side. Each edge in the network is then rewired with a cer-

tain probability pr while avoiding duplicates or self-loops. After the first step the graph is a

perfect ring lattice. So when pr = 0, no edges are rewired and the model returns a ring lat-

tice. In contrast, when pr = 1, all of the edges are rewired and the ring lattice is transformed

into a random graph.

All simulation results shown in the following are based on 1000 independent simulations

per parameter combination.

Results—Determinants of effective population size in cultural

evolution

Process of cultural transmission

We already know from genetic studies that the mode of inheritance can greatly alter effective

population size (e.g. [23]). In cultural systems, the ways in which cultural variants can be

passed between individuals, from cultural ‘parents’ to cultural ‘offspring’, are even more

numerous and complex (e.g. [1, 2, 25]). In the following, we analyze how processes of cultural

transmission can influence effective population size. In addition to unbiased transmission, we

consider two other transmission processes, one-to-many transmission and frequency-dependent
transmission, whose internal dynamics differ in interesting ways. While the number of trans-

mitting individuals per generation is fixed under one-to-many transmission, under frequency-

dependent transmission this number emerges from the interplay between the transmission

mechanism and the frequency spectrum of the cultural variants.

One-to-many transmission. We define one-to-many transmission as the situation where

only a small, pre-defined, number of individuals can transmit their cultural variant to mem-

bers of the next generation [35, 36]. This transmission process, which might also be called

“some-to-many” or “subset-to-many” transmission, may drastically change the variance in cul-

tural influence and, thus, the effective population size depending on the number of role mod-

els, R. Here, R individuals are eligible to serve as models for the naive generation and pass on

their variant via unbiased transmission and N − R individuals are not eligible to pass on their

variant. In other words, each generation, we have a transmitting sub-population of size R and

a non-transmitting sub-population of size N − R. In this case, the variance of cultural influence

can be calculated as follows (see S5 Text for the full details):

s2
OTM ¼

N � 1

R
: ð6Þ

As R increases, i.e. as more role models have the chance to pass on their cultural trait, the

variance of cultural influence in the population decreases, and for R = N we recover the expres-

sion for the variance of cultural influence in the standard Wright-Fisher model. Thus, the

effective population size, Ne, for our one-to-many transmission model is simply the size of the

transmitting sub-population per generation:

Ne ¼
N � 1

s2
OTM

¼
N � 1

N � 1

R

¼ R:
ð7Þ

Fig 2A and 2B show the variance in cultural influence, given in Eq (6), and the effective

population sizes, given in Eq (7), for different R values. The grey dots represent the mean val-

ues of the effective population size generated by the simulation model and, reassuringly, ana-

lytical and simulation results match very well. When everyone is a potential role model (i.e. R
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= N), we recover the standard Wright-Fisher model with a variance of cultural influence of

approximately 1 and an effective population size of Ne = N. Restricting the pool of role models

results in an increased variance in cultural influence and decreased effective population size.

In the extreme case where the whole population learns from only one individual per genera-

tion, the effective population size is 1.

Fig 2C and 2D describe the cultural composition of the population at equilibrium by

recording the level of diversity via the Simpson index and number of unique cultural variants

in the population. Levels of cultural diversity are jointly determined by the effective population

size and innovation rate μ (census size is held constant at 1000).

Fig 2. One-to-many transmission. Variance in cultural influence (s2
OTM; 2A), effective population size (Ne; 2B), mean Simpson diversity (2C) and mean

number of unique cultural variants (on log scale; 2D) for different numbers of cultural role models R (with census population size N = 1000). Analytical

results were confirmed by stochastic simulations. Grey diamonds in plot 2B show means and 90% prediction intervals for 1000 independent

simulations (with μ = 10−4).

https://doi.org/10.1371/journal.pcbi.1009430.g002
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Frequency-dependent transmission. We now turn to frequency-dependent cultural

transmission where the number of transmitting individuals is not fixed but emerges from the

interplay between the transmission process and the frequencies of cultural variants. This form

of transmission is well-documented in both human (e.g. [37, 38]) and non-human animals

(e.g. [39, 40]). Positive frequency-dependent transmission, or conformity, occurs when the

most common variants in a population are disproportionately more likely to be adopted. In

contrast, negative frequency-dependent transmission, or anti-conformity, occurs when the

rarest variants are disproportionately more likely to be copied.

This dynamic is modelled in our simulation framework through Eq (5). After a burn-in

phase under unbiased transmission, i.e. θ = 1, we change the θ value and record how effective

population sizes change over time (see Fig 3). We start by analysing relatively strong

Fig 3. Frequency-dependent transmission. Effective population size (including 90% PIs) for anti-conformist (θ = 0.5; left), unbiased (θ = 1; center)

and conformist transmission (θ = 1.5; right) and different innovation rates μ. Plots show trajectories for 100 generations after switch in transmission

mode (1000 independent simulations; N = 1000).

https://doi.org/10.1371/journal.pcbi.1009430.g003
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frequency-dependent transmission which results in situations where almost the whole popula-

tion adopts the same cultural variant (for conformity; θ = 1.5, right column) or all cultural var-

iants have similar frequencies (for anti-conformity; θ = 0.5, left column). Fig 3 shows that the

change in transmission process leads to an immediate, and under certain circumstances sub-

stantial, decrease in effective population size, followed by a fast recovery. The severity of the

trough as well as the new equilibrium after the change is influenced by the innovation rate.

Strong conformity substantially increases the probability that the most common variants

are adopted and, therefore, reduces the number of transmitting individuals. This increases the

variance in cultural influence and decreases the effective population size. As time progresses,

one variant spreads through the population and almost reaches fixation. Because there is no

variation in variant frequency for conformity to act on anymore, every individual (at least

every individual that does not carry an innovation) is equally likely to pass on their variant to

the next generation; this resembles the situation in the standard Wright-Fisher model. Conse-

quently, at equilibrium Ne� N. We note that in the case of conformity, at equilibrium, higher

innovation rates only result in a very slight decrease in effective population size (see Fig 3 bot-

tom row, right) as innovations are quickly driven to extinction.

Strong anti-conformity substantially increases the probability that the rarest variants are

copied, again reducing the number of transmitting individuals. As time progresses, variants

become equally distributed and, consequently, individuals do not differ greatly in the likeli-

hood of passing their variants to the next generation. But in contrast to the conformist situa-

tion, the effective population size at equilibrium is greatly influenced by the innovation rates;

per definition, innovations are rare and, thereby, the target of anti-conformity. The higher the

innovation rate, the more likely a variant is present in the population at low frequency and,

therefore, the higher the differences between individuals in their cultural influence.

Importantly, we note that the dynamics displayed in Fig 3 only occur under relatively

strong frequency-dependent transmission. In S1 Fig, we show that weaker forms of frequency-

dependent transmission leave effective population sizes largely unchanged as now the change

in transmission mode does not generate sufficiently large differences in individuals’ likelihood

to pass on their cultural variant. In the supplementary material, we also plot time trajectories

for the number of unique variants (S2 Fig) and the Simpson diversity index (S3 Fig). Conform-

ist (anti-conformist) transmission decreases (increases) Simpson diversity and number of vari-

ants over time, irrespective of the observed time dynamic of the effective number. In fact, our

results show that anti-conformist transmission yields greater cultural diversity than unbiased

transmission (S2 and S3 Figs) even though a trait passed via anti-conformist transmission has

a lower effective number than one passed via unbiased transmission.

Summarizing, cultural transmission processes different from unbiased transmission do not

necessarily lead to a divergence between census and effective population size. This only hap-

pens if transmission processes, such as one-to-many and strong frequency-dependent trans-

mission, produce substantial heterogeneity in the probability with which individuals pass on

their cultural variant to the next generation, i.e. their cultural influence.

Population connectedness

In the previous sections, we analyzed the impact of different processes of cultural transmission

on the effective size of a cultural population. We now turn to the question of how population

properties themselves might influence Ne. Empirical tests of demographic hypotheses often

consider connectedness among groups, which has been assumed to change the effective size of

the populations under consideration [3, 14]. We start by analyzing the effects of population

connectedness in the form of migration and cultural exchange.

PLOS COMPUTATIONAL BIOLOGY Effective population size for culturally evolving traits

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009430 April 8, 2022 12 / 22

https://doi.org/10.1371/journal.pcbi.1009430


Fig 4 shows effective population sizes and diversity indices for various degrees of migration

on the left and cultural exchange on the right. Irrespective of its rate, migration as we defined

it influenced neither inbreeding nor variance effective population size. While introducing new

variants into the population, migration in our model does not systematically change the proba-

bility individuals get to pass on their cultural traits. As population sizes are constant and indi-

viduals still learn from random members of the parental generation, whether they are recent

immigrants or not, this scenario corresponds to the standard Wright-Fisher population.

Although effective numbers remain unchanged, even small amounts of migration increase

both measures of cultural diversity compared to isolated populations. Further raising migra-

tion rates leaves diversity largely unchanged indicating that being connected through migra-

tion at all has the largest impact on diversity irrespective of the specific rate. Note that if

migration increases the census size in a focal population, the effective size tracks this increase

(see S4 Fig for a scenario where constant immigration raises the effective size and cultural

diversity in a focal population).

Cultural exchange, on the other hand, increases the inbreeding effective population size but

not the variance effective size. Why is this? In case of cultural exchange, there are N(1 + e) indi-

viduals in the parental generation that pass on their cultural variants to only N individuals in

the offspring generation. For the inbreeding effective size, this reduces the probability that two

randomly picked individuals copy the same role model in the parental generation as there is

now a greater pool of individuals to learn from. In contrast, the variance effective size is more

directly related to the number of learners than to the number of role models (see

[12], pp. 345–359, for further explanation). In practice, this means that in cases where cultural

exchange, or similar processes, are important features of a population’s cultural life, the rela-

tionship between census population size and effective size will depend on the measure chosen.

Finally, increasing cultural exchange causes the greatest increase in Simpson diversity and the

number of unique variants when exchange rates are low.

Summarizing, the effects of connectedness on effective population sizes are subtle, probably

difficult to detect, and depend on the exact form of connectedness and effective size

formulation.

Social network structure

Real populations are often highly structured in terms of kinship, peer relationships or social

class, all influencing who individuals are most likely to interact with and learn from [3, 41, 42].

To reflect individual heterogeneity in potential role models and mimic different ways of infor-

mation flow, we arrange the N individuals of the population in networks with different proper-

ties (see Fig 5, top row, and section on simulation setup for a more detailed description).

Fig 5, second row, shows how the way in which transmissions are structured affects the

trait’s effective population size. In random networks, irrespective of network density (i.e. the

ratio between observed and possible edges), the effective size always equals the census size of

the population. As every individual has the same probability p of being connected to any other

individual, the number of links are binomially distributed and there is no systematic difference

in individuals’ probability to pass on their cultural variants. When network connections are

random, density also does not affect cultural diversity.

The situation is very different for scale-free networks. Per definition, their power-law

degree distribution implies drastically different levels of cultural influence depending on net-

work position. Individuals central to the network will spread their cultural variant to a greater

number of individuals while more peripheral individuals will pass on their variant to just a

few. This increased variance in cultural influence results in substantially lower effective
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Fig 4. Population connectedness. Variance (green squares) and inbreeding (yellow circles) effective population sizes

(including 90% PIs; top), Simpson diversity (center) and mean numbers of unique variants (on log scale; bottom) for

different migration rates m on the left and cultural exchange rates e on the right. We need to differentiate between effective

size formulations because population sizes might differ between parental and offspring generations. Results come from 1000

independent stochastic simulations with census population size N = 1000.

https://doi.org/10.1371/journal.pcbi.1009430.g004
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Fig 5. Social network structure. Exemplary networks (A-C), effective population sizes (with 90% PIs; D-F), mean numbers of unique cultural variants

(on log scale; G-I) and Simpson diversity indices (J-L) for random (Erdős-Rényi), scale-free (Barabási-Albert) and small-world (Watts-Strogatz)

networks. Parameter p gives the probability any two nodes are connected in random networks, π is the power of preferential attachment creating scale-

free networks and K represents the number of initial neighbors on each side in small-world networks (with pr = 0.01). Note that because of structural

differences between network types, the ranges of parameter values on the x-axes are not directly comparable. All graphs are created using the igraph R
package [43]. Results come from 1000 independent simulations with census population size N = 1000. On the top, only 100 nodes are drawn for ease of

illustration with p = 0.1, π = 1 and K = 4.

https://doi.org/10.1371/journal.pcbi.1009430.g005
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numbers and also lower levels of cultural diversity. In the extreme case, strong preferential

attachment results in a star-shaped network and all individuals will learn from few very central

models.

Finally, effective numbers tend to be greater than census numbers for small-world net-

works. This demonstrates that Ne can also exceed N in cultural systems. As a consequence of

strongly local cultural transmission, the variance in cultural influence is reduced compared to

random or fully-connected networks. That way, rare cultural variants that would otherwise be

quickly lost due to drift, can be shared in local clusters maintaining higher levels of cultural

diversity. As either the number of initial neighbors, K (shown here), or the rewiring probabil-

ity, pr, increases, we approach a fully connected network where everyone can learn from any-

one else and Ne approaches census size N.

Discussion

We have systematically examined effective population size, a concept derived from theoretical

population genetics, for cultural traits. The effective size allows us to compare populations (or

traits), where it would otherwise be difficult to do so. We showed that both modes of cultural

transmission and relevant elements of population structure affect the effective population size

of a cultural trait. One-to-many and frequency-dependent transmission can substantially

lower effective population size with the strongest effects of frequency dependence occurring

when the system is out-of-equilibrium. Investigating different forms of connectedness between

populations, we found that migration as we define it does not increase Ne and cultural

exchange among groups increases inbreeding effective number but not variance effective num-

ber. This implies that considerable precision is needed in applying an appropriate cultural

effective size formulation. Finally, while random networks with varying densities leave a trait’s

Ne unchanged, scale-free networks tend to decrease and small-world networks tend to increase

Ne compared to the census number.

Population size has been invoked to explain several patterns of cultural change, most nota-

bly the emergence and loss of cultural “complexity” observed in the ethnographic and archaeo-

logical record (see below for critical discussion of concept of “complexity”). Several theoretical

models have been developed to better understand the interplay between learning and demog-

raphy in generating cultural complexity [16, 17, 44, 45]. Although quite diverse in terms of

underlying mechanisms, these models generally agree in predicting more complex cultural

repertoires in larger populations. Both real-world ethnographic and archaeological data as well

as controlled lab experiments have been used to test the relationship between population size

and cultural complexity. Results with both approaches have been mixed with some studies sup-

porting the hypothesis (e.g. [44, 46–49]) but others not (e.g. [50–53]).

These inconsistent findings do not necessarily refute the theoretical models but might

instead reflect a poor correspondence between theory and empirical tests (see also section on

“Revisiting empirical tests” in [8]). First, “complexity” itself is notoriously difficult to pin down

[54] and “cultural complexity” is hence conceptualized very differently across different models

and empirical investigations making it difficult to draw inferences. In Henrich’s model, for

instance, cultural complexity reflects a difficult to learn skill and is represented by the value of

a Gumbel-distributed continuous variable z [17], whereas other models describe cultural com-

plexity as cultural repertoire size [45, 55] or the level of innovations in a tree-shaped cultural

landscape [56]. Similarly, empirical studies use measures as diverse as toolkit size [46], number

of techno-units [46, 50, 57] as well as paper plane flight distances [53]. Instead of the poorly

defined notion of cultural complexity, in the present work, we rely on the well-defined and

workable concept of cultural diversity.
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Here, we have demonstrated that obtaining correct and comparable values for the popula-

tion size in complex cultural scenarios is not straightforward either. In order for the results

from theoretical models to apply correctly to empirical cases, we need to ensure that model

parameters are correctly translated into measures from complex real-world scenarios. Our

results show that, when there are a few highly influential individuals who—through transmis-

sion modes—strongly influence the cultural makeup of the population, the size of the popula-

tion and the effective size of the cultural trait in question can diverge. Similarly, where

populations are organised into social networks in which individuals are heterogeneous with

respect to their degree, the ratio between the census size of the population and the effective

size of the cultural trait can either increase or decrease depending on network structure. These

results also highlight that even relatively small populations might be able to maintain compara-

tively high levels of cultural diversity if connections are structured in a certain way. Through

predominantly local transmission in small-world networks, cultural variants can persist in

parts of the network over long periods of time resisting the effects of drift. In this case, larger

local clusters or more links between clusters somewhat counter-intuitively reduce the effective

population size even though—or rather, because—individuals now share ties with more poten-

tial cultural models.

In cultural evolutionary studies, effective size has mostly been invoked as a rhetorical device

to explain why the demographic hypothesis fails to predict observed levels of complexity in

certain cases (however, see [8] for a first formal approach). Our results suggest that this reason-

ing is too simplistic. For instance, the effects of interconnectedness depend not only on the

exact process of exchange but also on the way effective size is defined. Neither migration nor

cultural exchange, as we have modelled them, have consistent effects on the effective popula-

tion size of the cultural trait. These results do not imply that connectedness between popula-

tions is not an important factor for cultural dynamics, but rather that its effect is likely not

through increasing the effective size of a population. The finding that small amounts of cul-

tural exchange result in the most diverse populations confirms previous theoretical results sug-

gesting that partial connectivity among populations maximizes cultural accumulation [56, 58].

Overall, these results highlight that census numbers cannot generally be relied on when

evaluating hypotheses about the effects of demography on culture. It is the effective size that

matters and inferring effective population sizes requires detailed knowledge about underlying

cultural and demographic processes on a trait-by-trait basis. To our knowledge, there are no

existing methods applicable to estimating effective size in complex cultural systems (for genetic

data, see [59] for an approximate Bayesian computation method to infer genome-wide average

effective population size). The basic theory of Ne in cultural systems is complicated and in

need of considerable development before estimation could become feasible through, for

instance, generative inference [60]. Estimation methods will need to take account of several

relevant mechanistic deviations from ideal models simultaneously, where, for example, trans-

mission modes and social networks both play important roles.

Our results can also be used as more informal heuristics to decide when census numbers

could be used as proxies for the theoretically relevant effective numbers. In societies where cul-

tural influence of a given trait is highly skewed in favor of a small elite, for instance, there is no

reason to expect that the overall size of that population should be related to cultural diversity at

that trait. In societies where all individuals are more or less equally likely to transmit their

ideas and behaviors, census size might be a better approximation of the effective size of a cul-

tural trait. However, note that also most egalitarian societies are characterized by substantial

degrees of domain expertise expected to skew cultural influence for certain traits. This again

highlights that cultural phenomena are to be studied on a trait-by-trait basis. With respect to

transmission biases (or social learning strategies), our results suggest that census numbers
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might be used as proxies for the Ne of a trait as long as biases are relatively weak and do not

drastically change the relative success of certain cultural variants. Further, if due to recent

transformative events, cultural systems are out of equilibrium, researchers should not expect

census numbers to conform to the theoretically relevant quantity. Finally, if social network

structure imposes limits on cultural transmission, census numbers might still be appropriate

to test demographic hypotheses as long as connections are random. Most real-world social

ties, however, are unlikely to be random and, in that case, census population size might as well

under- or overestimate the effective size of a cultural trait depending on exact network

configurations.

In summary, in order to use the concept of effective population size as an explanatory tool

in cultural systems, we must first understand how uniquely cultural processes impact its calcu-

lation and use this understanding to develop sophisticated estimation methods capable of cap-

turing the complexity of real world cultural dynamics.

Supporting information

S1 Text. Shows how to calculate effective population size and expected number of cultural

traits for the simple example used in section “What is effective population size and why do

we need it?”.

(PDF)

S2 Text. Explains why both mean and variance in offspring number are approximately 1

for in the haploid Wright-Fisher population.

(PDF)

S3 Text. Shows the derivation of both inbreeding and variance effective population sizes as

appropriate for cultural evolution.

(PDF)

S4 Text. Describes the detailed procedure of the burn-in period for simulation analyses.

(PDF)

S5 Text. Derives the appropriate formula for calculating the pooled variance for transmit-

ting and non-transmitting sub-populations that is used to calculate effective population

size for one-to-many transmission.

(PDF)

S1 Fig. Frequency-dependent transmission for wider ranges of conformity exponent θ.

Effective population size (including 90% PIs) for different levels of anti-conformist (θ< 1),

unbiased (θ = 1) and conformist transmission (θ> 1) and different innovation rates μ. Plots

show trajectories for 100 generations after switch in transmission mode (1000 independent

simulations; N = 1000).

(TIF)

S2 Fig. Cultural diversity under frequency-dependent transmission. Number of unique var-

iants (including 90% PIs) for anti-conformist (θ = 0.5; left), unbiased (θ = 1; center) and con-

formist transmission (θ = 1.5; right) and different innovation rates μ. Plots show trajectories

for 300 generations after switch in transmission mode (1000 independent simulations;

N = 1000).

(TIF)

S3 Fig. Cultural diversity under frequency-dependent transmission. Simpson Diversity

Index (including 90% PIs) for anti-conformist (θ = 0.5; left), unbiased (θ = 1; center) and
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conformist transmission (θ = 1.5; right) and different innovation rates μ. Plots show trajecto-

ries for 300 generations after switch in transmission mode (1000 independent simulations;

N = 1000).

(TIF)

S4 Fig. Alternative migration mechanism that gradually increases the census size N in a

focal population. We start by letting a large source population with N = 10000 and a small

focal population with N = 100 evolve separately until they reach equilibrium; each generation,

we then let a fixed number of individuals migrate from the source population to the focal pop-

ulation and record effective numbers and diversity indices in the focal population. Effective

population size (left), number of unique cultural variants (on log scale; center) and Simpson

Diversity (right) for different innovation rates μ. Plots show trajectories for 150 generations

after immigration starts (1000 independent simulations with 50 immigrants per generation).

(TIF)
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