
DIVISION IN GROUP RINGS OF SURFACE GROUPS

GRIGORI AVRAMIDI

Abstract. We prove a division algorithm for group rings of high genus surface groups and
use it to show that some 2-complexes with surface fundamental groups are standard. We also
give an application of division to cohomological dimension of 2-relator groups acting on Hn.

1. introduction

The goal of this paper is to study 2-complexes X with a fixed fundamental group Γ up to
homotopy equivalence by means of a division algorithm over the group ring of Γ. These two
things are related through the second homotopy group, which is a ZΓ-module. Most of the
mathematical content of the paper consists of proving a division algorithm for group rings of
high genus surface groups. We find this interesting in its own right, even outside the context
of 2-complexes.

On division. In the rational group ring of a free group there is a division algorithm analogous
to polynomial long divison that was discovered by Moritz Cohn [5]. A division algorithm is a
process that lets one divide one element x by another non-zero element y with a remainder r
whose ‘size’ is smaller than that of y. In the group ring QFn, the measure of ‘size’ we use is the
diameter of the support of the group ring element (defined at the end of this section), which
we denote by | · |. In symbols, a division algorithm asks for q, r ∈ QFn such that x = qy+r and
|r| < |y| or r = 0. Unlike in the case of polynomial long division, there cannot be a division
algorithm for nonabelian free groups that works for arbitrary x and y. In fact, for a generic
pair of group ring elements, the diameter of the support of any linear combination will be at
least as large as that of either element, so there is no hope of obtaining a remainder of smaller
diameter.1 Therefore, in order to have hope there must be linear combinations of x and y of
small diameter. What Cohn discovered is that there is a division algorithm as long as x and y
satisfy a non-trivial linear relation in the group ring.2 This condition means there are elements
a, b ∈ QFn, not both zero, such that ax+ by = 0. In fact, a geometric picture of this relation
is what dictates the process for actually running the algorithm (see section 2).

In this paper, we show that the same division algorithm is true when Γ is the fundamental
group of a surface of sufficiently high genus.

Theorem 1 (Division algorithm for surface groups). Let Γ be the fundamental group of a closed
surface of genus ≥ e1000000. Suppose x and y 6= 0 are elements in QΓ satisfying a nontrivial
relation ax+ by = 0. Then there are q, r ∈ QΓ such that x = qy + r and |r| < |y| or r = 0.

1To take a concrete example, in the free group F2 on the letters g and h, any linear combination of g− 1 and
h− 1 has diameter ≥ 1, so it is not possible to divide g − 1 by h− 1 with remainder of zero diameter.

2In the commutative case QF1 = Q[t, t−1] any pair of elements x and y satisfy the obvious relation xy−yx = 0,
and the algorithm becomes the usual long division for Laurent polynomials.
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Our method is inspired by Hog-Angeloni’s geometric proof of Cohn’s division algorithm [10]
and by Delzant’s proof that groups rings of hyperbolic groups with large infimum displacement
have no zero divisors [7].

Euclid’s algorithm for finding the greatest common divisor. The process of applying
the division algorithm repeatedly to a pair of elements, dividing at each stage the divisor from
the previous stage by the remainder is called Euclid’s algorithm. Starting from the division
algorithm in the integers (or in the polynomial ring Q[t]) Euclid’s algorithm produces the
greatest common divisor of two integers (or polynomials). The same is true in our case.

Corollary 2 (Euclid’s algorithm for surface groups). Applying the division algorithm repeat-
edly, first dividing x by y to obtain a remainder r1, then dividing y by r1 to obtain a remainder
r2, and so on, eventually produces an element z := rk that divides the previous rk−1 with no
remainder. The element z obtained in this way is a greatest3 common divisor of x and y.

Algebraic application. Rephrasing things a bit, Euclid’s algorithm implies that the (left)
ideal (x, y) generated by the pair of elements x, y ∈ QΓ is always free: If x and y do not satisfy
any relation, then they are a free basis for the ideal, and if they do satisfy a relation then the
ideal is generated by their greatest common divisor z. But, by the theorem of Delzant alluded
to earlier, z is not a zero-divisor, which is the same as saying that the ideal z generates is free.
A similar argument shows any pair of vectors v, w ∈ QΓn generate a free QΓ-module, and all
the arguments work over any field, in particular over the finite fields Fp.

Corollary 3. For any field k, any submodule M of kΓn generated by a pair of vectors is free.

For topological applications, we need this sort of result over ZΓ. Using a ‘local-to-global’
method of Bass ([1]) we assemble the Q and Fp statements together to prove such a result under
the additional assumption4 that the quotient ZΓn/M is torsion-free. This is good enough for
us since the topologically meaningful modules associated to a 2-complex satisfy this condition.

Corollary 4. If a submodule M of ZΓn is generated by a pair of vectors and ZΓn/M is
torsion-free, then M is free.

Non-free examples. To put the division algorithm and its corollaries into context, note that
corollary 4 is false for the group Z2: The ideal (s − 1, t − 1) in Z[Z2] = Z[s, s−1, t, t−1] is not
free since it has the obvious relation (s− 1)(t− 1) = (t− 1)(s− 1) and cannot be generated by
one element. More generally, for any non-free group Γ generated by a pair of elements a and
b, the ideal (a− 1, b− 1) in ZΓ is not free.5 Remarkably, there is a 2-generator, 2-relator group
that, by Thurston’s work (4.7 of [15]), arises as the fundamental group of a closed hyperbolic
3-manifold obtained by Dehn filling on the figure-eight knot complement (see section 6). So,
the division algorithm and its corollaries do not extend to fundamental groups of arbitrary
hyperbolic manifolds.

3We say z is a divisor of x if x = az for some a ∈ QΓ. It is a greatest common divisor of x and y if z is a
divisor of x and y and for any other divisor z′ of x and y, z′ divides z. We say ‘a’ here instead of ‘the’ because
greatest common divisors are only well-defined up to multiplication by a unit in QΓ.

4An assumption is needed: the ideal (2, t− 1) in Z[Z] = Z[t, t−1] is not free even though all ideals in k[Z] are.
5If (a− 1, b− 1) is free then Γ has cohomological dimension one, hence is free by Stallings’ theorem ([14]).
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Group theoretic application. Our proof of the division algorithm does work word-for-word
for any group that acts by isometries on hyperbolic space Hn with large infimum displacement
(this as a quantitative improvement on torsion-freeness). Free groups and high genus surface
groups are low-dimensional groups that have such actions. As an application of division, we
show that any (cohomologically) higher dimensional group that has such an action requires
more than two relations to present. In other words

Corollary 5. Suppose Γ is a finitely generated 2-relator group acting by isometries on Hn with
infimum displacement ≥ 2000. Then Γ has cohomological dimension ≤ 2. (6)

It seems clear that the method should work for δ-hyperbolic groups of large infimum dis-
placement and carrying out the details of this might make a good Master thesis.

Topological application. Let us now turn to the topological application mentioned at the
beginning of the introduction. An old theorem of Tietze [6] says that two 2-complexes with the
same fundamental group and Euler characteristic become homotopy equivalent after wedging
both of them with the same suffiiently large number of 2-spheres. A basic question is to deter-
mine whether wedging on these extra 2-spheres is really necessary. One of the first examples of
inequivalent 2-complexes with the same fundamental group and Euler characteristic involves
the trefoil group T =

〈
a, b | a2 = b3

〉
. Let Y be the presentation 2-complex corresponding to

this standard presentation. Dunwoody constructed another presentation 2-complex X for the
trefoil group whose second homotopy group π2X is not free as a ZT -module ([8]). This complex
has two generators and two relations so it has the same Euler characteristic as Y ∨ S2, but is
not homotopy equivalent to it (π2(Y ∨S2) is free since Y is aspherical). Dunwoody also showed
that the complexes X and Y ∨ S2 do become homotopy equivalent after wedging on another
S2, which on the level of π2 says that π2X ⊕ ZT = ZT ⊕ ZT . So, π2X is generated by two
elements and is stably free but not free.7 Corollary 4 implies that this algebraic phenomenon
does not happen for fundamental groups Γ of high genus surfaces.

We can also ask whether a similar topological phenomenon to the one discovered by Dun-
woody can happen for surface groups Γ = π1Σ in place of the trefoil group T . If X is a
2-complex with surface fundamental group and minimal Euler characteristic χ(X) = χ(Σ),
then it is easy to see that X is homotopy equivalent to Σ. The first interesting case when the
Euler characteristic is non-minimal is χ(X) = χ(Σ)+1. The main point is to show π2X is free.
One way8 is to use a theorem of Louder ([12]) which implies (see section 7) that X becomes
standard after wedging on #(2-cells of X) − (χ(X) − χ(Σ)) different 2-spheres. So, if X has
two 2-cells then X ∨ S2 is homotopy equivalent to Σ ∨ S2 ∨ S2. On π2, this implies π2X is
stably free and generated by two elements. If the surface has high enough genus then Corollary
4 implies that π2X is free, and hence X is homotopy equivalent to Σ ∨ S2. In summary

Theorem 6. Suppose X is a 2-complex with two 2-cells and surface fundamental group π1X =
π1Σ. If the genus of the surface is ≥ e1000000, then X is homotopy equivalent to Σ or Σ ∨ S2.

6Torsion free 1-relator groups have the stronger property of having aspherical presentation complexes ([4]).
7The Klein bottle group K =

〈
a, b | a2b2 = 1

〉
also has such stably free but not free ZK-modules generated

by a pair of elements, but they have not yet been geometrically realized as π2-modules of 2-complexes ([9]).
8Another way to show π2X is free, which also works for the groups in Corollary 5, is given in section 6.
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On 2-complexes with more 2-cells. Let us finish this introduction with several remarks
about generalizations to 2-complexes with more than two 2-cells.

For the torus group Z2 not every submodule of a free Z[Z2]-module is free, but all the stably-
free ones are (this is Serre’s conjecture proved by Quillen and Suslin, see [11]), and this is all
one needs to show that any 2-complex with Z2 fundamental group is standard. For the free
groups Fm, there is a generalization of Euclid’s algorithm (also due to Cohn) which shows that
any ideal in QFm (on any finite number of generators) is free. It also works with coefficients
in Fp instead of Q so Bass’s theorem implies any stably free ZFn-module is free. This implies
all finite 2-complexes with free fundamental group are standard. (See [10].)

On the other hand, the fundamental group of an orientable genus g surface does have a non-
free ideal on 2g generators, namely its augmentation ideal. It is tempting to conjecture that
any ideal on fewer than 2g generators is free. Let us only remark here that Cohn’s generalized
Euclid’s algorithm also has a surface version, which shows that any ideal on f(g) generators
is free, where f(g) is a function such that f(g) → ∞ as g → ∞. The details of this are more
involved than the 2-generator case and will (?) be the subject of a future paper. Combining
such an algorithm with Bass’s method and Louder’s result would imply that 2-complexes with
Σg fundamental group and ≤ f(g) 2-cells are standard.

Plan of the paper. We explain the division algorithm for free groups in Section 2. In Section
3 we recall and derive properties of hyperbolic space that will be used in the proof of Theorem
1 (the division algorithm for surface groups), which is given in Section 4. We then give a proof
of Euclid’s algorithm for surface groups together with Corollaries 3 and 4 in Section 5. The
group theoretic application (Corollary 5) and one way to get Theorem 6 is proved in Section 6
and the other way is given in Section 7.

Notation and terminology. Before we start, let us fix some notation that will be used
throughout the paper and describe how group ring elements can, to a large extent, be thought
of geometrically.

Throughout the paper Γ will denote either a free group or a surface group. The group Γ
acts by a covering space action on a space Y , which is a tree when Γ is free and the hyperbolic
plane H2 when Γ is a surface group. Pick an orbit of Γ in Y and identify group elements with
points of that orbit in Y . A group ring element x ∈ QΓ is a finite formal linear combination
x =

∑
xγ · γ.

Support. The support of x consists of all the group elements γ with non-zero coefficients xγ
appearing in this sum, thought of as points in Y . We will denote the support of an element by
the corresponding capital letter. So, the support of x will be denoted X.

Diameter. The diameter of X is the maximal distance between a pair of points in X. It will
be denoted |x| (or |X|), and we will also call it the diameter of x.

Barycenter. The barycenter of X is the center of the smallest ball containing X. It will be

denoted x̂ (or X̂), and we will simply call it the barycenter of x.

Boundary points. Let Bx̂(R) be the smallest ball containing X. We will call points of X that
are a maximal distance R from the barycenter the boundary points of x.
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2. The division algorithm for free groups

In this section, we will sketch the division algorithm for free groups.

The algorithm. Suppose we have a pair of group ring elements x and y that are related by
a nontrivial linear relation ax + by = 0. The main step in the division algorithm is to show
that if |x| ≥ |y| then we can subtract translates of y from x to obtain an element x1 = x− c1y
whose diameter is strictly smaller than that of x. Iterating this step will give division (we will
say a few more words about this iteration at the end of this subsection.)

The choice of c1 is dictated by the relation ax+ by = 0 as follows. Let o be the barycenter
of the support of ax and R the radius of the smallest ball containing this support. There is an
x-translate γx with aγ 6= 0 that contains a boundary point of ax. We can assume that γ = 1,
so that x contains a boundary point. (If γ 6= 1, multiply the relation on the left with γ−1 and
start again.) Let us call the points of x that are on the boundary of ax the extremal points of x.

Claim 1: Any boundary point of ax = −by appears in a unique x-translate (that is, γx with
aγ 6= 0) and also in a unique y-translate (ρy with bρ 6= 0.)

Therefore, the extremal points of x can all be canceled by y-translates (weighted with ap-
propriate coefficients)9 to obtain an element

x1 = x−
∑

cγγy

whose support does not contain any of the extremal points from the support of x.

9The coefficients are cγ = −bγ/a1 if γy contains an extremal point of x, and cγ = 0 otherwise.



6 GRIGORI AVRAMIDI

Claim 2: x1 has smaller diameter than x.

If |x1| < |y| then this finishes the division algorithm, since we can take x1 to be the remainder.
If not, then we note that x1 and y are related by the non-trivial relation ax1 + (b+ ac1)y = 0
and repeat the above argument. Each iteration decreases the diameter by at least one, so after
finitely many steps we arrive at an element xn = xn−1 − cny = x − (c1 + · · · + cn)y whose
diameter is smaller than y. This is our remainder.

Why it works. The key behind everything is that we are on a tree.
Denote the support of x by the corresponding capital letter X. We look at the set

S =
⋃
aγ 6=0

γX.

It contains the support of ax but can be strictly bigger if ax has some cancellation. Let Bo′(R
′)

be the smallest ball containing S. We will show that any point in S ∩So′(R′) is in the support
of ax. For this, it is enough to show that any p ∈ S ∩ So′(R′) lies in precisely one X-translate.

Proof. If γX touches the boundary at p then, since we are on a tree, the barycenter γx̂ lies on
the geodesic from o′ to p and is precisely |X|/2 away from p. If there is another translate ρX
containing p then γx̂ = ρx̂ and hence γ = ρ. So, the translates ρX and γX are the same. �

It follows from this that the points S ∩ So′(R′) all appear in the support of ax. Therefore
o = o′, R = R′, what we have called above the ‘boundary points of ax’ are pIn other words,
therecisely the set S∩So(R), and every boundary point of ax appears in exactly one x-translate.
All the same arguments apply to the expression by. This proves the first claim.

Remark. It also shows that the picture of ax on the previous page is accurate: The minimal
ball containing the support of ax entirely contains the supports of all the x-translates {γx}aγ 6=0.

To prove the second claim, one uses similar arguments to show (see figures on the next page)
that all the points of x1 are ≤ |x|/2 away from the barycenter x̂ and are not extremal. Thus,
|x1| ≤ |x|. In the case of equality there is a diameter realizing segment in x1 whose midpoint
is x̂. But then, at least one of its endpoints is extremal, which is a contradiction.

Where do relations come from? We can work backwards, starting from an element z to
produce pairs of elements satisfying successively more complicated relations: (z, 0)→ (z, az)→
(z + baz, az) → (z + baz, az + cz + cbaz) → . . . . What the division algorithm implies is that
any pair s of theatisfying a relation is obtained by this process.
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3. Tree-like properties of hyperbolic space

Our proof of the division algorithm for surface groups is based on the tree-like properties
of hyperbolic space. In this section we recall these properties in a convenient form and derive
some specific consequences that will be used in the proof.

3.1. δ-hyperbolicity. Everything can be easily obtained from the following basic property.

• There is a universal constant δ so that if pq is a segment with midpoint m and o is any
point in hyperbolic space, then one of the paths omp or omq cannot be shortened by
more than δ. In symbols

max(d(o, p), d(o, q)) ≥ d(o,m) +
1

2
d(p, q)− δ.

Remark. In a tree we can take δ = 0 and in hyperbolic space we can take δ = 5.

It is useful to note that one of the angles ∠m(o, p) or ∠m(o, q) is obtuse (≥ π/2), and the
maximum is achieved for the endpoint corresponding to this obtuse angle. It follows that

• any geodesic segment connecting a sphere So(R) to a larger concentric sphere So(R
′)

and not intersecting the interior of Bo(R) has length between |R′−R| and |R′−R|+ δ.

Proof. Let m be a point on So(R) and q a poin of thet on So(R
′). The angle ∠m(o, q) is

obtuse, so d(o, q) ≥ d(o,m) + d(m, q) − δ. Plugging in d(o, q) = R′ and d(o,m) = R gives
d(m, q) ≤ R′ −R+ δ. The other inequality R′ −R ≤ d(m, q) is clear. �
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3.2. Midpoints and barycenters. A consequence of δ-hyperbolicity is that if pq is a length
L segment in an R-ball, then its midpoint m is within R− L/2 + δ of the center of the ball.

Proof. Let o be the center of the R-ball. Then R ≥ max(d(o, p), d(o, q)) ≥ d(o,m)+L/2−δ. �

Another consequence is that any set X of diameter D is contained in a (D/2 + δ)-ball.

Proof. Let p, q be a pair of points realizing the diameter D and let m be their midpoint. If o is
any point in X then D ≥ max(d(o, p), d(o, q)) ≥ d(o,m) +D/2− δ implies d(o,m) ≤ D/2 + δ.
In other words, X is contained in the D/2 + δ ball centered at o. �

These two properties together imply that

• the barycenter of a set is 2δ-close to the midpoint of any segment realizing the diameter.

So we can replace one with the other at the expense of a small error.

Next, suppose that X is a set of diameter D, x̂ is its barycenter and o is a point. Then for
any diameter realizing segment pq of X with midpoint m we have

max(d(o, p), d(o, q)) ≥ d(o,m) +
D

2
− δ(1)

≥ d(o, x̂) +
D

2
− 3δ.(2)

For any point p′ in X we have d(o, p′) ≤ d(o, x̂) + d(x̂, p′) ≤ d(o, x̂) +D/2 + δ and therefore

(3) d(o, x̂) ≥ d(o, p′)− D

2
− δ,

Putting these two inequalities together tells us how far the barycenter x̂ is from a point o in
terms of the diameter of X and the radius of the smallest ball at o containing X.

Lemma 7. If Bo(R) is the smallest ball centered at o containing X, then

R− D

2
− δ ≤ d(o, x̂) ≤ R− D

2
+ 3δ.

Proof. Plug d(o, p′) = R into (3) and max(d(o, p), d(o, q)) ≤ R into (2). �

Shrinking the diameter of X. Another application of these two inequalities specifies par-
ticular points of X to throw out in order to shrink its diameter.

Lemma 8 (Extremal cancellation). If Bo(R) is the smallest ball centered at o containing X,
then the diameter of X ∩Bo(R− 5δ) is strictly less than the diameter of X.

Proof. If the diameter of X ∩Bo(R− 5δ) is not smaller, one of its diameter realizing segments
pq also realizes the diameter of X. Therefore, plugging (3) into (2) and using R = d(o, p′) gives
max(d(o, p), d(o, q)) ≥ R − 4δ, so at least one of the points p or q is outside the R − 5δ ball
centered at o, which is a contradiction. �
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3.3. Fellow traveling. The next treelike feature of hyperbolic space we need is fellow trav-
eling. It says that for a pair of points p and q on the boundary of a ball centered at o, the
segments pq and po fellow travel until we reach the midpoint of pq, up to an error 4δ. To
express it precisely, it is useful to parametrise geodesics. For a geodesic segment pq we denote
by pq(t) the point obtained by traveling from p to q for a time t along the geodesic.

Lemma 9 (Fellow traveling property). For a pair of points p, q ∈ So(R) and t ≤ d(p,q)
2 we have

d(pq(t), po(t)) ≤ 4δ.

Proof. Let m be the midpoint of pq, L = d(o,m) and D = d(m, p). Let p′ = po(D) be the point
obtained by going for a time D from p to o and p′′ = op(L) the point obtained by traveling for
a time L from o to p. Finally, let m′ be the midpoint of the geodesic segment mp′. Now, since
the angle ∠m(o, p) is right, it follows that

R ≥ L+D − δ.

It is also clear from the picture that

d(p,m′) ≥ d(p′′, p) = R− L,

and plugging in the previous inequality gives

d(p,m′) ≥ D − δ.

Since the angle ∠m′(p, p′) is right, if follows that

D ≥ d(p,m′) + d(m′, p′)− δ.

Therefore

d(m′, p′) ≤ D + δ − d(p,m′) ≤ 2δ.

Since m′ is the midpoint of mp′, it follows that d(m, p′) ≤ 4δ. This proves the lemma for
t = d(p, q)/2. The lemma for smaller values of t follows from convexity. �
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Large infimum displacement implies no zero divisors in the group ring. Next, we
give a key application of fellow traveling. It10 was observed by Delzant in [7] and is the main
step in his proof that group rings of some hyperbolic groups have no zero divisors.

Lemma 10 (Delzant). Suppose γ is an isometry of Hn. If X and γX are contained in a ball
Bo(R) and their intersection contains a point p in the µ-neighborhood of the boundary of the
ball, then the midpoint m of the segment from p to γp is moved ≤ µ+ 9δ by γ−1.

Proof. Let L be the length of the segment from p to γp. Let q be the point obtained by going
from γp to p for a distance µ+ δ. Then q ∈ Bo(R−µ). Let m′ be the midpoint of the segment

from p to q. Then po fellow travels with pq for a time t = L−(µ+δ)
2 until it reaches m′ so, if we

denote by p′ = po(t) the point reached by traveling from p to o for a time t, then

d(m, p′) ≤ d(m,m′) + d(m′, p′) ≤ µ+ δ

2
+ 4δ.

The same argument applied to the segment from p to γ−1p shows that its midpoint γ−1m
satisfies d(γ−1m, p′) ≤ µ+δ

2 + 4δ. Therefore d(m, γ−1m) ≤ µ+ 9δ. �

In other words, if the infimum displacement of Γ acting on Hn is > µ+ 9δ, then Γ-translates
of X that lie in a ball do not intersect in the µ-neighborhood of the boundary of that ball.

Now we apply this to products in the group ring. The following corollary will be used
repeatedly in the next section. It implies that any cancellation in a product ax happens away
from the boundary of ax, as long as the infimum displacement is sufficiently large.

Corollary 11. Suppose Γ has infimum displacement > µ + 9δ. Let a and x be non-zero
group ring elements. Then, the smallest ball containing ax also contains all the x-translates
{γx}aγ 6=0. Moreover, every point in the µ-neighborhood of the boundary of this ball is contained

in at most one such x-translate.

Proof. The support of the product ax is contained in the set

S =
⋃
aγ 6=0

γX.

10To be more precise, the µ = 0 case in the setting of δ-hypebolic groups.
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LetBo(R) be the smallest ball containing S. Delzant’s lemma implies that on the µ-neighborhood
of the boundary of this ball the X translates {γX}aγ 6=0 do not intersect. Therefore, Bo(R) is
the smallest ball containing the support of ax. The rest is clear. �

In particular, this says that once the infimum displacement is > 9δ the support of ax is
non-empty, so ax 6= 0.

Corollary 12 (Delzant). If Γ has infimum displacement > 9δ then QΓ has no zero divisors.

3.4. Approximating barycenters. The following lemma is useful.

Lemma 13. Suppose X is a set with diameter D and barycenter x̂ contained in a ball Bo(R)
and q ∈ X is a point in the µ-neighborhood of the boundary of the ball. Let qo(D/2) be the
point obtained by traveling for time D/2 along the geodesic from q to o. Then

d(qo(D/2), x̂) ≤ 9δ +
3

2
µ.

Proof. We can assume that d(q, o) = R−µ. First, note that d(x̂, o) ≤ R− D
2 + 3δ implies that

the distance from x̂ to So(R− µ) is at least s = D
2 − 3δ− µ. Therefore, the segment qx̂ can be

extended by s before it reaches So(R−µ), and hence the segment qx̂ fellow travels with qo for

a time t = d(q,x̂)+s
2 . Also note that the distance from x̂ to q is controlled by

s ≤ d(x̂, q) ≤ D

2
+ δ.

Therefore

|d(q, x̂)− t| = d(q, x̂)− s
2

≤ 4δ + µ

2
while

s ≤ t ≤ D − 2δ − µ
2

implies that
|t−D/2| ≤ 3δ + µ.

Thus, the distance from x̂ to qo(D/2) is bounded by

d(x̂, qo(D/2)) ≤ |d(x̂, q)− t|+ 4δ + |t−D/2|

≤ 9δ +
3

2
µ.

�
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An immediate consequence is the following.

Corollary 14. If X and Y are both sets in Bo(R) containing a point q in the µ-neighborhood

of the boundary, then the barycenters of X and Y are ||X|−|Y ||2 -apart, up to an error 18δ + 3µ.

A more significant consequence for us is the following.

Corollary 15. Suppose X, γX, and Y are contained in a ball Bo(R), the intersection of Y
and X contains q, and the intersection of Y and γX contains q′, where q and q′ are in the
µ-neighborhood of the boundary of the ball. If |X| ≥ |Y | then

d(x̂, γx̂) ≤ 36δ + 6µ.

Proof. Look at the function f(t) = d(qo(t), q′o(t)). It is ≤ 18δ + 3µ at t = |Y |/2 by Lemma
13. It decreases as t goes from |Y |/2 to |X|/2 by convexity (This is where we use |X| ≥ |Y |).
Finally, at t = |X|/2 it differs from d(x̂, γx̂) by an error of at most 18δ + 3µ, again by Lemma
13. This establishes the corollary. �

We will use these two corollaries in the proof of the division algorithm for surface groups in
the next section.

4. Proof of the division algorithm for surface groups

4.1. Setup. Throughout the proof, we will keep track of how large the infimum displacement
has to be for the argument to work at that stage. The infimum displacement needed to make
everything work is stated at the end, where we also translate it into a condition about the
genus of the surface. To start, we assume the infimum displacement is > 9δ so that there are
no zero divisors.

We are given a non-trivial relation ax + by = 0 where a, b, x and y 6= 0 are elements of
the group ring QΓ, and we want to show that there are q, r ∈ QΓ such that x = qy + r and
|r| < |y| or r = 0. If |x| < |y| then there is nothing to do, since we can take q = 0, r = x.
If |x| ≥ |y|, then it is enough to subtract a multiple b′y of y from x for which the resulting
element x′ = x−b′y has smaller diameter than x. Since the set of possible diameters is discrete
and the elements x′ and y satisfy the non-trivial11 relation a(x− b′y) + (b+ab′)y = 0, iterating
the process finitely many times will prove the division algorithm.

11If this relation were trivial then a = 0 and the original relation would imply that y is a zero-divisor.
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Next, we will describe which points of x we will try to cancel out with translates of y in
order to reduce the diameter of the resulting group ring element x′. This will be dictated by
the relation ax+ by = 0. Let o be the barycenter of the support of ax and R the radius of ax.
As long as the infimum displacement is > 9δ, by Corollary 11, all the x-translates {γx}aγ 6=0

are contained in the ball Bo(R). Pick such an x-translate γx containing a boundary point of
ax. After multiplying our relation on the left by (aγγ)−1, we can assume that this translate is
x, i.e. that x contains a boundary point of ax and that a1 = 1.

Let us call the points of x that are in the α-neighborhood of the boundary of ax the α-
extremal points of x. We have shown in Lemma 8 that if we throw out the 5δ-extremal points
from the support of x, then the resulting set has strictly smaller diameter. So these are the
points we will try cancel out. To that end, note that if the infimum displacement is > 5δ + 9δ
then, by Corollary 11, all these 5δ-extremal points are not contained in any other x-translate
γx with aγ 6= 0. The relation ax = −by implies that each one of them must be contained in a
y-translate γy with bγ 6= 0, and Corollary 11 applied to by implies that there is a unique such
y translate.

Therefore, as long as the infimum displacement of Γ is sufficiently large (> 14δ), the 5δ-
extremal points of x can all be cancelled by y-translates (weighted with appropriate coeffi-
cients)12. Call the resulting element

x′ = x−
∑

cγγy.

Our goal in the rest of the proof is to show the diameter of x′ is less than the diameter of x.

4.2. Showing |x′| < |x|. We will warm up by showing that if the diameter of x′ is greater
than that of x, it cannot be much greater. We can estimate the distance from a y-point p of
x′ to x̂ using the estimate on the distance between barycenters given in Corollary 14:

d(x̂, p) ≤ d(x̂, γŷ) + d(γŷ, p)

≤
(
|x| − |y|

2
+ 18δ + 3 · 5δ

)
+

(
|y|
2

+ δ

)
=
|x|
2

+ 34δ.

So, if |x′| ≥ |x| it follows that a diameter realizing segment of x′ has midpoint 35δ-close to x̂.
Note for future use that this implies one of the endpoints of this segment is 37δ-extremal.

Let us look more at the extra y-points p of x′ that have been introduced by subtracting the
y-translates {γy}cγ 6=0 from x. Fix a constant µ ≥ 37δ. First, we will show that if the infimum
displacement is sufficiently large (> 36δ + 6µ), then such a y-point p cannot be µ-extremal.
If it was, then it would have to cancel with a unique x-translate ρx that is different from
x.13 But then the barycenters x̂ and ρx̂ would be too close! More precisely, we would have
d(x̂, ρx̂) ≤ 36δ + 6µ by Corollary 15, which contradicts the infimum displacement assumption.
Therefore, if |x′| ≥ |x| then x′ has a 37δ-extremal x-point. Call this point q′.

Remark. In the case of free groups acting on trees, δ = 0 and above we can take µ = 0 so
that at this stage in the argument we have an element x′ with |x′| ≤ |x| and if |x′| = |x| then

12To be more precise, cγ = −bγ if γy contains a 5δ-extremal point of x and cγ = 0 otherwise.
13If p canceled with x then it would not have appeared in x′.
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x′ has an extremal point, which is not a y-point, hence must be an x point. But we assumed
that all the extremal x-points have been canceled out, so we arrive at a contradiction. In the
surface group case we have to work harder. The reason is because we have found a 37δ-extremal
x-point q′ in x′, while only the 5δ-extremal x-points have been canceled out.

Now, for large enough infimum displacement (> 37δ + 9δ) the point q′ appears in a unique
y translate ρy that is different from all the y-translates {γy}cγ 6=0 that we subtracted from x to
get x′. By Corollary 14 we have

d(x̂, ρŷ) ≤ |x| − |y|
2

+ 18δ + 3 · 37δ.

The rest of the argument breaks up into two cases, depending on the size of |x| − |y|.

First, we deal with the case is |x| − |y| ≤ µ. In this case, the barycenter of ρy and of all
the y-translates {γy}cy 6=0 are

(µ
2 + 129δ

)
-close to x̂. Therefore, if the infimum displacement is

large enough (> µ+ 258δ) we must have ρŷ = γŷ and hence ρ = γ, which is a contradiction.

Finally we deal with the case |x| − |y| ≥ µ. We will show that in this case the y-points of
x′ are < |x|/2− δ away from x̂. This will imply that the diameter of x′ is less than |x| and we
will be done.

Let p be a y-point of x′. Thus, there is a y-translate γy and a 5δ-extremal point q of x so
that both p and q are in γy. Denote by L the length of the segment pq and m its midpoint.
Since p is not µ-extremal, the segment qp can be extended by µ − 5δ before it reaches the
5δ-neighborhood of the boundary. Let m′ be the midpoint of this extended segment. It fellow
travels with the segment qo for a distance t = L+µ−5δ

2 . Let y0 = qo(t) be the point obtained by
traveling from q to o for a time t. Also, let x0 = qo(|x|/2) be the point obtained by traveling
from q to o for a time |x|/2. This is illustrated in the figure below.

Note that |x|2 − t = |x|−L−(µ−5δ)
2 is non-negative because of the case we are in, so we can

compute

d(x̂, p) ≤ d(x̂, x0) + d(x0, y0) + d(y0,m
′) + d(m′, p)

≤
(

9δ +
3

2
· 5δ
)

+

∣∣∣∣ |x|2 − t
∣∣∣∣+ 4δ +

L− (µ− 5δ)

2

=
|x|
2

+ 25.5δ − µ.
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So, for this part of the argument to work, any µ > 26.5δ will do.
In summary, everything works for µ = 37δ, and in that case the biggest displacement

condition we need is that the infimum displacement is µ + 258δ = 295δ. Since we are in
hyperbolic space, we can take δ = 5.

From infimum displacement to genus. Buser showed in [2] that every surface of genus ≥ 2

has a hyperbolic metric with infimum displacement (=length of shortest geodesic) ≥ 2
√

log(g).
For this metric and g ≥ e1000,000 we get infimum displacement ≥ 2000 > 295 · 5, which is good
enough. This finishes the proof.

Remark. Buser and Sarnak show in [3] that there is a sequence of hyperbolic surfaces Σgi with
gi →∞ for which one has a much better bound, namely infimum displacement ≥ 4

3 log gi and
that every genus g surface has a hyperbolic metric with infimum displacement c log g where c
is some small (unspecified) positive constant that doesn’t depend on the genus, but neither of
these can be directly applied to get an explicit bound on how high the genus g has to be.

Remark. This last step is the only place in the proof where we use the fact that Γ is a surface
group. Everything else works word-for-word (with the same constants) for groups Γ acting
isometrically on hyperbolic n-space Hn with infimum displacement ≥ 295 · 5.

A remark about fields. Everything in the paper so far works with coefficients Q replaced
by any field k, in particular by the finite fields Fp. This will be used in the next section.

5. Euclid’s algorithm and algebraic applications

5.1. Proof of Euclid’s algorithm. We are given a pair of elements x, y ∈ QΓ satisfying a
non-trivial relation ax + by = 0. Dividing x by y we get q0 and r0 such that x = q0y + r0
and |r0| < |y| or r0 = 0. If r0 6= 0 then the elements y and r0 satisfy the non-trivial relation
ar0 + (b + aq0)y = 0. So we can divide y by r0 to get q1 and r1 such that y = q1r0 + r1 and
|r1| < |r0| or r1 = 0, and so on. We iterate this process. Since at each step the diameter of
the remainder decreases, the process stops after finitely many steps with an rk that divides
rk−1 without remainder. All the pairs produced in this way generate the same ideal (x, y) =
(y, r0) = (r0, r1) = · · · = (rk−1, rk) = (rk, 0).

We now show that the last remainder z = rk is a greatest common divisor of x and y. The
element z is a divisor of x and y since x, y ∈ (z). Suppose z′ is another divisor such that
x = cz′, y = c′z′. Since z ∈ (x, y) we can express it as QΓ-linear combination z = a′x + b′y =
(a′c+ b′c′)z′, so z′ is a divisor of z. Therefore, z is a greatest common divisor of x and y.

5.2. Modules generated by pairs of vectors v, w in QΓn and FpΓn. Delzant’s result that
QΓ has no zero-divisors implies that the submodule of QΓn generated by a single non-zero
vector v = (v1, . . . , vn) is free.14 Our division algorithm implies the analogous result for a pair
of vectors. The proof is very similar to that of Euclid’s algorithm. Since we will need both the
Q and Fp versions in the next subsection, we state it for a general field k.

Corollary 3. Let k be a field. Any submodule M of kΓn generated by a pair of non-zero
vectors v, w is free.

14If there are no zero divisors, then the map QΓ→ QΓn, a 7→ av is an isomorphism onto its image, which is
the module generated by v.



16 GRIGORI AVRAMIDI

Proof. We may assume that v1 6= 0 and that |v1| ≥ |w1|. If for any relation av + bw = 0 both
a and b are zero, then M is free of rank two. So, suppose there is such a relation with either a
or b non-zero. We will show that this implies M is free of rank one.

There are two cases to consider, depending on whether or not w1 is zero.

Case 1: w1 = 0. Looking at the first coordinate of the relation, we get av1 = 0 and since
v1 6= 0 we must have a = 0. Thus bw = 0. Since the relation was non-trivial, b 6= 0 so we must
have w = 0. But then M is generated by a single vector v, and hence it is free of rank one.

Case 2: w1 6= 0. Then the relation av1 + bw1 = 0 implies both a and b are non-zero. We use
this relation to divide v1 by w1 and get v′ = v − qw satisfying |v′1| < |w1| or v′1 = 0. Then the
vectors v′, w still generate M and either v′1 = 0 or the sum of diameters of their first entries
|v′1|+ |w1| is strictly smaller than |v1|+ |w1|. Moreover, av′+(b−aq)w = 0 is again a non-trivial
relation (with a 6= 0).

At this point, we have arrived back at the situation of the two cases, with v′1 in place of w1.
Moreover, if v′1 6= 0 then the sum of diameters of the first entries of generators |v′1| + |w1| is
strictly smaller than |v1| + |w1|. Therefore, after iterating this process finitely many times it
will stop and we will arrive in the case 1 situation with M a free module generated by a single
vector. �

5.3. Bass’s ‘local-to-global’ method for ZΓ-modules. Obviously any zero divisor in ZΓ
is a zero-divisor in QΓ, so submodules of ZΓn generated by a single vector are free. The
analogous statement for modules generated by a pair of vectors is not true. For example, the
ideal (2, t − 1) in the group ring Z[Z] = Z[t, t−1] is not free even though all ideals in k[Z]
are. A general ‘local-to-global’15 theorem of Bass ([1]) shows that this sort of thing doesn’t
happen when the module splits off as a direct summand of ZΓn (in other words, if the module
is projective). This is good enough for the proof of Theorem 6 given in section 7. The proof
given below is Bass’s argument, specialized to our situation.

Corollary 16. If a submodule of ZΓn generated by a pair of non-zero vectors v, w splits off as
a direct summand, then it is free.

Proof. If v and w do not satisfy any non-trivial relation, then (v, w) is a free ZΓ-module. If
they satisfy a non-trivial relation, then they generate the same QΓ module as their greatest
common divisor z ∈ QΓn. We rescale z (multiplying by a rational number if necessary) so that
z ∈ (v, w) and z /∈ (kv, kw) for any integer k > 1. Since z is a QΓ-divisor of v and w, there is
a positive integer m such that mv = az,mw = bz for some a, b ∈ ZΓ. Pick the smallest such
m. In summary we have sandwiched the module generated by z in the following way:

(mv,mw) ⊂ (z) ⊂ (v, w).

Our goal is to show that m = 1. Suppose it is not, and let p be a prime dividing m. For any
ZΓ-module M , denote the mod p reduction by Mp := M/pM . Note that the composition of
induced maps

(4) (mv,mw)p → (z)p → (v, w)p

is zero because p divides m. The key is to show the second map is injective.

15It is a ‘local-to-global’ theorem because it assembles Q and Fp results to get a Z result.
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Claim: The map i : (z)p → (v, w)p is injective. This is where we use the assumption that
(v, w) is a direct summand of ZΓn. It implies that the inclusion (v, w) ↪→ ZΓn induces an
inclusion of mod p reductions (v, w)p ↪→ FpΓn. By Corollary 3, (v, w)p is a free FpΓ-module.
So, the image of i is a submodule of a free module and generated by one element, so it is free
by Corollary 3. Therefore, i is either injective or the zero map. The later happens precisely if
z ∈ (pv, pw), but this is ruled out by our choice of z. So, the map i is injective.

Since the composition (4) is zero, this implies the first map (mv,mw)p → (z)p is the zero
map, which is the same as saying (mv,mw) ⊂ (pz). But then z is a ZΓ-divisor of both m

p v

and m
p w, which contradicts the minimality of m. So we are done. �

5.4. Proof of Corollary 4. Note that all we used in the proof above is that the inclusion
M ↪→ ZΓn induces an inclusion on mod p reductions. For this we don’t really need M to be a
direct summand. Knowing that the quotient Q = ZΓn/M is torsion-free as an abelian group is
good enough: Suppose v ∈M and v = pw for some w ∈ ZΓn. In the quotient Q we have v = 0
and since Q is torsion-free also w = 0. But that means w ∈ M and therefore v ∈ pM . So,
we’ve shown that M ∩ pZΓn = pM , which is the same as saying that Mp → FpΓn is injective.
So, the proof of Corollary 16 also applies to such M . This proves Corollary 4.

6. 2-relator groups acting on hyperbolic space

Until now, we have primarily focused on surface groups in this paper. They are two-
dimensional groups acting on hyperbolic space, and requiring a single relation to present.
Moreover, passing to finite index subgroups we get surface groups again but now of higher
genus and (if we pick the subgroup correctly) with large infimum displacement. In higher
dimensions n ≥ 3 we can start with an arithmetically constructed uniform lattice in SO(n, 1)
and then pass to a deep enough congruence subgroup to get a group action with large infi-
mum displacement on the hyperbolic space Hn (16). It well known that—in contrast to surface
groups—these higher dimensional lattices require more than one relation. In fact, they require
more than two. The reason is that these uniform lattices have a non-zero cohomology class in
dimension n ≥ 3, while we will show next that 2-relator groups acting with sufficiently large
displacement on Hn are cohomologically 2-dimensional.

Shifting attention for a moment to these 2-relator groups Γ and 2-complexes X presenting
them as such, the freeness of π2X comes out in the wash. A new wrinkle is that we do not
know whether such 2-relator groups have aspherical presentation 2-complexes Y . For any that
do (in particular, for the high genus surface groups) it is clear what a standard 2-complex with
fundamental group Γ is (one homotopy equivalent to Y ∨ S2 ∨ · · · ∨ S2) and we get a version
of Theorem 6 from the introduction. In summary, we have

Corollary 17. Suppose X is a finite 2-complex with two 2-cells and fundamental group Γ. If
Γ acts isometrically on Hn with infimum displacement ≥ 2000, then

• the cohomological dimension of Γ is ≤ 2,
• π2X is free, and
• if Γ has an aspherical presentation 2-complex Y then X is standard.17

16For example, the group of invertible 4×4 matrices with integer entries, preserving the form x21+x22+x23−7x24
and congruent to the identity matrix modulo N for large enough N acts on H3 = SO(3, 1)/SO(3) in this way.

17Homotopy equivalent to Y or Y ∨ S2 or Y ∨ S2 ∨ S2. The third case happens only if Γ is a free.
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Proof. Look at the chain complex on the universal cover:

π2(X)→ C2(X̃)→ C1(X̃)→ C0(X̃)→ Z.

The image of the second map is called the relation module R. It is generated by two elements,
a submodule of a free module, and the quotient C1/R is again a submodule of a free module.
Therefore, by the remark at the end of the previous section, we can apply Bass’s method to
conclude R is a free ZΓ-module. Since R is also the kernel of the third map, we get a free
resolution R → C1 → C0 → Z of length 2. This is the same as saying that the cohomological
dimension of Γ is ≤ 2, so we have proved the first bullet.

Since R is free, C2 splits as a direct sum π2(X)⊕ R. So, π2(X) is a stably free ZΓ-module
generated by two elements. Corollary 4 implies it is free. This proves the second bullet.

Finally, suppose there is an aspherical presentation 2-complex Y . Start by building an arbi-
trary π1-isomorphism Y → X. Since π2X is free, we can extend it to a homotopy equivalence
from a standard complex Y or Y ∨ S2 or Y ∨ S2 ∨ S2 by mapping the 2-spheres to a basis for
π2X. In the third case π2X = ZΓ2, so the relation module R vanishes, so Γ has cohomological
dimension one and hence, by Stallings’ theorem ([14]), is a free group. �

But, if Γ does not have an aspherical presentation 2-complex, then it is conceivable that there
is a pair of 2-complexes X and X ′ that have the same π2 but are not homotopy equivalent.

Flat and hyperbolic 3-dimensional 2-relator groups. Torsion-free 1-relator groups have
aspherical presentation 2-complexes ([4]), so they are at most 2-dimensional. This is no longer
true for 2-relator groups.

The simplest 3-dimensional example of a 2-relator group was pointed out to me by Ian

Leary. It is the fundamental group of the mapping torus of the matrix

(
0 1
−1 0

)
acting on

T2. Note that this is a closed, flat18 3-manifold, so the fundamental group is 3-dimensional. It
has a 3-generator and 3-relator presentation

〈
a, b | [a, b] = 1, tat−1 = b, tbt−1 = a−1

〉
. One can

eliminate the generator b to get a 2-generator, 2-relator presentation.
There are also hyperbolic 3-manifold examples that were explained to me by Jean Pierre

Mutanguha. The mapping torus of the matrix

(
2 1
1 1

)
acting on the punctured torus is a

hyperbolic 3-manifold with a single cusp19. Its presentation is
〈
a, b, t | tat−1 = a2b, tbt−1 = ab

〉
and since the second relation says a = [t, b] one can elliminate a together with this relation
to get a 1-relator presentation. One can close off the cusp by gluing in a solid torus, and for
all but finitely many choices of gluing parameters (a pair of relatively prime numbers (p, q))
one gets a closed hyperbolic 3-manifold (see 4.7 in [15]). On the level of fundamental groups,
the gluing introduces a new relation of the form tp = [a, b]q. So, one ends up with a closed
hyperbolic 3-manifold whose fundamental group has a 2-generator 2-relator presentation〈

b, t | t[t, b]t−1 = [t, b]2b, tp = [[t, b], b]q
〉
.

18The manifold is flat since it is obtained by gluing the ends of T2 × [0, 1] by an isometry.
19This manifold is homeomorphic to the figure-eight knot complement (see p. 177 of [16]).
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7. An improved Tietze’s theorem for surface fundamental groups

An old theorem of Tietze [6] says that two 2-complexes with the same fundamental group
become homotopy equivalent after wedging both of them with enough 2-spheres. This section
is about improvements on this theorem when the fundamental group is that of a closed surface
Σ. The main point is to interpret a Nielsen equivalence result of Louder in this light.

Minimal Euler characteristic. First note that if X is a 2-complex with fundamental group
π1Σ and minimal Euler characteristic χ(X) = χ(Σ), then X is homotopy equivalent to Σ.

Proof. The complexes become homotopy equivalent after wedging both with the same large
number of 2-spheres n. Since Σ is aspherical, on π2 this homotopy equivalence gives π2S ⊕
ZΓn ∼= ZΓn. So (see e.g. [13]) S is also aspherical, and hence homotopy equivalent to Σ. �

Nielsen equivalence for surface groups. The orientable surfaces have presentations

〈x1, y1, . . . , xg, yg | [x1, y1] · · · [xg, yg] = 1〉

while the nonorientable ones have presentations〈
x1, . . . , xr | x21 · · ·x2r = 1

〉
.

A standard generating set is one of these, possibly with some extra generators z1, . . . , zk satis-
fying the trivial relations z1 = 1, . . . , zk = 1 thrown in at the end.

Now, let X be a finite presentation 2-complex with n generators e1, . . . , en for the surface
group, and fix a π1-isomorphism f : X → Σ. In [12], Louder showed

• There is a free group automorphism ϕ : Fn → Fn so that f ◦ ϕ(e1), . . . , f ◦ ϕ(en) is a
standard generating set for π1Σ.

Interpretation as quantitative variant of Tietze’s theorem for surface groups. For
concreteness, suppose it is one representing a genus g orientable surface with k trivial generators
at the end (the argument in the non-orientable case is similar). Form a new complex

Y = X ∪D2
0 ∪D2

1 ∪ · · · ∪D2
k

by attaching k + 1 different 2-cells to X. The disk D2
0 is attached along the commutator

[ϕ(e1), ϕ(e2)] · · · [ϕ(e2g−1), ϕ(e2g)] and the other disks D2
i are attached along ϕ(e2g+i). By

construction, these attaching maps are nullhomotopic in π1X, so Y is homotopy equivalent
X ∨ S2 ∨ · · · ∨ S2. On the other hand, the map f extends to Y and its restriction to the union
S = D2

0 ∪ · · · ∪ D2
k is a π1-isomorphism. Since f : S → Σ is a π1-isomorphism that extends

to the 2-cells of X, the attaching maps of the 2-cells of X are null-homotopic in S, and we
conclude that Y is also homotopy equivalent to S2 ∨ · · · ∨ S2 ∨ S. Finally, since the 2-complex
S has the minimal possible Euler characteristic χ(S) = χ(Σ) among 2-complexes with this
fundamental group, the map f : S → Σ is a homotopy equivalence. In summary, X becomes
standard after wedging on k + 1 different 2-spheres:

X ∨ (k + 1)S2 ∼ Σ ∨ (# of 2-cells of X)S2.
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Second proof of Theorem 6. The situation that our division algorithm can say something
about is when X has one vertex, two 2-cells and Euler characteristic χ(X) = χ(Σ) + 1. In this
case, it is easy to see20 that k = 0 and the above homotopy equivalence becomes

X ∨ S2 ∼ Σ ∨ S2 ∨ S2.

On π2 this says π2X ⊕ ZΓ ∼= ZΓ2. Therefore, by Corollary 4, π2X is free. From here we can
proceed as in the proof of the third bullet of Corollary 17 to prove Theorem 6.
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[2] P. Buser, Riemannsche flächen mit grosser kragenweite, CMH 53 (1978), no. 1, 395–407.
[3] P. Buser and P. Sarnak, On the period matrix of a riemann surface of large genus (with an appendix by jh

conway and nja sloane), Inventiones mathematicae 117 (1994), no. 1, 27–56.
[4] W. H. Cockcroft, On two-dimensional aspherical complexes, PLMS 3 (1954), no. 1, 375–384.
[5] P. M. Cohn, Free ideal rings and localization in general rings, vol. 3, Cambridge university press, 2006.
[6] R. H. Crowell and R. H. Fox, Introduction to knot theory, vol. 57, Springer Science & Business Media, 2012.
[7] T. Delzant, Sur l’anneau d’un groupe hyperbolique, Comptes Rendus 324 (1997), no. 4, 381–384.
[8] M. J. Dunwoody, The homotopy type of a two-dimensional complex, BLMS 8 (1976), no. 3, 282–285.
[9] J. Harlander and A. Misseldine, On the k-theory and homotopy theory of the klein bottle group, Homology,

Homotopy and Applications 13 (2011), no. 2, 63–72.
[10] C. Hog-Angeloni, A short topological proof of cohn’s theorem, Topology and Combinatorial Group Theory,

Springer, 1990, pp. 90–95.
[11] T.-Y. Lam, Serre’s problem on projective modules, Springer Science & Business Media, 2010.
[12] L. Louder, Nielsen equivalence in closed surface groups, arXiv preprint arXiv:1009.0454 (2010).
[13] M. S. Montgomery, Left and right inverses in group algebras, BAMS 75 (1969), no. 3, 539–540.
[14] J. Stallings, On torsion-free groups with infinitely many ends, Ann. of Math. (1968), 312–334.
[15] W. P. Thurston, The geometry and topology of 3-manifolds, Lecture note (1978).
[16] , Three dimensional manifolds, kleinian groups and hyperbolic geometry, BLMS 6 (1982), no. 3,

357–381.

Max Planck Institute for Mathematics, Bonn, Germany, 53111

20In general, k + 1 = #(2-cells of X)− (χ(X)− χ(Σ))


	1. introduction
	On division
	Euclid's algorithm for finding the greatest common divisor
	Algebraic application
	Non-free examples
	Group theoretic application
	Topological application
	On 2-complexes with more 2-cells
	Plan of the paper
	Notation and terminology
	Acknowledgements

	2. The division algorithm for free groups
	The algorithm
	Why it works
	Where do relations come from?

	3. Tree-like properties of hyperbolic space
	3.1. -hyperbolicity
	3.2. Midpoints and barycenters
	Shrinking the diameter of X
	3.3. Fellow traveling
	Large infimum displacement implies no zero divisors in the group ring
	3.4. Approximating barycenters

	4. Proof of the division algorithm for surface groups
	4.1. Setup
	4.2. Showing |x'|<|x|
	First, we deal with the case is |x|-|y|
	Finally we deal with the case |x|-|y|
	From infimum displacement to genus
	A remark about fields

	5. Euclid's algorithm and algebraic applications
	5.1. Proof of Euclid's algorithm
	5.2. Modules generated by pairs of vectors v,w in Qn and Fpn
	Case 1: w1=0
	Case 2: w1=0
	5.3. Bass's `local-to-global' method for Z-modules
	Claim: The map i:(z)p(v,w)p is injective
	5.4. Proof of Corollary 4

	6. 2-relator groups acting on hyperbolic space
	Flat and hyperbolic 3-dimensional 2-relator groups

	7. An improved Tietze's theorem for surface fundamental groups
	Minimal Euler characteristic
	Nielsen equivalence for surface groups
	Interpretation as quantitative variant of Tietze's theorem for surface groups
	Second proof of Theorem 6

	References

