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Ion Landau damping interacts with a geometrical correction to the ExB drift to cause a non-diffusive out-
ward flux of co-current toroidal angular momentum. Quantitative evaluation of this momentum flux requires
nonlinear simulations to determine fL, the fraction of fluctuation free energy that passes through ion Landau
damping, in fully developed turbulence. Nonlinear gyrokinetic simulations with the GKW code confirm the
presence of the systematic symmetry-breaking momentum flux. For simulations with adiabatic electrons,
fL scales inversely with the ion temperature gradient, because only ion curvature drive can supply free en-
ergy to the electrostatic potential. Although kinetic electrons should in principle relax this restriction, the
ion Landau damping measured in collisionless kinetic-electron simulations remained at low levels compara-
ble with ion curvature drive, except when magnetic shear ŝ was strong. A set of simulations scanning the
electron pitch-angle scattering rate showed only a weak variation of fL with the electron collisionality. How-
ever, collisional-electron simulations with electron temperature greater than ion temperature unambiguously
showed electron-curvature drive of ion Landau damping and a corresponding enhancement of the symmetry-
breaking momentum flux.
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I. INTRODUCTION

Toroidal rotation is significant for the confinement of
tokamak plasmas, since it can stabilize instabilities such
as resistive wall modes.1 In future plasma devices in-
cluding ITER, it will become much more difficult to di-
rectly drive a desired rotation profile with neutral-beam
injection.2 For this reason, it is critical that we under-
stand “intrinsic rotation,” meaning the rotation of plas-
mas that are free of applied torque.

Intrinsic rotation has been extensively studied in ex-
periments over the last several decades.3–6 In contrast
to the relatively robust and consistent co-current intrin-
sic rotation observed in the edge of diverted tokamaks,7–9

the intrinsic rotation gradient at mid-radius exhibits var-
ied behavior, even transitioning suddenly between rela-
tively flat and hollow rotation profiles in so-called “rota-
tion reversals.”10–14 Extensive efforts across many devices
have exposed a complicated dependence of the mid-radius
intrinsic rotation gradient on many factors,15–19 in partic-
ular a strong and non-monotonic dependence on electron
collisionality.14,19–21

The intriguing experimental results have also sparked
a broad theoretical effort.6,22,23 Since the conserva-
tion of toroidal angular momentum precludes a self-
generated torque,24,25 and since observed momentum
fluxes are much too strong to result from neoclassical
transport,26–28 most research has focused on the evalu-
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ation of non-diffusive turbulent momentum fluxes, us-
ing global full-F gyrokinetic simulations,29–32 delta-f
gyrokinetic simulations that incorporate global or pro-
file effects,33–35 and radially local “fluxtube” gyrokinetic
simulations.36–39 For a non-rotating, radially local gy-
rokinetic model without E × B shear, symmetry argu-
ments may be used to show that the momentum flux
must vanish in the statistical average.22,40–42 For this
reason, local gyrokinetic efforts have focused on various
corrections to the fluxtube model, which can introduce
symmetry-breaking physics that can drive a nondiffu-
sive momentum flux and push the rotation gradient away
from zero.6,22,23,39,43,44 One class of symmetry breakers
is comprised of geometrical corrections to the fluxtube
model’s simplified evaluation of the plasma drifts.38 Of
particular interest among these, there is a geometrical
correction to the E × B drift that causes a momentum
flux of nearly identical form to the energy transfer term
that carries out ion Landau damping.45,46 This relation-
ship implies that the asymmetry in the energy transfer
of ion Landau damping, which preferentially transfers en-
ergy from the potential φ to the ion parallel flows,46,47

corresponds to an asymmetry in the radial flux of toroidal
angular momentum, namely a tendency for co-current
momentum to flow outward. Although the basic physics
of this mechanism is most easily understood through an
axisymmetric example (Figure 1), the exact same mech-
anism also acts in nonaxisymmetric fluctuations.45,46

While analytical arguments can demonstrate the ex-
istence and sign of this momentum flux, the quantita-
tive magnitude of the effect depends on the amount of
energy transferred through ion Landau damping. Since
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Figure 1. Poloidal cut showing low-frequency axisymmet-
ric fluctuations, with darker green showing positive potential
fluctuations, dashed line indicating the symmetry axis, and
with major radius R, vertical position z, and toroidal mag-
netic field BT . The parallel projection of the (purely poloidal)
electric field excites ion parallel flows niu‖i

.
=

∫

dW fiv‖ out
of the positive potential, transferring energy from potential
φ to ion parallel flows. Concurrently, the perpendicular pro-
jection of the electric field drives a radial E × B drift, vE .
This drift carries counter-current ion parallel momentum in-
ward and co-current momentum outward, as long as energy is
transferred from φ to ion parallel flows. For more detailed
discussion, including the non-axisymmetric case, see refer-
ences 45 and 46.

much of this energy transfer is likely to occur in damped
modes, a nonlinear numerical study retaining the full tur-
bulent spectrum is needed. In this article, we report the
results of such gyrokinetic simulations with the GKW
code,48 verifying the existence of the symmetry-breaking
momentum flux in the numerical solutions and exploring
the parametric dependence of the ion Landau damping
and corresponding momentum flux.

The remainder of the article is organized as follows:
Sec. II lays out the necessary theoretical framework for
the work. Sec. III presents our numerical results for sev-
eral different cases: adiabatic electrons in Sec. III A, col-
lisionless kinetic electrons in Sec. III B, and collisional
kinetic electrons in Sec. III C. Sec. IV summarizes our
main conclusions.

II. FORMULATION

In this section, we present the equations and formulas
underlying the results of Sec. III.

We will calculate the parasitic momentum flux in a
leading-order, free-energy-conserving delta-f gyrokinetic
formulation in fluxtube geometry. We begin with the
electrostatic limit49 of (18) and (21) of Stoltzfus-Dueck
and Scott46 (SDS), neglecting the neoclassical drift term:

∂tfs = −
1

2
{J0φ, fs} − v‖vts

[

∇‖fs +
Z

Ts
FsM ∇‖ (J0φ)

]

+ (v2
‖ + µB)

[Ts

Z
K (fs) + FsMK (J0φ)

]

+ vts(µ∇‖B)∂v‖
fs +

1

2
∂y(J0φ)F ′

sM
+ C (fs) , (1)

∑

s

Zns

∫

dW J0fs =
∑

s

nsZ2 1 − Γ0s

Ts
φ, (2)

in which
∫

dW = 2πB
∫ ∞

0
dµ

∫ ∞

−∞
dv‖. C(fs), the lin-

earized Landau collision operator described by Peeters
et al48 (PCC), was not explicitly included by SDS.50 All
other notation is the same as SDS, except that all equa-
tions in this article are normalized following PCC: The
normalized species mass ms

.
= mdim

s /mref, density ns
.
=

ndim
s /nref, temperature Ts

.
= T dim

s /Tref, and thermal
speed vts

.
= vdim

ts /vthref are defined using a reference mass
mref, density nref, temperature Tref, and thermal speed
vthref

.
= (2Tref/mref)

1/2. (As PCC, we define dimensional

thermal speeds as vdim
ts

.
=

√

2T dim
s /mdim

s .51) Defining
also a reference magnetic field strength Bref,

52 major ra-
dius Rref, and gyroradius ρref = mrefcvthref/eBref,

53 we
have normalized as PCC, except that we normalize per-
pendicular coordinates x and y to ρref.

54,55 The normal-
ized Maxwellian FsM = π−3/2 exp(−(v2

‖ + 2µB)) and its

radial gradient

F ′
sM

= −

[

R

Lns
+ (v2

‖ + 2µB −
3

2
)

R

LT s

]

FsM , (3)

depend spatially only on the parallel coordinate s (due
to the s dependence of B). Each species’ normalized
gradient of density (R/Lns

.
= Rref/Ldim

ns ) and temper-
ature (R/LT s

.
= Rref/Ldim

T s ) is constant over the whole
domain. Although we consider only plasmas in a non-
rotating frame, we sometimes must allow a background
rotation gradient, in particular for runs to determine
plasma viscosity. For such calculations, we add a term
−2FsMv‖bT Ru′/vts to the right-hand side of (3), with the
(signed) simple toroidal component of the magnetic di-

rection bT = b̂ ·ϕ̂ and the (constant) normalized rotation
gradient u′ .

= −(R2
ref/vthref)∂rΩ.56 Ω is the (unnormal-

ized) angular frequency of toroidal rigid rotation, taken
positive for rotation in the +ϕ̂ direction, which is defined
for definiteness to be clockwise when viewed from above.
Toroidal magnetic field and plasma current are both in
the +ϕ̂ direction for all simulations in this article, thus
u′ > 0 indicates rotation that is more co-current in the
core than the edge.

Equations (1) and (2) are equivalent to (61) and (73)
of PCC in the nonrotating, electrostatic limit, neglecting
the neoclassical term and the β′ correction to the drifts.57

As shown by SDS, equations (1) and (2) non-
linearly conserve the free energy UδE +

∑

s Uδs for

UδE

.
= 1

2 V −1
pl

∫

dV
∑

s nsZ2φ(1 − Γ0s)φ/Ts, Uδs
.
=

V −1
pl

∫

dΛ nsTsf2
s /2FsM , and

∫

dΛ
.
=

∫

dV
∫

dW , with
∫

dV a spatial integral over the simulation domain and
Vpl

.
=

∫

dV 1 the normalized domain volume. The free-
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energy terms Uδs and UδE evolve according to

∂tUδs =
ns

Vpl

∫

dΛ fs

[

−Zvtsv‖∇‖ (J0φ)

+ Ts(v2
‖ + µB)K (J0φ) + TsC (fs) /FsM

]

+ nsTs

[

( R

Lns
−

3

2

R

LT s

)

Γs +
R

LT s
Qs

]

(4)

∂tUδE =
∑

s

ns

Vpl

∫

dΛ
[

Zvtsfsv‖∇‖ (J0φ)

− Ts(v2
‖ + µB)fsK (J0φ) + Z (J0φ) C (fs)

]

(5)

in which we defined the normalized particle and heat
fluxes:

Γs
.
= −

1

Vpl

∫

dΛ
1

2
fs∂y(J0φ), (6)

Qs
.
= −

1

Vpl

∫

dΛ (v2
‖ + 2µB)

1

2
fs∂y(J0φ). (7)

For viscous runs (u′ 6= 0), the RHS of (4) has an addi-

tional term 2nsmsvtsu′Π
(1)
ϕs , with

Π(1)
ϕs

.
= −

1

Vpl

∫

dΛ v‖bT R
1

2
fs∂y(J0φ). (8)

For the simulations in this article, positive Π
(1)
ϕs indicates

a radial outflux of co-current momentum. Note that the
fluxes Γs, Qs, and Π

(1)
ϕs have species-dependent normal-

izations, specifically to ρ2
∗ndim

s vthref times 1, T dim
s , and

(mdim
s vdim

ts Rref), respectively, where ρ∗
.
= ρref/Rref. Note

also that our GKW simulations include additional dissi-
pation that is not explicitly shown in (4) and (5).58

For the simulations in Sec. III A, we will use the
adiabatic-electron approximation. Instead of simulating
the electron distribution function fe, we will simply re-
place the electron contributions to (2) with the single
term +(ne/Te)(φ − 〈φ〉) on the RHS, with 〈· · · 〉 indi-
cating the flux-surface average. In this approximation,
equations (4) and (5) continue to hold, but the species
sum goes only over ions, and the electron term in UδE is
replaced by (ne/2TeVpl)

∫

dV (φ − 〈φ〉)2.
The (normalized) parasitic momentum flux [SDS (36),

equivalent to (35) of Ref. 38] is

Π(2)
ϕ =

∑

s

nsmsvtsΠ(2)
ϕs , (9)

for

Π(2)
ϕs

.
= −ρ∗

1

bp

1

Vpl

∫

dΛ v‖b2
T R2 1

2
fs∇‖(J0φ). (10)

The signed constant bp is a representative value for the

poloidal component of b̂, approximately equal to (ǫ/q)
for the circular geometry used in this article.59 Although

Π
(2)
ϕs is normalized like Π

(1)
ϕs , the species-summed momen-

tum fluxes Π
(1)
ϕ =

∑

s nsmsvtsΠ
(1)
ϕs , Π

(2)
ϕ , and Πϕ

.
=

Π
(1)
ϕ + Π

(2)
ϕ must use a species-independent normaliza-

tion, ρ2
∗nrefmrefv

2
threfRref. Note that for up-down sym-

metric magnetic geometry (always the case for the runs
in this article), equations (1) and (2) are invariant under

the symmetry transform of Ref. 22, implying that Π
(1)
ϕ

vanishes in the statistical average when u′ = 0.
For emphasis: equation (1) does not contain the

higher-order portion of the E × B drift that gives rise

to Π
(2)
ϕ , or any other higher-order symmetry-breaking

terms. However, the dominant contribution of Π
(2)
ϕ

comes from the leading-order portions of fs and φ, so

we will estimate Π
(2)
ϕ simply by evaluating (9) using the

numerical solutions to the leading-order problem, equa-
tions (1) and (2).

Define next the normalized ion Landau damping free-
energy transfer rate,60

T
‖
φi

.
= −Znivti

1

Vpl

∫

dΛ fiv‖∇‖ (J0φ) , (11)

and the corresponding ion Landau damping fraction

fL
.
= T

‖
φi/

∑

s

nsTs

[

( R

Lns
−

3

2

R

LT s

)

Γs +
R

LT s
Qs

]

, (12)

which is just the portion of the total turbulent free energy
that passes through ion Landau damping. If we take
b2

T R2 ∼ 1,61 neglect impurities, and use me ≪ mi, then
we have

Π(2)
ϕ ≈ nimivtiΠ

(2)
ϕi ∼

1

2

mi

Zbp
ρ∗T

‖
φi

=
1

2

mi

Zbp
ρ∗fL

∑

s

nsTs

[

( R

Lns
−

3

2

R

LT s

)

Γs +
R

LT s
Qs

]

,

(13)

the normalized version of SDS (38).
In a steady-state rotation profile, the velocity gradient

is determined by the balance between viscous and nondif-
fusive momentum fluxes. In order to estimate the intrin-
sic rotation gradient, we will typically use two runs: one
with u′ = 0, in which we will calculate the symmetry-

breaking flux Π
(2)
ϕ , and a second one with u′ 6= 0, in

which we will calculate only the viscous response Π
(1)
ϕ .

Using the latter run, we can estimate the Prandtl num-
ber Pr

.
= χϕ/χi (again with no impurities) as

Pr =
vti

u′

R

LTi

Π
(1)
ϕi

Qi
. (14)

With this in hand, we can estimate the rotation peak-

ing from momentum balance (Π
(1)
ϕi + Π

(2)
ϕi = 0 for Π

(1)
ϕi

evaluated at the intrinsic-rotation u′) to be

u′ = −
vti

Pr

R

LTi

Π
(2)
ϕi

Qi
. (15)
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With this, equation (13) leads to the estimated rotation
gradient (assuming Γs ≪ Qs)

u′ ∼ −
1

2

ρ∗

Zbp

fL

Pr

R

LTi

∑

s

ns

ni
Ts

Qs

Qi

R

LT s
. (16)

For runs with R/LTi → 0, both Qi and Π
(1)
ϕi (u′ 6= 0)

generally remain finite, so Pr → 0 and (15) and (16)
become indeterminate. For these cases, we will take the
viscosity to be proportional to the ion heat flux, obtaining
the alternate formula

u′|int = −
(Π

(2)
ϕi /Qi)|int

(Π
(1)
ϕi /Qi)|visc

u′|visc, (17)

in which both the intrinsic u′ = 0 run [for (Π
(2)
ϕi /Qi)|int]

and the paired u′ = u′|visc 6= 0 run [for (Π
(1)
ϕi /Qi)|visc]

are done at otherwise matched parameters, in particular
both at R/LTi = 0.

III. NUMERICAL RESULTS

While the analysis of SDS demonstrated the existence,
sign, and basic qualitative properties of the parasitic mo-

mentum flux Π
(2)
ϕi , nonlinear numerical simulation is re-

quired in order to pin down quantitative values and the
detailed parametric dependence of the Landau-damping

fraction fL and the resulting momentum flux Π
(2)
ϕi . In

this section, we present results from numerical solutions
of (1) and (2), considering three different cases: colli-
sionless with adiabatic electrons (Sec. III A), collisionless
kinetic electrons (Sec. III B), and collisional kinetic elec-

trons (Sec. III C). The resulting values for fL and Π
(2)
ϕ

may then be used in (13)–(17) to estimate the normalized
parasitic momentum flux and resulting rotation gradient,
or in SDS (38), (40), and (41) to estimate the dimensional
momentum flux and rotation gradient.

All simulations have been done with the GKW code48

in circular geometry. Calculations of the intrinsic mo-

mentum flux Π
(2)
ϕi are always nonlinear, but the viscous

runs (with nonzero background rotation shear, to cal-

culate Pr or Π
(1)
ϕi ) are typically quasilinear, at normal-

ized binormal wavenumber ky ≈ 0.49.62,63 We retain
only electrons and one species of singly-ionized ions (no
impurities), with electron and ion densities and density
gradients always set to be equal (ne = ni, R/Lne =
R/Lni

.
= R/Ln). Our default parameters are R/LTi =

6.9, R/Ln = 2.2, R/LTe = 6.9, ǫ
.
= r/Rref = 0.18, mag-

netic shear ŝ = 0.8, safety factor q = 1.4, Te = Ti, and
collisionless ions. Our standard (normalized) perpendic-
ular domain size is 78 in the radial direction (x) by 93.6
in the binormal direction (y), with normalized gyroradius
ρ∗ = 0.01 and with 22 toroidal modes. Ions are always
used for the “reference” values, so that the normalized
ion parameters are all unity, mi = ni = Ti = vti = 1. We
use the real deuterium mass ratio, me = 2.77 · 10−4.

0 500 1000 1500

-0.1

0

0.1

0.2

1900 2000

Figure 2. Time trace of Πϕi/Qi (blue line) at default pa-
rameters with adiabatic electrons. The symmetry-breaking

contribution Π
(2)
ϕi was excluded from the measurement until

t ≈ 1365 (light grey vertical line), after which point Πϕi shifts
to positive values corresponding to a modestly hollow rotation
profile. The zoomed-in time trace on the right also shows the
ion-Landau-damping fraction fL (red dots).

A. Adiabatic-electron runs

For the first tests, we simulated the adiabatic-electron
limit of (1) and (2), as described in Sec. II. In this limit,
the electron heat and particle fluxes vanish identically
(Qe = Γe = 0), so the free-energy source term in (4),
which also appears in (12), (13), and (16), contains only
ion fluxes.

We consider first a run at the default parameters,
which correspond to a strongly-driven ITG regime. Fig. 2
shows the ratio of total ion momentum flux Πϕi

.
=

Π
(1)
ϕi + Π

(2)
ϕi to ion heat flux Qi, as a function of time.

The parasitic contribution Π
(2)
ϕi is excluded from the flux

diagnostic at the start of the run, then included starting
at (normalized) time t ≈ 1365.64 After an initial tran-

sient but before Π
(2)
ϕi is included, the ion momentum flux

Πϕi is instantaneously nonzero but approximately van-
ishes in the time average, as required by symmetry.65

After t ≈ 1365, Πϕi shifts clearly towards positive val-

ues, due to the symmetry-breaking contribution of Π
(2)
ϕi .

The late-time average of Πϕi/Qi is +0.044, roughly con-
sistent with ion Landau damping fraction fL measured
at the same time, also shown in Fig. 2. A matched quasi-
linear calculation gives Pr ≈ 0.66, thus at these parame-
ters equation (15) estimates a hollow rotation profile with
u′ ≈ −0.45.

Ion Landau damping can only occur at frequencies near
to or lower than the ion transit frequency, so one expects

that ion Landau damping and the corresponding Π
(2)
ϕi

would typically be stronger at lower normalized binor-
mal wavenumber ky. Indeed, the intrinsic momentum
flux per toroidal mode number, plotted for default pa-
rameters in Fig. 3, shows the expected strong concentra-

tion of Πϕi to lower ky. Also, unlike Π
(1)
ϕi , which van-

ishes for axisymmetric φ, the parasitic momentum flux

Π
(2)
ϕi takes nonnegligible values even for the axisymmet-

ric modes ky = 0. This is a necessary consequence of ion
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Figure 3. Momentum flux Πϕi per binormal mode for default
parameters, showing much stronger momentum flux at low
ky, including a nonzero contribution from axisymmetric fluc-
tuations (ky = 0).
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Figure 4. fL (blue circles) as a function of Qi for a scan
around default parameters (see main text), showing a decreas-
ing fL (despite increasing u′) for more strongly driven ITG
turbulence. Much of the variation can be explained be weak-
ened energy transfer into the potential at steeper gradients,
as seen from the black x’s indicating fad

L for an assumed-fixed
cKi = 0.55.

Landau damping of turbulence-driven zonal flows, as dis-
cussed physically in Ref. 45. Nevertheless, the dominant
contribution comes from ky 6= 0 modes, where most of
the free energy resides.

We also explored parameter dependence, running cases
with modified parameters. As shown in Fig. 4, the Lan-
dau damping fraction is a decreasing function of driv-
ing gradient, taking the largest value fL ≈ 0.185 for a
marginal case (leftmost point, R/LTi = 4.0, R/Ln =
1.5), then dropping for more strongly driven turbulence
(moving rightward: R/LTi = 5.0, R/Ln = 1.5; default;
and Te/Ti = 2). However, equation (16) estimates mod-
estly increasing |u′| for these four cases (L to R: u′ ∼
-0.10, -0.12, -0.23, and -0.25), due to increasing (R/LTi)

2

and decreasing Prandtl numbers (left to right: 1.121,
0.782, 0.66, and 0.62).

What is causing the inverse dependence of fL on
R/LTi? This question can be at least partially answered
by considering the adiabatic-electron limit of the free-
energy balance in (4) and (5). The ion Landau damping

T
‖
φi results from an energy transfer from the E × B en-

ergy (UδE) into the ion thermal energy (Uδi). However,
before such a transfer can occur, the free energy must

have somehow moved from Uδi (which has the only source
terms, ∝ Qs, Γs) to UδE. Equation (5)’s only remaining
collisionless term is the curvature transfer T K

φi for

T K
φs

.
= −nsTs

1

Vpl

∫

dΛ fs(v2
‖ + µB)K (J0φ) , (18)

which in a collisionless, adiabatic-electron steady state

(∂tUδE = 0) must therefore be equal to T
‖
φi. Setting T

‖
φi =

T K
φi, neglecting Γi, and using (7), we may then conclude

that

fL ≈ fad
L

.
=

cKi

R/LTi

, for (19)

cKs
.
=

∫

dΛ (v2
‖ + µB)fsK (J0φ)

∫

dΛ (v2
‖/2 + µB)fs∂y(J0φ)

. (20)

The curvature operator has the form K
.
= Kx(s)∂x +

Ky(s)∂y , where Ky is positive at the outboard mid-
plane (s = 0) and negative at the inboard midplane
(s = ±1/2), and Kx = 0 at the midplane.46 If we make
a simple small-ǫ, strongly outboard-ballooning estimate
K → ∂y and approximate velocities with the thermal
speeds (v2

‖ ∼ 1 and µB ∼ 1), we may crudely estimate

cKi ∼ 4/3. Since the actual heat flux Qi will have a
finite extent in s, the actual cKi will typically be some-
what smaller than 4/3, as the integrals in (20) include
poloidal positions s with decreasing or even negative Ky.
In Fig. 4, black x’s show fad

L inferred with an assumed-
constant cKi = 0.55, capturing the qualitative behavior
of the plot although not the especially high fL for the
marginal run at R/LTi = 4.

B. Collisionless, kinetic-electron runs

Both the simulation (Fig. 4) and analysis [(19)] in
Sec. III A suggest that fL is fairly constrained in the
adiabatic-electron limit, scaling as (R/LTi)

−1 due to
steady-state balance in the adiabatic-electron version
of (5). The inclusion of kinetic electrons may allow a
richer, more flexible energy balance, as free-energy trans-
fer from electrons can now supply UδE with the energy
needed to drive ion Landau damping. In this section, we
explore this by solving (1) and (2) with kinetic electrons,
but still in a (nearly) collisionless limit,66 conducting a
scan of Qe/Qi via varying gradients and a scan of the
magnetic shear ŝ, which strongly affects the ion Landau
damping channel.

The rotation gradient u′ predicted by (16) grows with
Qe/Qi at fixed fL, simply because electrons can help
ions drive the fluctuating electric fields that cause ion
Landau damping, but the viscosity is typically roughly
proportional to the ion (not total) heat flux. However, fL

may well also depend on Qe/Qi, changing the expected
rotation dependence. To examine this, we conducted a
series of runs with varying gradients, listed in Table I.
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R
LTi

R
LTe

R
Ln

Qi Qe Πϕi Γe fL Pr Qe
Qi

6.9 6.9 2.2 62.7 17.7 0.396 1.0 .0550 0.934 0.283

6.9 9 2.2 66.2 26.0 1.45 -1.0 .0462 0.984 0.393

6.9 12 2.2 56.3 33.2 1.53 -2.45 .0362 1.065 0.589

6.9 14.0 2.2 70.7 51.0 1.0 -3.0 .032 1.305 0.721

6.0 15.5 2.2 24.0 24.0 0.64 -1.0 .027 1.206 1.0

6.0 10.5 5.0 43 58 1.55 .0478 1.35

6.0 15.5 5.0 29 61.5 0.95 .0261 2.12

3 9 0 0.274 1.97 .0067 0.7 .0091 7.19

0 9 3 0.837 7.56 .0463 0.177 .0160 (.525) 9.02

0 6 3 .0765 0.777 .0013 0.055 .0066 10.2

0 5 1.5 .0126 0.145 .0001 .0077 .0048 (1.33) 11.5

Table I. Parameters and results for runs plotted in Fig. 5. For

cases with R/LTi = 0, Pr is not defined, so (Π
(1)
ϕi /u′Qi) from

the viscous run is given instead, in parentheses.

In these runs, fL depends inversely on Qe/Qi, as shown
in Fig. 5. In fact, if we assume that no free energy passes
from the electrons through ion Landau damping, so that

T
‖
φi = T K

φi = cKiniTiQi as before, then we may estimate

fL ≈ fKi
L for

fKs
L

.
=

cKsnsTsQs
∑

s′ ns′Ts′ [(R/Lns′ − 3
2 R/LTs′)Γs′ + Qs′R/LTs′ ]

.

(21)
The estimate fL ≈ fKi

L with cKi = 0.5 and neglecting
particle flux Γs is also plotted in Fig. 5. It roughly agrees
with fL at most points.

Unlike the adiabatic-electron case [(19)], the scaling
fL ≈ fKi

L is nontrivial and somewhat surprising. Any
potential fluctuations (UδE), whether driven originally
by ions or electrons, are able to excite the ion parallel
flows that lead to ion Landau damping, at least in prin-
ciple. Many runs plotted in Fig. 5 had Qe ≫ Qi. Since
electrons also drive the potential via curvature trans-
fer T K

φe = cKeneTeQe, in addition to possible drive via

T
‖
φe, one would naively expect an enhancement of fL by

at least ∼ Qe/Qi. This does not appear to occur for
the runs plotted in Fig. 5, although it is not clear why.
Perhaps electron fluctuations are more elongated along
the field, thus reducing cKe due to poloidal variation
of K? Perhaps the electron-driven fluctuations occur at
smaller perpendicular wavelengths, where drift frequen-
cies are too high to allow for effective ion Landau damp-
ing? In any case, the result does not seem to be general,
since electrons may at least modestly enhance ion Lan-
dau damping in other cases, as we will see in the ŝ scan
later in this section and in the Te/Ti scan in Sec. III C.

The three points in Fig. 5 with significantly increased
fL all had stronger density gradients R/Ln ≥ 3. These
points can still be fit with fL ≈ fKi

L , equivalently cKi ≈

T
‖
φi/niTiQi, simply by choosing a larger but still plau-

sible value for cKi, as plotted in Fig. 5.67 This suggests
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Figure 5. Landau-damping fraction fL as a function of Qe/Qi

(left) and T
‖
φi/Qi as a function of R/Ln (right) for the runs

from Table I (blue circles for R/Ln < 3.0, red squares for
R/Ln ≥ 3.0), along with fKi

L estimated using cKi = 0.5 (left,
black crosses). All of the outliers with fL significantly above
the estimate have R/Ln ≥ 3.
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0.12
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Figure 6. fL (blue circles, left), T
‖
φi/Qi (blue circles, right),

and Qe/Qi (red diamonds right) as a function of magnetic
shear ŝ. fL increases strongly enough with increasing shear
ŝ that at the largest ŝ = 2.0, it can no longer be plausibly

explained on the basis of T K
φi alone (T

‖
φi/Qi, equal to the cKi

inferred from assuming fKi
L = fL, exceeds 4/3).

that steeper R/Ln may simply be allowing a stronger ion
Landau damping from Qi rather than an enhanced role
of Qe.

Although most runs (including all in Table I) had the
default shear ŝ = 0.8, we tried modifications of one run
(R/LTi = 6.0, R/LTe = 10.5, R/Ln = 5.0), varying ŝ
to 0.48, 1.12, and 2.0. As shown in Fig. 6, fL increases
strongly with increasing shear. Although some of this can
be attributed to decreasing Qe/Qi, the cKi inferred from
fL ≈ fKi

L increases beyond the plausible upper bound68

of 4/3 at the highest ŝ = 2.0, suggesting that by this
point (at least) electrons must be making a nonnegligi-
ble contribution to UδE, allowing it to drive stronger ion
Landau damping.

As plotted in Fig. 7, equation (13) seems to capture the
variation of Πϕi quite well over this scan. Some discrep-

ancy may occur because of contributions of Π
(1)
ϕi , which

is not included in the estimate (13), and which only van-
ishes in the statistical average.
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Figure 7. Ion momentum flux Πϕi (blue circles) and its esti-
mate using (13) (black x’s), both normalized to Qi, including
data from Qe/Qi and ŝ scans.

C. Collisional kinetic electron runs

The inclusion of collisions again alters the free-energy
balance [(4) and (5)], with the strongest effect expected
from collisional detrapping of electrons. In this sec-
tion, we simulate (1) and (2) including collisional pitch-
angle scattering for the electrons. We do two sepa-
rate scans: first electron collisionality νe (normalized to
Rref/vthref),

69 then Te/Ti at fixed, nonzero νe.
For the first scan, we fix R/LTe = 10.0 and R/Ln = 5.0

and vary νe, for both R/LTi = 5.0 and R/LTi = 0.1. As
shown in Fig. 8, the normalized heat fluxes (Qe and Qi),
momentum flux (Πϕi) and particle flux (Γi) all decrease
with increasing νe. This is presumably related to a de-
crease in the amplitude of the turbulent fluctuations, as
exhibited by (δn)rms, the rms amplitude of normalized
density fluctuations at the outboard midplane, and φna,
the rms amplitude of the non-axisymmetric part of the
potential φ. In addition to collisional weakening of the
trapped-electron response, this may also be related to
an increase in the relative rms amplitude of axisymmet-
ric potential fluctuations φa (predominantly zonal flows),
as compared to φna. Despite these variations, the ion-
Landau-damping fraction fL and the Prandtl number Pr
(calculated quasi-linearly at ky ≈ 0.35) appear to depend
only weakly on collisionality at these fixed gradients.

The toroidal (ky) spectra of non-axisymmetric poten-
tial fluctuations are plotted in Fig. 9. As they show, in-
creasing collisionality not only decreases the overall am-
plitude of the turbulence, but also shifts the fluctuations
to smaller spatial scales.

Although the variation of fL with νe is weak, it con-
tinues to be fairly well captured by the ion-curvature es-
timate fKi

L with constant cKi (0.95 for R/LTi = 5, 1.25
for R/LTi = 0.1), as shown in Fig. 10. The plotted ra-

tio T
‖
φi/Qi, equal to the cKi inferred by setting fKi

L = fL,

also varies only weakly with νe at fixed R/LTi. Note that
while Qe/Qi varies only weakly for R/LTi = 5, remain-
ing close to 2 for all plotted νe, it varies more strongly for
R/LTi = 0.1, increasing from about 5.5 at νe ≈ 0.0122
to nearly 11 for νe ≈ 4.9730.

Since the mean-squared fluctuation amplitude and ion
heat flux are closely related, it could be that the ap-
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Figure 8. Electron (Qe) and ion (Qi) heat flux, momentum
flux (Πϕi), particle flux (Γi), ion-Landau-damping fraction
(fL), Prandtl number (Pr), rms density fluctuation amplitude
at the outboard midplane (δn)rms, and the rms amplitude of
the non-axisymmetric potential (φna), all as functions of νe at
fixed R/LTe = 10, R/Ln = 5, and for steep (R/LTi = 5, blue
circles) and flat (R/LTi = 0.1, red diamonds) ion temperature
gradents. Error bars indicate the standard deviation. In the
lower-right plot, blue x’s indicate the rms amplitude of the
axisymmetric potential φa for R/LTi = 5.
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Figure 9. Toroidal (ky) spectra of non-axisymmetric potential
fluctuations for R/LTi = 5 (left) and R/LTi = 0.1 (right). In-
creasing collisionality reduces the overall amplitude and shifts
the fluctuations to higher ky .
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Figure 10. Left: Landau fraction fL, compared with the esti-
mate fKi

L (black plus signs and x’s), evaluated with constant
cKi of 0.95 for R/LTi = 5 and 1.25 for R/LTi = 0.1. Right:

T
‖
φi/Qi, equal to the cKi inferred by setting fKi

L = fL. Blue

circles for R/LTi = 5 and red diamonds for R/LTi = 0.1.
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Figure 11. Total energy through ion Landau damping T
‖
φi as

a function of mean-squared amplitude of outboard-midplane
density fluctuations [(δn)2

rms, upper left] and of the non-
axisymmetric part of the potential (φ2

na, upper right), as well
as of the estimated E × B energy UδE (lower left) and the ion
heat flux Qi (lower right), for R/LTi = 5 (blue circles) and

R/LTi = 0.1 (red diamonds). Although T
‖
φi is roughly linear

at fixed R/LTi in all four plots, the two ion temperature gra-
dients only fall on the same line as a function of Qi.

parent relation of T
‖
φi and Qi is actually indirect, via

a joint dependence on the fluctuation amplitude. How-
ever, Fig. 11 shows that while the ion-Landau-damping

transfer T
‖
φi does in fact depend about linearly on the

mean-squared amplitude of outboard-midplane density
fluctuations (δn)2

rms and of non-axisymmetric potential
fluctuations φ2

na, as well as on UδE,70 the slope of the
line is R/LTi dependent. In contrast, when both the

R/LTi =0.1 and 5 results for T
‖
φi are plotted as a func-

tion of Qi, they collapse onto the same line. This sug-
gests, for these runs at least, that the energy supply for
ion Landau damping continues to be primarily limited by
T K

φi, the ion-curvature energy transfer from Uδi to UδE.

Finally, Figure 12 shows that the fL-based estimates
from (13) and (16) roughly capture the variation of
Πϕi/Qi and inferred velocity gradient u′ from these col-
lisionality scans. For this comparison, it is important
to recall that (13) and (16) only predict the symmetry-

breaking Π
(2)
ϕi portion of the momentum flux, while the

measured Πϕi also retains the leading-order contribution

Π
(1)
ϕi , which only vanishes in the statistical average. The

effect of this can be seen in the wide error bars for Πϕi/Qi

and u′, derived from the standard deviation of measured
Πϕi.

As an alternate cut through parameter space, we con-
ducted a series of runs varying Te/Ti, with fixed νe ≈
0.67, R/LTe = 10.5, R/Ln = 5, and for two ion temper-
ature gradients R/LTi = 6.0 and R/LTi = 0.1. Other
parameters stayed at default values, including Ti = 1. In
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Figure 12. Normalized momentum flux Πϕi/Qi (upper) and
estimated rotation gradient u′ (lower) for R/LTi = 5 (left)
and R/LTi = 0.1 (right). Estimates based on fL are indicated
with black x’s. The measured values show more variation than
the estimates. This may be due to the wide fluctuation of Πϕi

(error bars), due to the leading-order contribution Π
(1)
ϕi , which

only vanishes in the statistical average.
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Figure 13. The normalized fluxes Qe (upper left), Qi (upper
right), Πϕi (lower left), and Γi (lower right) as a function of
Te/Ti, with blue circles for R/LTi = 6.0 and red diamonds for
R/LTi = 0.1. Recall that the flux normalizations are species
dependent.

general, all the fluxes (Qe, Qi, Πϕi, and Γi) increase with
increasing Te/Ti (Figure 13), except for the single case
Te/Ti = 3, R/LTi = 0.1, for which the turbulence was
strongly suppressed. Recalling the species-dependent
heat-flux normalizations, the ratio of dimensional heat
fluxes is TeQe/TiQi, which is an increasing function of
Te/Ti.

In contrast to our νe-scan results, the ion Landau
damping in these runs seems to respond quite clearly to
electron free-energy supply. As shown in Figure 14, the

ratio T
‖
φi/Qi increases with increasing temperature ra-

tio Te/Ti, exhibiting a roughly linear dependence on the
heat flux ratio QeTe/QiTi. (Unfortunately, we do not

have a reliable result for T
‖
φi or fL for the quenched case
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Figure 14. The ratio T
‖
φi/Qi, equal to the cKi inferred by set-

ting fKi
L = fL, as a function of Te/Ti (left) and of the heat flux

ratio QeTe/QiTi (right), with red diamonds for R/LTi = 0.1
and blue circles for R/LTi = 6. The ratio has an approxi-
mately linear dependence on the electron heat flux, suggest-
ing that electrons are driving some ion Landau damping in
this case.
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Figure 15. The Landau-damping fraction fL (red diamonds
for R/LTi = 0.1, blue circles for R/LTi = 6) as a function
of Te/Ti (left) and of QeTe/QiTi (right). The estimates for
fL (black x’s for R/LTi = 0.1, black +’s for R/LTi = 5)
are summed curvature drive fKi

L + fKe
L , with constant cKi

(0.26 for R/LTi = 0.1, 0.58 for R/LTi = 6) and cKe (0.15 for
R/LTi = 0.1 and 0.20 for R/LTi = 6).

Te/Ti=3,R/LTi = 0.1.) In order to obtain a reasonable
estimate for fL, we must incorporate electron curvature
contributions, taking fL ≈ fKi

L + fKe
L for constant cKi

(0.26 for R/LTi = 0.1 and 0.58 for R/LTi = 6) and cKe

(0.15 for R/LTi = 0.1 and 0.20 for R/LTi = 6), see Fig-
ure 15.

As before, Equation (13) provides a good estimate for
the normalized momentum flux Πϕi/Qi in terms of fL

(Figure 16). The normalized momentum flux increases
roughly linearly with Te/Ti and with TeQe/TiQi, except
for the quenched case (R/LTi = 0.1, Te/Ti = 3).

IV. CONCLUSION

Ion Landau damping interacts with a geometrical cor-
rection to the ExB drift to cause a non-diffusive outward
flux of co-current toroidal angular momentum.46 Quan-
titative evaluation of this momentum flux requires non-
linear simulations to determine fL, the fraction of fluctu-
ation free energy that passes through ion Landau damp-
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10
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Figure 16. The ratio Πϕi/Qi (red diamonds for R/LTi = 0.1,
blue circles for R/LTi = 5) versus the estimate from (13)
(black x’s for R/LTi = 0.1, black +’s for R/LTi = 5), as a
function of Te/Ti (left) and of TeQe/TiQi (right).

ing (12), in fully developed turbulence. Nonlinear gy-
rokinetic simulations with the GKW code48 confirm the
presence of the symmetry-breaking momentum flux (Fig-
ures 2, 7, 12, 16). For simulations with adiabatic elec-
trons, fL scales inversely with R/LTi (Figure 4), because
only ion curvature drive T K

φi can supply free energy to the

electrostatic potential (18). Although kinetic electrons
should in principle relax this restriction, the ion Landau
damping measured in collisionless kinetic-electron simu-
lations remained restricted to levels comparable with ion
curvature drive T K

φi (Figure 5), except for a case with

strong magnetic shear ŝ (Figure 6). A set of simulations
scanning collisionality νe for electron pitch-angle scatter-
ing showed only a weak dependence of fL on νe at fixed
gradients (Figure 8). However, collisional-electron simu-
lations with Te/Ti above unity unambiguously showed
electron-curvature drive of ion Landau damping (Fig-
ures 14 and 15) and a corresponding enhancement of the
symmetry-breaking momentum flux (Figure 16).
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49This can be obtained by simply setting A‖ to zero and ψe to φ.
50PCC’s (84) has a typo. The rightmost form should have a factor

of (T kref)−2 rather than (T kref )−1.
51This implies that the normalized quantities satisfy msv2

ts = Ts.
52We equate Bref with SDS’s B0.
53Since SDS used cgs units, this must be defined slightly differently

than PCC, which used SI units.
54This remains roughly equivalent to PCC’s slightly different treat-

ment, which normalizes all gradients using Rref, but then uses
a Fourier representation in the perpendicular directions and
rescales the wavenumbers by ρ∗.

55We normalize our parallel coordinate s such that it is a unit-
periodic poloidal Hamada angle, like PCC. We normalize the
parallel gradient operator ∇‖ to R−1

ref
, but perpendicular gradi-

ents to ρ−1
ref

. For consistency, we must normalize our curvature

operator K to (2c/BrefRrefρref) and
∫

dW to (vdim
ts )3. We nor-

malize F ′
sM to [ndim

s /(vdim
ts )3Rref].

56In the dimensional variables of SDS, we define ∂r
.
= V ′∂V . In

the notation of PCC, we define ∂r
.
= R−1

ref
∂ψ . For consistency,

we will set V ′ = R−1
ref
∂ψV throughout this article. Note also that

PCC’s u′ has a different sign convention than ours: they take Ω
and u′ to be positive for toroidal rotation in the direction of the
toroidal magnetic field. However, since the toroidal magnetic field
is in the +ϕ̂ direction for all runs in this article, that distinction
does not matter here.

57PCC’s (66) and (67) are each missing a factor of R in the u′

term, a typo.
58The finite difference treatment of s and v‖ derivatives is non-

conservative, and includes explicit hyperviscous dissipation when
the derivatives act on fs. Magnetic shear introduces some paral-
lel connections to unresolved kx at the s boundaries, which are
treated with (lossy) outgoing boundary conditions. The Poisson
bracket is treated with a lossy dealiased pseudo-spectral method,
adding dissipation at large kx and ky. See PCC for details.

59In the notation of PCC, bp
.
= (4πEψζ)−1, with Eψζ →

q
√

1 − ǫ2/4πǫ in this article, where we always use circular ge-
ometry with positive toroidal magnetic field (sB = +1). In the
dimensional notation of SDS, bp

.
= BθV ′/2πRrefB0.

60See SDS App. C for the explicit demonstration that ion Landau

damping corresponds to energy transfer via T
‖
φi

.
61Recall that R is normalized to Rref and that bT is the toroidal

component of the magnetic direction (unit vector). However, if

T
‖
φi

and Π(2)
ϕ are concentrated at the outboard midplane, this

may be a quantitative underestimate, since at the outboard R2 ∼
(1 + ǫ)2.



11

62Viscosity runs are done with only parallel velocity shear, that is,
the E × B shear in viscous runs is zero.

63In GKW notation, this corresponds to kθρref = 0.42. For all runs
in this article, kθρref ≈ 0.855ky .

64In GKW, time is normalized to Rref/vthref.
65The exact value of the average depends on the time window that

you select, but it is much smaller than the rms value for any
reasonable choice.

66A small collisionality is added for numerical purposes.
67Recall that ni = Ti = 1 in all of our simulations.
68See discussion by (20).
69In PCC’s notation, assuming deuterium ions, our νe is written

as νe
.
= vteΓe/i = 3.95 · 10−3 Rref(m)nref(1019m−3)

[Tref(keV)]2

niZ
2 ln Λe/i

T
3/2

e

.

70To evaluate UδE for Figure 11, we used the spectral data from
Figure 9. We neglected the radial variation (kx) for the evaluation
of the Bessel functions Γ0s.


