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Vipin Kumar1, Marko Kostić2, Abdessamad Tridane3, Amar Debbouche4

1Max-Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg,
Germany. Email: vkumar@mpi-magdeburg.mpg.de

2Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovica 6, Novi Sad 21125,
Serbia. Email: marco.s@verat.net

3Department of Mathematical Sciences, United Arab Emirates University,
Al Ain P.O. Box 15551, UAE. Email: a-tridane@uaeu.ac.ae

4Department of Mathematics, Guelma University, Guelma 24000, Algeria.
Email: amar−debbouche@yahoo.fr

Abstract: The aim of this work is to investigate the controllability of a class of switched Hilfer neutral fractional
systems with non-instantaneous impulses in the finite-dimensional spaces. We construct a new class of control function
that controls the system at the final time of the time-interval and controls the system at each of the impulsive points
i.e., we give the so-called total controllability results. Also, we extend these results to the corresponding integro-system.
We mainly use the fixed point theorem, Laplace transformation, Mittag-Leffler function, Gramian type matrices, and
fractional calculus to establish these results. In the end, we provide a simulated example to verify the obtained
analytical results.

Keywords: Switched systems; Controllability; Mittag-Leffler function; Fractional differential equations.
AMS Subject Classification: 93C30; 93B05; 33E12; 34A08.

1 Introduction

The theory of fractional calculus evolves from the differential and integral operators of arbitrary order. Nowadays, it
has attracted many mathematicians, physicists, and engineers. There is also with a growing number of applications in
signal processing, control theory, biomedicine, viscoelasticity, electrochemistry, physics, etc (please see [2, 40, 25] and
the references therein). However, the applications of fractional calculus and their outcomes have change as much as the
definitions of fractional derivatives and integrals, such as Riemann-Liouville, Caputo, Caputo-Fabrizio, Riesz-Caputo,
Grunwald-Letnikov, and so on. For the basic study of fractional calculus, one can go through [38, 39, 30] and references
therein. Recently, Hilfer [21] introduced a new fractional derivative, known as Hilfer fractional derivative of the form

Dα,β
0+ , where α is the order, and β is the type. The type β allows one to interpolate between the Riemann-Liouville

derivative β = 0), and the so-called Caputo-Liouville derivative (β = 1). Therefore, the results obtained from Hilfer
fractional derivative extend and generalize the existing results of Riemann-Liouville or Caputo-Liouville fractional
derivative.

Hilfer fractional models are studied in many applications of engineering and science, for example, in mechanical
engineering and thermal science [14]. Very recentely, many authors investigated the Hilfer fractional differential
equations and studied the various dynamic behaviours, such as the existence of solution, stability, data dependence,
and control problems, see [13, 17, 7, 24, 47, 18, 54, 55, 48, 33, 15] and the cited references therein.

Controllability is an important aspect of mathematical control theory which was introduced by Kalman in 1963
[22]. The concept of controllability denotes the ability to move the state of the dynamical control system from an initial
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state to the desired final state by using a suitable control function. In the last few years, many authors have studied
the controllability problem for ordinary as well as fractional dynamic systems, see for instance [4, 16, 6, 5, 46, 41] and
the cited references therein. Furthermore, few authors have studied the controllability problem for the Hilfer fractional
systems [23, 10, 43, 36, 49, 37, 56].

On the other hand, the various systems encountered in practice involve a coupling between continuous dynamics
and discrete events. These types of systems can be studied in terms of switched dynamical systems. A switched
system is a dynamic system consisting of a family of continuous-time subsystems along with a switching rule that
determines the switching among subsystems. Mathematically, these subsystems are generally described by a collection
of differential equations or differences indexed. For instance, the following phenomena give rise to switching behavior:
dynamics of a vehicle changing unexpectedly because of wheels bolting and opening on ice; an airplane entering,
intersection and leaving an air traffic control area; biological cells developing and separating; a thermostat turning the
heat on and off; a valve or a power switch opening and closing [31, 32].

It is well known that many physical systems in engineering, biology, physics, and information science, have some
sudden changes in their states. Such sudden changes are called the impulsive effect in the systems, and the corre-
sponding systems are called the instantaneous impulsive systems [29, 42]. Recently, in 2013, Hernández and O’Regan
[20], introduced a new class of impulsive systems, known as non-instantaneous impulsive systems in which the sudden
changes stay active for a finite time interval. In practicality, there is no impulse that occurs instantaneously rather it
is non-instantaneous howsoever the time of occurrence is small. For example, in some real biological medical problems,
the introduction of a drug or a vaccine in the bloodstream is a gradual process. Then one is forced to consider the drug
or vaccine as a non-instantaneous impulse since it starts abruptly but remains active for a finite time interval [20, 3];
in dam pollution models, the main cause of dam pollution is the polluted river, that enters the dam and takes some
time to reach the middle region of the dam. Since the introduction of the river water into the dam and the consequent
absorption of the dam water are gradual and continuous processes, so that the non-instantaneous impulses take place
[11]. For further studies on non-instantaneous impulsive systems, see [12, 19, 34, 8, 35, 52, 51] and the cited references
therein.

Recently, some authors have reported a few controllability results for the ordinary as well as fractional dynamic
system with non-instantaneous impulses, see for instance [50, 44, 45, 28, 27, 26] and the cited references therein. Also,
some authors established these results for the Hilfer type fractional dynamic systems with non-instantaneous impulses.
Particularly, in [53], the authors investigated the controllability of Hilfer fractional dynamic inclusions with nonlocal
and non-instantaneous impulsive conditions in Banach spaces by using the fixed point technique along with measures
of noncompactness. In [1], the authors studied the problem of approximate controllability for the Hilfer fractional
neutral stochastic integrodifferential equations with fractional Brownian motion and non-instantaneous impulses by
using the Sadovskii’s fixed point theorem and fractional power of operators. In [9], the authors studied the problem of
approximate controllability for Hilfer fractional differential inclusions with non-instantaneous impulsive hybrid systems
on weighted spaces by using the family of fractional resolvent operators, Laplace transformation, and a hybrid fixed
point theorem for three operators of the Schaefer’s type.

The above-mentioned works on controllability of Hilfer fractional systems and non-instantaneous impulsive systems
cannot be easily extended to the case of switched Hilfer fractional dynamical systems with non-instantaneous impulses.
From the authors’ points of view, there is no work reported which investigated the total controllability of a class
of switched Hilfer neutral fractional systems. Therefore, considering the importance of switched systems and non-
instantaneous impulses, we fill this gap by establishing the total controllability results for a class of switched neutral
systems with Hilfer fractional derivative and non-instantaneous impulses in the finite-dimensional spaces.

The primary contribution and advantage of this paper can be foreground as follows:

• We consider a new class of switched Hilfer neutral fractional systems with non-instantaneous impulses in the
finite-dimensional spaces.

• We define a new piecewise control function for the proposed system and examine the total controllability result,
where we control the system not only at the final point of the interval but also at every impulse point of the
interval.

• Also, we establish the total controllability results for the considered problem with the integral term.

• We apply the fixed point technique, Mittag-Leffler function and Gramian type matrices to establish these results.
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• We illustrate the general applicability of the obtained analytical results by giving a simulated numerical example.

The rest of the paper is formulated as follows: In Section 2, the statement of the problem is given. In Section 3,
we give some basic definitions, notations, and important lemmas. In Section 4, we investigate the total controllability
of the considered problem. In Section 5, we extend the results of the section 4 to the integro dynamic system. In the
last section, we give a numerical example with simulation to show the effectiveness of the obtained theoretical results.

2 Statement of the Problem

We consider the following switched impulsive control system:

Dα,β

ϑ+
i

[x(t)−Υσ(t)(t, xa(t))] = Aσ(t)[x(t)−Υσ(t)(t, xa(t))] + Ψσ(t) (t, xb(t)) + Bσ(t)u(t), t ∈ ∪m
i=0(ϑi, ti+1],

x(t) = Jσ(t)(t, x(t
−
i )), t ∈ (ti, ϑi], i = 1, 2, ...,m, (2.1)

I1−γ
0+ x(0+) = x0, I1−γ

ϑi
+ x(ϑ+

i ) = Jσ(t)(ϑi, x(t
−
i )), γ = α+ β − αβ,

where x ∈ Rn is the state variable; Dα,β

ϑ+
i

denotes the Hilfer fractional derivative with lower limit at ϑi of the order

α ∈ (0, 1) and type β ∈ [0, 1]; a, b : I → I are some delay functions such that a(t), b(t) ≤ t; xa(t) = x(a(t)) and
xb(t) = x(b(t)); σ : I → {0, 1, ...,m} is some switching law; ϑi and ti are some arbitrary points which satisfy the
relation 0 = t0 = ϑ0 < t1 < ϑ1 < t2 < ... < ϑm < tm+1 = T ; x(t+i ) = limh→0+ x(ti + h) and x(t−i ) = limh→0+ x(ti − h)
denote the right and left limit of x(t) at t = ti respectively;

I1−γ

ϑ+
i

represent the left-sided Riemann–Liouville integral of order 1 − γ with lower limit at ϑi, and I1−γ

ϑ+
i

x(ϑ+
i ) =

limt→ϑ+
i
I1−γ

ϑ+
i

x(t);

Aσ(t) and Bσ(t) are some matrices of order n × n and n × m respectively; u ∈ Rm is the control function,
Υσ(t),Ψσ(t),Jσ(t) are some given functions which satisfies some conditions to be specified later.

In this manuscript, the switching signal σ is assumed to be known and satisfies the minimal dwell time condition.
It only changes its values at switching times ti. The discrete state σ(t) ∈ {0, 1, ...,m} determines the actual system
dynamics among the possible operating modes which corresponds to a specific instance of Ai,Bi,Υi,Ψi and Ji. That
is to say,

σ(t) = i, t ∈ [ti, ti+1), i = 0, 1, ...,m. (2.2)

Consequently, using the above switching law in system (2.1), we get the following switched impulsive control system

Dα,β

ϑ+
i

[x(t)−Υi(t, xa(t))] = Ai[x(t)−Υi(t, xa(t))] + Ψi (t, xb(t)) + Biu(t), t ∈ ∪m
i=0(ϑi, ti+1],

x(t) = Ji(t, x(t
−
i )), t ∈ (ti, ϑi], i = 1, 2, ...,m, (2.3)

I1−γ
0+ x(0+) = x0, I1−γ

ϑi
+ x(ϑ+

i ) = Ji(ϑi, x(t
−
i )), γ = α+ β − αβ

and hence, under the switching law (2.2), the dynamic behaviours of switched control system (2.1) and the switched
control system (2.3) are same.

Remark 2.1. Here, we are giving a brief description of the problem (2.3).

• x(t) satisfies the first equation of the problem (2.3) when t ∈ (0, t1].

• x(t) is given by the second equation of the problem (2.3) when t ∈ (t1, ϑ1].

• x(t) satisfies the first equation of the problem (2.3) when t ∈ (ϑ1, t2].

• After repeating this process, x(t) satisfies the first equation of the problem (2.3) on the interval (ϑi, ti+1] and x(t)
is given by the second equation of the problem (2.3) on the interval (ti, ϑi], .

Graphically, this means that the solution x(t) satisfies the first equation of the problem (2.3) on the blue intervals
(ϑi, ti+1], i = 0, 1, · · · ,m and the second equation of the problem (2.3) on the red intervals (ti, ϑi], i = 1, 2, · · · ,m.

3



0 t1 ϑ1 t2 ϑ2 ϑm−1 tm ϑm tm+1=T

3 Preliminaries and Assumptions

Below we introduce some basic definitions, notations, lemmas and important results which are often used throughout
the manuscript.

Important notations: Rn denotes the space of n−dimensional column vectors x = col(x1, x2, ..., xn) with a norm
∥ · ∥; I = [0, T ], T > 0; Γ(·) and B(·, ·) denote the usual Gamma and Beta function, respectively; Superscript ∗ denotes
the matrix transpose of a matrix.

C(I,Rn) denotes the Banach space of all continuous functions f : I → Rn with the norm ∥f∥ = supt∈I ∥f(t)∥.
We define the Banach space of all piecewise continuous functions PC = PCγ(I,Rn) = {x : (t − ti)

1−γx(t) ∈
C((ti, ti+1],Rn), i = 0, 1, ...,m and there exists x(t−i ) and x(t+i ), i = 1, 2, ...,m, with x(t−i ) = x(ti)} with the norm

∥x∥γ = supt∈[0,T ] t
1−γ∥x(t)∥.

Next, for a function f : [a,∞) → R , we define the following definitions:

Definition 3.1 ([39]). The fractional Riemann-Liouville integral of f of order p > 0 with lower limit a is given by

Ipa+f(t) =
1

Γ(p)

∫ t

a

(t− ς)p−1f(ς)dς, t > a,

provided R.H.S of the above equation is point-wise defined on [a,∞).

Definition 3.2 ([39]). The fractional Riemann-Liouville derivative of f of order p > 0 is defined by

Dp
a+f(t) =

1

Γ(n− p)

dn

dtn

∫ t

a

(t− ς)n−1−pf(ς)dς, t > a, n− 1 < p < n.

Definition 3.3 ([39]). The Caputo fractional derivative of f of order p > 0 is defined by

cDp
a+f(t) = Dp

a+

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > a, n− 1 < p < n.

Definition 3.4 ([21]). The generalized Riemann-Liouville fractional derivative (or Hilfer derivative) of f with the
order 0 < α < 1 and type 0 ≤ β ≤ 1 with lower limit a is defined by

Dα,β
a+ f(t) = (I

β(1−α)
a+

d

dt
(I

(1−γ)
a+ f))(t), γ = α+ β − αβ,

provided that the expression on the R.H.S. exists.

From the above definition, we have the following remark.

Remark 3.5. (i) When β = 0, α ∈ (0, 1) and a = 0, the Hilfer fractional derivative corresponds to the classical
Riemann-Liouville fractional derivative:

Dα,0
0+ =

d

dt
(I

(1−α)
0+ f)(t) = Dα

0+f(t).

(ii) When β = 1, α ∈ (0, 1) and a = 0, the Hilfer fractional derivative corresponds to the classical Caputo fractional
derivative:

Dα,1
0+ = (I

(1−α)
a+

d

dt
f)(t) =cDα

0+f(t).

Next, we define some basics of Mittag-Leffler functions.
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The Mittag-Leffler function is defined as

Ep,q(z) =

∞∑
k=0

zk

Γ(kp+ q)
, z ∈ C, p, q > 0

and the Laplace transform is given by

L{tp−1Ep,q(±atp)}(s) = sp−q

sp ∓ a
.

The Mittag-Leffler function for a matrix A of order n× n is defined as

Ep,q(A) =

∞∑
k=0

Ak

Γ(kp+ q)
, z ∈ C, p, q > 0

and the Laplace transform is given by

L{tp−1Ep,q(±Atp)}(s) = sp−q

sp ∓A
.

For more details on fractional calculus, please see the books [38, 39].
Next, we give an important lemma.

Lemma 3.6. Let A be a n × n matrix and Υ ∈ C(I,Rn) be a function. Then, the solution of the following Hilfer
fractional system

Dα,β
0+ x(t) = Ax(t) + f (t) , α ∈ (0, 1), β ∈ [0, 1], t ∈ (0, T ],

I1−γ
0+ x(0+) = x0, γ = α+ β − αβ, (3.4)

is

x(t) = tγ−1Eα,γ(Atα)x0 +

∫ t

0

(t− ς)α−1Eα,α(A(t− ς)α)f(ς)dς for all t ∈ (0, T ].

Proof. Taking the Laplace transform on both sides of the above equation, we get

sαX(s)− sβ(α−1)(D
(1−β)(α−1),0
0+ x)(0+) = AX(s) + F (s)

sαX(s)−AX(s) = sβ(α−1)x0 + F (s)

X(s) =
sβ(α−1)

sαI − A
x0 +

F (s)

sαI − A
,

where I is the identity matrix. Now, taking the inverse Laplace transform to both sides of the last expression, we get

L−1{X(s)}(t) = L−1

{
sβ(α−1)

sαI − A

}
(t)x0 + L−1

{
F (s)

sαI − A

}
(t)

Finally substituting the Laplace transformation of Mittag-Leffler function and Laplace convolution operator, we get

x(t) = tγ−1Eα,γ(Atα)x0 +Υ(t) ∗ tα−1Eα,α(Atα)

= tγ−1Eα,γ(Atα)x0 +

∫ t

0

(t− ς)α−1Eα,α(A(t− ς)α)f(ς)dς.

Remark 3.7. One could notice that if β = 1, in the equation (3.4), then it has the well known solution

x(t) = Eα(Atα)x0 +

∫ t

0

(t− ς)α−1Eα,α(A(t− ς)α)f(ς)dς for all t ∈ (0, T ],

where Eα(x) = Eα,1(x) denotes the ordinary Mittag-Leffler function.
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Now, by using the Lemma 3.6, we can say a function x ∈ PC is a solution of the system (2.3), if x satisfies

(i) I1−γ
0+ x(0+) = x0 and I1−γ

ϑi
+ x(ϑ+

i ) = Ji(ϑi, x(t
−
i )),

(ii) x(t) = Ji(t, x(t
−
i )), t ∈ (ti, ϑi], i = 1, 2, ...,m

and the following equations

x(t) = tγ−1Eα,γ(A0t
α)[x0 −Υ0(0, x0)] + Υ0(t, xa(t)) +

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))dς

+

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)B0u(ς)dς

for t ∈ (0, t1] and

x(t) = (t− ϑi)
γ−1Eα,γ(Ai(t− ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(t, xa(t))

+

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Ψi(ς, xb(ς))dς +

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Biu(ς)dς

for t ∈ (ϑi, ti+1], i = 1, 2, ...,m.
Next, we give some assumptions which are required to establish the main results of this paper as follows:

(H1): Υi,Ψi : Ti × Rn → Rn, Ti = [ϑi, ti+1], i = 0, 1, ...,m, are continuous and satisfy

∥Υi(t, x)−Υi(t, y)∥ ≤ LΥ∥x− y∥ and ∥Ψi(t, x)−Ψi(t, y)∥ ≤ LΨ∥x− y∥,

for all x, y ∈ Rn and t ∈ Ti, where LΥ and LΨ are some positive numbers.

(H2): Ji : Ji × Rn → Rn, Ji = [ti, ϑi], i = 1, 2, ...,m, are continuous and satisfy

∥Ji(t, x)− Ji(t, y)∥ ≤ LJ ∥x− y∥,

for all x, y ∈ Rn and t ∈ Ji, where LJ is a positive constant.

(H3): The matrices

Gti+1

ϑi
=

∫ ti+1

ϑi

Eα,α(Ai(ti+1 − ς)α)BiB∗
iEα,α(A∗

i (ti+1 − ς)α)dς, i = 0, 1, ...,m. (3.5)

are invertible and there exist some positive constants M i
G , i = 0, 1, ...,m, such that ∥(Gti+1

ϑi
)−1∥ ≤ M i

G .

Also, there exists a positive constant MB such that for i = 0, 1, ...,m, ∥Bi∥ ≤ MB.

Now onwards, throughout the manuscript, we set

K1 = maxi=0,1,...,m supt∈I ∥Eα,γ(Ait
α)∥; K2 = maxi=0,1,...,m supt∈I ∥Eα,α(Ai(T − t)α)∥;

K3 = maxi=0,1,...,m supt∈I(T − t)1−α∥B∗
iEα,α(A∗

i (T − t)α)∥; MΥ = maxi=0,1,...,m supt∈I ∥Υi(t, 0)∥;

MΨ = maxi=0,1,...,m supt∈I ∥Ψi(t, 0)∥; MJ = maxi=1,...,m supt∈I ∥Ji(t, 0)∥;

Si =
K2K3MBM

i
Gt

α
i+1

α
, i = 0, 1, ...,m; N0 = K1(∥x0∥+ ∥Υ0(0, x0)∥) + t1−γ

1 MΥ +
K2MΨt

α+1−γ
1

α
;

Ni = K1(MJ +MΥ) + t1−γ
i+1 MΥ +

K2MΨt
α+1−γ
i+1

α
, i = 1, 2, ...,m; Q0 = LΥ + tα1K2LΨB(γ, α);

Qi = tγ−1
i+1 K1(LJ + LΥ) + LΥ + tαi+1K2LΨB(γ, α), i = 1, 2, ...,m;

Mi = Ni + Si(t
1−γ
i+1 ∥xti+1

∥+Ni); Ri = Qi(1 + Si), i = 0, 1, ...,m;

L𭟋1
= max (max0≤i≤m Ri, LJ ).
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4 Controllability Results

Here, we establish the total controllability results for the switched control system (2.3) by using the Banach contraction
principle.

Before giving the main results, we give some important definitions as follows.

Definition 4.1. Switched control system (2.3) is controllable on I, if for every x0, xT ∈ Rn, there exists a control
function u ∈ L2(I,Rm)

such that the solution of (2.3) satisfies I1−γ
0+ x(0+) = x0 and x(T ) = xT .

Definition 4.2. Switched control system (2.3) is totally controllable on I, if it is controllable on (0, t1] and (ϑi, ti+1], i =
1, 2, ...,m, i.e., for every x0, xti+1

∈ Rn, i = 0, 1, ...,m,
there exists a control function u ∈ L2(I,Rm)
such that the solution of (2.3) satisfies I1−γ

0+ x(0+) = x0 and x(ti+1) = xti+1 , i = 0, 1, ...,m.

Remark 4.3. From Definition 4.1 and Definition 4.2, it is clear that Definition 4.2 implies Definition 4.1.

Now, we provide some important lemmas.

Lemma 4.4. Let the assumptions (H1)–(H3) hold, then the control function

u(t) = (t1 − t)1−αB∗
0Eα,α(A∗

0(t1 − t)α)(Gt1
0 )−1

[
xt1 − tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))

−Υ0(t1, xa(t1))−
∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

]
, t ∈ (0, t1]. (4.6)

steers the state of the control system (2.3) from x0 to xt1 at time t = t1. Also, the estimate of control function u(t) is
∥u(t)∥ ≤ M0

u for all t ∈ (0, t1], where

M0
u = K3M

0
G

[
∥xt1∥+ tγ−1

1 N0 + LΥ sup
t∈[0,t1]

∥x(t)∥+K2LΨt
α+γ−1
1 B(γ, α)∥x∥γ

]
.

Proof. By putting t = t1 in the solution x(t) of the system (2.3) on (0, t1], we get

x(t1) = tγ−1
1 Eα,γ(A0t

α
1 )(x0 −Υ0(0, x0)) + Υ0(t1, xa(t1)) +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

+

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)B0u(ς)dς

= tγ−1
1 Eα,γ(A0t

α
1 )(x0 −Υ0(0, x0)) + Υ0(t1, xa(t1)) +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

+

∫ t1

0

Eα,α(A0(t1 − ς)α)B0B∗
0Eα,α(A∗

0(t1 − t)α)(Gt1
0 )−1

[
xt1 − tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))

−Υ0(t1, xa(t1))−
∫ t1

0

(t1 − τ)α−1Eα,α(A0(t1 − τ)α)Ψ0(τ, xb(τ))dτ

]
dς

= tγ−1
1 Eα,γ(A0t

α
1 )(x0 −Υ0(0, x0)) + Υ0(t1, xa(t1)) +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

+ Gt1
0 (Gt1

0 )−1

[
xt1 − tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))−Υ0(t1, xa(t1))

−
∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

]
= xt1 .
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Therefore, control function (4.6) is suitable for t ∈ (0, t1]. Furthermore,

∥u(t)∥ ≤ ∥(t1 − t)1−αB∗
0Eα,α(A∗

0(t1 − t)α)(Gt1
0 )−1∥

[
∥xt1∥+ ∥tγ−1Eα,γ(A0t

α
1 )(x0 −Υ0(0, x0))∥

+ ∥Υ0(t1, xa(t1))∥+
∫ t1

0

(t1 − ς)α−1∥Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))∥dς
]

≤ K3M
0
G

[
∥xt1∥+ tγ−1

1 K1(∥x0∥+ ∥Υ0(0, x0))∥) +MΥ + LΥ∥x(t1)∥+K2MΨ

∫ t1

0

(t1 − ς)α−1dς

+K2LΥ

∫ t1

0

(t1 − ς)α−1∥x(ς)∥dς
]

≤ K3M
0
G

[
∥xt1∥+ tγ−1

1 K1(∥x0∥+ ∥Υ0(0, x0))∥) +MΥ + LΥ sup
t∈[0,t1]

∥x(t)∥+ K2MΨt
α
1

α

+K2LΨt
α+γ−1
1 B(γ, α)∥x∥γ

]
= M0

u ,

where we use ∫ t

a

(t− ς)α−1∥x(ς))∥dς ≤
(∫ t

a

(t− ς)α−1(ς − a)γ−1dς

)
∥x∥γ

= (t− a)α+γ−1B(γ, α)∥x∥γ .

Lemma 4.5. Let the assumptions (H1)–(H3) hold, then the control

u(t) = (ti+1 − t)1−αB∗
iEα,α(A∗

i (ti+1 − t)α)(Gti+1

ϑi
)−1

[
xti+1 − (ti+1 − ϑi)

γ−1Eα,γ(Ai(ti+1 − ϑi)
α)[Ji(ϑi, x(t

−
i ))

−Υi(ϑi, xa(ϑi))]−Υi(ti+1, xa(ti+1))−
∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς

]
, (4.7)

for t ∈ (ϑi, ti+1], i = 1, 2, ...,m, steers the state of the control system (2.3) from x0 to xti+1 at time t = ti+1. Also, the
estimate of control function u(t) is ∥u(t)∥ ≤ M i

u for all t ∈ (ϑi, ti+1], i = 1, 2, ...,m, where

M i
u = K3M

i
G

[
∥xti+1

∥+ tγ−1
i+1 Ni + (tγ−1

i+1 K1(LJ + LΥ) + LΥ) sup
t∈[ϑi,ti+1]

∥x(t)∥+K2LΨt
α+γ−1
i+1 B(γ, α)∥x∥γ

]
.

Proof. By putting t = ti+1 in the solution x(t) of the system (2.3) on (ϑi, ti+1], i = 1, 2, ...,m, we get

x(ti+1) = (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(ti+1, xa(ti+1))

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς +

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Biu(ς)dς

= (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(ti+1, xa(ti+1))

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς +

∫ ti+1

ϑi

Eα,α(Ai(ti+1 − ς)α)Bi

× B∗
iEα,α(A∗

i (ti+1 − t)α)(Gti+1

ϑi
)−1

[
xti+1

− (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))

−Υi(ϑi, xa(ϑi))]−Υi(ti+1, xa(ti+1))−
∫ ti+1

ϑi

(ti+1 − τ)α−1Eα,α(Ai(ti+1 − τ)α)Ψi(τ, xb(τ))dτ

]
dς
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= (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(ti+1, xa(ti+1))

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς + Gti+1

ϑi
(Gti+1

ϑi
)−1

[
xti+1

− (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))]−Υi(ti+1, xa(ti+1))

−
∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς

]
= xti+1 .

Therefore, control function (4.7) is suitable for (ϑi, ti+1], i = 1, 2, ...,m. Furthermore,

∥u(t)∥ ≤ ∥(ti+1 − t)1−αB∗
iEα,α(A∗

i (ti+1 − t)α)(Gti+1

ϑi
)−1∥

[
∥xti+1

∥+ ∥(ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)∥[∥Ji(ϑi, x(t
−
i ))∥

+ ∥Υi(ϑi, xa(ϑi))∥] + ∥Υi(ti+1, xa(ti+1))∥+
∫ ti+1

ϑi

(ti+1 − ς)α−1∥Eα,α(Ai(ti+1 − ς)α)∥∥Ψi(ς, xb(ς))∥dς
]

≤ K3M
i
G

[
∥xti+1

∥+ tγ−1
i+1 K1(MJ + LJ ∥x(t−i )∥+MΥ + LΥ∥xa(ϑi)∥) +MΥ + LΥ∥x(ti+1)∥

+K2MΨ

∫ t1

0

(t1 − ς)α−1dς +K2LΥ

∫ ti+1

ϑi

(ti+1 − ς)α−1∥x(ς)∥dς
]

≤ K3M
i
G

[
∥xti+1

∥+ tγ−1
i+1 K1(MJ +MΥ) + tγ−1

i+1 K1(LJ + LΥ) sup
t∈[ϑi,ti+1]

∥x(t)∥+MΥ + LΥ sup
t∈[ϑi,ti+1]

∥x(t)∥

+
K2MΨt

α
i+1

α
+K2LΨt

α+γ−1
i+1 B(γ, α)∥x∥γ

]
= M i

u.

Theorem 4.6. Let the assumptions (H1)–(H3) hold, then the control system (2.3) is totally controllable on I, provided

L𭟋1
< 1. (4.8)

Proof. Consider a subset Ω1 ⊆ PC such that

Ω1 = {x ∈ PC : ∥x∥γ ≤ ω1},

where

ω1 = max

(
max

0≤i≤m

Mi

1−Ri
,
(ϑi − ti)

1−γMΨ

1− LJ

)
.

Now, we define an operator 𭟋1 : Ω1 → Ω1 as

(𭟋1x)(t) = tγ−1Eα,γ(A0t
α)[x0 −Υ0(0, x0)] + Υ0(t, xa(t)) +

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))dς

+

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)B0u(ς)dς, t ∈ (0, t1],

(𭟋1x)(t) = Ψi(t, x(t
−
i )), t ∈ (ti, ϑi], i = 1, 2, ...,m,

(𭟋1x)(t) = (t− ϑi)
γ−1Eα,γ(Ai(t− ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(t, xa(t))

+

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Ψi(ς, xb(ς))dς +

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Biu(ς)dς,

t ∈ (ϑi, ti+1], i = 1, 2, ...,m,
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where u(t) is given by the equations (4.6) and (4.7) in the intervals (0, t1] and (ϑi, ti+1], i = 1, 2, ...,m, respectively.
It is clear from the Lemma 4.4 and Lemma 4.5, x(t) satisfies x(t1) = xt1 and x(ti+1) = xti+1

, i = 1, 2, ...,m. Thus,
to proof the controllability of the switched control system (2.3), it remains to show that the operator 𭟋1 has a fixed
point. For the simplicity, we split the proof into the following two main steps:
Step 1: We shall show that 𭟋1 maps Ω1 into Ω1. Now, for any t ∈ (0, t1] and x ∈ Ω1, we have

t1−γ∥(𭟋1x)(t)∥ ≤ ∥Eα,γ(A0t
α)[x0 −Υ0(0, x0)]∥+ t1−γ∥Υ0(t, xa(t))∥

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))∥dς

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)B0u(ς)∥dς

≤ K1[∥x0∥+ ∥Υ0(0, x0)∥] + t1−γMf + t1−γLΥ∥xa(t)∥+ t1−γK2MΨ

∫ t

0

(t− ς)α−1dς

+ t1−γK2LΨ

∫ t

0

(t− ς)α−1∥xb(ς)∥dς + t1−γK2MB

∫ t

0

(t− ς)α−1K3M
0
G

[
∥xt1∥

+ tγ−1N0 + LΥ sup
t∈[0,t1]

∥x(t)∥+K2LΨt
α+γ−1
1 B(γ, α)∥x∥γ

]
dς

≤ K1[∥x0∥+ ∥Υ0(0, x0)∥] + t1−γMf + LΥω1 +
tα+1−γK2MΨ

α

+ tαK2LΨω1B(γ, α) +
tαK2MBK3M

0
G

α

[
t1−γ∥xt1∥+N0 + LΥω1 +K2LΨt

α
1B(γ, α)ω1

]
≤ N0 +Q0ω1 + S0(t

1−γ
1 ∥xt1∥+N0 +Q0ω1)

≤ M0 +R0ω1 ≤ ω1. (4.9)

Now, for any x ∈ Ω1 and t ∈ (ti, ϑi], i = 1, 2, ...,m, we have

(t− ti)
1−γ∥(𭟋1x)(t)∥ ≤ (t− ti)

1−γ∥Ji(t, x(t
−
i ))∥

≤ LJω1 + (ϑi − ti)
1−γMJ ≤ ω1. (4.10)

Similarly, for any x ∈ Ω1 and t ∈ (ϑi, ti+1], i = 1, 2, ...,m, we have

(t− ϑi)
1−γ∥(𭟋1x)(t)∥ ≤ ∥Eα,γ(Ai(t− ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))]∥+ (t− ϑi)

1−γ∥Υi(t, xa(t))∥

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)Ψi(ς, xb(ς))∥dς

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)Biu(ς)∥dς

≤ K1[MJ + LJ ∥x(t−i )∥+MΥ + LΥ∥xa(ϑi)∥] + (t− ϑi)
1−γMf

+ (t− ϑi)
1−γLΥ∥xa(t)∥+ (t− ϑi)

1−γK2LΨ

∫ t

ϑi

(t− ς)α−1∥xb(ς))∥dς

+ (t− ϑi)
1−γK2MΥ

∫ t

ϑi

(t− ς)α−1dς + (t− ϑi)
1−γK2K3MBM

i
G

∫ t

ϑi

(t− ς)α−1

[
∥xti+1

∥

+ tγ−1
i+1 Ni + (tγ−1

i+1 K1(LJ + LΥ) + LΥ) sup
t∈[ϑi,ti+1]

∥x(t)∥+K2LΨt
α+γ−1
i+1 B(γ, α)∥x∥γ

]
dς

≤ K1[MJ +MΥ] + (t− ϑi)
γ−1K1(LJ + LΥ)ω1 + (t− ϑi)

1−γMf

+ LΥω1 + (t− ϑi)
αK2LΨB(γ, α)ω1 +

(t− ϑi)
α+1−γK2MΨ

α
+

(t− ϑi)
αK2K3MBM

i
G

α

×
[
(t− ϑi)

1−γ∥xti+1
∥+Ni + (tγ−1

i+1 K1(LJ + LΥ) + LΥ)ω1 +K2LΨt
α
i+1B(γ, α)ω1

]
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≤ Ni +Qiω1 + Si(t
1−γ
i+1 ∥xti+1

∥+Ni +Qiω1)

≤ Mi +Riω1 ≤ ω1. (4.11)

From the inequalities (4.9), (4.10) and (4.11), for t ∈ I, we get

∥𭟋1x∥γ ≤ ω1.

Hence, 𭟋1 maps Ω1 into Ω1.
Step 2: Here, we show that 𭟋1 is a contracting operator. For any x, y ∈ Ω1 and t ∈ (0, t1], we have

t1−γ∥(𭟋1x)(t)− (𭟋1y)(t)∥
≤ t1−γ∥Υ0(t, xa(t))−Υ0(t, ya(t))∥

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))−Ψ0(ς, yb(ς))∥dς

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)B0(t1 − ς)1−αB∗
0Eα,α(A∗

0(t1 − ς)α)(Gt1
0 )−1∥

×
[
∥Υ0(t1, xa(t1))−Υ0(t1, ya(t1))∥+

∫ t1

0

(t1 − τ)α−1∥Eα,α(A0(t1 − τ)α)∥∥Ψ0(τ, xb(τ))−Ψ0(τ, yb(τ))∥dτ
]
dς

≤ t1−γLΥ∥xa(t)− ya(t)∥+ t1−γK2LΨ

∫ t

0

(t− ς)α−1∥xb(ς)− yb(ς)∥dς

+K2K3MBM
0
Gt

1−γ

∫ t

0

(t− ς)α−1

[
LΥ∥xa(t1)− ya(t1)∥+K2LΨ

∫ t1

0

(t1 − τ)α−1∥xb(τ)− yb(τ)∥dτ
]
dς

≤ LΥ∥x− y∥γ + tαK2LΨB(γ, α)∥x− y∥γ +
K2K3MBM

0
Gt

α

α
[LΥ + tα1K2LΨB(γ, α)]∥x− y∥γ

≤ Q0(1 + S0)∥x− y∥γ
≤ R0∥x− y∥γ . (4.12)

Also, for any x, y ∈ Ω1 and t ∈ (ti, ϑi], i = 1, 2, ...,m, we have

(t− ti)
1−γ∥(𭟋1x)(t)− (𭟋1y)(t)∥ ≤ (t− ti)

1−γ∥Ji(t, x(t
−
i ))− Ji(t, y(t

−
i ))∥

≤ LJ ∥x− y∥γ . (4.13)

Similarly, for any x, y ∈ Ω1 and t ∈ (ϑi, ti+1], i = 1, 2, ...,m, we have

(t− ϑi)
1−γ∥(𭟋1x)(t)− (𭟋1y)(t)∥

≤ ∥Eα,γ(Ai(t− ϑi)
α)∥[∥Ji(ϑi, x(t

−
i ))− Ji(ϑi, y(t

−
i ))∥

+ ∥Υi(ϑi, xa(ϑi))−Υi(ϑi, ya(ϑi))∥] + (t− ϑi)
1−γ∥Υi(t, xa(t))−Υi(t, ya(t))∥

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)∥∥Ψi(ς, xb(ς))−Ψi(ς, yb(ς))∥dς

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)∥∥Bi∥∥(ti+1 − ς)1−αB∗
iEα,α(A∗

i (ti+1 − ς)α)∥

× ∥(Gti+1

ϑi
)−1∥

[
∥(ti+1 − ϑi)

γ−1Eα,γ(Ai(ti+1 − ϑi)
α)∥[∥Ji(ϑi, x(t

−
i ))− Ji(ϑi, x(t

−
i ))∥

+ ∥Υi(ϑi, xa(ϑi))−Υi(ϑi, ya(ϑi))∥∥] + ∥Υi(t1, xa(t1))−Υi(t1, ya(t1))∥

+

∫ ti+1

ϑi

(ti+1 − τ)α−1∥Eα,α(Ai(ti+1 − τ)α)∥∥Ψi(τ, xb(τ))−Ψi(τ, yb(τ))∥dτ
]
dς
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≤ K1(LJ ∥x(t−i )− y(t−i )∥+ LΥ∥xa(ϑi)− ya(ϑi)∥) + (t− ϑi)
1−γLΥ∥xa(t)− ya(t)∥

+K2LΨ(t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥x(ς))− y(ς)∥dς

+K2K3MBM
i
G(t− ϑi)

1−γ

∫ t

ϑi

(t− ς)α−1

[
(ti+1 − ϑi)

γ−1K1(LJ ∥x(t−i )− y(t−i )∥+ LΥ∥xa(ϑi)− ya(ϑi)∥)

+ LΥ∥xa(t1)− ya(t1)∥+K2LΨ

∫ ti+1

ϑi

(ti+1 − τ)α−1∥x(τ)− y(τ)∥dτ
]
dς

≤ (t− ϑi)
γ−1K1(LJ + LΥ)∥x− y∥γ + LΥ∥x− y∥γ +K2LΨ(t− ϑi)

αB(γ, α)∥x− y∥γ +
K2K3M

i
GMBt

α
i+1

α

×
(
(ti+1 − ϑi)

γ−1K1(LΨ + LΥ)∥x− y∥γ + LΥ∥x− y∥γ +K2LΨ(ti+1 − ϑi)
αB(γ, α)∥x− y∥γ

)
≤ Qi∥x− y∥γ + SiQi∥x− y∥γ
≤ Ri∥x− y∥γ . (4.14)

Therefore, from the inequalities (4.12), (4.13) and (4.14), for any t ∈ I, we have

∥𭟋1x−𭟋1y∥γ ≤ L𭟋1∥x− y∥γ .

Hence, from the inequality (4.8), 𭟋1 is a contracting operator.
Therefore, from the step 1 and step 2, we can conclude that the operator 𭟋1 satisfies all the conditions of Banach

fixed point theorem and hence, the control system (2.3) has a unique solution. Subsequently, the control system (2.3)
is totally controllable on I. Also, from the Remark 4.3, the control system (2.3) is controllable on I.

5 Controllability of Integro-differential Equation

Here, we establish the total controllability of control system (2.3) with the integral term as follows:

Dα,β

ϑ+
i

[x(t)−Υi(t, xa(t))] = Ai[x(t)−Υi(t, xa(t))] + Ψi (t, xb(t)) + Biu(t) +

∫ t

ϑi

k(t, ς)Zi(ς, x(ς))dς, t ∈ ∪m
i=0(ϑi, ti+1],

x(t) = Ji(t, x(t
−
i )), t ∈ (ti, ϑi], i = 1, 2, ...,m, (5.15)

I1−γ
0+ x(0+) = x0, I1−γ

ϑi
+ x(ϑ+

i ) = Ji(ϑi, x(t
−
i )), γ = α+ β − αβ.

Definition 5.1. A function x ∈ PC is a solution of the system (2.3), if x satisfies

(i) I1−γ
0+ x(0+) = x0 and I1−γ

ϑi
+ x(ϑ+

i ) = Ji(ϑi, x(t
−
i )),

(ii) x(t) = Ji(t, x(t
−
i )), t ∈ (ti, ϑi], i = 1, 2, ...,m

and the following equations

x(t) = tγ−1Eα,γ(A0t
α)[x0 −Υ0(0, x0)] + Υ0(t, xa(t)) +

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))dς

+

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)B0u(ς)dς +

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς

for t ∈ (0, t1] and

x(t) = (t− ϑi)
γ−1Eα,γ(Ai(t− ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(t, xa(t))

+

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Ψi(ς, xb(ς))dς +

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Biu(ς)dς

+

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)

∫ ς

ϑi

k(ς, τ)Zi(τ, x(τ))dτdς

for t ∈ (ϑi, ti+1], i = 1, 2, ...,m.
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We impose the following extra assumptions to establish the main results for the integro control system (5.15).

(H4): k : Ti × Ti → R is continuous and there exists a positive constant Mk such that
∫ t

ϑi
|k(t, ς)|dς ≤ Mk for

i = 0, 1, ...,m.

(H5): Zi : Ti × Rn → Rn, i = 1, 2, ...,m, are continuous and satisfy

∥Zi(t, x)−Zi(t, y)∥ ≤ LZ∥x− y∥,

for all x, y ∈ Rn and t ∈ Ti, where LZ is a positive constant.

We set

supt∈I ∥Zi(t, 0)∥ ≤ MZ ; N0 = t1−γ
1

(
tγ−1
1 K1(∥x0∥+ ∥Υ0(0, x0)∥) +MΥ +

K2t
α
1 (MΨ +MkMZ)

α

)
;

Ni = t1−γ
i+1

(
tγ−1
i+1 K1(MJ +MΥ) +Mf +

K2t
α
i+1(MΨ +MkMZ)

α

)
, i = 1, 2, ...,m;

Q0 = LΥ + tα1K2B(γ, α)(LΨ +MkLZ);

Qi = t1−γ
i+1 K1(LJ + LΥ) + LΥ + tαi+1K2B(γ, α)(LΨ +MkLZ), i = 1, 2, ...,m;

Mi = Ni + Si((ti+1)
1−γ∥xti+1∥+Ni); Ri = Qi(1 + Si), i = 0, 1, ...,m;

L𭟋2 = max
(
max0≤i≤m Ri, LJ

)
.

Lemma 5.2. Let the assumptions (H1)–(H5) hold, then the control function

u(t) = (t1 − t)1−αB∗
0Eα,α(A∗

0(t1 − t)α)(Gt1
0 )−1

[
xt1 − tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))

−Υ0(t1, xa(t1))−
∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

−
∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς

]
, t ∈ (0, t1]. (5.16)

steers the state of the control system (5.15) from x0 to xt1 at time t = t1. Also, the estimate of control function u(t)
is ∥u(t)∥ ≤ M0

u ,∀ t ∈ (0, t1], where

M0
u = K3M

0
G

[
∥xt1∥+ tγ−1

1 N0 + LΥ sup
t∈[0,t1]

∥x(t)∥+K2t
α+γ−1
1 B(γ, α)(LΨ +MkLZ)∥x∥γ

]
.

Proof. By putting t = t1 in the solution x(t) of the system (5.15) on (0, t1], we get

x(t1) = tγ−1
1 Eα,γ(A0t

α
1 )[x0 −Υ0(0, x0)] + Υ0(t1, xa(t1)) +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

+

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)B0u(ς)dς

= tγ−1
1 Eα,γ(A0t

α
1 )(x0 −Υ0(0, x0)) + Υ0(t1, xa(t1)) +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

+

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς +

∫ t1

0

Eα,α(A0(t1 − ς)α)B0

× B∗
0Eα,α(A∗

0(t1 − t)α)(Gt1
0 )−1

[
xt1 − tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))−Υ0(t1, xa(t1))

−
∫ t1

0

(t1 − τ)α−1Eα,α(A0(t1 − τ)α)Ψ0(τ, xb(τ))dτ

−
∫ t1

0

(t1 − τ)α−1Eα,α(A0(t1 − τ)α)

∫ τ

0

k(τ, s)Z0(s, x(s))dsdτ

]
dς
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= tγ−1
1 Eα,γ(A0t

α
1 )[x0 −Υ0(0, x0)] + Υ0(t1, xa(t1)) +

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))dς

+

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς

+ Gt1
0 (Gt1

0 )−1

[
xt1 − tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))−Υ0(t1, xa(t1))−

∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)

×Ψ0(ς, xb(ς))dς −
∫ t1

0

(t1 − ς)α−1Eα,α(A0(t1 − ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς

]
= xt1 .

Therefore, control function (5.16) is suitable for t ∈ (0, t1]. Furthermore,

∥u(t)∥ ≤ ∥(t1 − t)1−αB∗
0Eα,α(A∗

0(t1 − t)α)(Gt1
0 )−1∥

[
∥xt1∥+ ∥tγ−1

1 Eα,γ(A0t
α
1 )(x0 −Υ0(0, x0))∥

+ ∥Υ0(t1, xa(t1))∥+
∫ t1

0

(t1 − ς)α−1∥Eα,α(A0(t1 − ς)α)Ψ0(ς, xb(ς))∥dς

+

∫ t1

0

(t1 − ς)α−1∥Eα,α(A0(t1 − ς)α)∥
∫ ς

0

|k(ς, τ)|∥Z0(τ, x(τ))∥dτdς
]

≤ K3M
0
G

[
∥xt1∥+ tγ−1

1 K1(∥x0∥+ ∥Υ0(0, x0))∥) +MΥ + LΥ sup
t∈[0,t1]

∥x(t)∥+ K2MΨt
α
1

α

+K2LΨt
α+γ−1
1 B(γ, α)∥x∥γ +

K2MkMZt
α
1

α
+K2LZMkt

α+γ−1
1 B(γ, α)∥x∥γ

]
= M0

u .

Lemma 5.3. Let the assumptions (H1)–(H5) hold, then the control

u(t) = (ti+1 − t)1−αB∗
iEα,α(A∗

i (ti+1 − t)α)(Gti+1

ϑi
)−1

[
xti+1

− (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))

−Υi(ϑi, xa(ϑi))]−Υi(ti+1, xa(ti+1))−
∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς

−
∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)

∫ ς

ϑi

k(ς, τ)Zi(τ, x(τ))dτdς

]
, (5.17)

for t ∈ (ϑi, ti+1], i = 1, 2, ...,m, steers the state of the control system (5.15) from x0 to xti+1
at time t = ti+1. Also,

the estimate of control function u(t) is ∥u(t)∥ ≤ M i
u,∀ t ∈ (ϑi, ti+1], i = 1, 2, ...,m, where

M i
u = K3M

i
G [∥xti+1

∥+ tγ−1
i+1 Ni + (tγ−1

i+1 K1(LJ + LΥ) + LΥ) sup
t∈[ϑi,ti+1]

∥x(t)∥

+K2t
α+γ−1
i+1 B(γ, α)(LΨ +MkLZ)∥x∥γ ].

Proof. By putting t = ti+1 in the solution x(t) of the system (5.15) on (ϑi, ti+1], i = 1, 2, ...,m, we get

x(ti+1) = (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(ti+1, xa(ti+1))

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς +

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Biu(ς)dς

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)

∫ ς

ϑi

k(ς, τ)Zi(τ, x(τ))dτdς
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= (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(ti+1, xa(ti+1))

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)Ψi(ς, xb(ς))dς

+

∫ ti+1

ϑi

(ti+1 − ς)α−1Eα,α(Ai(ti+1 − ς)α)

∫ ς

ϑi

k(ς, τ)Zi(τ, x(τ))dτdς

+

∫ ti+1

ϑi

Eα,α(Ai(ti+1 − ς)α)BiB∗
iEα,α(A∗

i (ti+1 − t)α)(Gti+1

ϑi
)−1

[
xti+1

− (ti+1 − ϑi)
γ−1Eα,γ(Ai(ti+1 − ϑi)

α)

× [Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))]−

∫ ti+1

ϑi

(ti+1 − τ)α−1Eα,α(Ai(ti+1 − τ)α)Ψi(τ, xb(τ))dτ

−Υi(ti+1, xa(ti+1))−
∫ ti+1

ϑi

(ti+1 − τ)α−1Eα,α(Ai(ti+1 − τ)α)

∫ τ

ϑi

k(τ, s)Zi(s, x(s))dsdτ

]
dς

= xti+1
.

Therefore, control function (5.17) is suitable for (ϑi, ti+1], i = 1, 2, ...,m. Furthermore,

∥u(t)∥ ≤ ∥(ti+1 − t)1−αB∗
iEα,α(A∗

i (ti+1 − t)α)(Gti+1

ϑi
)−1∥

[
∥xti+1

∥+ ∥tγ−1
i+1 Eα,γ(Ai(ti+1 − ϑi)

α)∥[∥Ji(ϑi, x(t
−
i ))∥

+ ∥Υi(ϑi, xa(ϑi))∥] + ∥Υi(ti+1, xa(ti+1))∥+
∫ ti+1

ϑi

(ti+1 − ς)α−1∥Eα,α(Ai(ti+1 − ς)α)∥∥Ψi(ς, xb(ς))∥dς

+

∫ ti+1

ϑi

(ti+1 − ς)α−1∥Eα,α(Ai(ti+1 − ς)α)∥
∫ ς

ϑi

|k(ς, τ)|∥Zi(τ, x(τ))∥dτdς
]

≤ K3M
i
G

[
∥xti+1∥+ tγ−1

i+1 K1(MJ +MΥ) + tγ−1
i+1 K1(LJ + LΥ) sup

t∈[ϑi,ti+1]

∥x(t)∥+ LΥ sup
t∈[ϑi,ti+1]

∥x(ti+1)∥

+MΥ +
K2MΨt

α
i+1

α
+K2LΨt

α+γ−1
i+1 B(γ, α)∥x∥γ ++

K2MkMZt
α
i+1

α
+K2MkLZt

α+γ−1
i+1 B(γ, α)∥x∥γ

]
= M i

u.

Theorem 5.4. Let the assumptions (H1)–(H5) hold, then the control system (5.15) is totally controllable on I, provided

L𭟋2
< 1. (5.18)

Proof. Consider a subset Ω2 ⊆ PC such that

Ω2 = {x ∈ PC : ∥x∥γ ≤ ω2},

where

ω2 = max

(
max

0≤i≤m

Mi

1−Ri

,
(ϑi − ti)

1−γMΨ

1− LJ

)
.

Now, we define an operator 𭟋2 : Ω2 → Ω2 as

(𭟋2x)(t) = tγ−1Eα,γ(A0t
α)[x0 −Υ0(0, x0)] + Υ0(t, xa(t)) +

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))dς

+

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)B0u(ς)dς

+

∫ t

0

(t− ς)α−1Eα,α(A0(t− ς)α)

∫ ς

0

k(ς, τ)Z0(τ, x(τ))dτdς, t ∈ (0, t1],

(𭟋2x)(t) = Ψi(t, x(t
−
i )), ∀ t ∈ (ti, ϑi], i = 1, 2, ...,m,
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(𭟋2x)(t) = (t− ϑi)
γ−1Eα,γ(Ai(t− ϑi)

α)[Ji(ϑi, x(t
−
i ))−Υi(ϑi, xa(ϑi))] + Υi(t, xa(t))

+

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Ψi(ς, xb(ς))dς +

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)Biu(ς)dς

+

∫ t

ϑi

(t− ς)α−1Eα,α(Ai(t− ς)α)

∫ ς

ϑi

k(ς, τ)Zi(τ, x(τ))dτdς, t ∈ (ϑi, ti+1], i = 1, 2, ...,m,

where u(t) is given by the equations (5.16) and (5.17) in the intervals (0, t1] and (ϑi, ti+1], i = 1, 2, ...,m, respectively.
It is clear from the Lemma 5.2 and Lemma 5.3, x(t) satisfies x(t1) = xt1 and x(ti+1) = xti+1

, i = 1, 2, ...,m. Thus,
to proof the controllability of the switched control system (5.15), it remains to show that the operator 𭟋2 has a fixed
point. Let, for any t ∈ (0, t1] and x ∈ Ω2, we have

t1−γ∥(𭟋2x)(t)∥ ≤ K1[∥x0∥+ ∥Υ0(0, x0)∥] + t1−γMf + t1−γLΥ∥xa(t)∥+ t1−γK2MΨ

∫ t

0

(t− ς)α−1dς

+ t1−γK2LΨ

∫ t

0

(t− ς)α−1∥xb(ς)∥dς + t1−γK2

∫ t

0

(t− ς)α−1

∫ ς

0

|k(ς, τ)|MZdτdς

+ t1−γK2

∫ t

0

(t− ς)α−1

∫ ς

0

|k(ς, τ)|LZ∥x(τ)∥dτdς + t1−γK2MB

∫ t

0

(t− ς)α−1K3M
0
G

×
[
∥xt1∥+ tγ−1N0 + LΥ sup

t∈[0,t1]

∥x(t)∥+K2t
α+γ−1
1 B(γ, α)(LΨ +MkLZ)∥x∥γ

]
dς

≤ M0 +R0ω2 ≤ ω2. (5.19)

Now, for any x ∈ Ω2 and t ∈ (ti, ϑi], i = 1, 2, ...,m, we have

(t− ti)
1−γ∥(𭟋2x)(t)∥ ≤ ω2. (5.20)

Similarly, for any x ∈ Ω2 and t ∈ (ϑi, ti+1], i = 1, 2, ...,m, we have

(t− ϑi)
1−γ∥(𭟋2x)(t)∥ ≤ K1[MJ + ∥x(t−i )∥+MΥ + LΥ∥xa(ϑi)∥] + (t− ϑi)

1−γMf

+ (t− ϑi)
1−γLΥ∥xa(t)∥+ (t− ϑi)

1−γK2LΨ

∫ t

ϑi

(t− ς)α−1∥xb(ς))∥dς

+ (t− ϑi)
1−γK2MΥ

∫ t

ϑi

(t− ς)α−1dς + (t− ϑi)
1−γK2

∫ t

ϑi

(t− ς)α−1

∫ ς

ϑi

|k(ς, τ)|MZdτdς

+ (t− ϑi)
1−γK2

∫ t

ϑi

(t− ς)α−1

∫ ς

ϑi

|k(ς, τ)|LZ∥x(τ)∥dτdς

+ (t− ϑi)
1−γK2K3MBM

i
G

∫ t

ϑi

(t− ς)α−1

[
∥xti+1

∥+ tγ−1
i+1 Ni

+ (tγ−1
i+1 K1(LJ + LΥ) + LΥ) sup

t∈[ϑi,ti+1]

∥x(t)∥+K2t
α+γ−1
i+1 B(γ, α)(LΨ +MkLZ)∥x∥γ

]
dς

≤ Mi +Riω2 ≤ ω2. (5.21)

From the inequalities (5.19), (5.20) and (5.21), for t ∈ I, we get

∥𭟋2x∥γ ≤ ω2.

Hence, 𭟋2 maps Ω2 into Ω2. Next, we show that 𭟋2 is a contracting operator. For any x, y ∈ Ω2 and t ∈ (0, t1], we
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have

t1−γ∥(𭟋2x)(t)− (𭟋2y)(t)∥
≤ t1−γ∥Υ0(t, xa(t))−Υ0(t, ya(t))∥

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)Ψ0(ς, xb(ς))−Ψ0(ς, yb(ς))∥dς

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)∥
∫ ς

0

|k(ς, τ)|∥Z0(τ, x(τ))−Z0(τ, y(τ))∥dτdς

+ t1−γ

∫ t

0

(t− ς)α−1∥Eα,α(A0(t− ς)α)B0(t1 − ς)1−αB∗
0Eα,α(A∗

0(t1 − ς)α)(Gt1
0 )−1∥

×
[
∥Υ0(t1, xa(t1))−Υ0(t1, ya(t1))∥+

∫ t1

0

(t1 − τ)α−1∥Eα,α(A0(t1 − τ)α)∥∥Ψ0(τ, xb(τ))−Ψ0(τ, yb(τ))

+

∫ t1

0

(t1 − r)α−1∥Eα,α(A0(t1 − r)α)∥
∫ r

0

|k(r, τ)|∥Z0(τ, x(τ))−Z0(τ, y(τ))∥dτdr
]
dς

≤ Q0(1 + S0)∥x− y∥γ ≤ R0∥x− y∥γ . (5.22)

Also, for any x, y ∈ Ω2 and t ∈ (ti, ϑi], i = 1, 2, ...,m, we have

(t− ti)
1−γ∥(𭟋2x)(t)− (𭟋2y)(t)∥ ≤ LJ ∥x− y∥γ . (5.23)

Similarly, for any x, y ∈ Ω2 and t ∈ (ϑi, ti+1], i = 1, 2, ...,m, we have

(t− ϑi)
1−γ∥(𭟋2x)(t)− (𭟋2y)(t)∥

≤ ∥Eα,γ(Ai(t− ϑi)
α)∥[∥Ji(ϑi, x(t

−
i ))− Ji(ϑi, y(t

−
i ))∥

+ ∥Υi(ϑi, xa(ϑi))−Υi(ϑi, ya(ϑi))∥∥] + (t− ϑi)
1−γ∥Υi(t, xa(t))−Υi(t, ya(t))∥∥

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)∥[∥Ψi(ς, xb(ς))−Ψi(ς, yb(ς))∥dς

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)∥
∫ ς

ϑi

|k(ς, τ)|∥Zi(τ, x(τ))−Zi(τ, y(τ))∥dτdς

+ (t− ϑi)
1−γ

∫ t

ϑi

(t− ς)α−1∥Eα,α(Ai(t− ς)α)∥∥Bi∥∥(ti+1 − ς)1−αB∗
iEα,α(A∗

i (ti+1 − ς)α)∥

× ∥(Gti+1

ϑi
)−1∥

[
∥(ti+1 − ϑi)

γ−1Eα,γ(Ai(ti+1 − ϑi)
α)∥[∥Ji(ϑi, x(t

−
i ))− Ji(ϑi, x(t

−
i ))∥

+ ∥Υi(ϑi, xa(ϑi))−Υi(ϑi, ya(ϑi))∥∥] + ∥Υi(t1, xa(t1))−Υi(t1, ya(t1))∥

+

∫ ti+1

ϑi

(ti+1 − τ)α−1∥Eα,α(Ai(ti+1 − τ)α)∥∥Ψi(τ, xb(τ))−Ψi(τ, yb(τ))∥dτ

+

∫ ti+1

ϑi

(ti+1 − r)α−1∥Eα,α(Ai(ti+1 − r)α)∥
∫ r

ϑi

|k(r, τ)|∥Zi(τ, x(τ))−Zi(τ, y(τ))∥dτdr
]
dς

≤ Qi(1 + Si)∥x− y∥γ ≤ Ri∥x− y∥γ . (5.24)

Therefore, from the inequalities (5.22), (5.23) and (5.24), for any t ∈ I, we have

∥𭟋2x−𭟋2y∥γ ≤ L𭟋2
∥x− y∥γ .

Hence, from the inequality (5.18), 𭟋2 is a contracting operator. Therefore, 𭟋2 satisfies all the conditions of Banach
fixed point theorem and hence, the control system (5.15) has a unique solution. Subsequently, the control system
(5.15)) is totally controllable on I. Also, from the Remark 4.3, the control system (5.15) is controllable on I.
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6 Example

Example 6.1. We consider the following switched impulsive control system in the space R2

D0.8,0.7
0+

[
x1(t)−

t(3 + |x1(t/2)|)
45e5(1 + |x1(t/2)|)

− et
]
= −

[
x1(t)−

t(3 + |x1(t/2)|)
45e5(1 + |x1(t/2)|)

− et
]
+ 0.2

[
x2 −

t sin(x2(t/2))

48e5

]
+

t2x1(2t/3)

35e6
+

et

2
+ u1(t), t ∈ (0, 0.4],

D0.8,0.7
0+

[
x2(t)−

t sin(x2(t/2))

48e5

]
= 0.2

[
x1(t)−

t(3 + |x1(t/2)|)
45e5(1 + |x1(t/2)|)

− et
]
− 0.1

[
x2(t)−

t sin(x2(t/2))

48e5

]
+

t cos(x2(2t/3))

35(1 + t)et+6
+ sin(t) + u2(t), t ∈ (0, 0.4],

D0.8,0.7
0.6+

[
x1(t)−

t(3 + |x1(t/2)|)
45et+5(1 + |x1(t/3)|)

− 1

et

]
= −2

[
x1(t)−

t(3 + |x1(t/2)|)
45et+5(1 + |x1(t/3)|)

− 1

et

]
+ 0.3

[
x2(t)−

t sin(x2(t/2))

24(2 + t)et+5

]
+

(1 + t2)x1(2t/3)

35et+6
+ et + u1(t), t ∈ (0.6, 1],

D0.8,0.7
0.6+

[
x2(t)−

t sin(x2(t/2))

24(2 + t)et+5

]
= 0.3

[
x1(t)−

t(3 + |x1(t/2)|)
45et+5(1 + |x1(t/3)|)

− 1

et

]
− 0.5

[
x2(t)−

t sin(x2(t/2))

24(2 + t)et+5

]
+

t cos(x2(2t/3))

35(1 + t)et+6
+ sin(t)et

2

+ u2(t), t ∈ (0.6, 1],

x1(t) =
cos(t)x1(0.4

−)

25et+4
+

sin(t)

et
, x2(t) =

sin(t)x2(0.4
−)

30et+4
+

cos(t)

et
, t ∈ (0.4, 0.6],

I1−γ
0.6+x1(0.6

+) =
cos(0.6)x1(0.4

−)

25e0.6+4
+
sin(0.6)

e0.6
, I1−γ

0.6+x2(0.6
+) =

sin(0.6)x2(0.4
−)

30e0.6+4
+

cos(0.6)

e0.6
,

I1−γ
0+ x1(0

+) = 2, I1−γ
0+ x2(0

+) = 3, (6.25)

The system (6.25) can be written in the form of (2.3), where t0 = 0, t1 = 0.4, ϑ1 = 0.6, t2 = T = 1,m = 1, α = 0.8, β =
0.7, a(t) = t/2, b(t) = 2t/3,

x(t) =

[
x1(t)
x2(t)

]
, x0 =

[
2
3

]
, A0 =

[
−1.0 0.2
0.2 −0.1

]
, A1 =

[
−2 0.3
0.3 −0.5

]
, B0 =

[
1
1

]
,B1 =

[
1
1

]
,

u(t) =

[
u1(t)
u2(t)

]
,Υ0(t, xa(t)) =

[
Υ01(t, xa(t))
Υ02(t, xa(t))

]
, Υ1(t, x(t)) =

[
Υ11(t, x(t))
Υ12(t, x(t))

]
, Ψ0(t, x(t)) =

[
Ψ01(t, x(t))
Ψ02(t, x(t))

]
,

Ψ1(t, x(t)) =

[
Ψ11(t, x(t))
Ψ12(t, x(t))

]
,J1(t, x(t)) =

[
J11(t, x(t))
J21(t, x(t))

]
,

with

Υ01(t, xa(t)) =
t(3 + |x1(a(t))|)

45e5(1 + |x1(a(t))|)
+ et, Υ02(t, xa(t)) =

t sin(x2(a(t)))

48e5
,

Υ11(t, xa(t)) =
t(3 + |x1(a(t))|)

45et+5(1 + |x1(a(t))|)
+ e−t, Υ12(t, xa(t)) =

t sin(x2(a(t)))

24(2 + t)et+5

Ψi1(t, xb(t)) =
(i+ t2)x1(b(t))

35eit+6
+

(1 + i)et

2
, Ψi2(t, x(t)) =

t cos(x2(b(t)))

35(1 + t)et+6
+ sin(t)eit

2

, i = 0, 1,

J11(t, x(t)) =
cos(t)x2(t)

45et+8
+

sin(t)

et
, J21(t, x(t)) =

sin(t)x2(t)

50et+8
+

cos(t)

et
.

We choose the final target points as x(t1) =

[
3
2

]
and x(T ) =

[
2
3

]
. Clearly, we can see that the assumptions (H1)
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and (H2) hold. Now, after some calculations, we get

Gt1
0 =

∫ t1

0

Eα,α(A0(t1 − ς)α)B0B∗
0Eα,α(A∗

0(t1 − ς)α)dς =

[
0.1817 0.2348
0.2348 0.3089

]
,

Gt2
ϑ1

=

∫ t2

ϑ1

Eα,α(A1(t2 − ς)α)B1B∗
1Eα,α(A∗

1(t2 − ς)α)dς =

[
0.1158 0.1652
0.1652 0.2452

]
and

R0 = Q0(1 + S0) = 0.1322,R1 = Q1(1 + S1) = 0.6842.

Hence,

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

20

25

30

35

40

45

Time (t)

St
at

e 
x 1(t)

 a
nd

 x
2(t)

 

 
State x

1
(t)

State x
2
(t)

Impulse x
1
(t)

Impulse x
2
(t)

Figure 1: State trajectory of the system (6.25) when x(t1) = [3 2]∗, x(T ) = [2 3]∗.

L𭟋1 = max{R0,R1, LJ } = 0.6842 < 1.

Thus, all the assumptions of the Theorem 4.6 fulfilled. Hence, the switched control system (6.25) is totally controllable
on [0, 1]. The controlled state trajectory of the system (6.25) is shown in the Figure 1 and the control function is
shown in the Figure 2.
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−100

−50
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Figure 2: Trajectory of the control function u(t).
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Conclusion

We have successfully established the total controllability results of Hilfer fractional switched dynamical system with
non-instantaneous impulses. Also, we have extended these results to the corresponding integro system. We used the
Banach fixed point principle, Mittag-Leffler functions, fractional calculus, and Gramian type matrices to establish these
results. Finally, we have given a numerical example with simulation to validate the obtained analytical outcomes. As
further directions, the developed methodology can be used to establish the controllability results of fractional stochastic
differential equations with impulses.

Acknowledgement

The authors would like to express their sincere thanks to the editor and anonymous reviewers for their constructive
comments and suggestions to improve the quality of this manuscript.

References

[1] H. M. Ahmed, M. M. El-Borai, A. O. El Bab, and M. E. Ramadan. Approximate controllability of noninstanta-
neous impulsive hilfer fractional integrodifferential equations with fractional brownian motion. Boundary Value
Problems, 2020(1):1–25, 2020.

[2] R. L. Bagley and P. Torvik. A theoretical basis for the application of fractional calculus to viscoelasticity. Journal
of Rheology, 27(3):201–210, 1983.

[3] L. Bai, J. J. Nieto, and J. M. Uzal. On a delayed epidemic model with non-instantaneous impulses. Communi-
cations on Pure & Applied Analysis, 19(4):1915, 2020.

[4] K. Balachandran and J. Dauer. Controllability of nonlinear systems in banach spaces: a survey. Journal of
Optimization Theory and Applications, 115(1):7–28, 2002.
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