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In the following work, the Stepped Pressure Equilibrium Code (SPEC) [Hudson, Dewar et al., Phys. Plasmas
19, 112502 (2012)] which computes the equilibria of Multi-Region relaxed Magnetohydrodynamic energy principle
(MRxMHD), has been upgraded to determine the MRxMHD stability in toroidal geometry. A theoretical formalism for
SPEC is obtained by relating the second variation of the MRxMHD energy functional to the Hessian matrix, enabling
the prediction of MHD linear instabilities. Negative eigenvalues of this matrix imply instability. Further, we demon-
strate our method on simplified test scenarios in both tokamak and stellarator magnetic topologies, with a systematic
comparison study between the marginal stability prediction of the SPEC with the ideal MHD stability code packages
CAS3D and MISHKA-1.

I. Introduction

In a toroidal plasma low-frequency plasma modes with
wavelengths much greater than the particle Larmor radius can
be driven unstable by pressure or current gradients1. Modes
with faster growth rates than the diamagnetic drift frequency2,
resistive rates, and transport timescales can be described by
ideal magnetohydrodynamics (IMHD). The linear MHD sta-
bility of such modes is commonly analyzed using a perturba-
tive approach i.e. applying an infinitesimal perturbation to an
equilibrium state described by

(∇×B)×B = ∇p, (1)
∇ ·B = 0, (2)
∇p 6= 0, (3)

where B denotes magnetic field and p denotes an isotropic
pressure.3 If ∇p = 0 the IMHD fields are known as force-free
fields, with B satisfying the Beltrami equation

∇×B = µB, (4)
p = const. (5)

The case where µ is not constant with respect to position is
sometimes called a nonlinear force-free state4, though, as long
as µ is independent of B, the Beltrami equation is a linear el-
liptic PDE. Conversely, the case where µ is a spatial constant
is sometimes called a linear force-free state and the Beltrami
equation is also termed the Trkalian equation5.
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Most toroidal magnetic plasma confinement theory is based
on the assumption that B and p are differentiable, so that the
magnetostatic equilibrium is governed by Eqns.1–3, and that
the magnetic field is integrable, i.e. the field lines lie on con-
tinuously nested invariant tori, usually known as flux surfaces.
However this continuously nested flux surface assumption is
rigorously justified only in “2-D” systems, i.e. ones with a
continuous symmetry (in particular axisymmetry), but even in
a nominally axisymmetric system like a tokamak there may
be minor symmetry-breaking perturbations (making the mag-
netic field “3-D”) that call the assumption of all magnetic field
lines lying on such magnetic surfaces into question (see details
in6,7).

Furthermore toroidal confinement devices of the stellara-
tor class are designed to break axisymmetry strongly in or-
der to provide poloidal field without strong toroidal current in
the plasma. While these devices are designed to have mag-
netic fields close to integrable, e.g. by building in a hidden
symmetry8,9, in practice the smoothly nested flux surface as-
sumption is never exactly met.

A consequence is that, on rational flux surfaces with non-
zero pressure gradients, the current density j generally con-
sists of δ−function shielding currents and a potentially non-
physical Pfirsch-Schlüter current in the form of a 1/x singu-
larity. In IMHD, this occurs as a consequence of enforcing a
charge conservation law, ∇ · j = 0, in the presence of a pres-
sure gradient10–13. This means an equilibrium code like the
Variational Moments Equilibrium Code (VMEC)14 based on
the assumption of smooth pressure and current profiles can
never strictly converge (though they can give a reasonable
approximation quickly so VMEC has become the workhorse
of stellarator design studies). A number of 3-D equilibrium
codes which regularize, in various ways, such singular be-
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havior implied by IMHD have been written, such as IPEC15,
PIES16, SIESTA17, HINT218, and GPEC19.

A different approach to 3-D equilibrium theory is to gen-
eralize the relaxation principle that Taylor used successfully
to explain magnetic field reversal in turbulent z-pinch ex-
periments by minimizing the total magnetic energy subject
to a constant magnetic helicity constraint [for a review see
Taylor20]. As Taylor assumed negligible, or at least constant,
thermal pressure, his variational principle needs to be gen-
eralized to enable modeling of experimental pressure and q
profiles in tokamaks and stellarators. The key generalization
is the stepped pressure equilibrium approach, first introduced
by Bruno and Laurence 21, constructing a weak solution to the
IMHD equilibrium by relaxing the continuity of the magnetic
field and pressure profiles. By incorporating some aspects of
Bruno and Laurence’s mathematical framework into a gen-
eralized Taylor relaxation principle Hole and Dewar et.al.22

introduced Multi-Region Relaxed MHD (MRxMHD) over a
decade ago. In MRxMHD, the plasma is partitioned into dif-
ferent Taylor relaxed plasma volumes Ωl , where each Ωl is
bounded by an ideal interface Il . These interfaces are taken
to be of zero width, since we have assumed a coarse-grained
fluid model of the plasma that cannot resolve lengths of the
order of a particle gyroradius. MRxMHD also extends Tay-
lor’s ideas20, where the plasma in each volume Ωl will evolve
to minimize the magnetic potential and thermal energy under
the constraint that the magnetic helicity,

Kl =
∫

Ωl

d3
τ A · (∇×A), (6)

is conserved. In addition to helicity conservation, we also
constrain the entropy (related to pressure) in each volume Ωl .
Since we are working in the variation on slow timescales, but
short compared with heating and confinement times, we as-
sume the geometric variations to be isentropic. For an ideal
gas the entropy S is given in terms of the pressure p and vol-
ume V by

S = S0 +
NkB

γ−1
ln

(
pV γ

p0V γ

0

)
, (7)

where S0 and p0V0 are arbitrary reference values, N is the
number of particles, kB is Boltzmann’s constant, and γ is the
ratio of the specific heat capacities. Thus the constancy of N
and S implies the well-known adiabatic isentropic ideal-gas
constraint

pV γ = p0V0 exp
(
(γ−1) S−S0

NkB

)
= const. (8)

We assume Eqn.(8) applies to both the ion and electron gases
as a single fluid, so the total pressure p ≡ pi + pe also obeys
pV γ = αl = const. In MRxMHD, these constraints are aug-
mented as non-holonomic constraints with respect to a given
reference frame, and are stated in Dewar et al.23.

The theory of MRxMHD allows for a much less-restrictive
class of variations as compared to IMHD, the variations that
allow the magnetic field to form magnetic islands and mag-
netic field-line chaos. Hence, based on the set of non-

holonomic constraints, the variational form of MRxMHD en-
ergy functional is written as24

F =
Nv

∑
l=1

[
Ul−

1
2

µl(Kl−Kl,0)

]
, (9)

where

Ul =
∫

Ωl

d3
τ

(
p

γ−1
+

B2

2

)
, (10)

in which µl is the Lagrange multiplier, the term Ul is the mag-
netic potential energy, and Nv is the number of volumes. The
plasma volumes Ωl are enclosed by ideal interfaces, and are
constrained to have helicity Kl,0, ∆ψp,l the poloidal flux, and
∆ψt,l the toroidal flux. Figure 1a and 1b provides a sketch
of an MRxMHD description with Nv = 5 regions, and the de-
scription of tangential basis vectors on an interface, Il , respec-
tively.

Because there is no minimum scale length in zero-Larmor-
radius MHD, the full solution space includes singular struc-
tures such as the discontinuities in p and B. Thus, rather than
the pointwise-defined solutions of classical ideal MHD analy-
sis, MRxMHD seeks the weak solutions defined in the context
of normed function spaces24. The weak solutions or the Euler-
Lagrange equations for the extremizing states of MRxMHD
are as follows. In each volume Ωl , setting the first variation of
the MRxMHD energy functional resulting from variations in
the vector potential, A, to zero leads to the Beltrami equation,
∇×B = µlB, and thus indicates the pressure, p = const. in
each volume Ωl . In addition, the ideal interfaces Il with infi-
nite conductance, are required to satisfy the tangential bound-
ary condition B ·n = 0 , where n denotes the outward point-
ing normal vector to the surfaces. The variations of interface
geometry Il satisfies a pressure balance across the interfaces,
given as

[[
p+ B2

2

]]
l
= 0. The [[··]]l denotes the discontinuity

across the lth interface. The pressure profile is thus piecewise
constant or a stepped function.

To compute the extremizing states of MRxMHD energy
principle, the Stepped-Pressure Equilibrium Code (SPEC)24

was developed, and for a decade now it has been broadly uti-
lized within the stellarator community. In the tokamak com-
munity, thus far most the SPEC applications have been the-
oretical, by which the authors mean in simplified tokamak
geometry with the goal of better understanding some theo-
retical aspects of 3D equilibria, such as the formation of sin-
gular currents and saturated tearing modes. In recent years,
SPEC has been used in theoretical physics studies, such as
the symmetry breaking of quasi-helical states in Reverse Field
Pinches (RFP)25, the response of resonant magnetic pressure
amplification26, an existence criterion for 3D current sheets27,
beta limits in classical stellarator28,29, linear stability and non-
linear saturation of tearing modes in slab geometry30,31, free-
boundary tokamak equilibria32. In addition, the theory of
MRxMHD also been extended to include the effects of pres-
sure anisotropy33, the two-fluids34, the compressible Euler-
fluid and Beltrami field spectrum35, the cross-field flow using
phase-space action36 and the self-consistent dynamics of its
current sheets23,37.
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(a)

(b)

FIG. 1: (a) Pictorial view of nested plasma regions, Pl ,
separated by toroidal interfaces, Il (coloured thin sheets), and
a plasma boundary (coloured in light green) in MRxMHD;
(b) covariant basis vectors eϑ and eζ (not to scale) and the

normal basis vector es = ∇s to an interface, Il . The arbitrary
toroidal angle, ζ as indicated, is used in the curvilinear

coordinate representation.

In the context of the stability studies of hydro-magnetic
plasmas, Kruskal et al.38,39 and Greene et al.40 discussed a
second-order expression of an energy principle known as the
second variation. In mathematical terminology, the Taylor ex-

pansion of F in a small parameter ε must be of the form

µ0F = F0 + ε

Nv−1

∑
l=1

(
ξl ·

δF
δξl

)
,

+
ε2

2

Nv−1

∑
l,l′=1

(
ξT

l ·
δ 2F

δξlδξl′
·ξl′

)
,

+ ... , (11)

where ξl , ξl′ denotes the linear perturbation to interfaces.
Here, note that we assume F has been minimized, under the
constraints (magnetic helicity and ideal gas law), with respect
to the p and A in each region and they have been eliminated
as independent variables. That is, p and the A are function of
the shapes of the interfaces Il , and so as F . These are infinite-
dimensional generalizations of the gradient vector and Hes-
sian matrix, respectively, but will in practice be made finite
dimensional by expanding the ξl and ξl′ in finite basis sets.
In recent investigations of linear MRxMHD stability in pres-
sureless cylindrical41 and slab31 plasma , the Hessian algo-
rithm which is often defined as the second variation of energy
functional F , was developed for SPEC.

In recent years, various 3D equilibrium investigations of
MRxMHD have been carried out in practice. As such, the un-
derstanding of the pressure-driven linear instabilities in terms
of multi-region relaxed equilibria have not been explored
much, and yet are crucial for 3D MHD stability. An another
motivation behind assessing MRxMHD stability using SPEC
is the stellarator optimization. In-spite of the fact that, the
insights and optimization tools used to design present stel-
larator experiments like Helically Symmetric Experiment42

and Wendelstein (W7-X)43 were effective, there are areas in
which our understanding of the mathematical principles, the
3D numerical codes and the optimization procedures can be
essentially investigated. In specific, optimizing for next gen-
eration conceivable stellarator reactors require hundreds and
thousands of numerical iterations. Subsequently, the compu-
tation of the linear 3D MHD stability and equilibrium simulta-
neously would be quite sufficient (or, to some degree worthy)
for optimisation purposes since they are, first of all, fast and
give us a necessary information about possible destabilisation
of some modes.

To address such equilibrium and stability calculations in de-
tail, this article demonstrates the extension of the theoretical
description of global MHD stability of MRxMHD in toroidal
geometry, as well as the derivation of the stability matrix,
which contains the second variation of the MRxMHD energy
functional F known as the “Hessian matrix” for SPEC, while
accounting for adiabatic pressure change. Our derivation is
general, as it does not consider the assumption of axisymme-
try, and has the potential to interpret the stability conditions in
terms of energy consideration for 2D (tokamak) and 3D (stel-
larator) magnetic geometries.

In this article, the authors aim to present the foundations
for numerical studies of MRxMHD/SPEC stability in toroidal
geometries, which are described in following points:

(a) First and foremost, we address some aspects of
MRxMHD stability in circular-cross-section tokamaks,
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specifically the two sub-classes of pressure-gradient
driven MHD instabilities in tokamak plasmas, namely
the ideal internal kink and low-n shear ballooning
modes.

(b) Secondly, we use SPEC to investigate the global
MRxMHD instabilities in a five field period stellara-
tor configuration. The computational investigations
reported here will aid in the clarification of struc-
tural properties of global, ideal-MHD-like modes of
MRxMHD plasmas, which will be compared with the
results from CAS3D, an ideal MHD stability code pack-
age.

Furthermore, we present conclusive numerical arguments
and observations addressing whether MRxMHD can reveal
pressure-gradient driven instabilities.

To our knowledge, the requisite time-dependent non-linear
MHD codes are also under development (NIMROD44,45,
MEGA46, and M3D-C147,48), and have been extended to treat
stellarator geometry. The JOREK49,50 code is also developing
stellarator functionality based on reduced MHD. In the future,
it may also be possible to apply the codes mentioned above in
stellarator optimisations.

Recently SPEC has undergone significant up-grades51.
Zernike polynomials have been employed as the radial basis
functions, which allows us to calculate well resolved SPEC
equilibria at required computational accuracy. SPEC is based
on a hybrid spectral-Galerkin representation. So, it may be ar-
gued that the scale of our generalised stability matrix, which
will be detailed later, could be huge at larger n and m Fourier
harmonics. This is well addressed by the shared-memory MPI
parallelization. At present, the SPEC Stability has been paral-
lelized with MPI in a similar fashion to the equilibrium con-
struction. That is, each volume is associated with one cen-
tral processing unit (CPU); since the solution to the perturbed
magnetic field in a volume is independent from other volumes,
each CPU can solve the coupled linear system in parallel (will
be discussed in Section III B.). Finally, the master CPU gath-
ers all required derivatives to construct the stability matrix and
solves the linear system, before broadcasting the values to all
CPUs.

This article is structured as follows. Section II outlines and
reviews the numerical description to compute an extremum
of MRxMHD equilibrium with SPEC. In Section III A we de-
scribe and elaborate the coordinate-independent theory behind
the MRxMHD stability in Eulerian variations, and III B de-
rives generalized stability matrix also known as the Hessian
matrix with respect to SPEC co-ordinate system, for numer-
ical implementation. In addition, we also state the sufficient
and necessary conditions of MRxMHD stability. In Section
IV, we provide a detailed comparison study of marginal sta-
bility prediction of SPEC Stability with the ideal MHD stabil-
ity codes, and highlight the significance of MRxMHD energy
principle to predict the pressure-gradient driven MHD insta-
bilities. Finally, in Section V we briefly summarize our con-
clusion and discuss future work.

II. Description of SPEC co-ordinate system and discretized
form of MRxMHD energy functional

For simplicity, we restrict our attention to fields with stel-
larator symmetry52 which implies

Rl(−ϑ ,−ζ ) = Rl(ϑ ,ζ ), (12)
Zl(−ϑ ,−ζ ) =−Zl(ϑ ,ζ ). (13)

In SPEC, an interface Il is described with

xl(ϑ ,ζ ) = Rl(ϑ ,ζ )êR +Zl(ϑ ,ζ )êZ . (14)

Here, êR = cosφ î+sinφ ĵ for the toroidal angle ζ = φ , and the
Rl(ϑ ,ζ ) and Zl(ϑ ,ζ ) are an even and odd function of (ϑ ,ζ )
respectively. The symmetric and non-symmetric variables are
discretised in the Fourier basis function as

Rl(ϑ ,ζ ) = ∑
m,n

Rl,m,n cos(mϑ −nN f ζ ), (15)

Zl(ϑ ,ζ ) = ∑
m,n

Zl,m,n sin(mϑ −nN f ζ ). (16)

The set of parameters {Rl,m,n,Zl,m,n ∈R2, (m,n)∈ (N∗×Z)∪
({0}×N)} uniquely defines the shapes of the interfaces. The
number of field periods, N f ∈ N∗ represents the discrete ro-
tational symmetry of an equilibrium. For an annular volume
Ωl which is enclosed by the adjacent interfaces xl−1 and xl ,
the co-ordinate functions are described using a linear interpo-
lation, given by

R(s,ϑ ,ζ ) = ∑
m,n

[
1− s

2
Rl−1,m,n +

1+ s
2

Rl,m,n

]
(17)

× cos(mϑ −nN f ζ ),

Z(s,ϑ ,ζ ) = ∑
m,n

[
1− s

2
Zl−1,m,n +

1+ s
2

Zl,m,n

]
(18)

× sin(mϑ −nN f ζ ),

where s ∈ [−1,1] is regarded as local radial co-ordinate.
In SPEC24, the equilibrium magnetic field B is given by

the vector potential A which takes the Clebsch form as
A = Aϑ (s,ϑ ,ζ )∇ϑ +Aζ (s,ϑ ,ζ )∇ζ in the Eulerian reference
frame. In each volume Ωl , the components of vector poten-
tials are written in the Fourier-Zernike basis representation,

Aϑ (s,ϑ ,ζ ) = ∑
m≥0,n

LM

∑
z=m

Aϑ ,m,n,lP̄m
z (s)cos(mϑ −nN f ζ ),(19)

Aζ (s,ϑ ,ζ ) = ∑
m≥0,n

LM

∑
z=m

Aζ ,m,n,lP̄
m
z (s)cos(mϑ −nN f ζ ),(20)

where Aϑ ,m,n,l ,Aζ ,m,n,l are the Fourier-Zernike coefficients
and LM is related to the highest resolution of Zernike poly-
nomial Pm

z (s) , and s is a radial coordinate. Here, the P̄m
z (s) is

scaled as Pm
z (s)/1+z for m≥ 2. For poloidal mode harmonics

m = 0 and m = 1, a basis recombination of Zernike polyno-
mial is employed to mitigate the co-ordinate singularity32 in
the innermost volume of the plasma domain. Subtleties are
stated in Qu et al.51.
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The magnetic field is then represented in contravariant form
as,
√

gB =
√

gBses +
√

gBϑ eϑ +
√

gBζ eζ where these con-
travariant coefficients are written in terms of coefficients of
vector potential,

√
gBs = ∑

m≥0,n

LM

∑
z=m

(mAϑ ,m,n,l−nN f Aζ ,m,n,l)P̄
m
z (s) (21)

× sin(mϑ −nN f ζ ),

√
gBϑ =− ∑

m≥0,n

LM

∑
z=m

Aζ ,m,n,lP̄
′m
z (s)cos(mϑ −nN f ζ ), (22)

√
gBζ = ∑

m≥0,n

LM

∑
z=m

Aϑ ,m,n,lP̄′
m
z (s)cos(mϑ −nN f ζ ), (23)

where the primes denotes the derivative of P̄m
z (s) with respect

to s and the Jacobian is described as
√

g = (∇s×∇ϑ ·∇ζ )−1, (24)

under the toroidal co-ordinate system (s,ϑ ,ζ ) ∈ [−1,1]×
[0,2π)× [0,2π) where s = −1 and s = 1 are the notation for
inner and outer interface, respectively. Hence, here s is a local
radial variable.

In each volume Ωl of SPEC, the constrained energy func-
tional Fl depends on the vector potential A, and the Lagrange
multipliers µl ,c1,d1,am,n,bm,n,em,n, and takes the form

Fl ≡
1
2

∫
Ωl

B2 √gdϑdζ ds+
∫

Ωl

µ0 p
γ−1

√
gdϑdζ ds, (25)

− µl

2

(∫
Ωl

A ·B√gdϑdζ ds−Kl,0

)
,

+ cl

(∮
C<

p,l

A · eϑ dϑ −∆ψt,l

)
,

+ dl

(∮
C>

t,l

A · eζ dζ −∆ψp,l

)
,

+ ∑
m,n

em,n

∫∫
∂Ωl

√
gB ·∇scos(mϑ −nN f ζ )dϑ dζ ,

+ ∑
m,n

am,n

LM

∑
z=m

Aϑ ,m,n,lP̄m
z (−1),

+ ∑
m,n

bm,n

LM

∑
z=m

Aζ ,m,n,lP̄
m
z (−1),

where the C<
p,l and C>

t,l are circuits about the inner (<) and
outer(>) boundaries of Ωl in the poloidal and toroidal direc-
tions respectively. The enclosed poloidal flux ∆ψp,l , toroidal
flux ∆ψt,l and the interface boundary condition

√
gB ·∇s = 0

are enforced by a set of Lagrange multipliers (ei for the ith

Fourier harmonic of interface boundary condition, and cl , dl
for fluxes)32. Additionally, in annular volumes, the gauge
freedom of vector potential defined as Aϑ (−1,ϑ ,ζ ) = 0 and
Aζ (−1,ϑ ,ζ ) = 0 are enforced by the Lagrange multipliers ai

and bi respectively for the i th Fourier harmonics. The discus-
sion on gauge dependency and interface boundary condition
can be found in Hudson et al.24.

By denoting a ≡ {Aϑ ,m,n,l ,Aζ ,m,n,l ,am,n,bm,n,em,n,cl ,dl}
and ψ ≡ {∆ψt,l ,∆ψp,l}, the discretized energy functional
Fl(xl ,a,µl) within each SPEC volume Ωl can be written as

Fl =
1
2

aT ·Al(xl) ·a−µl
1
2
(aT ·Dl ·a−Kl,0)−aT ·Bl ·ψ.

(26)
The matrices Al ,Bl and Dl are constructed in each Ωl by

inserting the representation for the vector potential given in
Eqn.(19) and (20) into Eqn.(25) and computing the volume
dependent integrals. The volume integrals are computed with
Gauss quadrature and Fast Fourier Transform scheme. We
emphasize that the matrix Al depends on the geometry of the
interfaces xl , and also on geometrical metrics and Jacobians.
The matrices Bl and Dl do not depend upon interface geom-
etry. More detailed construction of elements in these matrices
Al ,Dl and Bl are addressed in Hudson et al.24,32 and Qu et
al.51.

The magnetic field that satisfies the Beltrami equation, ∇×
B= µlB in each volume Ωl is obtained by solving an auxiliary
set of equations in each volume Ωl as

∂Fl

∂a
= 0,

∂Fl

∂ µl
= 0, (27)

where Fl is obtained from Eqn.(26). This yields

(Al−µlDl) ·a =−Bl ·ψ, (28a)

aT ·Dl ·a = Kl,0. (28b)

After computing the Beltrami field in each volume in accor-
dance with the helicity, the flux constraints, and the boundary
condition that the field is tangential to the interface, SPEC will
then move the position of the interfaces Il , to force difference
on the two sides, [[p+B2/2]]l = 0 using a nonlinear quasi-
Newton iteration. For fixed boundary SPEC equilibrium cal-
culation, SPEC requires the plasma boundary, the enclosed
poloidal flux ∆ψp,l and toroidal flux ∆ψt,l , and magnetic he-
licity Kl,0 in each volume Ωl i.e. {p,∆ψp,l ,∆ψt,l ,Kl,0}. In par-
ticular, it is also possible to constrain the rotational transform
ι- on either side of the interfaces such that the equilibrium is
described by the {pl ,∆ψt,l , ι-+, ι-−}. This will require an it-
eration over both ∆ψp,l and µl for a given toroidal flux ∆ψt,l
such as to satisfy the ι- on either side of the interfaces.

III. Global MRxMHD stability

The aim of this section is to review and elaborate the the-
oretical derivation of the Eulerian variations for the computa-
tional exploration of MRxMHD stability with SPEC.

Before proceeding further, we begin by noting useful gen-
eralized transport theorems53 based on the Eulerian variations
that we will use in the subsequent derivations. They are

δ

∫
Ωl

f d3
τ =

∫
Ωl

δ f d3
τ +

∫
∂Ωl

(n ·ξ) f d2
σ , (29)

δ

∫
∂Ωl

(n ·~f )d2
σ =

∫
∂Ωl

(n ·δ~f +(n ·ξ)(∇ ·~f ))d2
σ ,(30)

where f is the functional under consideration and ξ being the
interface displacement.
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A. Theory and equations

Owing to the above properties of transport theorems, the
second-order variation of the local MRxMHD energy func-
tional δ 2Fl , accounts for the variations in the vector potential
A, the pressure p, and the interface geometry ξ. The second
variation yields

δ
2Fl =

∫
Ωl

(∇×δB−µlδB) ·δAd3
τ, (31)

−
∫

∂Ωl

ξ ·∇
(

p+
B2

2

)
(ξ ·n)d2

σ ,

+
∫

∂Ωl

δ pξ ·nd2
σ ,

+
∫

∂Ωl

ξ

((
p+

B2

2

)
(∇ ·ξ)

)
·nd2

σ ,

where δA and δ p is the perturbed vector potential and pres-
sure respectively, δB=∇×δA, and ξ ·n is the normal compo-
nent of the displacement of interface Il . For brevity, we have
omitted the equilibrium quantities and their simple algebraic
calculation.

To find a more simplified expression, as in Eqn.(51) of
Spies et al.54 we express the vector-algebraic relation as∫

Ωl

(δA ·∇× (∇×δA)−|∇×δA|2)d3
τ (32)

=
∫

∂Ωl

(δA×n) · (∇×δA)d2
σ .

Further, using Eqn.(32) and the expression for perturbed pres-
sure δ p obtained from Eqn.(8) for αl = const., the Eqn.(31)
can be rewritten as

δ
2Fl =

∫
Ωl

(
|∇×δA|2−µlδA · (∇×δA)

)
d3

τ (33)

+
∫

∂Ωl

((δA×n) · (∇×δA))d2
σ ,

−
∫

∂Ωl

ξ ·∇
(

p+
B2

2

)
(ξ ·n)d2

σ ,

−
∫

∂Ωl

(
γαl

V γ+1
l

δVl

)
ξ ·nd2

σ ,

+
∫

Ωl

∇ ·
(
ξ

(
p+

B2

2

)
(∇ ·ξ)

)
d3

τ,

where δVl is the perturbed volume Ωl . It is well known, the
incompressible plasma limit can be achieved by letting pres-
sure (or more accurately, the acoustic speeds) approach infin-
ity. As a consequence, the Eqn. (33) can also be condensed
by taking the MRxMHD in the incompressible limit ∇ ·ξ = 0,
which will be further discussed in Section III A 2.

In more general, on considering the incompressible limit in
Dewar et al.35,37,55 dynamical MRxMHD theories, the ideal
interfaces, which act as infinitesimally thin current sheets,
supply inertia that specifies the finite frequencies, and only
surface waves like the shear-Alfvén wave persist. Thus, it

is incompressibility that imparts inertia to the interfaces, be-
cause, when we move an interface, incompressibility forces to
move the plasma within the interface, requiring a force on the
plasma and an equal and opposite reaction force on the inter-
face. The magneto-sonic acoustic (slow or fast) waves with
finite low-frequencies also exist within the Beltrami relaxed
sub-regions for compressible MRxMHD plasma55, along with
coupled surface waves from the interfaces.

1. Derivation of perturbed interface boundary condition

In MRxMHD, when the plasma attains an equilibrium the
impermeability of the barrier interfaces to flux implies the lo-
cal constraint. That is, B is required to be tangential to an
interface Il on both sides (though B is not necessarily contin-
uous across Il as we assume these interfaces can carry current
sheets as j = n× [[B]]). Also, the conservation of flux im-
plies the poloidal and toroidal line integral constraints on the
interfaces,

∮
C A ·dl = const.

The tangential condition on boundary surfaces of region Ωl
implies ∇s ·∇×A = 0. This can be written as

∂θ Aζ −∂ζ Aθ = 0 for r ∈ ∂Ωl , (34)

where r is defined as the position vector of a general point in
plasma such that we represent s = s(r), ϑ = ϑ(r) and ζ =
ζ (r). The general solution for the vector potential A on ∂Ω

±
l

is obtained as

Aϑ = ∂ϑ χ
±, Aζ = ∂ζ χ

±, (35)

where As is undetermined, as is the surface potential
χ±(ϑ ,ζ ), which is not single valued and not entirely arbi-
trary as it responsible for nonzero

∮
∂Ωl

A · dl. In coordinate
free terms, Eqn.(35) implies Atgt = ∇tgt χ

±, where the pro-
jection of ∇ in the local plane tangent to interface ∇tgt is de-
fined as (I− nn) ·∇ ≡ e j

tgt∂ j + ek
tgt∂k for {i, j,k} being the

cyclic triplet. On extending χ± arbitrarily off the surface to
define its three-dimensional gradient, this can also be written
n×A = n×∇χ±.

To consider an effect of perturbing the interfaces, we use
the transformation

r(s,ϑ ,ζ ,ε)≡ R(s,ϑ ,ζ |ε), (36)

where ε be the arbitrary perturbation parameter. If we con-
sider ε analogous to dummy time variable, ξ is analogue of a
fluid-flow velocity field as ξ(r,ε)≡Dε r = ∂R(s,ϑ ,ζ |ε)/∂ε ,
where Dε denotes the advective derivative. Since, we are
working in the Eulerian frame of reference, we write the
advective derivative in terms of Eulerian derivative ∂ε , as
Dε = ∂ε +ξ ·∇. The fact that {∂ϑ ,∂ζ} and Dε commute, tak-
ing the advective derivative of Eqn.(34) yields

∂ϑ Dε Aζ −∂ζ Dε Aϑ = 0 for r ∈ ∂Ωl , (37)

which is solved on ∂Ω
±
l by [cf. Eqn. (35)]

Dε Aϑ = ∂ϑ χ
±, Dε Aζ = ∂ζ χ

±. (38)
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Here, χ±(ϑ ,ζ |ε) is a periodic function because of the invari-
ance of the line integrals

∮
∂Ωl

A · dl. So, on writing Dε ei =

−(∇ξ) ·ei and taking the advective derivative of contravariant
representation of A = Aiei, we find that

∂ε A = (Dε As)∇s+(Dε Aϑ )∇ϑ +(Dε Aζ )∇ζ (39)
+ξ×B−∇(ξ ·A).

Finally the perturbed boundary condition of A is obtained by
crossing Eqn.(39) with n and using Eqn.(38)

n×∂ε A=−(n ·ξ)B+n×∇(χ±−ξ ·A) for r∈ ∂Ω
±
l . (40)

Therefore, the local solution of the perturbed magnetic field
δB within each volume Ωl is then computed by solving the
elliptic partial differential equation along with the simplified
form of perturbed boundary condition (Eqn.40), as

∇×δB = µlδB, (41a)

δA×n = (n ·ξ)B+n×∇(χ±−ξ ·A). (41b)

2. Heuristic characterization of MRxMHD stability equations

When incompressibility is assumed and the pressure varia-
tion is minimized to zero, the Eqn.(33) reduces to an interface
surface integral of the form

δ
2Fl =

∫
∂Ωl

(ξ ·n)B ·δBd2
σ (42)

−
∫

∂Ωl

ξ ·∇
(

p+
B2

2

)
(ξ ·n)d2

σ ,

where δB is the perturbation to the Beltrami field B, which
corresponds to an interface perturbation by a vector field of
displacements, ξ ·n.

One peculiarity of MRxMHD is the support of non-trivial
pressure profiles which retain the force-free fields within each
volume. In this article, we have chosen to investigate whether
global MRxMHD stability theory supports pressure gradient-
driven modes. The argument lies behind the statement of
Bernstein et.al56 that some effort is required to stretch and
shift the lines of force if the direction of the magnetic field
is changed by the tension i.e. an outward force due to the
toroidal curvature and the pressure. Thus, in the sense that the
∇B2 plays an important role, we rewrite the second term of
Eqn.(42) as

δ
2Fl =

∫
∂Ωl

n ·

{
∇p+((B ·∇)B (43)

+B× (∇×B))

}
|ξ ·n|2 d2

σ ,

so that we can represent the magnetic curvature with an ar-
bitrary vector radii-of-curvature, C, from a point on a line of
force to the local center of curvature of the interface, as

δ
2Fl =

∫
∂Ωl

|ξ ·n|2n.C
B2

C2 d2
σ . (44)

This follows from the crucial fact that if C is directed out-
ward to the plasma, the Eqn.(44) represent the destabilizing
effect if n ·C < 0 and an stabilizing effect if n ·C > 0. This
is also the main reason behind the ballooning or interchange
instability i.e pressure-driven modes which limit the plasma
beta, as n ·C < 0. The tension which leads to a force on in-
terfaces is proportional to the curvature of the interfaces i.e
κ = C/C2 = e|| ·∇e|| where e|| = B/B, and hence this orien-
tation can be separated into the form of normal (κ⊥) and the
geodesic curvatures (κ||). Here, the κ|| = κ · (∇s×B)/|B∇s|
where s is flux label, is closely related to the projection of
the magnetic field on interfaces onto current flowing parallel
within the volume Ωl (parallel to the magnetic bi-normal di-
rection).

For a quantitative numerical analysis of global stability of
MRxMHD, the theory of variational energy principle states
that it is sufficient and necessary to analyze the sign of the
second variation of energy for all physical infinitesimal per-
turbations about an equilibrium state30,41. In the next sec-
tion we proceed to express the Eqn.(42) in terms of SPEC
co-ordinate system to formulate the Hessian. That is, the gen-
eralized stability matrix, which is symmetric in nature, as a
consequence of the symmetry of second derivatives of the en-
ergy functional F = ∑l Fl . Here, F is a smooth function of y
where y is an arbitrary degrees of freedom. Therefore, for a
local or global minimum, ∇2F is positive definite, i.e. ∀δy,
δyT ·∇2F · δy > 0 if δy 6= 0. For a saddle point, ∇2F is in-
definite, i.e. there is some perturbation δy that will lead to a
lower energy state, making δyT ·∇2F ·δy < 0.

B. Formulation of the Hessian “Generalized stability matrix”
for SPEC

Following Ref.41, we write the Lagrange multiplier µl and
al to be a function of interface geometry xl such that the de-
pendence of F = ∑l Fl accounts as Fl ≡ Fl(xl ,al(xl),µl(xl)).
In general geometry, the first-order variation to the "local"
constrained energy functional Fl ≡ (Ul − µl/2(Kl −Kl,0)) in
each volume Ωl , yields δFl =

∫
Ωl
(∇×B−µlB) · δAd3τ −∫

∂Ωl

(
p+ B2

2

)
ξ · d2σs where the differential surface area el-

ement d2σs =
√

ges(s,ϑ ,ζ )dϑ dζ for constant s labelling
of ideal interfaces or the flux surfaces, and ξ = δRl êr +
δZl êz denotes the infinitesimal perturbation of interface . On
expanding the variational form of δFl as ∂Fl/∂al · δal +
∂Fl/∂ µl · δ µl + ∂Fl/∂xl · δxl as a partial fraction, the first
two terms will vanish because of the equilibrium conditions
of MRxMHD given in Eqn.(27). The remaining terms can be
written as,

δF l =−
∫∫ [[

p+B2/2
]]

l ξ ·nl dϑdζ , (45)

where the normal vector is defined as

nl = eϑ × eζ , (46)

= RlZl,ϑ êR +(Zl,ϑ Rl,ζ −Rl,ϑ Zl,ζ ) φ̂ −Rl,ϑ Rl êZ ,
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with covariant basis vectors defined as eϑ = Rl,ϑ êR +Zl,ϑ êZ

and eζ = Rl,ζ êR−Rl φ̂ +Zl,ζ êZ .
To find an expression for the Hessian matrix, we express

Eqn.(45) using Eqn.(14) in terms of the Fourier-Poisson sum-
mation, which yields

∂Fl

∂Rl,m,n
=−∑

≈m,
≈n
∑
m̃,ñ

∑
m̄,n̄

∑
m,n

[[
p+

B2

2

]]
l,m̃,ñ

m̄Rl,≈m,
≈n Zl,m̄,n̄

× Im,n,m̃,ñ,m̄,n̄,≈m,
≈n ,

(47)

∂Fl

∂Zl,m,n
=+∑

≈m,
≈n
∑
m̃,ñ

∑
m̄,n̄

∑
m,n

[[
p+

B2

2

]]
l,m̃,ñ

Rl,m̄,n̄Rl,≈m,
≈m

× (−m̄)Jm,n,m̃,ñ,m̄,n̄,≈m,
≈n ,

(48)

where

Im,n,m̃,ñ,m̄,n̄,≈m,
≈n =

∮∮
cos(ᾱ)cos(α̃)cos(α) (49)

× cos(
≈
α)dϑ dζ ,

Jm,n,m̃,ñ,m̄,n̄,≈m,
≈n =

∮∮
sin(ᾱ)cos(α̃)sin(α) (50)

× sin(
≈
α)dϑ dζ ,

are the integral over even functions with ᾱ = m̄ϑ− n̄N f ζ , α̃ =

m̃ϑ − ñN f ζ , and α = mϑ −nN f ζ ,
≈
α =

≈mϑ − ≈nN f ζ and [[...]]
denotes the pressure-jump discontinuity term. From Sec.II,
B2 is defined in contravariant form i.e. B2 = (Bϑ Bϑ gϑϑ +

2Bϑ Bξ gϑξ + Bξ Bξ gξ ξ ) where the lower metric coefficients
gi, j’s are

gϑϑ = eϑ · eϑ = Rl,ϑ Rl,ϑ +Zl,ϑ Zl,ϑ , (51a)
gϑζ = eϑ · eζ = Rl,ϑ Rl,ζ +Zl,ϑ Zl,ζ , (51b)

gζ ζ = eζ · eζ +R2 = Rl,ζ Rl,ζ +Zl,ζ Zl,ζ +R2. (51c)

By construction, the contravariant component Bs = 0 on the
ideal interfaces. Also we remark that here the B2 is a function
of interface geometry xl , and so are the Jacobian

√
g and the

lower metric coefficients gi j’s.
Following the theories of III A, the stability of an

MRxMHD equilibrium can be accessed by the change in the
δF/δxl for an infinitesimal geometrical deformation of the
interfaces, and this form of change is numerically interpreted
as the Hessian matrix,

H j,k,l,l′ =
δ

δxl′,k

(
δFl/δxl, j

)
, (52)

where j = (m j,n j) and k = (mk,nk) are defined as dummy set
of variable for the Fourier harmonics for clarity, with Nm,n be-
ing the total number of Fourier modes, and l and l′ represent
the different interface labels for the Gateaux functional deriva-
tive i.e Eqn.(45) and the derivative of Gateaux functional term.
On expanding Eqn.(52) with respect to the co-ordinate repre-
sentation of xl , the complete Hessian matrix is then written as
a combination of sub-matrices

H=

[
H11

j,k,l,l′ H12
j,k,l,l′

H21
j,k,l,l′ H22

j,k,l,l′

]
, (53)

where the sub-matrix quantities are written as

H11
j,k,l,l′ =

∂

∂Rl′,k

(
∂Fl/∂Rl, j

)
, (54)

H12
j,k,l,l′ =

∂

∂Zl′,k

(
∂Fl/∂Rl, j

)
, (55)

H21
j,k,l,l′ =

∂

∂Rl′,k

(
∂Fl/∂Zl, j

)
, (56)

H22
j,k,l,l′ =

∂

∂Zl′,k

(
∂Fl/∂Zl, j

)
. (57)

On Fourier decomposition, each sub-matrix quantities of
Eqn.(53) can be written in block-tridiagonal structure as
shown in Figure 2.

A0 B0

C0 A1 B1

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . BNm,n

CNm,n ANm,n

FIG. 2: Illustration of tri-diagonal arrangement of an H11
j,k,l,l′

matrix quantity defined in Eqn.(54) where
A0 = H11

j,k,l,l , B0 = H11
j,k,l,l+1,C0 = H11

j,k,l−1,l ,
A1 = H11

j,k,l+1,l+1, B1 = H11
j,k,l,l+2 and so on.

The Hessian H is a matrix of size N×N where N = (Nv−
1)Nm,n denotes the geometric degrees of freedom Nm,n = n+
1+m(2n+1) is the total number of the Fourier modes.

As the Hessian matrix is symmetric, the quadratic form
δxT ·H ·δx can be decomposed into a set of real eigenvalues
and an orthogonal basis of an eigenvectors, which is written
as

N

∑
i=1

vT
i ·H ·vi =

N

∑
i=1

λiv2
i , (58)

where vi,λi are the eigenvectors and eigenvalues respectively.
Since, H is quadratic in displacement vi, our stability criterion
are necessary, and sufficient for stability prediction. That is,
the stability of MRxMHD equilibrium can be predicted from
the sign of eigenvalue λi. If there exist an i such that λi < 0
then an equilibrium is said to be unstable and if all λi > 0 that
is, positive then an equilibrium is said to be stable. By solv-
ing the eigenproblem for the Hessian, we obtain the direction
of the steepest decay of F at the given location, which is de-
termined by the eigenvector vi corresponding to the minimum
eigenvalue λmin = min(λi). Apparently, in doing so, an idea
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of using SPEC-Hessian for an equilibrium sensitivity analy-
sis and to reach the minimum energy or non-linear saturated
states of unstable modes with a descent algorithm, emerges as
an application. Intense investigation of this application is be-
yond the motive of this article and will be subject of a future
publication.

We noticed that as the interfaces are perturbed to obtain
Eqn.(52), the variation in magnetic field δB in SPEC can be
determined using matrix perturbation theory by considering
the Beltrami equation, ∇×B = µlB and B · n = 0, and the
enclosed fluxes as a constrained partial differential equation
problem, where µl is a function of xl . This is consistent with
solving the Eqns.(41), and also provides computational ben-
efits. More insights of this procedure are supplied in Kumar
et al.41 and Hudson et al.24. In addition, the SPEC will con-
sider the perturbed pressure, δ p adiabatically with γ (usually
5/3) i.e. using the pressure-volume relation defined in Eqn.(8).
Writing pl = αl/V γ

l where αl = const., the change in pressure
pl can be captured as change in corresponding volume Vl of
relaxed plasma volumes Ωl . Hence, the perturbed pressure is
then computed as

δ pl

pl
=−γ

δVl

Vl
, (59)

where the δVl = ∂Vl/∂RlδRl +∂Vl/∂ZlδZl . The correspond-
ing expression of volume Vl in Eqn.(8) which is enclosed by
the lth and l−1th interface can be obtained by the integral

Vl =
∫

Ωl

d3
τ =

1
3

∫
Ωl

∇ ·xl d3
τ =

1
3

∫
δΩl

xl ·dS, (60)

=
1
3

∫ 2π

0
dϑ

∫ 2π/N

0
dζ (xl · eϑ × eζ ), (61)

=
1
3

∫ 2π

0
dϑ

∫ 2π/N

0
dζ Rl

(
ZlRl,ϑ −RlZl,ϑ

)
, (62)

where we have used ∇ ·xl = 3, and have assumed that the do-
main is periodic in the angles. The required partial derivatives
are computed as ∂Vl

∂Rl
and ∂Vl

∂Zl
with their trigonometrical quan-

tities. Details are shown in Appendix A.

IV. Numerical applications

In two magnetic configurations, that is, the tokamak and
stellarator, the stability prediction and verification of SPEC-
Hessian algorithm for MHD instabilities were studied numer-
ically.

A. Verification in tokamak configuration

In this section, we undertake the verification study of
our marginal stability prediction for two sub-classes of fixed
boundary linear MHD instabilities in tokamaks i.e. the ideal
internal kink and low shear ballooning modes. Incompress-
ibility is assumed.

Ideal internal kink instability - Our marginal stability re-
sults of ideal internal kink instability have been verified with a
well-known tokamak based incompressible ideal MHD stabil-
ity code MISHKA-157. MISHKA-1 solves the linearised ideal
MHD equations1 with no flow for an eigenvalue λ̃ = γ + iω ,
where γ is the linear growth rate of a mode with toroidal mode
number n, and ω is the frequency of the mode. The linearised
ideal MHD equations are found by treating all MHD variables
in the form X(t) = X0+ X̃(t) for an equilibrium component X0

and a small time-varying component X̃(t)= X̃ exp(λ̃ t), where
the time-dependence comes from the assumption of the lin-
ear fluid perturbation ξ(t) = ξ exp(λ̃ t), which also produces
a linear magnetic field perturbation due to the frozen-in condi-
tion of ideal MHD. MISHKA-1 considers an ideal MHD equi-
librium computed by the Grad-Shafranov equilibrium code
HELENA58.

Low shear ideal ballooning instability - We compare
our low-shear stability results to global ideal MHD code,
CAS3D59,60. The CAS3D is designed to use the δW approach
of ideal MHD energy principle56 and treats the ideal MHD en-
ergy stability problem as variational form,

λ
CAS3D Wkin(ξ)−Wpot(ξ) = minimum, (63)

in magnetic co-ordinates (s,θ ,φ ) to assess stability against
global ideal MHD eigenmodes. Ideal instabilities of CAS3D
are characterized by the sign of the lowest eigenvalue, λCAS3D

min
in Eqn.(63), which is negative for an unstable equilibrium
configuration. The sign of λCAS3D

min is completely decided by
the definiteness properties of Wpot , with Wkin acting as ki-
netic normalization. The ideal MHD stability codes CAS3D
and TERPSICHORE61 have been successfully verified for
both the low shear stellarators and tokamaks. The CAS3D
code is also used to verify the more recently developed
CASTOR3D62 stability code. Of the late, CAS3D became an
integral part of stellarator optimization package, ROSE (Rose
Optimizes Stellarator Equilibria) code63.

1. Ideal internal kink instability

In toroidal geometries, the internal kinks are mostly driven
by the current density and pressure gradients, trying to twist
magnetic flux surfaces into helical shapes, and further leads
to topological reconnections (if e.g resistivity is allowed).
Specifically for monotonic q profiles, the internal kinks oc-
curs when q0 (value of safety factor at axis) falls below unity,
when ohmic heating or current drive, drives the plasma current
to peak at the magnetic axis in experimental operations.

Recently, an analysis of MRxMHD marginal stability pre-
diction for the ideal internal kink instability has been con-
ducted in a cylindrical tokamak, and shown good agree-
ment with both the analytical theories and the M3D-C1

calculation41. Because of an absence of poloidal coupling,
toroidicity effects, and an assumption of pressureless plasma
in that work, the prediction of ideal kink instability was less
complicated. In this section, our stability has been ana-
lyzed with the details of the β -induced tokamak configura-
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tion, where terms up to second order in inverse aspect ratio
are examined, known as Bussac physics64, for confirmation
of SPEC Hessian predictions in toroidal geometry. For ideal
internal kink instabilities in large aspect ratio tokamaks, Bus-
sac et al.64 derived an expression for marginal stability (i.e.
when growth rate is zero ) as

βp =
2

B2
ϑ
(ψs)

[〈p(ψ)〉− p(ψs)], (64)

where ψs and Bϑ (ψs) are the corresponding poloidal flux and
flux averaged magnetic poloidal field, evaluated at q= 1 ratio-
nal surface respectively. Here, 〈p(ψ)〉 is the average pressure,
defined as

〈p(ψ)〉=
(∫

ψs

0
p(ψ)dψ

)
/ψs. (65)

The verification calculation is performed in an axisymmet-
ric circular shaped large aspect ratio tokamak, where the para-
metric equations for the boundary harmonics in a cylindrical
co-ordinate system (R,ϑ ,Z) are determined with R = R0 +
acos(ϑ) and Z = asinϑ with the major radius R0 = 10m,
and the minor radius a = 1m. The equilibrium parameters and
pressure p and toroidal current jφ have been considered as
described in Mikhailovskii et al.65 as

jφ = j0(1−ψp), (66)
p = p0(1−ψp), (67)

where ψp is the normalized poloidal flux. Note that close to
magnetic axis ψp ≈ (r/a)2. Figure 3 shows an illustration of
the equilibrium profiles with q0 < 1 selected, so as be ideally
unstable (for certain threshold of βp).

In large-aspect ratio solutions, the safety factor q as the
function of poloidal flux χ (let’s assume) takes the form66,67

q(χ) =
R0B0g(χ)

2π

∮ dθ

X2B ·∇θ
, (68)

= q(0)(r)+ εq(1)(r,θ)+ ε
2q(2)(r,θ)+ ...., (69)

where the circular symmetry θ in lowest order is assumed
with ε be inverse aspect ratio or the expansion parameter,
X = R0 + r cosθ , g(χ) = 1 + ε2g(2)(r,θ) + ... where χ =

χ0(r)+ ε2χ(1)(r,θ)+ ..., and the integral is taken around the
poloidal cross-section at constant χ . Then, in terms of zeroth-
order O(ε0) the relation between the current density jφ and
safety factor q can obtained as

q(0)(r) =
R0

B0r2

∫ r

0
r′ j(0)

φ
(r′)dr′, (70)

where B0 is the externally imposed toroidal magnetic field at
the magnetic axis. Therefore, using the given pressure profile
and q profile obtained with Eqn.(70), shown in see Figure 3,
we first construct the ideal MHD based Variational Moments
Equilibrium Code (VMEC) solution. The SPEC equilibrium
input parameters are constructed by slicing the whole VMEC
plasma volume into a certain Nv number of SPEC volumes.
We have chosen the number of interfaces to be sufficiently
large such that the marginal stability prediction does not show
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FIG. 3: Safety factor, q profile (in black) and pressure profile,
p (in red) for q0 = 0.9866 and p0 = 200 Pa. Here, q0 is

defined as the value of safety factor on axis.

much changes. The SPEC’s pressure profile as a function of
poloidal flux in the lth volume is computed from the VMEC
solution as

pl =
1

ψp,l+1−ψp,l

∫
ψp,l+1

ψp,l

p(ψp)dψp, (71)

where ψp,l and ψp,l+1 are the poloidal fluxes labelling the in-
ner interface and outer interface of the lth volume respectively.
The continuous rotational transform profile from VMEC can
be discretized over each interface as ι-l = ι-(ψp,l), considering
the field is integrable. The pressure profile supplied to SPEC
is a stepped approximation to the VMEC pressure profile.

Note that because the pressure profile in SPEC is neces-
sarily discontinuous, whereas the pressure profile used in the
VMEC calculation is continuous and differentiable, there is
necessarily a difference in the computed equilibria. This dif-
ference should reduce as the number of volumes increase,
provided that the Fourier resolutions are sufficient enough
to capture physics properties. To demonstrate and illustrate
this point, we performed a self-convergence study of (m,n) =
(1,1) eigenvalues from SPEC Hessian, as a function of Nv
number of SPEC volumes, for the equilibrium when q0 = 0.95
and q0 = 0.99. The SPEC equilibrium configuration is com-
puted by constraining the magnetic helicity, the poloidal and
toroidal fluxes volume-wise, and the pressure in each Ωl for
the poloidal resolution, m = {0,1, ...,12} and the toroidal res-
olution n = 0. We have defined our maximum relative point-
wise error as

E1/1
λ

=
max|λ−λre f |

max|λre f |
, (72)

where the reference λre f are the values of λSPEC obtained with
Nv = 256, for the βp scan of corresponding q0, as shown in
Figure 4. This error reliably decreases as the Nv is increased,
at least up to the point where the relative error reaches close
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to machine precision. Based on this error analysis, we can say
that the Nv = 180, number of SPEC volumes is a reasonable
approximation, for this ideal internal kink studies. This value
is used in the remainder of this section.
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FIG. 4: Error E1/1
λ

parameter defined in Eqn.(72) as a
function of resolution parameter, NV , for m/n = 1/1

eigenvalue, of stepped-pressure approximation. Here, the
generalized SPEC stability matrix is computed for

m = {0,1, ...,12} poloidal, and n = 1 toroidal mode
spectrum.

Next, we proceed to compute and discuss our stability scans
as a function of βp for different q0. In Figure 5a the largest
negative and smallest positive eigenvalues corresponding to
(m,n) = (1,1) mode, obtained from the SPEC Hessian matrix
are plotted as a function of βp for different values of q0. Also
shown in Figure 5b, the MISHKA-1 growth rates γ , normal-
ized to Alfvén timescale, τA. The negative values of γτA are
obtained by extrapolation, for the required values of βp. Fig-
ure 5c shows a comparison of the marginal stability locus, as
predicted by SPEC Hessian and MISHKA-1 for the different
values of q0 obtained from Figure 5a and 5b. We found that as
the number of volumes increases towards Nv = 180, the SPEC
marginal stability points (coloured asterisk in Figure 5c) ap-
proaches ideal marginal stability predictions. Subsequently, in
Figure 6, we compare the spatial dependence of radial eigen-
function of unstable (m,n) = (1,1) mode between SPEC and
MISHKA-1 (with constant equilibrium number density pro-
file, ρ = 1) calculation. The equilibrium with q0 = 0.99 and
βp = 0.297 is considered. The normalized SPEC radial eigen-
function, ξ

m/n=1/1
s is obtained by solving the Eqn.(54) for

ξ ·n. Hence, it appears to be a qualitative agreement between
these two codes.

Moreover, the authors would like to remark that the com-
parison of the radial eigenfunction is well justified only for the
values of βp just across the marginal stability point, where the
inertial effects can be negligible. Far away from the marginal
stability threshold of βp, there will be the significant dif-
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FIG. 5: For different scan of q0 (a) λSPEC, the eigenvalues
from Hessian matrix as a function of βp, (b) the growth rate γ

(solid lines) normalized to Alfvén timescale τA from
MISHKA-1 ; (c) Marginal stability locus - the Bussac

criterion βp as a function of poloidal flux, ψs at the q = 1
rational surface for different choices of q0. The coloured

asterisks are the βp values obtained with SPEC and the solid
curve (in red) is obtained with the ideal MHD code

MISHKA-1.

ference in the radial eigenfunction, between our results and
MISHKA-1. This is because of the lack of inertial effects in
the SPEC calculation.
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kink mode, when q0 = 0.99.

2. Low-shear ballooning instability

Manickam, Pomphrey, and Todd68 described the low shear
ballooning instabilities commonly known as the "Infernal
modes" are driven by a combination of shear and the pressure
gradients. In tokamak plasmas these are unstable at values
of the plasma beta that are below the threshold beta values of
high-n ballooning theory, and when the value of the safety fac-
tor is approximately reduced to constant close to the plasma
core. In this section, we demonstrate the validity of the finite-n
SPEC Hessian approach to compute marginal stability of low
shear ballooning modes with the global ideal MHD stability
code CAS3D.

The choice of the verification configuration is as follows:

(a) A circular cross-sectional tokamak with an aspect ratio,
R0/a(≡ ε−1) = 4.

(b) The safety factor, q profile as function of poloidal flux
of the form q(ψp)= q0+q1ψΓ

p where q0 = 1.2, q1 = 4.3
and the qedge can obtained as q0 +q1. Here, we choose
the value of Γ as 3 and 5.

(c) The pressure profile as a function of poloidal flux of the
form p(ψp) = p0(1−ψp)

2.

Following Section IV A 1, we first choose to perform a
VMEC calculation with the given pressure profile, q pro-
file and aspect ratio such that the SPEC equilibrium input
parameters are constructed by slicing up the VMEC plasma
volume. The fixed boundary VMEC equilibrium calculation
(here, the plasma boundary is given by R0,0 = 4.0, Z0,0 = 0.0,
and R1,0 = Z1,0 = 1.0) is achieved with the Fourier harmonics
m∈ {0,1, ...,30}, n = 0 and the radial flux surfaces, Ns = 320.
Herein, it should be noted that the radial co-ordinates of both

SPEC and CAS3D is the normalized toroidal flux, so for our
purpose we have transformed the above profiles in terms of
toroidal flux.

The CAS3D stability calculations were performed with 320
flux intervals in a normalized toroidal flux grid for the pertur-
bations Fourier harmonics 0<=m<=Mmax and−2Nmax <=
n <= −Nmax for specified value of Mmax = 30 and Nmax = 3.
For both of the profile parameters Γ = 3 and Γ = 5, Fig-
ure 7a and 7b (top plots) plot the most unstable eigenvalues,
λCAS3D

min , for the perturbation with globally dominant harmonic
(m,n) = (5,−4), as function of the scan over βaxis. This gives
the approximated marginal stability values of βaxis ≈ 0.035
for Γ = 3. And, on inspecting the CAS3D eigenvalues for the
Γ = 5 case on a log-log plot, the stability limit that CAS3D
finds is βaxis ≈ 0.0375. The smallest two eigenvalues shown
in Figure 7b would lead to a different slope in the eigenvalue
versus βaxis regression. Furthermore, these two eigenvalues
are most probably stable eigenvalues destabilized by the finite
flux grid.

The SPEC equilibrium is defined by the toroidal flux en-
closed by each interface, the pressure in each Ωl , and the in-
terface rotational transform. The input parameters are dis-
cretized over Nv number of volumes, where the enclosed
toroidal flux in each region is chosen such that the total en-
closed toroidal flux ∆ψt = 1. In addition, since the pressure
gradients are localized to ideal interfaces, the placement of the
ideal interfaces also needs some specific attention. To avoid
making the interface resonant with a mode (m,n) or its har-
monics, we choose the rotational transform of each interface
to be an irrational number, whose continued fraction expan-
sion has an infinite sequence of 1’s on its tail ( also known
as the Diophantine approximation69). That is, for all integers
n and m, there exists r > 0 and k ≥ 2 such that a sufficiently
irrational ι- must satisfy |ι-− n/m| > r/mk. For ease of com-
putation, a database of bounded-element irrational numbers70

can also be constructed by iterating over continued fraction
representations , or satisfying a property which is found in the
Brjuno sets71.

To examine the stability properties of global MRxMHD sta-
bility, SPEC evaluates the Hessian matrix for the poloidal m=
{0,1, ...,30} and the toroidal n = {−20, ....,−1,0,1, ...,20} (
n spans as both positive and negative integers) mode spec-
trum. For both profile parameters Γ = 3 and Γ = 5, the stabil-
ity scans were performed as a function of βaxis(≡ 2µ0 p0/B2

0).
The Figure 7c and 7d (middle plots) shows the most negative
and smallest positive eigenvalues λSPEC, respectively for the
perturbation with most dominant harmonic (m,n) = (5,−4),
which means that it fulfills the resonance condition, mι-+n =
0. For fixed Nv, as βaxis increases, the plasma destabilizes
after it crosses the threshold value, which leads to the viola-
tion of ballooning stability. Later on, it is observed that as Nv
increases (depicted in Figure 7c and 7d), the marginal stabil-
ity thresholds predicted by SPEC gradually converge towards
the IMHD stability threshold (predicted by CAS3D). Specifi-
cally, in Figure 7c at Nv = 250, the stability threshold/limit is
quite similar to the Figure 7a of CAS3D, that is, βaxis ≈ 0.035.
This is expected because, the MRxMHD energy principle is
based on the constraints which are the subset of the IMHD
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topological invariants, hence the space of allowed variations
in MRxMHD is larger than that allowed by ideal MHD but
includes it as a subspace. As such, the numerical properties
of isotropic MRxMHD model will also be a bit different from
IMHD, and this model can converge towards the IMHD equi-
librium and its stability theories. A formal theoretical proof of
convergence may in general be difficult at this stage, but will
be a subject of future research. In other works, Dennis et al.72

and Hudson et al.32 have studied the convergence of stepped
pressure equilibria (with SPEC) towards the VMEC equilib-
ria. Now in the other case Γ = 5, in Figure 7c, at Nv = 260
it can be observed that, it is not possible to easily define an
exact threshold, as the λSPEC remains negative. However, one
may approximate the threshold as βaxis ≈ 0.0375 based on the
eigenvalues’ trend. That is, below the approximated value of
marginal stability limit βaxis ≈ 0.0375, the values of λSPEC (in
Figure 7d) remain stagnant and nearly unchanged, which can
be interpreted as numerical artifacts. This is well consistent
with the behaviour of eigenvalues determined by CAS3D Fig-
ure 7b. Nevertheless, even for Γ = 5, the SPEC stability limit
tends to progressively converge towards the estimated IMHD
stability threshold as Nv increases from 160,... to 260.

In particular, the driving term associated with the instabil-
ity arises from the unfavourable curvature (curvature data not
shown) and the local shear that are encapsulated through the
modified Pfirsch-Schlüter current defined on interfaces. Fig-
ures 8a - 8d show the dominant mode structure for the unstable
values of βaxis via the Fourier modes’ amplitudes versus radial
coordinate (the normalized toroidal flux), for values of Γ = 3
and 5. For the case when Γ = 3 and Nv = 250, the SPEC
stability limit and eigenmode structures depicted in Figures
7c and 8a respectively, are found to be relatively compara-
ble to CAS3D (see Figure 8c). In contrast, when Γ = 5 and
Nv = 260, the approximated SPEC stability limit depicted in
Figure 7d is found to be quite satisfactory when compared
to CAS3D, however the eigenmode structures (shown in Fig-
ure 8b) persists a small discrepancy to the CAS3D Figure
8d. That is, the maxima of the dominant (5,−4) harmonic
in Figures 8b and 8d do not coincide but have very similar
sidebands. Even so, the mode structures are clearly observed
in the regions localized to resonant rational surfaces (that is,
near ι- = 0.8 or q = 1.25 ) with higher pressure gradient and
low magnetic shear. And that is why the low-shear ballooning
modes (infernal modes) are characterized differently in IMHD
than the pure ballooning modes. Which means, the ballooning
modes in tokamaks couple with many Fourier components,
and does not strongly single out one rational surface. The
low-shear ballooning or the infernal modes, in contrasts, are
sensitive to a particular rational surface (here, q = 1.25) and
strongly singles it out by a burst of instability when this sur-
face is close to or near the plasma core. This is also evident
from the unstable eigenfunction plots in Figures 8a to 8d.

Now, in order to quantify whether these instabilities are
infernal modes or not, we use the WKB theory of balloon-
ing modes to describe it. In literature of ballooning instabil-
ity, the standard Wentzel-Kramers-Brillouin (WKB) ideal bal-
looning theory is shown to break when the shear is reduced or
lowered73, for moderately low toroidal mode number n. The

numerical solution of this ideal ballooning WKB formalism
can be obtained by COBRAVMEC code74. This code numer-
ically solves the ideal MHD ballooning equation in magnetic
co-ordinates (s,θ ,ζ ) to assess the stability against ideal bal-
looning modes. The ballooning instability of COBRAVMEC
is characterized by the positive growth rate normalized to
Alfvén timescale, and has been calculated on the poloidal and
toroidal grid of each flux surface of VMEC14 equilibrium.

Therefore, as with SPEC and CAS3D, with COBRAVMEC
we seek for the threshold marginal stability value of βaxis,
where the plasma destabilizes and violates ballooning sta-
bility. For various scan over βaxis, the Figure 9a and 9b
shows the ballooning growth rates as a function of ψw (nor-
malized flux) from COBRAVMEC. For our profile parameter
Γ = 3 and Γ = 5, COBRAVMEC predicts the marginal sta-
bility threshold value as βaxis = 0.038718 and βaxis = 0.0443
respectively, to three significant figures. Now it can be seen,
at βaxis = 0.041315 (for Γ = 5), COBRAVMEC predicts that
the plasma is stable to ballooning modes, but the both CAS3D
and SPEC shows that the plasma is unstable. This can been
characterized by the plots presented in Figures 8b-8d for the
unstable dominant mode structure obtained with both CAS3D
and SPEC calculations. And that is where the pure WKB bal-
looning theory shows its fragility to analyze the low shear
plasma at low plasma beta. Also, for the case of Γ = 3
at βaxis = 0.038718, according to ballooning theory of CO-
BRAVMEC, the mode is stable, but there exists and unstable
mode at this beta value, which has also been shown by SPEC
and CAS3D. Now, note that when we change the Γ from 3
to 5, the plasma shear near the core decreases (which can be
seen from the q profile or rotational transform profile). And,
as a result, in tokamak plasmas, it is important to maintain
the magnetic shear near the core or, throughout the mid of the
plasma, to avoid this kind of MHD instabilities. Apart from
this, increasing to higher values of plasma beta causes these
infernal modes to change to pure ballooning mode instability,
allowing the principles of the ideal WKB ballooning theory to
be implemented68.

Altogether Figures 7, 8 and 9 summarize the SPEC and
CAS3D stability predictions and their behaviour of low-order
harmonics of infernal modes in the resonant subset of the
mode spectrum. As we identified, once the infernal instability
is reached at low-shear plasma regime for low-beta, it may be
irrelevant to increase beta any further, and the oscillations at
higher beta may be out of academic interest.

B. Verification in geometrically simple stellarator
configuration

In many aspects, the MHD and stability properties in stel-
larators are quite different from those in axisymmetric toka-
maks. The external magnetic fields in stellarators can provide
the requisite rotational transform for confinement without the
need of a net plasma current, hence, the MHD instabilities
driven by such a current are absent. But, since stellarators are
generally low-shear devices, the low-n MHD instabilities po-
tentially produce magnetic fluctuations at finite plasma beta.
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In fact at certain plasma beta, the pressure-driven Pfirsch-
Schlüter currents lead to the Shafranov shift and incite MHD
instability. Therefore, in this section we focus on the inves-
tigation of a beta scan of a stellarator equilibrium, and deter-
mine the stability β -limit.

Our stellarator configuration and its equilibrium parame-
ters are defined in the following way. The Fourier coefficients
Rm,n and Zm,n that approximate the shape of plasma bound-
ary in SPEC are given in TABLE 1. The three characteristic
plasma cross-sections of our plasma boundary, for 〈β 〉= 0.02,
are shown in Figure 10a. The figure 10b shows the three-
dimensional plot of the plasma boundary illustrating the 3-D
nature of the configuration.

Due to the discrete symmetry of stellarators (with a finite
number of identical field periods), the concept of decoupled
mode families applies in stellarator MHD stability calcula-
tions. This is the analogue of the complete decoupling in
the toroidal direction for the axisymmetric tokamaks. As a
matter of fact, in axisymmetric tokamaks the toroidal mode
number can be considered a good quantum number, since the
equilibrium fields include only n = 0 and provide no coupling
between instabilities having different n values. For stellara-
tors with Np field period, the Fourier harmonics with toroidal
mode number n are coupled to n+ kNp, where k is an arbi-
trary integer. Standardly, there are Np/2+1 families of modes
for even Np and (Np − 1)/2 + 1 families for odd Np. For
example, for Np = 2 and 3, there exists two mode families
N = 0 and 1. In our five-periodic stellarator configuration (for
Np = 5) there are three such mode families60 with the generat-
ing toroidal Fourier numbers N = 0,1,2 . Figure 11 shows the
relationship between these mode families and rational rota-
tional transforms of our five-periodic case, which also applies
to the Wendelstein 7-X (W7-X) configuration to some extent.
One must be careful that here n represents the toroidal mode
number, while N denotes the mode family index.

The Figure 12a compares the marginal stability thresh-
old between the SPEC and CAS3D, as a function of 〈β 〉.
Appendix B comprises a thorough description of SPEC and
VMEC equilibrium construction to obtain required rotational
transforms at varied volume-averaged plasma beta. In both
SPEC and CAS3D runs, the unstable perturbation is domi-
nated by (m,n) = (10,−11) if the N = 1 mode family is con-
sidered. Furthermore, Figure 12b shows the radial behaviour
of dominant Fourier coefficients of the normal component of
the displacement, ξ

m,n
s (from SPEC) at 〈β 〉 = 0.01 which

is unstable. In the CAS3D runs, the normal displacement
(shown in Figure 12c) is the component of the ideal MHD dis-
placement vector in the direction of the outer magnetic surface
normal, which is here approximated using 153 total number of
Fourier harmonics. Their radial dependence is determined by
solving the linearized ideal MHD equation in a weak form,
Eqn.(63).

It is evident from Figure 12b and 12c that the mode is radi-
ally localised and has few competing amplitude Fourier har-
monics, which is somewhat analogous to the characteristics
of low−n ballooning modes in tokamaks. As obvious, the ra-
dial structure of the global, unstable mode also demonstrates
that its maximum amplitude is located near the respective res-

TABLE I: Fourier coefficients of representing an outer
magnetic surface (plasma boundary) in SPEC of our five field

period (Np = 5) stellarator variant.

n m Rbc,m,n Zbs,m,n
0 0 5.5000000 ×100 0.0000000 ×100

1 0 2.402972 ×10−1 - 1.160280 ×10−1

2 0 4.139300 ×10−3 - 3.081540 ×10−3

3 0 5.780720×10−4 - 5.780720 ×10−4

-3 1 - 8.008660 ×10−4 - 8.008660 ×10−4

-2 1 - 1.513380 ×10−2 - 1.513380 ×10−2

-1 1 - 2.696804 ×10−1 - 2.696804 ×10−1

0 1 5.065566 ×10−1 - 5.573040 ×10−1

1 1 3.124000 ×10−4 - 3.124000 ×10−4

2 1 6.453700 ×10−4 - 6.441820 ×10−4

3 1 1.946472 ×10−5 - 1.946472 ×10−5

-4 2 - 2.381500 ×10−4 - 2.381500 ×10−4

-3 2 - 2.106786 ×10−3 - 1.505504 ×10−3

-2 2 2.200000 ×10−2 2.200000 ×10−2

-1 2 3.694460 ×10−2 - 4.564120 ×10−2

0 2 2.388980 ×10−2 - 2.330460 ×10−2

1 2 1.864126 ×10−3 - 1.864126 ×10−3

-4 3 1.394998 ×10−3 1.394998 ×10−3

-3 3 - 2.031524 ×10−3 - 2.031524 ×10−3

-2 3 2.279420 ×10−3 - 2.279420 ×10−3

-1 3 3.679940 ×10−3 3.679940 ×10−3

0 3 1.035166 ×10−3 - 1.035166 ×10−3

-3 4 - 1.185624 ×10−3 - 1.185624 ×10−3

-2 4 - 2.889040 ×10−3 2.889040 ×10−3

onant rotational transform, ι = 11/10 when 〈β 〉 = 0.01 (see
the ι = 11/10 rational surface in Figures 13a and 13b of Ap-
pendix B).

On taken together Figures 12a, 12b and 12c, we conclude
that the SPEC prediction in this geometrically simple stellara-
tor configuration implies MHD instabilities with similar char-
acteristics to the CAS3D runs and shows a qualitative agree-
ment.

V. Comments and future work

The Stepped Pressure Equilibrium Code (SPEC) has been
extended to predict linear MHD instabilities with Multi-
Region relaxed MHD energy principle. Based on the varia-
tional formulation of MRxMHD energy functional, the Hes-
sian algorithm (generalized stability matrix) that contains the
second variation of the MRxMHD energy functional is for-
mulated to analyze MRxMHD stability in toroidal geometry.
Our formalism is general as it did not use the assumption of
axisymmetry. Negative eigenvalues of the Hessian matrix rep-
resent the instability of an equilibrium.

In this work, the authors performed the first numerical veri-
fication of SPEC for the pressure-driven ideal MHD like insta-
bilities of MRxMHD in both tokamak and stellarator geome-
tries. For axisymmetric plasma, we have considered a circu-
lar tokamak equilibria, where the SPEC/MRxMHD-Stability
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results, such as, the marginal stability limits and eigenmode
structures are compared with MISHKA-1 and CAS3D. For
non-axisymmetric plasma, we have considered a five field
period stellarator equilibrium, where the stability predictions
and dominant mode structure are compared with CAS3D. In
doing so, we have demonstrated the efficacy of MRxMHD-
Stability to predict pressure-driven ideal MHD instabilities,
as well as the numerical feasibility of solving challenging
stepped-pressure MHD stability analyses.

Moreover, most of the physics codes in the stellarator
community first determine a plasma equilibrium, e.g us-
ing VMEC, and then call a separate MHD stability code
such as CAS3D. In the more recent complementary work
of Aleynikova et al.75, SPEC was employed to evaluate the
MRxMHD equilibrium and stability simultaneously in sim-
plified Wendelstein 7-X stellarator geometry. That work has
been devoted to the understanding the nature of the crashes
in Electron Cyclotron Current Drive controlled scenarios in
W7-X plasmas.

The development of stability studies performed in this work
using SPEC, enables several avenues of future work. As an
example, the study of the direct comparison of MRxMHD sta-
bility with experimental data of well-known high n ballooning
instabilities, and utilization in stellarator optimizations loops
are included in our research plan. We also plan to employ
our approach to investigate MHD modes such as interchange
modes, and the stability convergence versus Nv, as a future ef-
fort for more complicated analysis in 3D plasma geometries.
While we aim to undertake more 3D MHD or high−n stabil-
ity computations in near the future, various code development
work (as pointed out in Hudson et al.32) must be completed in
parallel, in order for SPEC to be more efficient and robust in
3D.

In principle, the variational approach within the MRxMHD
formulation is rather different from the conventional ideal
MHD variational approach, as the magnetic fields are allowed
to tear and form magnetic islands and stochastic fields. This is
enabled by the Taylor relaxation within each volumes, which
allows reconnection at rational surfaces like resistive MHD.
As such it would be interesting to study linear resistive MHD
instability in addition to the ideal MHD stability theory. Sta-
bility of such equilibria can also be accessed using the same
SPEC Hessian calculation. In particular, the recent investiga-
tion of SPEC Hessian calculation on the prediction of tearing
instability in pressureless slab30,31 and cylindrical plasma41

reports an excellent agreement with tearing criterion ∆′. To
extend the work to tearing modes for axisymmetric tokamaks,
we would require an extensive well-designed study of a new
resistive volume layer theory of MRxMHD with inertial ef-
fects, and comparison with Glasser, Greene, Johnson com-
pressible model67 or any other resistive MHD codes. That is,
using an incompressible model for tearing modes in toroidal
plasma appears to be an evident contradiction. The tearing
modes are quite sensitive to pressure even at very low plasma
β values76. As pressure increases, the transition from an in-
compressible to a compressible plasma occurs at β levels that
are required to achieve high β plasma confinements. Thus,
whether the compressible plasma should be considered in

MRxMHD volume layer theory is still an outstanding ques-
tion that has yet to be answered.

In tokamak geometry the toroidal mode number n is a good
quantum number. Singular points occur where q = m/n,
hence they are well-separated in flux. For non-axisymmetric
systems, both m and n are coupled, and the singular surfaces
are densely packed (also known as quantum chaos) in plasma,
limited only by truncation of the basis functions. Therefore,
the full treatment of resistive modes in MRxMHD and SPEC
is a challenging problem, requiring further theoretical and
computational development.

Along with these future developments, recently the fixed
boundary SPEC has been extended to calculate free-boundary
MRxMHD equilibria32. Hence, we believe that it is also pos-
sible to extend the capabilities of the Hessian algorithm to the
free-boundary version of SPEC, such as to encapsulate the
free-boundary MHD instabilities. (See Henneberg et al.77 for
the more detailed exposition of how to calculate the matrix
quantities for free-boundary instability, defined in terms of a
primitive set of equilibrium quantities used by SPEC.)
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A. Calculation of perturbed volume quantities in SPEC

In this Appendix, we present the expression of perturbed
volume in SPEC. The volume in SPEC enclosed by adjacent
interfaces is given as

Vl =
1
3

∫ 2π

0
dϑ

∫ 2π/N

0
dζ Rl

(
ZlRl,ϑ −RlZl,ϑ

)
. (A1)
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On expanding the above equation in summation of the Fourier
harmonics, we have

Vl =
1
3 ∑

i
∑

j
∑
k

Rl,i
(
Zl, jRl,k−Rl, jZl,k

)
(+mk)

×
∮∮

cosαi cosα j cosαk dϑdζ ,

(A2)

where ith, jth and kth are the Fourier harmonics of Rl ,Zl .
Then, the partial derivatives ∂Vl

∂Rl,i
and ∂Vl

∂Zl,i
are obtained as

3
∂Vl

∂Rl,i
=
(
Zl, jRl,kmk−Rl, jZl,kmk−Rl, jZl,kmk

)
(A3)

×
∮∮

dϑdζ cosαi cosα j cosαk

+
(
−Zl, jRl,kmk +Rl, jZl,kmk +Rl, jZl,kmk

)
×
∮∮

dϑdζ cosαi sinα j sinαk,

and

3
∂Vl

∂Zl,i
=
(
−Rl,kRl, jmi

)∮∮
dϑdζ cosαi cosα j cosαk (A4)

+
(
−Rl,kRl, jmk

)∮∮
dϑdζ cosαi sinα j sinαk.

B. Stellarator equilibria with VMEC and SPEC

The CAS3D stability code is interfaced to the ideal MHD
equilibrium code VMEC. Input data for the VMEC code
are the R and Z Fourier coefficients of the plasma boundary
(R,Z,φ) cylindrical coordinates. Note that the VMEC and
SPEC boundary Fourier coefficients differ only in sign (stem-
ming from different notations used and handedness), which
is described as RSPEC

bc,m,n = +RV MEC
bc,m,−n and ZSPEC

bs,m,n = −ZV MEC
bs,m,−n.

Other subtleties are discussed in Hudson et al.24. The ro-
tational transform profiles of equilibria with vanishing net
toroidal current are shown in Figure 13a and 13b respec-
tively. The pressure profile was used in form of a power series:
P(s) = P0(1− 1.31553s+ 0.14126s2 + 0.17427s3), where s
is the normalized toroidal flux and P0 a scaling factor in units
of pressure. The SPEC equilibrium profiles are discretized
over 16 volumes. The Poincaré cross-sections at toroidal an-
gle φ = 0o obtained with SPEC and VMEC are shown in 14a
and 14b.
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FIG. 7: (a), (b) - ideal MHD eigenvalues λCAS3D
min given by the CAS3D code for a scan over βaxis for profile parameter Γ = 3 and

Γ = 5. The actual size of the CAS3D eigenvalues depends on the kinetic energy normalization, in which the equilibrium
number density appears. Note that the blue dashed line on each plots denotes approximated marginal stability limit, which is
near βaxis ≈ 0.035 for Γ = 3 and βaxis ≈ 0.0375 for Γ = 5; (c), (d) - the SPEC eigenvalues λSPEC as a function of βaxis for our

profile parameter scan Γ = 3 and Γ = 5;
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FIG. 8: Plot of : the normalized Fourier amplitudes of eigenmode structure versus re f f computed with SPEC at
βaxis = 0.038718 (subframe (a) for Γ = 3 with Nv = 250) and βaxis = 0.041502 (subframe (b) for Γ = 5 with Nv = 260); the

radial eigenmode structure (normal component of the ideal MHD displacement vector) versus re f f obtained from CAS3D runs
at βaxis = 0.038718 (subframe (c) for Γ = 3) and βaxis = 0.041502 (subframe (d) for Γ = 5). A constant mass density was used

in the kinetic energy normalization of CAS3D. Here, the re f f ∝
√

s for the normalized toroidal flux label, s.
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Alfvén timescale τA, vs. the normalized toroidal flux ψw when (a) Γ = 3 and (b) Γ = 5. The solid black horizontal line denotes

the marginal stability.
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calculations for unstable beta value, 〈β 〉= 0.01. A non-uniform mass density was used in the kinetic energy normalization of
CAS3D.
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FIG. 13: Plot of: a) VMEC iota profiles; b) SPEC iota profiles versus normalized toroidal flux, s. The dashed line indicates the
location of low order rational ι- = 11/10. In each of the plots, the normalized pressure profile versus s is shown in blue curve.

The change of ι- with 〈β 〉 is indicated by black arrows.
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(a)

(b)

FIG. 14: Plot of: a) the Poincaré cross-section at φ = 0o of MRxMHD equilibrium obtained with SPEC at 〈β 〉= 5%. The red
solid contours indicates the position of the interfaces; b) the VMEC equilibrium with nested flux surfaces at 〈β 〉= 5%.
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