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We implement advanced Riemann solvers HLLC and HLLD [1, 2] together with an advanced
constrained transport scheme [3] in a numerical-relativity neutrino-radiation magnetohydrodynamics
code. We validate our implementation by performing a series of one- and multi-dimensional test
problems for relativistic hydrodynamics and magnetohydrodynamics in both Minkowski spacetime
and a static black hole spacetime. We find that the numerical solutions with the advanced Riemann
solvers are more accurate than those with the HLLE solver [4], which was originally implemented
in our code. As an application to numerical relativity, we simulate an asymmetric binary neutron
star merger leading to a short-lived massive neutron star both with and without magnetic fields.
We find that the lifetime of the rotating massive neutron star formed after the merger and also
the amount of the tidally-driven dynamical ejecta are overestimated when we employ the diffusive
HLLE solver. We also find that the magnetorotational instability is less resolved when we employ the
HLLE solver because of the solver’s large numerical diffusivity. This causes a spurious enhancement
both of magnetic winding resulting from large scale poloidal magnetic fields, and also of the energy
of the outflow induced by magnetic pressure.

I. INTRODUCTION

The first direct detection of gravitational waves from
a binary neutron star merger (GW170817) and its elec-
tromagnetic counterparts (AT 2017gfo/SGRB 170817A)
heralded the beginning of multimessenger astronomy in-
cluding gravitational waves [5, 6]. In this event, the
tidal deformability of the neutron star binary was mea-
sured for the first time and found to be in the interval
100 . Λ̃ . 800, with an accurate measurement of the to-
tal mass of the binary yielding 2.73+0.04

−0.01M� [5, 7–9] [10].
Any viable neutron star matter equations of state must
satisfy this observational constraint on tidal deformabil-
ity. In this event it was also shown that the binary neu-
tron star merger drives a short gamma-ray burst [6, 11–
13], thus providing the first ‘smoking gun’ for supporting
the hypothesis that binary mergers can be the central
engine of short gamma-ray bursts [14–17]. Finally, this
event indicated that neutron-rich matter is likely to be
ejected during the merger and heavy elements are synthe-
sized within these ejecta by means of the rapid neutron
capture process on nuclei (the r-process) [16, 18–20].
It had been predicted that the r-process nucleosynthesis
subsequently causes so-called kilonova emission via the
radioactive decay of unstable r-process elements [21, 22],
and a kilonova was indeed observed after the merger in
the near infrared, optical, and ultraviolet bands [23–37].

References [38, 39] reported the detection of a sec-
ond binary neutron star merger event (GW190425) and
measured a total binary mass of 3.4+0.1

−0.1M�, which is
much larger than the total mass measured in binary pul-
sars observed in our Galaxy [40]. The merger dynam-

ics, mass ejection process, and resultant electromagnetic
emission due to r-process nucleosynthesis could be dif-
ferent from those in GW170817 and AT 2017gfo [41, 42].
Although an electromagnetic counterpart was not ob-
served in GW190425, either due to poor sky localiza-
tion or due to intrinsically dimmer emission [43–45], the
existence of a massive binary neutron star suggests that
the binary neutron star merger and associated mass ejec-
tion process could have a diversity of mechanisms. The
new observation run O4 is planned to commence at the
end of 2022 [46], and could lead to the observation of
binary neutron star mergers and associated electromag-
netic counterparts that are qualitatively different from
those observed in GW170817. This motivates building
binary neutron star merger models based on reliable nu-
merical relativity simulations for predicting and inter-
preting gravitational wave events in preparation for the
upcoming observational run [47].

Recent axisymmetric neutrino-radiation viscous-
hydrodynamics simulations of binary neutron star
merger remnants in numerical relativity suggest that the
amount of post-merger ejecta launched from the merger
remnant due to viscous effects (which were facilitated
in these simulations by an effective ‘alpha’ viscosity
parameter) can be larger than the dynamical ejecta
launched during the merger itself [47–51]. The timescale
of the post-merger mass ejection is O(1) second, and de-
pends on the value of the viscosity parameter. Plausible
values of the viscosity parameter are inferred from three-
dimensional magnetohydrodynamics simulations of the
binary neutron star merger remnant in which angular
momentum transport is facilitated in a self-consistent
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manner by the magnetorotational instability [52] (see
also Refs. [53, 54] for magnetohydrodynamics simulations
of a massive torus in a stationary black hole spacetime).
The electron fraction of the post-merger ejecta and
the resultant r-process nucleosynthesis also depends on
this viscosity parameter [49–51], although the electron
fraction of the post-merger ejecta is appreciably larger
than that of the dynamical ejecta.

Furthermore, very recently we performed neutrino-
radiation magnetohydrodynamics simulations of black
hole-neutron star mergers in numerical relativity [55].
We found post-merger mass ejection due to magnetoro-
tational instability-driven turbulence and the launch of a
Poynting flux-dominated outflow. The post-merger mass
ejection and the Poynting-flux dominated outflow sets in
at several 100 ms after the merger and lasts for 1–2 sec-
onds after the merger. These timescales are determined
by the strength of the effective viscosity associated with
both magnetorotational-instability turbulence and neu-
trino cooling [55].

All these recent studies show that for modeling fu-
ture gravitational wave events it is necessary to per-
form self-consistent (i.e. in which turbulence is sustained
by the magnetorotational instability) three-dimensional
neutrino-radiation magnetohydrodynamics simulations
of binary neutron star mergers in general relativity for
the durations of O(1) second. In particular, it is cru-
cial to reproduce a magneto-turbulent state driven by
the magnetorotational instability inside the merger rem-
nant because the resultant effective turbulent viscosity
transports angular momentum outwards and heats up
the matter via viscous heating [56].

Finite volume methods are a popular combination of
numerical schemes for simulations of astrophysical fluid
dynamics due to their inherent conservation properties
and ability to capture sharp discontinuities in the flow
such as shocks [57]. Central to these schemes is the so-
lution of the so-called Riemann problem in which one
considers two constant states separated by a disconti-
nuity. The solution consists of three waves in hydro-
dynamics and seven waves in magnetohydrodynamics.
As exact Riemann solvers are computationally expen-
sive [58], approximate Riemann solvers are often used.
One such family of approximate Riemann solvers is the
HLL-based Riemann solvers, in which only a subset of
the full seven waves in the Riemann fan are consid-
ered. The HLL(E) solver, for example, takes into account
only shocks/rarefactions and omits the contact disconti-
nuity [59].

At present, the Riemann solver and constrained trans-
port scheme implemented in existing numerical relativ-
ity magnetohydrodynamics codes, e.g. [55, 60–67], are
based on the HLLE solver [4, 59, 68]. (An exception is
the SpECTRE [69] code, which is based on the discontin-
uous Galerkin method.) This Riemann solver is known
to be very diffusive [2, 70, 71]. The numerical diffusion
inherent in the Riemann solver adversely affects the accu-
racy of the numerical solution, in particular for long-term

simulations of compact object mergers of O(1) second.
Although Refs. [61, 62, 72] reported the implementation
of fourth-order accurate Riemann solvers in their numer-
ical relativity codes, these solvers are based on the finite
difference method. Therefore, it is unclear how accurate
these finite difference-based Riemann solvers are for the
problem of astrophysical turbulence.

This paper reports a new implementation of advanced
Riemann solvers in our neutrino-radiation magnetohy-
drodynamics numerical relativity code [73, 74] based
on the finite volume method. We implement the HLLC
solver for relativistic hydrodynamics, which restores the
contact discontinuity [1], and the HLLD solver for rel-
ativistic magnetohydrodynamics, which takes into ac-
count five of the seven waves in the Riemann fan [2].
Both these Riemann solves are known to be less diffusive
than the HLLE solver [4]. In addition, the constrained
transport scheme in Ref. [3], which relies on the solu-
tion given by a Riemann solver, significantly suppresses
numerical diffusion compared to the HLLE-constrained
transport scheme proposed in Ref. [4] (see Ref. [75] for a
detailed comparison of different implementations of the
constrained transport scheme). Thus, in addition to im-
plementing the advanced Riemann solvers, HLLC and
HLLD, we also implement the novel constrained trans-
port scheme of Ref. [3] in our code.

This paper is organized as follows. Section II sum-
marizes the equations of motion for general relativis-
tic neutrino-radiation magnetohydrodynamics. Sec-
tion III is devoted to the numerical algorithm for general
relativistic magnetohydrodynamics: the finite volume
method, the constrained transport method (for enforc-
ing divergence-free condition of the magnetic field), the
tetrad transformation (which enables us to use Riemann
solvers designed for special relativistic flows in full gen-
eral relativity), the implementation of the HLLC solver
[1], that of the HLLD solver [2], and the electric field eval-
uation (which is used by the constrained transport algo-
rithm) [3]. In Sec. IV, we validate our implementation of
the new Riemann solvers by performing one- and multi-
dimensional test problems both in Minkowski spacetime
and in curved, but static, spacetime in both relativistic
hydrodynamics and magnetohydrodynamics. Finally, in
Sec. V we apply our new solvers in general relativity to
a dynamical spacetime. We first present the results of
binary neutron star merger simulations in the absence of
magnetic fields (which are run up to ≈ 40–50 ms after
the formation of the black hole), and subsequently the
evolution of the merger remnant with a magnetic field.
Section VI summarizes our results. Throughout this pa-
per, we use geometrical units in which c = G = 1. Greek
and Latin indices without hats denote the spacetime and
purely spatial components, respectively. Those with hats
indicate tetrad components.
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II. GOVERNING EQUATIONS FOR GENERAL
RELATIVISTIC NEUTRINO-RADIATION

MAGNETOHYDRODYNAMICS

In this section, we briefly summarize the set of basic
equations of general relativistic neutrino-radiation mag-
netohydrodynamics using the 3+1 formalism. The reader
can find a more comprehensive derivation of these equa-
tions in, e.g., Ref. [76].

We begin by introducing a unit vector normal to a
spatial hypersurface of constant coordinate time, t,

nµ =

(
1

α
,−β

i

α

)
, nµ = (−α, 0) , (2.1)

where α and βi are the lapse function and shift vector, re-
spectively. With this vector, the four dimensional metric
can be decomposed into

gµν =

(
−α2 + βiβ

i βi
βi γij

)
, (2.2)

where γij is the three-dimensional spatial metric.

The stress-energy-momentum tensor for ideal mag-
netohydrodynamics and for a free-streaming neutrino-
radiation field are, respectively, given by

Tµν(MHD) = ρhuµuν + Pgµν +

(
uµuν +

1

2
gµν
)
b2 − bµbν ,

Tµν(Rad,s,νi)
= E(νi)n

µnν + Fµ(νi)n
ν + F ν(νi)n

µ + Pµν(νi)
,

(2.3)

where ρ, P , uµ, bµ, E(νi), F
µ
(νi)

, and Pµν(νi)
are, respec-

tively, the rest-mass density, pressure, four-velocity, mag-
netic field (measured in the fluid rest frame), radia-
tion energy density, radiation momentum, and radiation
stress-energy-momentum tensor of the neutrino species
νi in the Eulerian frame. h = 1 + ε + P/ρ denotes the
relativistic specific enthalpy with ε the specific internal
energy. We consider the electron neutrino νe, electron an-
tineutrino ν̄e, and the total of µ and τ neutrinos and an-
tineutrinos collectively denoted by νx [74, 76]. Note that
we assume that the stress-energy-momentum tensor of
the neutrino-radiation field is split into a trapped compo-
nent and a free-streaming component. The stress-energy-
momentum tensor of the trapped neutrinos is then ab-
sorbed into that for the ideal magnetohydrodynamics
fluid because trapped neutrinos are strongly coupled to
the fluid [74, 76].

The conserved mass density, total momentum density,
and total energy density of an electrically conducting

fluid are defined by

D ≡ ρw (2.4)

Ji ≡ −γµinνT (MHD)
µν

= ρwhui +
B2ui − (Bjuj)Bi

w
, (2.5)

ρH ≡ nµnνT (MHD)
µν

= ρw

(
hw − P

ρw

)
+

(
w2 − 1

2

)
b2 − (Biui)

2, (2.6)

where w ≡ −nµuµ = αut is the Lorentz factor measured
by an Eulerian observer and Bi is the magnetic field mea-
sured in the Eulerian frame and satisfies Bµnµ = 0 (i.e.,
Bt = 0). The relation between bµ and Bi is given by

bt =
Biui
α

, bi =
Bi +

(
Bjuj

)
ui

w
, (2.7)

and thus,

b2 =
B2 + (Biui)

2

w2
, (2.8)

where B2 = BiB
i.

The equations of motion of ideal magnetohydrody-
namics and of the free-streaming neutrino-radiation field
are derived from the conservation of the stress-energy-
momentum tensor, the continuity equations for rest-mass
density, electron fraction, electron neutrino fraction, elec-
tron antineutrino fraction, and heavy neutrino fraction,
and the Maxwell equations. These conservation laws are
written as

∇µ
(
T(MHD)

)µ
ν

= −
∑

νi=νe,ν̄e,νx

G(νi,leak)
ν , (2.9)

∇µ
(
T(Rad,s,νi)

)µ
ν

= G(νi,leak)
ν , (2.10)

∇µ(ρuµ) = 0, (2.11)

∇µ(ρuµYL) = ργL, (2.12)

∇µ∗Fµν = 0, (2.13)

where L = e, νe, ν̄e, and νx denotes electrons, electron
neutrinos, electron antineutrinos, and heavy neutrinos,
respectively. YL and γL denote the fractions with respect
to the baryon and the source term for the number of the

species L, respectively. G
(νi,leak)
ν is an interaction term

between the fluid and free-streaming neutrino-radiation
field of the neutrino species νi in the framework of a gen-
eral relativistic neutrino leakage scheme [74, 77]. Here
∗Fµν is the Hodge dual of the Faraday tensor, which is
given by ∗Fµν = bµuν − bνuµ in ideal magnetohydrody-
namics.

Equations (2.9), (2.11), and (2.13) can be written in
conservative form as

∂t (
√
γQA) + ∂j

(√
γF jA

)
= MA, (2.14)

∂i
(√
γBi

)
= 0, (2.15)

where the flow quantities are given by the state vector
QA = (D,Ji, ρH, B

k)T with A ∈ [0, 7]. The correspond-
ing fluxes are given by
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F jA =


Dvj

Jiv
j + α

(
P +

b2

2

)
δji −

α

w2
Bj
[
Bi + (Bkuk)ui

]
ρHv

j +

(
P +

b2

2

)
(vj + βj)− α

w
(Bkuk)Bj

Bkvj −Bjvk

 ,

and the source terms are

MA =


0

−√γρH∂iα+
√
γJk∂iβ

k + α
3S

k
k∂i
√
γ − 1

2αγ
1/6Sjk∂iγ̃

jk − α√γGµ(leak)γµi
α
3

√
γKSk

k + αγ1/6ŜijÃ
ij −√γJkDkα+ α

√
γGµ(leak)nµ

0

 , (2.16)

where vj ≡ uj/ut, Gµ(leak) =
∑
νi=νe,ν̄e,νx

Gµ(νi,leak) , and

the spatial components of the stress-energy-momentum
tensor are given by

Sij ≡ γµiγνjT (MHD)
µν

=
(
ρh+ b2

)
uiuj +

(
P +

b2

2

)
γij − bibj , (2.17)

Ŝij = Sij −
(
P +

b2

2

)
γij . (2.18)

We also introduce the conformal metric γ̃ij = ψ−4γij
and the trace-free conformal extrinsic curvature Ãij =
ψ−4

(
Kij − 1

3Kγij
)
, where ψ and Kij are the conformal

factor and the extrinsic curvature, respectively. The ex-

plicit forms for γL and G
(νi,leak)
µ and for the equation of

motion of the free-streaming neutrino-radiation field can
be found in Refs. [76, 78]. The high resolution shock cap-
turing scheme for the neutrino-radiation field Eq. (2.10)
is the same as that in Ref. [79].

III. NUMERICAL ALGORITHM

In this section, we describe the numerical algorithms
which we implemented in our code. In Sec. III A we
present the finite volume algorithm and discretization
scheme, and in Sec. III B we discuss the transformation to
Minkowski spacetime used to implement the HLLC and
HLLD solvers in general relativity. The implementation
of the HLLC and HLLD solvers themselves is presented
in Sec. III C and III D, respectively. Finally, the evalua-
tion of the electric field used by the constrained transport
algorithm is discussed in Sec. III E.

A. Finite volume method

1. Fluid and magnetic field at cell center

Let Ω be a region of a given four-dimensional manifold
M, bounded by a closed three-dimensional surface ∂Ω,
where ∂Ω denotes the surface of a four-dimensional paral-
lelepiped composed of two spacelike surfaces {Σt,Σt+∆t}
and three sets of two timelike surfaces {Σxi ,Σxi+∆xi}
that connect the two temporal slices [80]. The timelike
surface, e.g., Σx, may also be regarded as a time series
of constant-(t, x) surfaces, Sx(t). We integrate Eq. (2.14)
over the domain of Ω:∫

Ω

1√−g ∂t (
√
γQA) dΩ +

∫
Ω

1√−g ∂i
(√
γF iA

)
dΩ

=

∫
Ω

1√−gMAdΩ, (3.1)

where dΩ =
√−gdtdxdydz.

Using Gauss’s theorem, this equation can be integrated
to give

(Q̄A∆V )t+∆t − (Q̄A∆V )t =

−
(∫

Σx+∆x

√
γF xAdtdydz −

∫
Σx

√
γF xAdtdydz

)

−
(∫

Σy+∆y

√
γF yAdtdxdz −

∫
Σy

√
γF yAdtdxdz

)

−
(∫

Σz+∆z

√
γF zAdtdxdy −

∫
Σz

√
γF zAdtdxdy

)

+

∫
Ω

1√−gMAdΩ, (3.2)
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where

Q̄A ≡
1

∆V

∫ √
γQAdxdydz, (3.3)

∆V ≡
∫ √

γdxdydz, (3.4)

are, respectively, the three-dimensional proper volume-
averaged conserved quantities and the proper volume.
Let us now define a cell consisting of [xj −∆x/2 : xj +
∆x/2]× [yk−∆y/2 : yk+∆y/2]× [zl−∆z/2 : zl+∆z/2]
(see Fig. 1). We next consider a numerical flux, which
approximates a time-averaged flux at the cell interface
and depends on the solution of the Riemann problem at
the interface. For example, in the x-direction the flux
across the right-hand interface is given by

(F̃ xA)j+ 1
2 ,k,l
≈ 1

∆t

∫ tn+1

tn
F xA(QA(xj+1/2, yk, zl, t))dt,

(3.5)

where tn+1 = tn+∆t. With this numerical flux, Eq. (3.2)
can be discretized as

(Q̄A∆V )n+1
j,k,l − (Q̄A∆V )nj,k,l =

−∆t
[

(∆Ax)j+ 1
2 ,k,l

(
F̃ xA

)
j+ 1

2 ,k,l

− (∆Ax)j− 1
2 ,k,l

(
F̃ xA

)
j− 1

2 ,k,l

]
−∆t

[
(∆Ay)j,k+ 1

2 ,l

(
F̃ yA

)
j,k+ 1

2 ,l

− (∆Ay)j,k− 1
2 ,l

(
F̃ yA

)
j,k− 1

2 ,l

]
−∆t

[
(∆Az)j,k,l+ 1

2

(
F̃ zA

)
j,k,l+ 1

2

− (∆Az)j,k,l− 1
2

(
F̃ zA

)
j,k,l− 1

2

]
+

∫
MAdtdxdydz, (3.6)

where

(∆Ax)j± 1
2 ,k,l

=

∫ √
γ(xj± 1

2
, yk, zl)dydz, (3.7)

(∆Ay)j,k± 1
2 ,l

=

∫ √
γ(xj , yk± 1

2
, zl)dxdz, (3.8)

(∆Az)j,k,l± 1
2

=

∫ √
γ(xj , yk, zl± 1

2
)dxdy. (3.9)

We also assume that the determinant of the spatial
metric does not change significantly during the time step.
If we introduce the volume- or surface area-averaged de-
terminant of the spatial metric, denoted by γ̄, this equa-

tion is reduced to

(
√
γ̄Q̄A)n+1

j,k,l − (
√
γ̄Q̄A)nj,k,l =

− ∆t

∆x

[(√
γ̄
)
j+ 1

2 ,k,l

(
F̃ xA

)
j+ 1

2 ,k,l
−
(√
γ̄
)
j− 1

2 ,k,l

(
F̃ xA

)
j− 1

2 ,k,l

]
− ∆t

∆y

[(√
γ̄
)
j,k+ 1

2 ,l

(
F̃ yA

)
j,k+ 1

2 ,l
−
(√
γ̄
)
j,k− 1

2 ,l

(
F̃ yA

)
j,k− 1

2 ,l

]
− ∆t

∆z

[(√
γ̄
)
j,k,l+ 1

2

(
F̃ zA

)
j,k,l+ 1

2

−
(√
γ̄
)
j,k,l− 1

2

(
F̃ zA

)
j,k,l− 1

2

]
+
(
M̄A

)
j,k,l

, (3.10)

where (√
γ̄
)
j,k,l
≡ 1

∆x∆y∆z
(∆V )j,k,l , (3.11)(√

γ̄
)
j± 1

2 ,k,l
≡ 1

∆y∆z
(∆Ax)j± 1

2 ,k,l
, (3.12)(√

γ̄
)
j,k± 1

2 ,l
≡ 1

∆x∆z
(∆Ay)j,k± 1

2 ,l
, (3.13)(√

γ̄
)
j,k,l± 1

2

≡ 1

∆x∆y
(∆Az)j,k,l± 1

2
, (3.14)

and (
M̄A

)
j,k,l
≡ 1

∆x∆y∆z

∫
MAdtdxdydz. (3.15)

2. Magnetic fields at cell surface

To ensure that the divergence-free condition (2.15) is
maintained, we employ the constrained transport method
introduced by Evans and Hawley [81]. In this method,
the magnetic-field components are defined at the cell sur-
faces, and the electric field components are defined at the
cell edges (see Fig. 1).

We then integrate Eq. (2.14) for A ∈ [5, 7] on Σxi+∆xi .
For example, through the surface Σz+∆z, we have∫

Σz+∆z

1√−g ∂t (
√
γBz) dSΩz

+

∫
Σz+∆z

1√−g ∂j
(√
γεzjkEk

)
dSΩz = 0, (3.16)

where Ek = −εkijviBj , εijk is the three-dimensional
Levi-Civita tensor, and dSΩz

=
√−gdtdxdy. Using

Stokes’ theorem, this equation is integrated to give(
B̄z∆Az

)
t+∆t

−
(
B̄z∆Az

)
t

= −
∫ t+∆t

t

∮
∂Sz+∆z

√
γEidx

idt, (3.17)

where

B̄z ≡ 1

∆Az

∫
Sz+∆z

√
γBzdxdy,
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is the surface-averaged magnetic field. Similarly, through
the surfaces Σx+∆x and Σy+∆y, respectively, we have

(
B̄x∆Ax

)
t+∆t

−
(
B̄x∆Ax

)
t

= −
∫ t+∆t

t

∮
∂Sx+∆x

√
γEidx

idt, (3.18)(
B̄y∆Ay

)
t+∆t

−
(
B̄y∆Ay

)
t

= −
∫ t+∆t

t

∮
∂Sy+∆y

√
γEidx

idt, (3.19)

where

B̄x ≡ 1

∆Ax

∫
Sx+∆x

√
γBxdydz,

B̄y ≡ 1

∆Ay

∫
Sy+∆y

√
γBydxdz.

We next consider a cell surface consisting of [xj −
∆x/2 : xj+∆x/2]× [yk−∆y/2 : yk+∆y/2], [yk−∆y/2 :
yk + ∆y/2] × [zl − ∆z/2 : zl + ∆z/2], [xj − ∆x/2 :
xj + ∆x/2] × [zl − ∆z/2 : zl + ∆z/2] and a numerical
flux which approximates a time-averaged electric field at
the cell edge, given by

(
Ẽx

)
j,k+ 1

2 ,l+
1
2

≈ 1

∆t

∫ tn+1

tn
Ex(QA(xj , yk+1/2, zl+1/2))dt,

(3.20)(
Ẽy

)
j+ 1

2 ,k,l+
1
2

≈ 1

∆t

∫ tn+1

tn
Ey(QA(xj+1/2, yk, zl+1/2))dt,

(3.21)(
Ẽz

)
j+ 1

2 ,k+ 1
2 ,l
≈ 1

∆t

∫ tn+1

tn
Ez(QA(xj+1/2, yk+1/2, zl))dt.

(3.22)

With these averaged electric fields, Eqs. (3.17)–(3.19) are

discretized as

(
B̄x∆Ax

)n+1

j+ 1
2 ,k,l
−
(
B̄x∆Ax

)n
j+ 1

2 ,k,l

= ∆t
[

(∆ly)j+ 1
2 ,k,l+

1
2

(
Ẽy

)
j+ 1

2 ,k,l+
1
2

− (∆ly)j+ 1
2 ,k,l−

1
2

(
Ẽy

)
j+ 1

2 ,k,l−
1
2

− (∆lz)j+ 1
2 ,k+ 1

2 ,l

(
Ẽz

)
j+ 1

2 ,k+ 1
2 ,l

+ (∆lz)j+ 1
2 ,k−

1
2 ,l

(
Ẽz

)
j+ 1

2 ,k−
1
2 ,l

]
, (3.23)(

B̄y∆Ay
)n+1

j,k+ 1
2 ,l
−
(
B̄y∆Ay

)n
j,k+ 1

2 ,l

= ∆t
[

(∆lz)j+ 1
2 ,k+ 1

2 ,l

(
Ẽz

)
j+ 1

2 ,k+ 1
2 ,l

− (∆lz)j− 1
2 ,k+ 1

2 ,l

(
Ẽz

)
j− 1

2 ,k+ 1
2 ,l

− (∆lx)j,k+ 1
2 ,l+

1
2

(
Ẽx

)
j,k+ 1

2 ,l+
1
2

+ (∆lx)j,k+ 1
2 ,l−

1
2

(
Ẽx

)
j,k+ 1

2 ,l−
1
2

]
, (3.24)(

B̄z∆Az
)n+1

j,k,l+ 1
2

−
(
B̄z∆Az

)n
j,k,l+ 1

2

= ∆t
[

(∆lx)j,k+ 1
2 ,l+

1
2

(
Ẽx

)
j,k+ 1

2 ,l+
1
2

− (∆lx)j,k− 1
2 ,l+

1
2

(
Ẽx

)
j,k− 1

2 ,l+
1
2

− (∆ly)j+ 1
2 ,k,l+

1
2

(
Ẽy

)
j+ 1

2 ,k,l+
1
2

+ (∆ly)j− 1
2 ,k,l+

1
2

(
Ẽy

)
j− 1

2 ,k,l+
1
2

]
, (3.25)

where

(∆lx)j,k± 1
2 ,l±

1
2

=

∫ √
γ(xj , yk±1/2, zl±1/2)dx, (3.26)

(∆ly)j± 1
2 ,k,l±

1
2

=

∫ √
γ(xj±1/2, yk, zl±1/2)dy, (3.27)

(∆lz)j± 1
2 ,k±

1
2 ,l

=

∫ √
γ(xj±1/2, yk±1/2, zl)dz. (3.28)

If we introduce a line-averaged determinant of the spatial
metric by

(√
γ̄
)
j,k± 1

2 ,l±
1
2

≡
(∆lx)j,k± 1

2 ,l±
1
2

∆x
,

(√
γ̄
)
j± 1

2 ,k,l±
1
2

≡
(∆ly)j± 1

2 ,k,l±
1
2

∆y
,

(√
γ̄
)
j± 1

2 ,k±
1
2 ,l
≡

(∆lz)j± 1
2 ,k±

1
2 ,l

∆z
, (3.29)

then, together with the surface area-averaged spatial
metric given by Eqs. (3.12)–(3.14), Eqs. (3.23)–(3.25) are
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reduced to(√
γ̄B̄x

)n+1

j+ 1
2 ,k,l
−
(√
γ̄B̄x

)n
j+ 1

2 ,k,l

=
∆t

∆z

[ (√
γ̄
)
j+ 1

2 ,k,l+
1
2

(
Ẽy

)
j+ 1

2 ,k,l+
1
2

−
(√
γ̄
)
j+ 1

2 ,k,l−
1
2

(
Ẽy

)
j+ 1

2 ,k,l−
1
2

]
− ∆t

∆y

[ (√
γ̄
)
j+ 1

2 ,k+ 1
2 ,l

(
Ẽz

)
j+ 1

2 ,k+ 1
2 ,l

−
(√
γ̄
)
j+ 1

2 ,k−
1
2 ,l

(
Ẽz

)
j+ 1

2 ,k−
1
2 ,l

]
, (3.30)(√

γ̄B̄y
)n+1

j,k+ 1
2 ,l
−
(√
γ̄B̄y

)n
j,k+ 1

2 ,l

=
∆t

∆x

[ (√
γ̄
)
j+ 1

2 ,k+ 1
2 ,l

(
Ẽz

)
j+ 1

2 ,k+ 1
2 ,l

−
(√
γ̄
)
j− 1

2 ,k+ 1
2 ,l

(
Ẽz

)
j− 1

2 ,k+ 1
2 ,l

]
,

− ∆t

∆z

[ (√
γ̄
)
j,k+ 1

2 ,l+
1
2

(
Ẽx

)
j,k+ 1

2 ,l+
1
2

−
(√
γ̄
)
j,k+ 1

2 ,l−
1
2

(
Ẽx

)
j,k+ 1

2 ,l−
1
2

]
, (3.31)(√

γ̄B̄z
)n+1

j,k,l+ 1
2

−
(√
γ̄B̄z

)n
j,k,l+ 1

2

=
∆t

∆y

[ (√
γ̄
)
j,k+ 1

2 ,l+
1
2

(
Ẽx

)
j,k+ 1

2 ,l+
1
2

−
(√
γ̄
)
j,k− 1

2 ,l+
1
2

(
Ẽx

)
j,k− 1

2 ,l+
1
2

]
− ∆t

∆x

[ (√
γ̄
)
j+ 1

2 ,k,l+
1
2

(
Ẽy

)
j+ 1

2 ,k,l+
1
2

−
(√
γ̄
)
j− 1

2 ,k,l+
1
2

(
Ẽy

)
j− 1

2 ,k,l+
1
2

]
. (3.32)

The magnetic-field distribution inside the cell is recon-
structed from the magnetic fields at the cell surface.
Practically, we reconstruct the magnetic field at the cell
center in Eq. (3.10) by(

B̄x
)
j,k,l

=
1

2

[(
B̄x
)
j+ 1

2 ,k,l
+
(
B̄x
)
j− 1

2 ,k,l

]
, (3.33)(

B̄y
)
j,k,l

=
1

2

[(
B̄y
)
j,k+ 1

2 ,l
+
(
B̄y
)
j,k− 1

2 ,l

]
, (3.34)(

B̄z
)
j,k,l

=
1

2

[(
B̄z
)
j,k,l+ 1

2

+
(
B̄z
)
j,k,l− 1

2

]
. (3.35)

B. Tetrad frame

To evaluate the numerical fluxes through cell inter-
faces (e.g. Eq. (3.5)), we implement HLL-type Riemann
solvers [1, 2]. Because these Riemann solvers are designed
to solve a Riemann problem in Minkowski spacetime (ex-
cept for the HLLE solver, which we have implemented
directly in curved spacetime, see, e.g., Ref. [82]), it is nec-
essary to transform all the equations into a tetrad frame
in order to apply these methods to a general relativistic
framework.

Following Ref. [83], we define a tetrad basis in the x-
direction, for example, by

e(t̂)
µ = nµ, (3.36)

e(x̂)
µ = B̂

(
0, γxi

)
, (3.37)

e(ŷ)
µ = D̂ (0, 0, γzz,−γyz) , (3.38)

e(ẑ)
µ = Ĉ (0, 0, 0, 1) , (3.39)

where

B̂ =
1√
γxx

, (3.40)

Ĉ =
1√
γzz

, (3.41)

D̂ =
1√

γzz
(
γyyγzz − γ2

yz

) . (3.42)

With this basis, we can perform a transformation from
the Eulerian frame to the tetrad frame by

V(µ̂) = e(µ̂)
µVµ, (3.43)

Q(µ̂)(ν̂) = e(µ̂)
µe(ν̂)

νQµν , (3.44)

where Vµ and Qµν denote a covariant vector and ten-
sor, respectively, in the Eulerian frame. The covariant
components of the tetrad basis are

e(t̂)µ = nµ, (3.45)

e(x̂)µ = B̂ (βx, δi
x) , (3.46)

e(ŷ)µ = D̂
(
βyγzz − βzγyz, γxyγzz − γxzγyz,

γyyγzz − γ2
yz, 0

)
, (3.47)

e(ẑ)µ = Ĉ (βz, γiz) . (3.48)

With this basis, we can then perform the transformation
from the tetrad frame to the Eulerian frame by

Vµ = e(µ̂)µV
(µ̂), (3.49)

Qµν = e(µ̂)µe(ν̂)νQ
(µ̂)(ν̂). (3.50)

With this tetrad basis the procedure to obtain the nu-

merical flux
(
F̃ xA

)
j+ 1

2 ,k,l
is as follows: first, we calculate

the tetrad component of u(ı̂), v
(ı̂), and B(ı̂) by

u(ı̂) = e(ı̂)µu
µ =

w

α

(
e(ı̂)t + e(ı̂)jv

j
)
, (3.51)

v(ı̂) ≡ u(ı̂)

u(t̂)
=
e(ı̂)

µu
µ

e(t̂)
νuν

=
e(ı̂)t + e(ı̂)jv

j

α
, (3.52)

B(ı̂) = e(ı̂)
µB

µ = e(ı̂)
jB

j . (3.53)

Second, we solve a Riemann problem in the locally
Minkowski spacetime to obtain the numerical flux(
f̃

(x̂)
A

)
j+ 1

2 ,k,l
and the conserved quantities (qA)j+ 1

2 ,k,l
at
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the cell interface (see the next section for more detail on
the Riemann problem). Finally, we transform back to
the Eulerian frame from the tetrad frame by

(F̃ x0 )j+ 1
2 ,k,l

= (Dvx)j+ 1
2 ,k,l

=
(
α
(
e(t̂)

xD + e(x̂)
xf̃

(x̂)
0

))
j+ 1

2 ,k,l
, (3.54)

(F̃ x1 )j+ 1
2 ,k,l

= (αT xx)j+ 1
2 ,k,l

=
(
α
(
e(t̂)

xe(ı̂)xJ(ı̂) + e(x̂)
xe(ı̂)xf̃

(x̂)
i

))
j+ 1

2 ,k,l
, (3.55)

(F̃ x2 )j+ 1
2 ,k,l

= (αT xy)j+ 1
2 ,k,l

=
(
α
(
e(t̂)

xe(ı̂)yJ(ı̂) + e(x̂)
xe(ı̂)y f̃

(x̂)
i

))
j+ 1

2 ,k,l
, (3.56)

(F̃ x3 )j+ 1
2 ,k,l

= (αT xz)j+ 1
2 ,k,l

=
(
α
(
e(t̂)

xe(ẑ)zJ(ẑ) + e(x̂)
xe(ẑ)z f̃

(x̂)
3

))
j+ 1

2 ,k,l
, (3.57)

(F̃ x4 )j+ 1
2 ,k,l

= (−αT xµnµ)j+ 1
2 ,k,l

=
(
α
(
e(t̂)

xρH + e(x̂)
xf̃

(x̂)
4

))
j+ 1

2 ,k,l
, (3.58)

(F̃ x5 )j+ 1
2 ,k,l

= 0, (3.59)

(F̃ x6 )j+ 1
2 ,k,l

=
(
−Ẽz

)
j+ 1

2 ,k,l
= (α∗F yx)j+ 1

2 ,k,l

=
(
α
(
e(ı̂)

ye(t̂)
xB̄(ı̂) − e(t̂)

ye(x̂)
xB̄(x̂)

+ e(ŷ)
ye(x̂)

xf̃
(x̂)
6

))
j+ 1

2 ,k,l
, (3.60)

(F̃ x7 )j+ 1
2 ,k,l

=
(
Ẽy

)
j+ 1

2 ,k,l
= (α∗F zx)j+ 1

2 ,k,l

=
(
α
(
e(ı̂)

ze(t̂)
xB̄(ı̂) − e(t̂)

ze(x̂)
xB̄(x̂)

+ e(ŷ)
ze(x̂)

xf̃
(x̂)
6 + e(ẑ)

ze(x̂)
xf̃

(x̂)
7

))
j+ 1

2 ,k,l
, (3.61)

where ı̂ = x̂, ŷ, ẑ are contracted with i = 1, 2, 3, re-
spectively, in the second term of the right-hand side of
Eqs. (3.55) and (3.56). Note that, from now on, we do
not distinguish the upper- and lower-spatial tetrad com-
ponents, e.g., B(ı̂) = B(ı̂). These numerical fluxes are
used to update the conserved quantities in Eq. (3.10).
An interface velocity is calculated by [83]

v
(x̂)
interface =

dx̂

dt̂
=

βx

α
√
γxx

. (3.62)

This velocity is used to calculate a numerical flux at the
interface (see Eqs. (3.67) and (3.87) in the next section).
The tetrad basis and numerical fluxes in the y- and z-
directions are summarized in Appendix A.

C. HLLC solver for relativistic hydrodynamics

In the absence of electromagnetic fields, Eq. (3.10) with
A ∈ [0, 4] are reduced to those of relativistic hydrody-
namics. In this case, one choice for the Riemann solver

x

z
y

(By)j,k+1/2,l (Ez)j+1/2,k+1/2,l

(Bz)j,k,l+1/2

(Bx)j+1/2,k,l

(Ey)j+1/2,k,l+1/2

(QA)j,k,l

(Ex)j,k+1/2,l+1/2
∼

∼

∼

FIG. 1. Schematic of a cell, cell interface, and cell
edge for the finite volume method with the constrained
transport method. Fluid quantities, (Q̄A)j,k,l, are de-
fined at the cell center. The magnetic field com-
ponents, (B̄x)j+ 1

2
,k,l, (B̄

y)j,k+ 1
2
,l, (B̄

z)j,k,l+ 1
2
, are defined

at the cell interfaces. The electric field components,
(Ẽx)j,k+ 1

2
,l+ 1

2
, (Ẽy)j+ 1

2
,k,l+ 1

2
, (Ẽz)j+ 1

2
,k+ 1

2
,l, are defined at

the cell edges.

is the HLLC solver proposed in Ref. [1]. We calculate the

HLLC flux
(
f̃

(x̂)
A

)
j+ 1

2 ,k,l
in the tetrad frame by solving

the source-free one-dimensional conservation law:

∂(t̂)qA + ∂(x̂)f
(x̂)
A = 0, (3.63)

qA =

 D
J(ı̂)

ρH

 , (3.64)

f
(x̂)
A =

 Dv(x̂)

J(ı̂)v
(x̂) + Pδ(x̂)

(ı̂)

ρHv
(x̂) + Pv(x̂)

 , (3.65)

where ∂(µ̂) ≡ e(µ̂)
µ∂µ. Given an initial condition de-

scribed by

qA(x, 0) =

{
(qA)L if x < xj+ 1

2
,

(qA)R if x > xj+ 1
2
,

(3.66)

for xj ≤ x ≤ xj+1, three characteristic speeds and there-
fore four states will appear in the Riemann fan (see
Fig. 2). In the HLLC solver, one needs to find the pres-
sure in the intermediate states (the cL and cR states)
which satisfies a jump condition. Then, the numerical
flux is calculated by (see the left panel of Fig. 2)(

f̃
(x̂)
A

)
j+ 1

2

=


(f

(x̂)
A )L if λL > v

(x̂)
interface

(f
(x̂)
A )cL if λL < v

(x̂)
interface < λc

(f
(x̂)
A )cR if λc < v

(x̂)
interface < λR

(f
(x̂)
A )R if λR < v

(x̂)
interface,

(3.67)
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L

xj+1/2

R

(a) HLLC 

cRcL

L R

(b) HLLD

cRcL
aRaL

xj+1/2

FIG. 2. Riemann fan structure for the HLLC solver for relativistic hydrodynamics (left), and for the HLLD solver for relativistic
magnetohydrodynamics (right) in the tetrad frame. In the HLLC solver (left panel), the left-going nonlinear wave with λL,
the contact discontinuity with λc, and the right-going nonlinear wave with λR, propagate from the discontinuity located at
x̂j+ 1

2
, where λL,c,R denotes the characteristic speed of each wave. Consequently, the L, cL, cR, and R states appear. In

the HLLD solver (right panel), the left/right-propagating fast wave with λL/λR, the left/right-propagating Alfvén wave with
characteristic speed λaL/λaR, and the contact discontinuity with λc, are taken into account. Consequently, the L, aL, cL, cR,
aR, and R states appear. In the general relativistic case, the interface initially located at x̂j+ 1

2
may move with an interface

velocity v
(x̂)
interface which is proportional to the shift vector βx.

where(
f

(x̂)
A

)
L/R

= f
(x̂)
A

(
qL/R

)
, (3.68)(

f
(x̂)
A

)
cL/cR

=
(
f

(x̂)
A

)
L/R

+ λL/R

(
(qA)cL/cR − (qA)L/R

)
, (3.69)

and λL/R is the characteristic speed of the left/right-
going nonlinear wave. Equation (3.69) is obtained from
the jump condition and λc is the characteristic speed
of the contact discontinuity. By imposing continuity of
the pressure across the contact discontinuity, one finds a
quadratic equation for λc [1]:

FHLL
ρH

λ2
c −

(
ρHLL

H + FHLL
J(x̂)

)
λc + JHLL

(x̂) = 0, (3.70)

where ρHLL
H , JHLL

(x̂) , FHLL
ρH

, and FHLL
J(x̂)

denote conserved

quantities and fluxes in the HLL state:

JHLL
(x̂) =

λRJ
R
(x̂) − λLJL(x̂) + f

(x̂)
1,L − f

(x̂)
1,R

λR − λL
, (3.71)

ρHLL
H =

λRρ
R
H − λLρLH + f

(x̂)
4,L − f

(x̂)
4,R

λR − λL
, (3.72)

FHLL
J(x̂)

=
λRf

(x̂)
1,L − λLf

(x̂)
1,R + λRλL

(
JR(x̂) − JL(x̂)

)
λR − λL

, (3.73)

FHLL
ρH

=
λRf

(x̂)
4,L − λLf

(x̂)
4,R + λRλL

(
ρRH − ρLH

)
λR − λL

. (3.74)

Once we obtain the speed of the contact discontinuity λc,
the pressure in the intermediate state is determined by

Pc ≡ PcL = PcR = −λcFHLL
ρH

+ FHLL
J(x̂)

. (3.75)

Then the conserved quantities in the cL and cR states
are given by

DcL/cR =
DL/R

(
λL/R − v(x̂)

L/R

)
λL/R − λc

, (3.76)

(
J(ı̂)

)
cL/cR

=
1

λL/R − λc
×
[(
J(ı̂)

)
L/R

(
λL/R − v(x̂)

L/R

)
+ (Pc − PL/R)δ(x̂)

(ı̂)

]
,

(3.77)

(ρH)cL/cR =
(ρH)L/R

(
λL/R − v(x̂)

L/R

)
+ Pcλc − PL/Rv(x̂)

L/R

λL/R − λc
,

(3.78)

where the subscripts cL and cR on the left-hand side
of the equations correspond to L and R on the right-
hand side, respectively. These quantities can be used to
evaluate the flux in the cL/cR state (3.69) and the flux
in the Eulerian frame (see, e.g., Eq. (3.54)).

For the left and right characteristic speeds λL/R, we
apply Davis’s estimate [1]:

λL = min(λ−(qL), λ−(qR)), (3.79)

λR = max(λ+(qL), λ+(qR)), (3.80)
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and

λ±(qA) =
1

1− v2c2s

[
v(x̂)

(
1− c2s

)
±cs

√
(1− v2)(1− v2c2s − (1− c2s)(v(x̂))2)

]
,

(3.81)

where

v2 = v(ı̂)v(ı̂), (3.82)

c2s =
1

h

[
∂P

∂ρ

∣∣∣
ε

+
P

ρ2

∂P

∂ε

∣∣∣
ρ

]
. (3.83)

The equivalent expressions in the y- and z-directions are
given by permutation of the indices x, y, and z.

D. HLLD solver for relativistic
magnetohydrodynamics

In the presence of an electromagnetic field, one choice
for the Riemann solver is the HLLD solver proposed in
Ref. [2]. For this case, we calculate the HLLD flux,(
f̃

(x̂)
A

)
j+ 1

2 ,k,l
in the tetrad frame by solving the one-

dimensional conservation law:

∂(t̂)qA + ∂(x̂)f
(x̂)
A = 0, (3.84)

where

qA =


D
J(ı̂)

ρH

B(ı̂)

 , (3.85)

f
(x̂)
A =

Dv(x̂)

J(ı̂)v
(x̂) + Ptotδ

(x̂)
(ı̂) − B(x̂)

w2

[
B(ı̂) + (B(k̂)u(k̂))u(ı̂)

]
ρHv

(x̂) + Ptotv
(x̂) − 1

w (B(k̂)u(k̂))B
(x̂)

v(x̂)B(ı̂) − v(ı̂)B(x̂)

 .

(3.86)

Here, qA has seven components (A = 0, 1, 2, 3, 4, 6, 7),
and Ptot ≡ P + b2/2 is the total pressure (gas plus
magnetic). Note that the equation for B(x̂) is simply
∂(t̂)B

(x̂) = 0, and thus, B(x̂) is constant for the Riemann
problem of the x-direction. Together with the initial con-
dition given by Eq. (3.66) for the relevant components,
the full magnetohydrodynamics Riemann fan consists of
seven waves separating eight states [80]. In the HLLD
solver two of these seven waves (the slow magnetosonic
waves) are neglected. As a result, the Riemann fan with
the HLLD solver consists of five waves separating six
states (see Fig. 2). In the HLLD solver, we need to find
the total pressure Ptot which satisfies a jump condition

across the five waves. The numerical flux is then given
by (see the right-hand panel of Fig. 2)(

f̃
(x̂)
A

)
j+ 1

2

=



(f
(x̂)
A )L if λL > v

(x̂)
interface

(f
(x̂)
A )aL if λL < v

(x̂)
interface < λaL

(f
(x̂)
A )cL if λaL < v

(x̂)
interface < λc

(f
(x̂)
A )cR if λc < v

(x̂)
interface < λaR

(f
(x̂)
A )aR if λaR < v

(x̂)
interface < λR

(f
(x̂)
A )R if λR < v

(x̂)
interface,

(3.87)

where(
f

(x̂)
A

)
L/R

= f
(x̂)
A

(
qL/R

)
, (3.88)(

f
(x̂)
A

)
aL/aR

=
(
f

(x̂)
A

)
L/R

+ λL/R

(
(qA)aL/aR − (qA)L/R

)
, (3.89)(

f
(x̂)
A

)
cL/cR

=
(
f

(x̂)
A

)
aL/aR

+ λaL/aR
(
(qA)cL/cR − (qA)aL/aR

)
.

(3.90)

The latter two fluxes are obtained from the jump condi-
tion.

In the following subsections, we present specific quan-
tities employed by the HLLD solver: the characteristic
speeds of the five waves, and the six states.

1. Characteristic speeds

For the fast waves, an approximate characteristic speed
proposed in Refs. [82, 84] is given by

λ±FW(qA) =
1

1− v2ζ

[
v(x̂) (1− ζ)

±
√
ζ
√

(1− v2)(1− v2ζ − (1− ζ)(v(x̂))2)

]
,

(3.91)

where

v2 = v(ı̂)v(ı̂), (3.92)

ζ = v2
A + c2s − v2

Ac
2
s, (3.93)

v2
A =

b2

ρh+ b2
. (3.94)

For the Alfvén wave, the characteristic speed is given by

λ±Alf(qA) =
b(x̂) ± u(x̂)

√
ρh+ b2

b(t̂) ± u(t̂)
√
ρh+ b2

, (3.95)

and for the contact wave by

λc(qA) = v(x̂). (3.96)
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2. L/R state

Given left- and right-state quantities, we first calculate
the following quantities which should be preserved when
one crosses the fast waves:

(RD)L/R =
(
λD − f (x̂)

0

)
L/R

, (3.97)(
RJ(ı̂)

)
L/R

=
(
λJ(ı̂) − f (x̂)

i

)
L/R

, (3.98)

(RρH
)L/R =

(
λρH − f (x̂)

4

)
L/R

, (3.99)(
RB(k̂)

)
L/R

=
(
λB(k̂) − f (x̂)

k

)
L/R

, (3.100)

where ı̂ = x̂, ŷ, ẑ for i = 1, 2, 3, respectively, in Eq. (3.98).

Also k̂ = ŷ, ẑ for k = 6, 7, respectively, in Eq. (3.100). For
the above quantities, we employ the characteristic speed
defined by

λL = min
(
λ−FW(qL), λ−FW(qR)

)
,

λR = max
(
λ+

FW(qL), λ+
FW(qR)

)
. (3.101)

3. aL/aR state

Given an initial guess for the unknown total pressure
Ptot (which should be constant inside the Riemann fan),
the three velocities in the aL and aR states are given by(
v(x̂)

)
aL/aR

=

(
B(x̂)(AB(x̂) + λC)− (A+G)(Ptot +RJ(x̂)

)

X

)
L/R

,

(3.102)(
v(ŷ)

)
aL/aR

=

(
QRJ(ŷ)

+RB(ŷ) [C +B(x̂)(λRJ(x̂)
−RρH)]

X

)
L/R

,

(3.103)(
v(ẑ)

)
aL/aR

=

(
QRJ(ẑ)

+RB(ẑ) [C +B(x̂)(λRJ(x̂)
−RρH)]

X

)
L/R

,

(3.104)

where

A = RJ(x̂)
− λRρH

+ Ptot(1− λ2), (3.105)

G = RB(ŷ)RB(ŷ) +RB(ẑ)RB(ẑ) , (3.106)

C = RJ(ŷ)
RB(ŷ) +RJ(ẑ)

RB(ẑ) , (3.107)

Q = −A−G+ (B(x̂))2(1− λ2), (3.108)

X = B(x̂)(AλB(x̂) + C)− (A+G)(λPtot +RρH
).

(3.109)

Note that aL and aR on the left-hand side of
Eqs. (3.102)–(3.104) correspond to L and R for RJ(ı̂)

,
RρH , RB(k̂) , and λ on the right-hand side of the same
equations, respectively. With these velocity components,
the magnetic field is calculated from the jump condition
by

(
B(k̂)

)
aL/aR

=

(
RB(k̂)

)
L/R
−B(x̂)

(
v(k̂)

)
aL/aR

λL/R −
(
v(x̂)

)
aL/aR

(3.110)

for k̂ = ŷ, ẑ. The total enthalpy density is calculated by

(ρhtot)aL/aR ≡ (ρh+ b2)aL/aR

= Ptot +
(RρH)L/R −

(
v(ı̂)
)
aL/aR

(
RJ(ı̂)

)
L/R

λL/R −
(
v(x̂)

)
aL/aR

. (3.111)

The conserved quantities necessary for the numerical flux
in Eq. (3.89) and in the Eulerian frame (see Eqs. (3.54)–
(3.61)) are calculated by

DaL/aR =
(RD)L/R

λL/R −
(
v(x̂)

)
aL/aR

, (3.112)

(ρH)aL/aR =

(RρH
)L/R + Ptot

(
v(x̂)

)
aL/aR

−
(
v(k̂)B(k̂)

)
aL/aR

B(x̂)

λL/R −
(
v(x̂)

)
aL/aR

,

(3.113)(
J(ı̂)

)
aL/aR

=
(

(ρH + Ptot)v
(ı̂) − (v(k̂)B(k̂))B(ı̂)

)
aL/aR

.

(3.114)

4. cL/cR state

Following Ref. [2], we first define

σ(µ̂) = ηu(µ̂) + b(µ̂), (3.115)

η = ±sgn(B(x̂))
√
ρhtot, (3.116)

where the plus (minus) sign corresponds to the right (left)

state. We then define K(k̂) by

K(k̂) ≡ σ(k̂)

σ(0̂)
= v(k̂) +

B(k̂)

wσ(0̂)
. (3.117)

Here K(x̂) is nothing other than the Alfvén wave speed
in the x-direction. From the jump condition one can find

that K(ı̂), ρhtot, D/wσ
(0̂), and η do not change across the

Alfvén waves. Therefore, η, K(ı̂), and the total enthalpy
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density are calculated by

ηcL/cR = ηaL/aR, (3.118)

(K(ı̂))cL/cR = (K(ı̂))aL/aR

=

(
RJ(ı̂)

)
L/R

+ Ptotδ(ı̂)(x̂) +
(
R
B(î)

)
L/R

ηaL/aR

λL/RPtot + (RρH
)L/R +B(x̂)ηaL/aR

,

(3.119)

(ρhtot)cL/cR = (ρhtot)aL/aR, (3.120)

where cL and cR on the left-hand side of the equations
correspond to aL and aR on the right-hand side of the
same equations, respectively.

The magnetic field and the three velocity in the cL and
cR states are calculated by

(B(k̂))cL = (B(k̂))cR

=
[{

B(k̂)(λ− v(x̂)) +B(x̂)v(k̂)
}
aR

−
{
B(k̂)(λ− v(x̂)) +B(x̂)v(k̂)

}
aL

] 1

λaR − λaL
, (3.121)

(v(ı̂))cL/cR =

(
K(ı̂) − B(ı̂)(1−K(k̂)K(k̂))

η −K(l̂)B(l̂)

)
cL/cR

,

(3.122)

and the characteristic speed is

λaL/aR = K
(x̂)
aL/aR. (3.123)

We impose the continuity condition on the normal ve-

locity across the contact discontinuity, i.e., v
(x̂)
cL = v

(x̂)
cR ,

by

∆K(x̂)
[
1−B(x̂) (YR − YL)

]
= 0, (3.124)

YL/R =

(
1−K(ı̂)K(ı̂)

η∆K(x̂) −∆K(x̂)K(ĵ)B(ĵ)

)
cL/cR

, (3.125)

where ∆K(x̂) = K
(x̂)
aR − K

(x̂)
aL . This equation gives an

improved guess of the total pressure in the next itera-
tion step. Then we go back to Eq. (3.102) and repeat
the same procedure until it converges with sufficient ac-
curacy. In practice, we employ the Newton-Raphson
method to solve Eq. (3.124).

The conserved quantities necessary for the numeri-
cal flux in Eq. (3.90) and in the Eulerian frame (see

Eqs. (3.54)–(3.61)) are

DcL/cR = DaL/aR

λaL/aR − v(x̂)
aL/aR

λaL/aR − v(x̂)
cL/cR

, (3.126)

(ρH)cL/cR =
1

λaL/aR − v(x̂)
cL/cR

×
[
λaL/aR (ρH0)aL/aR −

(
J(x̂)

)
aL/aR

+ Ptotv
(x̂)
cL/cR

− (v(ı̂)B(ı̂))cL/cRB
(x̂)
]
, (3.127)(

J(ı̂)

)
cL/cR

=
(

(ρH)cL/cR + Ptot

)
v

(ı̂)
cL/cR

− (v(k̂)B(k̂))cL/cRB
(ı̂)
cL/cR. (3.128)

The equivalent expressions in the y- and z-directions
are given by permutation of the indices x, y, and z.

E. Electric-field evaluation

The constrained transport method used to enforce the
divergence-free condition on the magnetic field requires
us to evaluate the electric field defined at the cell edges.
Gardiner and Stone [3] proposed a method for evaluating
the electric-field by utilizing the numerical fluxes which
are obtained by the Riemann solver. In their method, for
example, the z-component of the electric field is evalu-
ated by

Ẽzj+ 1
2 ,k+ 1

2 ,l
=

1

4

(
Ẽzj+ 1

2 ,k,l
+ Ẽzj+ 1

2 ,k+1,l

+ Ẽzj,k+ 1
2 ,l

+ Ẽzj+1,k+ 1
2 ,l

)
+

∆y

8

((
∂Ez

∂y

)
j+ 1

2 ,k+ 1
4 ,l

−
(
∂Ez

∂y

)
j+ 1

2 ,k+ 3
4 ,l

)

+
∆x

8

((
∂Ez

∂x

)
j+ 1

4 ,k+ 1
2 ,l

−
(
∂Ez

∂x

)
j+ 3

4 ,k+ 1
2 ,l

)
(3.129)

where(
∂Ez

∂y

)
j+ 1

2 ,k+ 1
4 ,l

=



2

(
Ẽz

j,k+ 1
2
,l
−Ez

j,k,l

)
∆y for ṽx

j+ 1
2 ,k,l

> 0,

2

(
Ẽz

j+1,k+ 1
2
,l
−Ez

j+1,k,l

)
∆y for ṽx

j+ 1
2 ,k,l

< 0,(
Ẽz

j,k+ 1
2
,l
−Ez

j,k,l+Ẽ
z

j+1,k+ 1
2
,l
−Ez

j+1,k,l

)
∆y otherwise,
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∂Ez

∂y

)
j+ 1

2 ,k+ 3
4 ,l

=



2

(
Ez

j,k+1,l−Ẽ
z

j,k+ 1
2
,l

)
∆y for ṽx

j+ 1
2 ,k+1,l

> 0,

2

(
Ez

j+1,k+1,l−Ẽ
z

j+1,k+ 1
2
,l

)
∆y for ṽx

j+ 1
2 ,k+1,l

< 0,(
Ez

j,k+1,l−Ẽ
z

j,k+ 1
2
,l

+Ez
j+1,k+1,l−Ẽ

z

j+1,k+ 1
2
,l

)
∆y otherwise,

(
∂Ez

∂x

)
j+ 1

4 ,k+ 1
2 ,l

=



2

(
Ẽz

j+ 1
2
,k,l
−Ez

j,k,l

)
∆x for ṽy

j,k+ 1
2 ,l
> 0,

2

(
Ẽz

j+ 1
2
,k+1,l

−Ez
j,k+1,l

)
∆x for ṽy

j,k+ 1
2 ,l
< 0,(

Ẽz

j+ 1
2
,k,l
−Ez

j,k,l+Ẽ
z

j+ 1
2
,k+1,l

−Ez
j,k+1,l

)
∆x otherwise,

(
∂Ez

∂x

)
j+ 3

4 ,k+ 1
2 ,l

=



2

(
Ez

j+1,k,l−Ẽ
z

j+ 1
2
,k,l

)
∆x for ṽy

j+1,k+ 1
2 ,l
> 0,

2

(
Ez

j+1,k+1,l−Ẽ
z

j+ 1
2
,k+1,l

)
∆x for ṽy

j+1,k+ 1
2 ,l
< 0,(

Ez
j+1,k,l−Ẽ

z

j+ 1
2
,k,l

+Ez
j+1,k+1,l−Ẽ

z

j+ 1
2
,k+1,l

)
∆x otherwise.

.

Here ṽx
j+ 1

2 ,k,l
and Ẽz

j+ 1
2 ,k,l

are identical to the fluxes(
F̃ x0

)
j+ 1

2 ,k,l
and

(
−F̃ x6

)
j+ 1

2 ,k,l
in Eqs. (3.54) and (3.60),

which are given by the Riemann solver in the x-direction.
Similarly, ṽy

j,k+ 1
2 ,l

and Ẽz
j,k+ 1

2 ,l
are given by the Riemann

solver in the y-direction. Ezj,k,l is calculated from the

quantities defined at the cell center, i.e., Eqs. (3.33)–
(3.35) and the three velocity. Therefore, the accuracy of
this constrained transport scheme depends on the accu-
racy of an employed Riemann solver. Equivalent expres-
sions for the x- and y-components of the electric field are
given by permutation of the indices x, y, and z. These
electric fields are used to update the magnetic field in
Eqs. (3.30)–(3.32).

In the rest of this paper, we refer to this particular al-
gorithm for evaluating the electric field as CT GS. On the
other hand, the electric-field evaluation algorithm which
was originally implemented in our code, and which is
based on HLLE [4, 82], is referred to as CT HLLE [82].
For the base Riemann solver, we use either HLLC, HLLD,
or HLLE. Here the last one is the base Riemann solver
which was originally implemented in our code [82]. In

the hydrodynamics test simulations shown in the next
section, we refer to the particular combination of numer-
ical schemes used in a particular test problem in terms
of the base solver, only. In the magnetohydrodynamics
test simulations, we describe a simulation both in terms
of the base Riemann solver and in terms of the algorithm
used for the evaluation of the electric-field. For exam-
ple, HLLD-CT GS means that the (base) Riemann solver
is HLLD and the electric-field evaluation is CT GS.

IV. VALIDATION OF THE HLLC AND HLLD
SOLVERS

In this section, we introduce various problems designed
to test the implementation of the advanced Riemann
solvers and constrained transport algorithm discussed in
the previous section. We start with a common suite of
one-dimensional special relativistic shock-tube problems
in both hydrodynamics and magnetohydrodynamics (see
Sec. IV A). Next, in Sec. IV B, we turn our attention to
multi-dimensional hydrodynamics and magnetohydrody-
namics test problems in special relativity (specifically,
we consider a two-dimensional hydrodynamical shock, a
cylindrical hydrodynamical blast wave, a magnetohydro-
dynamical current sheet, and the Kelvin-Helmholtz in-
stability in magnetohydrodynamics). In Sec. IV C we
consider Bondi flow onto a black hole (in both hydrody-
namics and magnetohydrodynamics) as a test problem in
general relativity with a static spacetime.

For all the test problems we assume a Γ-law equation
of state given by

P = (Γ− 1) ρε. (4.1)

We also employ a cell-centered grid structure in which
the x-coordinate [85] is given by

xj =

(
j +

1

2

)
∆x, (4.2)

with j ∈ [−Nx − 1, Nx] and grid spacing ∆x (and like-
wise for the y- and z-components). As a time integra-
tor, we employ the fourth-order Runge-Kutta method
(RK4) in all our test simulations. For reconstruction of
the solution at cell-interfaces, we employ either 1st-order
reconstruction or 3rd-order piecewise parabolic method
(PPM) [82, 86]. For the PPM reconstruction, we employ
the min-mod limiter function with a compression param-
eter which is generally set to b = 2 [82], though in some
cases we employ different values of b.

A. Special relativistic one-dimensional problems

First, we consider special relativistic problems in one
spatial dimension. With this setup, the tetrad basis in
Sec. III B is reduced to a coordinate vector in Minkowski
spacetime. Thus, the setup is suitable for validating the
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TABLE I. Initial conditions used for special relativistic one-dimensional test problems. The third column shows the Γ index
and the second-to-last column shows the final time of the simulations, t.

Test problem State Γ ρ vx vy vz P Bx By Bz t CFL

Problem HD1 L 4/3 1 0.9 0 0 1 – – – 0.4 0.8

R 1 0 0 0 10 – – –

Problem HD2 L 5/3 1 −0.6 0 0 10 – – – 0.4 0.8

R 10 0.5 0 0 20 – – –

Problem HD3 L 5/3 10 0 0 0 40 – – – 0.4 0.8

R 1 0 0 0 3 – – –

Problem HD4 L 5/3 1 0 0 0 103 – – – 0.4 0.8

T 1 0 0 0 10−2 – – – 0.4 0.8

Problem MHD1 L 5/3 10 0 0.7 0.2 1 5 1 0.5 1 0.8

R 1 0 0.7 0.2 1 5 1 0.5

Problem MHD2 L 5/3 1 0.4 −0.3 0.5 1 2.4 1 −1.6 1 0.8

R 1 0.377347 −0.482389 0.424190 1 2.4 −0.1 −2.1728213

Problem MHD3 L 2 1 0 0 0 1 0.5 1 0 0.4 0.8

R 0.125 0 0 0 0.1 0.5 −1 0

Problem MHD4 L 5/3 1.08 0.4 0.3 0.2 0.95 2 0.3 0.3 0.55 0.8

R 1 −0.45 −0.2 0.2 1 2 −0.7 −0.5

Problem MHD5 L 5/3 1 0.999 0 0 0.1 10 7 7 0.4 0.8

R 1 −0.999 0 0 0.1 10 −7 −7

Problem MHD6 L 5/3 1 0 0.3 0.4 5 1 6 2 0.5 0.8

R 0.9 0 0 0 5.3 1 5 2

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8
x

0

2

4

6

8

ρ

HLLC

HLLE

1st-order

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6
x

2

4

6

8

10

ρ

HLLC

HLLE

1st-order

FIG. 3. Left: Rest-mass density profile for Problem HD1 at t = 0.4 (contact wave located between left- and right-propagating
shock waves). The blue and green curves show the results with the HLLC and HLLE solvers, respectively. The dashed and solid
curves show the results with 1st-order reconstruction and 3rd-order (PPM) reconstruction, respectively. Right: Rest-mass
density profile for Problem HD2 at t = 0.4 (contact wave located between left- and right-propagating rarefaction waves). We
employ RK4 for the time integration in all the simulations. The blue and green solid curves are indistinguishable on the scale
of this plot.

Riemann solvers described in Sec. III C and III D. We
assume Minkowski metric, and thus turn off the solver for
Einstein’s equations in the code. The initial conditions
for all the one-dimensional test problems are summarized
in Table I. We note that the test suite employed in this
paper is the same as that presented in Refs. [2, 87].

1. Hydrodynamics: one-dimensional shock tubes

The first special relativistic hydrodynamics test (HD1)
is the computation of a contact discontinuity. For this
we prepare a simulation domain of x ∈ [−1, 1] with
∆x = 0.01 and Nx = 100. We integrate the numeri-
cal solution up to t = 0.4. In the left panel of Fig. 3
we plot the rest-mass density profile at the end of the
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FIG. 4. Same as Fig. 3, but for Problem HD3 (left) and Problem HD4 (right).

simulation. In this problem, left- and right-propagating
shock waves appear from the initial discontinuity, with
a contact discontinuity sandwiched between them. The
blue and green curves denote the numerical solution with
the HLLC and HLLE solvers, respectively. The solid and
dashed curves denote the simulation results with 3rd-
order PPM reconstruction and 1st-order reconstruction,
respectively. First, we consider the results obtained with
1st-order reconstruction (dashed curves). With the HLLC
solver, the contact discontinuity located at x ≈ 0.2 is
more sharply captured than with the HLLE solver. This
behavior is expected since the HLLC solver explicitly re-
stores the contact wave inside the Riemann fan. When we
employ 3rd-order reconstruction, however, we find that
there is no qualitative difference between the two solvers.
This suggests that the weak point of a particular solver
may be alleviated by using a high enough resolution.

The right panel of Fig. 3 shows the rest-mass density
profile for the second test problem (Problem HD2) listed
in Table I. The simulation domain and the grid spacing
are the same as those in Problem HD1. In this problem,
left- and right-going rarefaction waves propagate away
from the initial discontinuity, and a contact discontinu-
ity appears between the two and is located at x ≈ −0.1.
As in our first test problem, we find that the contact dis-
continuity is more sharply captured with the HLLC solver
than that with the HLLE solver when 1st-order recon-
struction is used, while we find no qualitative difference
between the numerical solutions obtained with the two
solvers when we employ 3rd-order-accurate reconstruc-
tion.

The third hydrodynamics test problem (Problem HD3
in Table I) is the often-employed shock-tube problem.
Here, the simulation domain spans x ∈ [−0.5, 0.5] with
∆x = 0.005 and Nx = 100. In this problem, the initial
discontinuity decays into a left-propagating rarefaction
wave and a right-propagating shock wave. The contact
discontinuity adjacent to the shock wave also propagates
to the right. The left panel of Fig. 4 shows the rest-mass
density profile at the end of the simulation for which
the contact discontinuity is located at x ≈ 0.25. In this

problem, we find that there is no qualitative difference
between the numerical solutions with the two solvers ir-
respective of the cell reconstruction accuracy. This be-
haviour is also reported in Ref. [1]. For obtaining an ac-
curate result for this particular shock-tube problem it is
necessary to employ an accurate reconstruction method.
This suggests that employing an accurate reconstruc-
tion method is as important as employing an accurate
solver in numerical hydrodynamics at least in the one-
dimensional problems.

For the fourth (final) hydrodynamics test problem
(Problem HD4), we employ a simulation domain of x ∈
[−0.5, 0.5] with a grid spacing of ∆x = 0.0025, i.e.,
Nx = 200. The solution consists of a left-propagating rar-
efaction wave and a right-propagating shock wave. Note
that the result differs from that in Problem HD3 as the
shock is much stronger compared to the one in Problem
HD3 because of the initial large pressure jump (see Table
I). A right-propagating contact discontinuity appears ad-
jacent to the shock wave. We plot the rest-mass density
profile at t = 0.4 in the right panel of Fig. 4. We find that
the contact discontinuity (located at x ≈ 0.35) is more
sharply resolved with the HLLC solver than with the HLLE
solver when we employ 3rd-order reconstruction. We find
that the compression parameter b for the min-mod func-
tion in the PPM cell reconstruction should be reduced to
be 1 in this problem (i.e., a steep limiter function does
not work; see, e.g., Ref. [82]). Otherwise, spurious waves
appear irrespective of which solver is used (not shown).

2. Magnetohydrodynamics: one-dimensional shock tubes

In this section we consider six special relativistic mag-
netohydrodynamics test problems in one spatial dimen-
sion. All the test problems except for Problem MHD6
are carried out in a domain of size x ∈ [−0.5, 0.5] with
grid spacing ∆x = 0.005 (i.e., Nx = 100). For Problem
MHD6, the domain is identical but we employ a higher
resolution with ∆x = 0.0025 and Nx = 200.

In the first problem (Problem MHD1 in Table I) the so-
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FIG. 5. Left: Rest-mass density profile in Problem MHD1 (a problem with a stationary contact discontinuity) at t = 1. The
blue, green, and cyan curves present the result with the HLLD-CT GS, HLLD-CT HLLE, and HLLE-CT HLLE solvers, respectively. The
solid and dashed curves show the results with 3rd-order PPM cell reconstruction and 1st-order cell reconstruction, respectively.
Right: Same as the left panel, but for the By profile in Problem MHD2 (a problem with a stationary rotational discontinuity).
The insets are a close-up of the discontinuity with the HLLD-CT GS solver and 1st-order cell reconstruction.
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FIG. 6. Profile of the rest mass density (top-left), the x-component of the three velocity (top-right), the y-component of the
three velocity (bottom-left), and the y-component of the magnetic field (bottom-right) at t = 0.4 in Problem MHD3. The
blue, green, and cyan curves denote the numerical solution with the HLLD-CT GS, HLLD-CT HLLE, and HLLE-CT HLLE solvers,
respectively. We employ RK4 with 3rd-order PPM cell reconstruction (solid curves), and also with 1st-order cell reconstruction
(dashed curves).

lution consists of a stationary contact discontinuity. The
left panel of Fig. 5 plots the rest-mass density profile
at the end of the simulation. Because the HLLD-CT GS
and HLLD-CT HLLE solvers exactly capture the contact
discontinuity, the numerical solutions remain stationary

even when we employ 1st-order reconstruction (see the
inset in the left panel of Fig. 5). On the other hand,
with the HLLE-CT HLLE solver, the initial contact discon-
tinuity is broadened because this solver neglects the con-
tact discontinuity inside the Riemann fan. However when



17

−0.4 −0.2 0.0 0.2 0.4
x

1.00

1.25

1.50

1.75

2.00

2.25

2.50

ρ

−0.1 0.0
1.8

2.0

HLLD-CT GS

HLLD-CT HLLE

HLLE-CT HLLE

1st-order

−0.4 −0.2 0.0 0.2 0.4
x

−0.4

−0.2

0.0

0.2

0.4

v
x

HLLD-CT GS

HLLD-CT HLLE

HLLE-CT HLLE

1st-order

−0.4 −0.2 0.0 0.2 0.4
x

−0.2

−0.1

0.0

0.1

0.2

0.3

v
y

HLLD-CT GS

HLLD-CT HLLE

HLLE-CT HLLE

1st-order

−0.4 −0.2 0.0 0.2 0.4
x

0.10

0.12

0.14

0.16

0.18

0.20

0.22

v
z

HLLD-CT GS

HLLD-CT HLLE

HLLE-CT HLLE

1st-order

−0.4 −0.2 0.0 0.2 0.4
x

−1.5

−1.0

−0.5

0.0

B
y

0.1 0.2 0.3

−1.4

−1.2

HLLD-CT GS

HLLD-CT HLLE

HLLE-CT HLLE

1st-order

−0.4 −0.2 0.0 0.2 0.4
x

0.4

0.6

0.8

B
z

−0.35 −0.30 −0.25

0.45

0.50

0.55

0.60

HLLD-CT GS

HLLD-CT HLLE

HLLE-CT HLLE

1st-order

FIG. 7. Profile of the rest mass density (top-left), the x-component of the three velocity (top-right), the y-component of
the three velocity (middle-left), the z-component of the three velocity (middle-right), the y-component of the magnetic field
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cyan curves denote the numerical solution with the HLLD-CT GS, HLLD-CT HLLE, and HLLE-CT HLLE solvers, respectively. We
employ RK4 with 3rd-order PPM cell reconstruction (solid curves), and also with 1st-order reconstruction (dashed curves).
The insets show a close-up of the discontinuity.

we employ 3rd-order (PPM) reconstruction, this spurious
broadening of the contact discontinuity is suppressed, al-
though the contact wave is still not resolved as sharply
as it is with the HLLD solver.

In the second magnetohydrodynamics test problem
(Problem MHD2 in Table I) we model a stationary ro-
tational discontinuity (i.e., an Alfvén wave). The right
panel of Fig. 5 presents the profile of the y-component
of the magnetic field at the end of the simulation. When
we employ 1st-order cell reconstruction, the HLLD-CT GS
solver reproduces the stationary solution (see the inset in

the right panel of Fig. 5). This is because the rotational
discontinuity is captured exactly by the HLLD solver,
and the electric field at the cell edge is evaluated with
the numerical flux, i.e., the electric field at the cell in-
terface, given by the HLLD solver with the CT GS scheme
(see, e.g., Eq. (3.129)). With the HLLD-CT HLLE solver,
on the other hand, the rotational discontinuity is broad-
ened because the electric field at the cell interface given
by the HLLD solver is not used to evaluate the electric
field at the cell edge in the CT HLLE scheme. With the
HLLE-CT HLLE solver, the rotational discontinuity inside
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FIG. 8. Same as Fig. 6, but for Problem MHD5.

the Riemann fan is not captured. As a result, the initial
rotational discontinuity is spuriously broadened. This
drawback is improved by employing 3rd-order PPM cell
reconstruction in the HLLD-CT HLLE and HLLE-CT HLLE
solvers. Note that for this problem, we employ the com-
pression parameter b = 3 in the min-mod function for
the PPM reconstruction in the HLLD-CT GS run. Other-
wise, we find the over- and under-shoot in the vicinity of
the initial rotational discontinuity (not shown) because
the default value of b = 2 is not sufficient to capture the
initial steep profile.

The third magnetohydrodynamics test problem (Prob-
lem MHD3) is the relativistic extension of the Brio-Wu
shock tube [88]. In this problem, the solution consists of
a left-propagating rarefaction wave, a right-propagating
slow shock wave (located at x ≈ 0.18 in Fig. 6), and a
right-propagating rarefaction wave. In addition there is
a right-ward propagating contact discontinuity located
at x ≈ 0.15 in Fig. 6 adjacent to the shock wave. Fi-
nally at x ≈ 0, a compound wave appears. When we use
1st-order reconstruction, the contact discontinuity is cap-
tured more sharply with the HLLD-CT GS solver than with
the HLLD-CT HLLE solver, while the HLLE-CT HLLE solver
cannot capture the contact discontinuity at all if the 1st-
order reconstruction is used. The slow shock is also cap-
tured more sharply with the HLLD-CT GS solver than with
the HLLD-CT HLLE solver, while with the HLLE-CT HLLE
solver the slow shock wave is significantly broadened.
This feature is also found for the compound wave. While

the various waves are better captured in 3rd-order PPM
reconstruction irrespective of the chosen solvers, we find
that the higher order reconstruction method induces ar-
tificial oscillatory behavior behind the compound wave
(in the regions of −0.2 . x . 0) in both the rest-mass
density and in the x-component of the velocity (see also
in the regions of 0.2 . x . 0.4 in the x-component of the
velocity). The amplitude of these oscillations is reduced
when we employ the diffusive compression parameter of
the PPM reconstruction b = 1.

The fourth magnetohydrodynamics test problem
(Problem MHD4) consists of a left (right)-propagating
fast wave located at x ≈ −0.4 (+0.4), a left-propagating
rarefaction wave (x ≈ −0.3), a contact discontinuity
(x ≈ −0.04), a right-propagating slow wave (x ≈ +0.2),
and, finally, a left (right)-propagating Alfvén wave (lo-
cated at x ≈ −0.33 (+0.22)). See Fig. 7 for the so-
lutions (the inset in the By (Bz) panel shows a close-
up region of the right (left) Alfvén waves). When we
employ 1st-order reconstruction, both solvers are able
to capture the fast waves, but the contact discontinu-
ity is captured more sharply with the HLLD-CT GS or
HLLD-CT HLLE solver than with the HLLE-CT HLLE solver
(see the inset in the rest-mass density profile in Fig. 7
which shows a close-up of the contact discontinuity). Ir-
respective of the solvers, it is hard to distinguish the slow
wave and the right-propagating Alfvén wave, and also be-
tween the the rarefaction wave and the left-propagating
Alfvén wave. When we employ 3rd-order PPM recon-
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FIG. 9. Same as Fig. 7, but for Problem MHD6.

struction, on the other hand, we find no qualitative dif-
ference in the numerical solutions between the different
solvers.

For our fifth magnetohydrodynamics test problem
(Problem MHD5) we consider the relativistic collision of
two streams. Figure 8 shows the result at t = 0.4. In this
problem the solution consists of left (right)-propagating
fast waves located at x ≈ −0.3 (+0.3), and left (right)-
propagating slow waves located at x ≈ −0.06 (+0.06).
When we employ 1st-order cell reconstruction, the slow
waves are captured more sharply with the HLLD solvers,
i.e., the HLLD-CT GS or HLLD-CT HLLE solvers than with
the HLLE-CT HLLE solver. On the other hand, the reso-
lution across the outermost fast waves is essentially the
same for all solvers. Irrespective of the solver or recon-
struction method used, a spurious undershoot in the rest-

mass density appears at x ≈ 0. This is known as the wall-
heating problem [89]: it is well-known that Godunov-type
schemes cannot avoid this pathological behavior. As re-
ported in Ref. [2], the undershoot is shallower with the
HLLE-CT HLLE solver due to the solver’s larger numerical
diffusion. When we employ 3rd-order PPM reconstruc-
tion, both the HLLD and HLLE solvers are equally capable
of capturing the slow waves as well as the fast waves.

In the final problem (Problem MHD6) in our one-
dimensional suite, the solution consists of all seven
waves [58]. The numerical results are shown in Fig. 9. In
this problem, a contact discontinuity appears at x ≈ 0.05,
a rarefaction wave propagates to the left of the contact
discontinuity, which can be seen at x ≈ −0.4, and the
rotational discontinuity at x ≈ −0.06 and the slow shock
at x ≈ −0.04 follow the rarefaction wave (see the inset in
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the panel for By in Fig. 9). To the right of the contact
discontinuity, a fast shock propagates up to x ≈ 0.4. The
rotational discontinuity at x ≈ 0.08 and the slow shock
at x ≈ 0.06 follow the fast shock (again, this is most
easily seen in the inset in the panel for By in Fig. 9).

When we use 1st-order cell reconstruction (dashed
curves), the contact discontinuity is resolved only with
the HLLD solvers, i.e. HLLD-CT GS or HLLD-CT HLLE, (see
the panel for ρ in Fig. 9). With 1st-order reconstruc-
tion, however, it is difficult to disentangle the left/right-
propagating rotational discontinuities and left/right-
propagating slow shocks, even with the HLLD solver (see
the dashed curves in the inset in the panel for By in
Fig. 9). When we employ 3rd-order PPM reconstruc-
tion (solid curves), on the other hand, the difference
between the various Riemann solvers is striking. With
the HLLD-CT GS solver, the left/right-propagating rota-
tional discontinuities and slow shocks are captured as
plotted in the inset in the panel for By in Fig. 9. With
the HLLD-CT HLLE or HLLE-CT HLLE solvers, the right-
propagating rotational discontinuity and the left/right-
propagating slow shock are captured, but the left-
propagating rotational discontinuity is not. This demon-
strates the ability of the HLLD-CT GS solver to properly
capture all seven of the emergent waves.

B. Special relativistic multi-dimensional problems

1. Hydrodynamics: two-dimensional shock tube

For our first multi-dimensional special relativistic test
problem, we consider the two-dimensional Riemann prob-
lem first proposed in Ref. [90]. The simulation domain
spans ∈ [−1, 1] in both the x- and y-directions. We set
∆x = ∆y = 0.01 and Nx = Ny = 100. We impose out-
flow boundary conditions in both directions. We use an
adiabatic index of Γ = 5/3. We employ 3rd-order PPM
reconstruction and set the CFL number to be 0.45. Fi-
nally, the initial condition is given by

(ρ, vx, vy, P ) =


(0.1, 0, 0, 0.01) for x, y > 0,

(0.1, 0.99, 0, 1) for x < 0, y > 0,

(0.5, 0, 0, 1) for x, y < 0,

(0.1, 0, 0.99, 1) for x > 0, y < 0.

(4.3)

Figure 10 show the logarithmic contour of the rest-
mass density at t = 0.9 with the HLLC solver (left panel)
and with the HLLE solver (right panel). The most no-
table difference in the solutions between the two solvers
appears around the two tangential discontinuities in the
lower-left portion of the simulation domain. With the
HLLC solver (left panel), the initial tangential discontinu-
ities remain sharp. With the HLLE solver, on the other
hand, spurious waves propagate along each axis from the

initial tangential discontinuities due to numerical diffu-
sion. Unlike the one-dimensional problems, the spurious
diffusion out of the initial tangential discontinuities that
occurs with the HLLE solver cannot be mitigated even
when we employ 3rd-order PPM reconstruction. Thus in
this multi-dimensional test problem we observe a qualita-
tive difference in the solutions between the HLLC and HLLE
solvers that cannot be removed by resorting to higher-
order reconstruction.

2. Hydrodynamics: two-dimensional cylindrical explosion

For the second special relativistic multi-dimensional
test problem, we consider a cylindrical blast wave in two
dimensions. For this problem, we choose the simulation
domain to span x ∈ [−2, 2] and y ∈ [−3, 3], and set
∆x = ∆y = 0.02, i.e., (Nx, Ny) = (100, 150) in the x-
and y-directions, respectively. Periodic boundary condi-
tions are imposed at the x- and y-boundaries. We set
the adiabatic index to Γ = 5/3, employ 3rd-order PPM
reconstruction, and set the CFL number to 0.45. The
initial condition is given by

ρ = 1, P =

{
2.5 for

√
x2 + y2 < 0.5,

0.1 for
√
x2 + y2 > 0.5.

(4.4)

Figure 11 shows the rest-mass density profile at t = 18
with the HLLC solver (left panel) and the HLLE solver
(right panel). By this time, the blast wave has intersected
itself many times, and consequently a Rayleigh-Taylor-
like instability (known in this context as the Richtmyer-
Meshkov instability) has developed [83]. With the HLLC
solver, the Richtmyer-Meshkov instability is well re-
solved, and as a result the density irregularity around
the elliptical figure is sharply captured. By contrast, with
the HLLE solver, the fine structure around the elliptical
figure is not captured well due to the large numerical dif-
fusivity. This demonstrates an effective improvement in
spatial resolution with the HLLC solver compared to that
with the HLLE solver.

3. Magnetohydrodynamics: two-dimensional magnetized
current sheet

Next we consider a two-dimensional problem in rel-
ativistic magnetohydrodynamics: that of a magnetized
current sheet, studied recently by Refs. [75, 83]. The
initial profile for the magnetic field is given by

Bx = B0 tanh
(y
a

)
, (4.5)

where B0 = 1 and a = 0.04. The density is uniform with
ρ = 1 and the fluid is at rest with vi = 0. The thermal
pressure is determined from the force balance with the
magnetic pressure and its profile is given by

P =
B2

0

2
(β + 1)− B2

x

2
, (4.6)
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FIG. 10. Logarithmic contour of the rest-mass density in the two-dimensional Riemann problem at t = 0.9 with the HLLC solver
(left) and HLLE solver (right). We employ RK4 and 3rd-order PPM cell reconstruction.

FIG. 11. Rest-mass density profile in the cylindrical blast wave problem at t = 18 with the HLLC solver (left) and HLLE solver
(right). We employ RK4 and 3rd-order PPM cell reconstruction.

where β is the initial plasma-beta parameter, which
we set to unity. The equilibrium magnetic field is ini-
tially perturbed and the perturbation is given by the z-
component of the vector potential as

δAz = εB0 cos

(
kyy

2

)
cos (kxx) , (4.7)

where kx = 2π/Lx, ky = 2π/Ly, ε = 10−3, and Lx and
Ly denote the domain size in the x- and y-directions,
respectively. We employ a simulation domain consist-
ing of x ∈ [−0.5, 0.5] and y ∈ [−0.25, 0.25]. To check
convergence, we carry out simulations at three differ-
ent resolutions: (Nx, Ny) = (512, 256), (256, 128), and
(128, 64) . We set the CFL number to 0.8 in all simula-
tions. We impose a periodic boundary condition in the
x-direction, and a reflective boundary condition in the

y-direction. With this setup, the maximum Alfvén wave
speed is ≈ 0.557 and the Alfvén timescale is tA ≈ 1.78.

Figure 12 displays colorplots of the thermal pressure
together with the magnetic-field lines at three different
times: t = 10.03tA (left panel), t = 30.08tA (center), and
t = 50.06tA (right). The top, middle, and bottle pan-
els show the numerical solutions with the HLLD-CT GS,
HLLD-CT HLLE, and HLLE-CT HLLE solvers, respectively.
The snapshots are all taken from our highest resolution
runs with (Nx, Ny) = (512, 256). Magnetic field lines re-
connect at y ≈ 0 due to the numerical resistivity inherent
both in the Riemann solvers as well as in the constrained
transport scheme. Once reconnection starts, the profile
of the magnetic-field lines changes, and as a result, the
thermal pressure profile is modified, leading to the for-
mation of island-like structures.

The timescale of the reconnection depends on how
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FIG. 12. Thermal pressure profile for the magnetized current sheet problem at three different times: t = 10.03tA (left),
t = 30.08tA (middle), and t = 50.06tA (right). Numerical results were obtained with the HLLD-CT GS (top row), the HLLD-CT HLLE

(middle row), and the HLLE-CT HLLE solvers (bottom row), respectively. The white curves denote the magnetic-field lines. We
employ RK4 with 3rd-order PPM reconstruction and a resolution of (Nx, Ny) = (512, 256) in all simulations.

large the numerical resistivity is. Figure 12 indicates that
the HLLD-CT GS solver is accompanied with the small-
est numerical resistivity because the formation of the is-
lands is delayed. It is found that HLLD-CT HLLE solver
has the largest numerical resistivity, leading to rapid for-
mation of the islands. This does not agree with one’s
naive expectation, because the HLLE-CT HLLE solver is
actually less dissipative than the HLLD-CT HLLE solver.
In other words, we observe an unexpected hierarchy be-
tween the HLLD-CT HLLE and HLLE-CT HLLE solvers. This
stems from the algorithm of the CT HLLE solver. In this
constrained transport scheme, dissipation terms which
are proportional to the maximum absolute value of the
characteristic speed appear in the electric-field evalua-
tion (see, e.g., Eq. (44) in Ref. [4]). This characteristic
speed is then obtained from the (global) Riemann solver.
We find that the HLLD solver returns a larger charac-
teristic speed than the HLLE solver. As a result, the

HLLD-CT HLLE solver ends up being more diffusive than
the HLLE-CT HLLE solver, as can be seen in this test prob-
lem.

Figure 13 shows the fraction of the initial magnetic-
field energy that is dissipated as a function of time. With
the HLLD-CT GS solver (blue curves), the magnetic-field
energy dissipates only gradually. Also, the dissipation
rate is suppressed when we employ higher resolution:
the energy increases by an order of magnitude only over
50 Alfvén timescales. This feature is also found for the
HLLE-CT HLLE solver (cyan curves), although the dissi-
pation rate steeply rises at a later time, t ≈ 40tA, even
in our highest resolution run. With the HLLD-CT HLLE
solver (green curves), magnetic reconnection commences
immediately after the simulation starts. We conclude
that for problems involving strong magnetic field gradi-
ents (current sheets) accurate evolution can be modeled
only when the HLLD solver is paired with CT GS for the
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FIG. 13. Magnetic-field energy dissipation in the magne-
tized current sheet problem as a function of time. Blue,
green, and cyan curves denote numerical solutions with the
HLLD-CT GS, HLLD-CT HLLE, and HLLE-CT HLLE solvers, respec-
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respectively. We employ RK4 and 3rd-order PPM cell recon-
struction in all runs.
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FIG. 14. Perturbed velocity difference ∆vy ≡ (vymax −
vymin)/2 in the special-relativistic magnetohydrodynamical
Kelvin-Helmholtz instability as a function of time. The blue
curves denote results obtained with the HLLD-CT GS solver
and the cyan curves denote results HLLE-CT HLLE solver. The
solid, dashed, and dotted curves correspond to resolutions of
(Nx, Ny) = (200, 400), (100, 200), and (64, 128), respectively.

constrained transport.

4. Magnetohydrodynamics: two-dimensional
Kelvin-Helmoltz instability

The second two-dimensional problem in special rela-
tivistic magnetohydrodynamics is the Kelvin-Helmholtz
instability, as proposed in Refs. [2, 91]. For this, we pre-
pare a simulation domain which spans x ∈ [−0.5, 0.5] and
y ∈ [−1, 1]. To check the convergence, we perform the
simulations with three different resolutions: (Nx, Ny) =
(200, 400) (‘high’ resolution), (Nx, Ny) = (100, 200)

(‘medium’ resolution), and (Nx, Ny) = (64, 128) (‘low’
resolution). The simulations are carried out with either
the HLLD-CT GS or HLLE-CT HLLE solvers, and we employ
3rd-order PPM reconstruction for all the simulations. We
impose a periodic boundary condition in the x-direction,
and an outflow boundary condition in the y-direction.
The CFL number is set to 0.4 in all the simulations.

As the initial condition, we give a tanh-shaped shear
velocity profile for the x-component,

vx = −vsh tanh(y/a), (4.8)

where vsh = 0.25 and a = 0.02. The thickness a of the
shear layer is covered by around 2, 4, and 8 grid cells
at the low, medium, and high resolutions, respectively.
We employ a uniform density of ρ = 1, and a uniform
gas pressure with P = 20. The adiabatic index is taken
to be 4/3. Note that our setup is different from that
employed in the recent test simulation for the Kelvin-
Helmholtz instability in special relativistic magnetohy-
drodynamics of Ref. [87], in which the authors employ a
non-uniform density field, a smaller shear-layer thickness
of a = 0.01, and an amplitude of the x-component of the
velocity (vsh = 0.5) which is twice that used in our runs.

The magnetic field at t = 0 is given by

(Bx, By, Bz) =
(√

2σpolP , 0, 0
)
, (4.9)

i.e. the magnetic field is initially uniform and parallel
to the velocity in the lower-half of the xy-plane. We set
σpol = 0.01. The shear layer is perturbed by the motion
in the y-direction as

vy =
1

40000
sin(2πx) exp

(
−100y2

)
, (4.10)

while vz = 0.
Figure 14 shows the perturbed velocity difference

∆vy ≡ (vymax − vymin)/2 as a function of time taken from
six simulations at three different resolutions and employ-
ing either the HLLD-CT GS or HLLE-CT HLLE solver. All
the simulations start from perturbations of size ∼ 10−5.
We find exponential growth followed by nonlinear satu-
ration at the end of the linear phase at t ∼ 10. The be-
havior during the linear phase depends strongly on the
solver, particularly at low resolutions. Nonlinear satu-
ration occurs more quickly in the simulations with the
HLLD-CT GS solver than in those with the HLLE-CT HLLE
solver, but the saturation amplitude depends only weakly
on the solver and resolution. The growth rate is higher
with the less diffusive HLLD-CT GS solver than with the
HLLE-CT HLLE solver, but the results converge between
the two solvers as the resolution is improved. This result
is consistent with that in Ref. [87] (see their Fig. 14).
The evolution after the nonlinear saturation is not sen-
sitive to the solver or resolution, although at late times
(not shown) the velocity difference decays more quickly in
the simulations with the (more diffusive) HLLE-CT HLLE
solver than with the HLLD-CT GS.
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FIG. 15. Density snapshots taken near nonlinear saturation of the special relativistic magnetohydrodynamical Kelvin-Helmholtz
instability. Top row: the results with the HLLD-CT GS solver at three different resolutions. Bottom row: same as the top panel
but with the HLLE-CT HLLE solver. The white lines indicate velocity field streamlines. The left, middle, and right panels show
the low, middle, and high resolution runs, respectively.

In Fig. 15 we show snapshots of the density at nonlin-
ear saturation t ∼ 10 from the six simulations. The top
row shows results from the low, medium, and high resolu-
tion runs using the HLLD-CT GS solver, while the bottom
row shows the corresponding snapshots from runs that
employ the HLLE-CT HLLE solver. Using the HLLD-CT GS
solvers, we observe the formation of a single vortex to-
gether with two neighboring, stretched secondary vor-
tices that are well-resolved at all resolutions, whereas
with the HLLE-CT HLLE solver we see the formation of
only a single large vortex at the shear interface, mir-
roring the behaviour of the Kelvin-Helmholtz instabil-
ity in the simulations of Ref. [91] which employed the
HLLE-CT HLLE solver. Our results show that, at least at
low resolutions, the HLLE solver is not appropriate for
studying phenomena in which the Kelvin-Helmholtz in-
stability plays an important role.

C. General relativistic problems in a fixed
background spacetime

1. Hydrodynamics: Bondi flow

As a test problem in a curved (but static) space-
time, we consider spherical accretion (ingoing Bondi flow)
onto a non-rotating black hole [92]. The Bondi flow in
Schwarzschild coordinates has been extensively discussed
in the literature (see, e.g., Ref. [83]). Following previous
work [82, 84], we adopt the parameters for this problem
as follows: an adiabatic index of Γ = 4/3, an adiabat of
K = 1, and a critical radius of rc = 8M , where M de-
notes the black hole mass. With this setup, the mass ac-
cretion rate Ṁacc is 0.797. We perform simulations both
with the HLLE and HLLC solvers, and employ 3rd-order
PPM reconstruction.

Our numerical-relativity code employs the so-called
puncture formalism, and hence, in the presence of black
holes, the black-hole spacetime is foliated in most cases
by the so-called limiting hypersurface [93]. Thus, for
preparing a practical setup in this test problem, a non-
rotating black hole should be described in the so-called
maximal trumpet geometry rather than in Schwarzschild
coordinates or in isotropic coordinates on slices of con-
stant Schwarzschild time [94, 95]. Note that in both
of these latter two coordinate systems, the fluid four-
velocity exhibits pathological behavior near the hori-
zon [95] [96]. In Appendix B, we describe the explicit co-
ordinate transformation from the Schwarzschild coordi-
nates to the maximal trumpet geometry. With this geom-
etry, the radial component of the shift vector is non-zero.
Therefore, the tetrad basis (see, e.g., Eq. (3.36)) does not
agree any longer with a coordinate basis in the Minkowski
spacetime, and the cell interface may be dragged by the
shift vector as discussed in Sec. III B.

We employ a simulation domain in Cartesian coordi-
nates spanning x, y, z ∈ [0, L] with L = 10M . The grid
spacing of the simulation is given by ∆ = ∆x = ∆y =
∆z = 0.1M with N = Nx = Ny = Nz = 100 as the
number of grid cells in each direction. We also check
convergence by increasing the resolution to N = 200
and N = 400, which correspond to grid spacings of
∆ = 0.05M and 0.025M , respectively. We set the CFL
number to 0.45 and integrate the numerical solution up
to t = 22.5M . We impose a stationary boundary condi-
tion at the outer and inner boundaries, with the latter
located at rin = 0.4M . Note that the horizon in this
geometry is located at rBH ≈ 0.78M . We also impose
octant symmetry at the x, y, and z = 0 planes.

Figure 16 shows radial profiles of the rest-mass density
and the radial velocity calculated by the HLLC solver with
the blue dots and by the HLLE solver with the green dots



25

0 2 4 6 8 10
r (M)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

ρ
(M

−
2
)

0.4 0.6 0.8
0.02

0.03
R = 2M

Inner boundary

Analytic

HLLC

HLLE

0 2 4 6 8 10
r (M)

0.05

0.10

0.15

0.20

0.25

0.30

−
v
r

0.4 0.6 0.8
0.15

0.20
R = 2M

Inner boundary

Analytic

HLLC

HLLE

10−2 10−1

∆ (M)

10−5

10−4

10−3

10−2

10−1

ε L
1
(ρ

)

HLLC

HLLE

FIG. 16. Top: Radial rest-mass density profile for (hydrody-
namic) Bondi flow in a non-rotating black hole spacetime at
t = 22.5M (the end of the simulation). The mass accretion

rate is fixed at Ṁacc = 0.797. The solid black curve indi-
cates the analytical solution, while the blue and green dots
denote the numerical solution obtained with the HLLC and
HLLE solvers, respectively. The inset show the solution near
the inner boundary. In the inset, the red and yellow dots de-
note the location of the horizon and of the inner boundary,
respectively. Middle: Same as the top panel, but showing the
radial velocity profile. Bottom: L1 norm of the error in the
rest-mass density as a function of the spatial grid spacing.
The blue and green dots denote the error of the numerical
solutions with the HLLC and HLLE solvers, respectively. The
dotted line denotes 2nd-order convergence.

on top of the analytic solution [92]. The profiles are along
the diagonal direction, i.e., x = y = z in the simulation
domain. This figure demonstrates that our implementa-
tion of the HLLC solver in curved spacetime works well.
It also shows that, for this particular problem, the HLLE
solver works as well as the HLLC solver because of the

smoothness of the accretion flow, as many other previous
implementations have shown; e.g., Refs. [63, 82, 84, 97].

In the lower panel of Fig. 16 we plot the L1 norm of the
error in the rest-mass density as a function of the spa-
tial grid spacing. The convergence order of the L1 norm
of the error is ≈ 2 both for the HLLC and HLLE solvers,
because our Riemann solver is 2nd-order accurate. One
likely reason for the slight deviation from the expected
accuracy is that spherical symmetry of the accretion flow
is not perfectly preserved during the evolution because
we simulate it in the Cartesian geometry. This plot also
shows that the numerical solution with the HLLC solver is
more accurate than that with the HLLE solver. Our inter-
pretation of this is that with the tetrad transformation
(see Sec. III B) the frame-dragging effect of the cell in-
terface is taken into account with a better accuracy (see
also Fig. 2) [98].

2. Magnetohydrodynamics: Magnetized Bondi flow

The next test problem in a curved spacetime is mag-
netized Bondi flow onto a non-rotating black hole. It is
known that a purely radial magnetic field does not alter
the flow profile of non-magnetized Bondi flow [76]. There-
fore, we employ the same flow profile used in the previ-
ous section. From the divergence-free condition (2.15),
the radial magnetic field should be BR ∝ f/R2 in
Schwarzschild coordinates (see Appendix B for the defini-
tion of f and the transformation to the maximal trumpet
geometry). The amplitude of the magnetic field is cho-
sen to be such that b2/ρ = 1 at R = 3M . We perform
two simulations, one with the HLLD-CT GS solver and the
other with the HLLE-CT HLLE solver. We employ RK4
and 3rd-order PPM reconstruction in both cases.

We employ a simulation domain in Cartesian coordi-
nates spanning x, y, z ∈ [0, L] with L = 12.8M . The grid
spacing of the simulation is ∆ = ∆x = ∆y = ∆z = 0.1M
with N = Nx = Ny = Nz = 128 being the number of
the grid cells in each direction. To check convergence, we
perform better-resolved simulations with N = 256 and
N = 512, i.e., ∆ = 0.05M and 0.025M , respectively. We
impose octant symmetry at the x, y, and z = 0 planes,
and a stationary condition at the outer and inner bound-
aries, with the latter located at rin = 0.4M . Numerical
simulations are performed up to t = 22.5M .

Figure 17 shows the radial profiles of the rest-mass
density (top-left), the radial velocity (top-right), and the
radial magnetic field (bottom-left). Numerical solutions
with the HLLD-CT GS solver are indicated by the blue
dots, while those with the HLLE-CT HLLE solver are indi-
cated by the cyan dots. As in the non-magnetized cases,
the flow profiles agree with the analytic solution [92]
(see also the insets in Fig. 17 which show the solution
close to the inner boundary). The rest mass density in-
side the horizon slightly deviates from the analytic so-
lution. However, the deviation decreases as the spa-
tial resolution is increased. This demonstrates that our
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FIG. 17. Same as Fig. 16, but for a magnetized Bondi flow in a non-rotating black hole spacetime at t = 22.5M . The blue
and cyan dots denote numerical solutions with the HLLD-CT GS and HLLE-CT HLLE solvers, respectively. The bottom-left panel
shows the radial magnetic field profile.

HLLD solver works just as well as our HLLC solver in a
curved spacetime. As in the hydrodynamic case, we find
no qualitative difference in the numerical solutions be-
tween the HLLD-CT GS and HLLE-CT HLLE solvers because
of the smoothness of the accretion flow. The bottom-
right panel in Fig. 17 plots the L1 norm of the error in
the rest-mass density as a function of the spatial grid
spacing. It shows that (i) the numerical solution with
the HLLD-CT GS solver is more accurate than that with
the HLLE-CT HLLE solver, and (ii) the order of the con-
vergence is ≈ 2. These results are essentially the same
as those in the previous subsection. Again, the devia-
tion from the formal accuracy of the Riemann solver is
likely to be an artifact of the Cartesian geometry which
we employ.

V. APPLICATION TO A DYNAMICAL
SPACETIME

Finally, we apply our new Riemann solvers in general
relativity to a dynamical spacetime. We simulate a bi-
nary neutron star merger, both with and without mag-
netic fields. We turn on the solver for Einstein’s equa-
tions and the neutrino-radiation hydrodynamics solver
in the simulations shown in this section (see Eqs. (2.9)–
(2.13)).

A. Hydrodynamics: binary neutron star merger

1. Setup

First, we consider non-magnetized asymmetric binary
neutron stars with masses of 1.2 and 1.5M�. We uti-
lize the spectral method library LORENE [99–103] to
generate a quasi-equilibrium configuration of the irrota-
tional binary neutron star. We also employ an eccen-
tricity reduction prescription to generate an initial con-
dition that has low orbital eccentricity [104]. The initial
orbital angular velocity is set to be m0Ω0 = 0.028 where
m0 = 2.7M� is the total mass of the binary.

Our solver for Einstein’s equations implements the
BSSN-puncture formulation [105–108], locally incorpo-
rating the Z4c prescription for constraint propaga-
tion [109]. We employ 4th-order centered finite differenc-
ing for the spatial derivative of the metric, a lop-sided
finite difference for the advection term associated with
the shift vector, and 4th-order Runge-Kutta for the time
integrator. For the relativistic hydrodynamics solver, we
employ either the HLLC or HLLE solver, together with 3rd-
order PPM cell reconstruction.

We employ the SFHo equation of state for rela-
tively high-density nuclear matter [110], and the Timmes
(Helmholtz) equation of state for the low-density part
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[111]. Because high-resolution shock-capturing schemes
cannot treat the vacuum state, we need to implement
an artificial atmosphere outside the neutron stars. In
this simulation, we set a constant atmospheric density of
ρatm = 103 g/cm3 for the inner part of the finest fixed
mesh refinement (FMR) domain, for which the refine-
ment boundary along each axis is typically located at
Lfin = 38.7 km (see below for the FMR setup in detail).
We also set a power-law profile of the atmospheric den-
sity of ρatm = 103(Lfin/r)

3 g/cm3 for r > Lfin and as
far as the atmospheric density is larger than the floor
value which is determined by the employed equation of
state. In our present table for the equation of state, this
floor is ≈ 0.17 g/cm3 and if ρatm becomes smaller than
this value, we set the the atmospheric density to the
floor value. The atmospheric temperature is set to be
10−3 MeV.

We also explicitly solve the radiation-hydrodynamics
equations for neutrinos in time using an approximate
neutrino-transfer scheme based on a leakage scheme [77]
and the truncated moment formalism [79, 112]. The cool-
ing source terms are computed using a general-relativistic
leakage scheme [74], and heating source terms due to neu-
trino capture processes are computed by the method pre-
sented in Ref. [78].

The computational region consists of 13 levels of FMR
half-cubic domains. The size of each FMR domain is
∈ [−L/2l−1, L/2l−1] for x and y, and z ∈ [0, L/2l−1] with
l = 1, 2, · · · , 13. Note that in the z-direction we impose
reflection symmetry with respect to the equatorial plane,
z = 0. We set the overall domain size to L ≈ 158, 000 km
and N = Nx = Ny = Nz = 258. Thus the grid spacing of
the finest FMR domain is ∆x13 = ∆y13 = ∆z13 = 150 m.
To check convergence, we also perform simulations with
lower resolutions of N = 196 and N = 158, for which the
grid spacing of the finest FMR domain is ∆x13 = 200 m
and ∆x13 = 250 m, respectively. For the HLLC solver,
we perform an additional simulation with N = 377 and
∆x13 = 100 m. By virtue of the cell-centered grid struc-
ture, the cell interface of the parent FMR domain co-
incides with that of the child FMR domain. We em-
ploy the reflux prescription during time marching of the
Berger-Oliger type mesh refinement algorithm to ensure
the conservation of baryonic mass.

2. Inspiral phase

The left and right panels of Fig. 18, respectively, show
the time-evolution (during the inspiral phase) of the max-
imum rest-mass density and the density-weighted Hamil-
tonian constraint violation (see Eqs. (29) and (30) in
Ref. [82] for definitions). The blue and green curves
denote the results with the HLLC and HLLE solvers, re-
spectively, and the solid, dashed, dotted, and dot-dashed
curves indicate the resolution (i.e. ∆x13 = 100 m, 150 m,
200 m, and 250 m, respectively). During inspiral, the
maximum rest-mass density oscillates due to numerical

error regardless of which solver is used. It also decreases
partly due to the numerical error. However, the degree
of the decrease is much more prominent with the HLLE
solver than it is with the HLLC solver, especially at the
coarsest resolution. This is due to the large numerical
diffusion inherent in the HLLE solver. Specifically, this
solver is more subject to spurious broadening of the den-
sity profile near the stellar surface (not shown), leading to
a higher degree of spurious neutron-star expansion and to
a resultant decrease in the maximum rest-mass density.
However, this artifact is mitigated with the HLLC solver,
because of its stronger capability of capturing irregular
surfaces, i.e., the stellar surface.

The right panel of Fig. 18 shows that, for a given grid
resolution, the time-averaged value of the constraint vio-
lation during the inspiral phase is smaller with the HLLC
solver than with the HLLE solver. This demonstrates that
the numerical result with the HLLC solver is more accu-
rate than that with the HLLE solver. We find that the or-
der of convergence of the density-weighted Hamiltonian
constraint violation is 1.7–1.8, irrespective of which Rie-
mann solver is used. Note that this convergence is slow
compared to that achieved using a higher-order finite dif-
ference scheme [61, 62, 72], but could be improved if we
were to employ a more accurate reconstruction scheme
such as MP5 [113]. However, the implementation of such
a scheme is beyond the scope of this paper.

The top panel of Fig. 19 shows the orbital separation of
the binary as a function of time. Here we define ‘orbital
separation’ as the coordinate distance in the orbital plane
between the two rest-mass density maxima. The cross
symbols denote the final moment at which we can unam-
biguously identify the two rest-mass density maxima. At
this point the less massive neutron star has been signifi-
cantly tidally elongated, and we define this time as being
the time of onset of the merger. This plot shows that
the merger time found in the simulation with the HLLC
solver is later than that with the HLLE solver (the reason
for this will be described shortly). The bottom panels
display contour plots of the rest-mass density in the or-
bital plane at the moment of merger for the runs with the
HLLC solver (left panel) and the HLLE solver (right panel)
(for both cases, ∆x13 = 150 m). The orbital phase with
the HLLE solver slightly larger compared to that with the
HLLC solver. This implies that the neutron star simulated
with the HLLE solver is more subject to artificial tidal de-
formation than the neutron star with the HLLC solver,
because the HLLE solver (since it cannot accurately re-
solve the irregularities at the stellar surface) results in
a larger spurious expansion of the neutron star. Note
that the tidal elongation of the low-density part of the
less massive neutron star is more enhanced with the HLLE
solver than with the HLLC solver, as found from the com-
parison of the two contour plots. It is this enhanced (but
artificial) tidal elongation with the HLLE solver that ulti-
mately results in the earlier merger time observed when
when we employ that solver.
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FIG. 19. (Top) Orbital separation as a function of time in hydrodynamic simulations of a binary neutron star merger. The
color code and line styles have the same meaning as in Fig. 18. The cross symbols denote the final moment at which two density
maxima can be identified. (Bottom) Colorplots of the rest-mass density in the orbital plane at t = 14.64 ms with the HLLC

solver (left panel) and with the HLLE solver (right panel). Both simulations have been run with a (finest-level) grid-spacing of
∆x13 = 150 m.

3. Post-merger phase

Having presented various diagnostics from the inspi-
ral phase, we now turn our attention to the post-merger
phase. Figure 20 shows the maximum rest-mass density
and the density-weighted Hamiltonian constraint viola-

tion as functions of time during the post-merger phase.
The existence of oscillations in the density after the
merger indicates the formation of a massive neutron star
remnant rather than a direct collapse to a black hole.
The remnant massive neutron star gradually contracts
due to angular momentum transport by the gravitational
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torque, neutrino cooling, and gravitational-wave emis-
sion. Eventually the remnant collapses to a black hole,
indicated by the blow-up of the maximum rest-mass den-
sity (see the figure at 30–40 ms). Because the remnant
massive neutron star is a meta-stable object, its stabil-
ity is influenced significantly by the numerical truncation
error, by the randomness with which the collapse time
does not become a monotonic function of the spatial grid
spacing. (The non-monotonic behavior of the black-hole
formation time with respect to the grid spacing is also re-
ported in the literature (see, e.g, Ref. [114]).) Specifically,
with the HLLC solver, the collapse time of the remnant
coincides for both the ∆x13 = 150 m and ∆x13 = 250 m
runs, is earliest for the ∆x13 = 100 m run, and is latest
for the ∆x13 = 200 m run. With the HLLE solver, the
collapse time is earliest for the ∆x13 = 200 m run and
the latest for ∆x13 = 250 m run. The inset in the left
panel of Fig. 20 shows a close-up of the results with the
HLLC and HLLE solvers for ∆x13 = 150 m.

However, the collapse time of the remnant is systemat-
ically earlier for runs with the HLLC solver. This is related
to the evolution of the oscillation amplitude of the rem-
nant neutron star. For t . 20 ms, the oscillation ampli-

tude of the maximum rest-mass density is approximately
identical for the two solvers (see the left-hand panel of
Fig. 20). After that, however, the oscillations are notice-
ably damped when we use the HLLE solver. This implies
that the oscillation energy is dissipated by the numerical
diffusion inherent in the HLLE solver. Thus, the lifetime
of the remnant massive neutron star is significantly over-
estimated when the more diffusive HLLE solver is used.

The right panel of Fig. 20 shows that the density-
weighted Hamiltonian constraint violation is of order
10−4 during the remnant massive neutron star phase and
of order 10−1 after the black hole formation. The con-
straint violation only slowly decreases with increased res-
olution in the post-merger phase, and does so regardless
of which solver is used. The reason for this is that dur-
ing the merger phase, shocks are formed inside a large
portion of the neutron stars. Because shocks are always
computed with first-order accuracy in numerical hydro-
dynamics, the overall accuracy of the solution deterio-
rates and the convergence becomes slow.

The left panel of Fig. 21 shows the evolution of the
dimensionless spin of the remnant black hole [115]. We
find spurious spin-down of the black hole due to numeri-
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cal diffusion, in particular when the simulations are per-
formed at low resolutions with ∆x13 = 200 m or 250 m.
We measure the spin-down rate in the HLLC run and es-
timate that the dimensionless spin decreases by & 0.1 in
1 s if rAH/∆x13 . 15 where rAH denotes the minimum
radius of the apparent horizon. However, the spurious
spin-down rate decreases approximately at the 4th or-
der, reflecting the order of the accuracy in the solver for
Einstein’s equations. This implies that the spurious de-
crease of the dimensionless spin will be suppressed to the
required level if we perform a simulation with a suffi-
ciently high resolution. In low-resolution runs, however,
the spurious spin down will influence the evolution of the
disk because the specific angular momentum at the in-
ner stable circular orbit will increase as a result of the
spin-down, which in turn will result in spurious mass ac-
cretion. Thus the grid resolution must be chosen care-
fully when the main aim is to quantitatively explore the
evolution of the disk and subsequent mass ejection.

The right panel of Fig. 21 shows the gravitationally
bound baryonic mass outside the apparent horizon [116].
Irrespective of which Riemann solver we employ, the
bounded baryonic mass is not a monotonic function of
the grid spacing. Before the formation of the black hole,
the non-axisymmetric density structure of the remnant
massive neutron star exerts a gravitational torque on the
fluid elements. As a result, angular momentum is trans-
ported outwards. Thus the longer lifetime of the remnant
massive neutron star results in the formation of a more
massive torus after the neutron star remnant collapses
to the black hole. Because the lifetime of the remnant
massive neutron star is not a monotonic function of the
grid spacing it is a natural consequence that we find that
the baryonic mass of bound material does not converge
as the resolution is increased. Nevertheless, in the sim-
ulations with the HLLC solver, the gravitationally bound
baryonic mass is found to lie in a narrow range, between
0.055M� and 0.075M�, at the time of formation of the
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black hole (at t ∼ 30 ms). When we employ the HLLE
solver, the bound baryonic mass is systematically larger
than that with the HLLC solver (between 0.100M� and
0.125M�). This is because the lifetime of the remnant
massive neutron star is systematically longer in the sim-
ulations with the HLLE solver than with the HLLC solver,
as already mentioned. Therefore, when one employs the
HLLE solver, one should keep in mind that the bound
baryonic mass could be overestimated with a systematic
error of O(10−2M�).

Figure 22 shows the time-evolution of the luminosity
of electron neutrinos (left panel) and of electron antineu-
trinos (right panel). These plots show that the lumi-
nosity increases quickly after merger, reaching a peak
value of ≈ 1.2 × 1053 erg/s for the electron neutrinos
and ≈ 1.9 × 1053 erg/s for the electron antineutrinos at
t ≈ 20 ms. These values agree broadly with our previ-
ous results [117]. After the formation of the black hole,
the luminosity quickly decreases because the high density
and temperature regions of the remnant massive neutron
star are swallowed into the black hole [117, 118]. Note
that the overall evolution of the neutrino luminosity in
the remnant massive neutron star phase does not signif-
icantly depend either on the Riemann solver, nor on the
spatial grid spacing.

Finally, Fig. 23 shows the time-evolution of the gravita-
tionally unbound baryonic mass, i.e. the ejecta mass. In
this model (i.e., the model with appreciable mass asym-
metry in the binary), mass ejection is driven primarily by
the tidal force from the heavier component to the lighter
one. The blue and green curves denote results with the
HLLC and HLLE solvers, respectively. The solid, dashed,
dotted, and dot-dashed curves denote the results with
grid spacings of ∆x13 = 100 m, 150 m, 200 m, and 250 m,
respectively. The inset depicts the ejecta-mass evolution
on a logarithmic scale along the vertical axis, and the
shaded region denotes the violation of baryonic mass con-
servation. We find that the spurious mass ejection during
the inspiral phase is O(10−7M�), and it decreases as the
resolution is enhanced. We also find that the error in
baryonic mass conservation is below 10−7M� even after
the merger. This figure shows that the ejecta mass de-
creases as the grid spacing is improved from 250 m to
150 m. This is likely to be related to the spurious expan-
sion of the less massive neutron star during the inspiral
phase, which we discussed above. This spurious expan-
sion is enhanced in the lower resolution runs. When we
employ ∆x13 = 100 m for the HLLC solver, the ejecta mass
is approximately identical to that with ∆x13 = 150 m.
Therefore, the convergence for the ejecta mass is approx-
imately achieved in this model.

Figure 23 also shows that the amount of ejecta mass in
the simulation with the HLLC solver is smaller than that
with the HLLE solver for a given grid spacing. Quanti-
tatively, the ejecta mass difference due to the Riemann
solver is ≈ 10−3M� for ∆x13 = 150 m in this model. This
difference arises from how accurately the employed Rie-
mann solver can capture the neutron-star shape during

the late inspiral phase. As we have already emphasized,
with the HLLE solver the neutron star spuriously expands
during the inspiral phase. As a result, the less massive
neutron star is more subject to (partly artificial) tidal
deformation, thereby ultimately increasing the tidally-
driven ejecta mass. When we employ the HLLC solver
together with a high grid resolution this artifact is mit-
igated. This is one of the advantages of using a more
sophisticated Riemann solver in this problem.

We conclude that the HLLC solver is superior to the
HLLE solver both during the inspiral and post-merger
phases of the binary neutron star merger. In particular,
we note that for the purpose of obtaining accurate and
high-precision gravitational waveforms during the late in-
spiral phase over more than 10 orbits, the HLLE solver is
likely not an appropriate choice.

B. Magnetohydrodynamics: binary neutron star
merger (evolution of remnant)

1. Setup

As an application of the new Riemann solvers (paired
with our new implementation of the constrained trans-
port scheme) to relativistic magnetohydrodynamics in a
dynamical spacetime, we consider the evolution of the
magnetized torus surrounding a black hole formed after a
binary neutron star merger. The initial condition is taken
from the final moment of the hydrodynamics simulation
for a binary neutron star merger presented in the pre-
vious section. Specifically, our initial condition is taken
from the result of the simulation run with the HLLC solver
at a resolution of ∆x13 = 150 m and at t ≈ 76 ms. The
grid setup is exactly the same as in the hydrodynamics
simulation for the binary neutron star merger.

We initialize the magnetic field inside the torus with a
vector potential of the form

Ai = [−(y − yBH)δxi + (x− xBH)δyi]

×Ab max(P − 10−2Pmax, 0)2, (5.1)

where i = x or y, xBH and yBH denote the x- and y-
coordinates of the central black hole, P is the gas pres-
sure, and Pmax is its maximum. We choose the amplitude
Ab such that the initial maximum magnetic field strength
is 1015G. We employ the HLLD-CT GS and HLLE-CT HLLE
solvers and compare the results. We also employ Bal-
sara’s method to ensure the divergence-free condition
and magnetic flux conservation in the refinement bound-
ary [73, 119, 120]. In our implementation, not only is the
divergence-free condition preserved to machine-precision,
but the magnetic flux is also preserved across the re-
finement boundary. We note that the vector potential
method [121], which has been widely implemented in nu-
merical relativity codes, does not ensure the latter prop-
erty [62–64, 66].
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2. Post-merger evolution

The left and right panels of Fig. 24 show the time evo-
lution of the electromagnetic energy and the time evo-
lution of the magnetorotational-instability quality fac-
tor, respectively. The electromagnetic energy is defined
by [122]

Emag ≡
1

2

∫
b2w
√
γd3x. (5.2)

The origin of the time-axis is the same as in Fig. 18.
The blue and cyan curves denote results with the
HLLD CT-GS and HLLE CT-HLLE solvers, respectively. The
magnetorotational-instability quality factor is defined by

〈λMRI〉ρcut
≡

∫
ρ≥ρcut

λMRId
3x∫

ρ≥ρcut

d3x

, (5.3)

where

λMRI =
bz√

ρh+ b2
2π

Ω
(5.4)

is the wavelength of the fastest growing mode of the
axisymmetric magnetorotational instability [123, 124].
Note that we introduce a cut-off density in the quality
factor to determine in which part of the torus the mag-
netorotational instability is resolved.

These panels show that the electromagnetic energy is
amplified during the initial stage of t . 84–85 ms primar-
ily due to magnetic winding rather than the magnetoro-
tational instability, because the fastest growing mode of
the magnetorotational instability in the high-density re-
gions of the torus is not well resolved at these early times

(see the solid curves in the right panel with a cut-off den-
sity of ρcut = 1010 g cm−3). During this stage, the elec-
tromagnetic energy with the HLLD-CT GS solver is larger
than that with the HLLE-CT HLLE solver because the large
numerical diffusion inherent in the HLLE-CT HLLE solver
results in the diffusion of magnetic field lines. In addition,
in the orbital plane magnetic fields are forced to recon-
nect because we impose plane symmetry with respect to
the equatorial plane. For the HLLE-CT HLLE solver, recon-
nection in this plane is also enhanced due to numerical
diffusion, and thus reduces the electromagnetic energy
even further (see also the magnetized current sheet prob-
lem in Fig. 12).

After t ≈ 84–85 ms by which the poloidal magnetic-
field strength has been enhanced nearly to saturation
level due to winding and subsequent outgoing motion re-
sulting from the enhanced magnetic-field pressure, mag-
netorotational instability-driven turbulence begins to de-
velop in the high-density region of the torus, because the
fastest growing mode is now resolved by more than ten
grid points (see the right panel of Fig. 24). This then
establishes a turbulent state.

Figure 25 displays the magnetic-field structure in the
x-z plane. This figure shows that by the time the
magnetic-field strength has saturated, turbulence has
developed and an outflow associated with the turbu-
lent activity is driven from the disk. The middle pan-
els of Fig. 25 show the magnetic-field structure at t ≈
90 ms. With the HLLD-CT GS solver, the inside of the
torus exhibits smaller-scale turbulence than that with
the HLLE-CT HLLE solver (see, e.g., the region of x ∈
[20, 50] km and z ∈ [0, 20] km). The larger structures seen
in the colormap also suggest that magnetic-field lines are
more coherent with the HLLE-CT HLLE solver than they
are with the HLLD-CT GS solver. Our explanation for this
is that with the HLLE-CT HLLE solver, the magnetorota-
tional instability is less resolved, and thus, the small-scale
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FIG. 25. Magnetic-field structure for the magnetized binary neutron star merger remnant simulations with the HLLD-CT GS

solver (left) and with the HLLE-CT HLLE solver (right). The gray curves show the poloidal magnetic-field lines and the color
contours indicate the toroidal magnetic-field strength. The top, middle, and bottle panels show the numerical solutions at
times t ≈ 83 ms, 90 ms, and 98 ms, respectively.

turbulent structure is less developed. As a result, large-
scale magnetic fields appear to be spuriously enhanced
with HLLE-CT HLLE compared to HLLD-CT GS.

As evidence for this explanation, we calculate the
power spectrum density of the electromagnetic energy
defined by

PB(k) =
1

2

∫
b̃(ki)b̃

∗(ki)k
2dΩk, (5.5)

where b̃(ki) is the Fourier component of the magnetic-
field strength (in the frame comoving with the fluid), b =

|b2|1/2, calculated by

b̃(ki) =

∫
b(xi)eikix

i

d3x, (5.6)

and b̃∗(ki) is its complex conjugate. Here, ki is the
wave vector with i = x, y, z and k2 =

∑
i k

2
i . dΩk is

a solid angle in k-space. We employ the Python pack-
age fiNUFFT [125, 126] to perform a non-uniform Fast
Fourier Transformation in our FMR domain. Practi-
cally, we employ the first five finest domains, which
span from L13 ∈ [−38.7 km, 38.7 km]2 × [0 km, 38.7 km]
to L9 ∈ [−619.2 km, 619.2 km]2× [0 km, 619.2 km], in this
analysis.
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Figure 26 plots the power spectrum density of the
magnetic-field energy at t ≈ 90.2 ms. The blue and
cyan curves denote solutions with the HLLD-CT GS and
HLLE-CT HLLE solvers, respectively. With the help of
the non-uniform Fast Fourier Transformation, we ob-
tain a power spectrum density that spans three or-
ders of magnitude. It clearly shows that the power
spectrum amplitude around k/(2π) = 10−6cm−1 is
larger in the HLLE-CT HLLE than in the HLLD-CT GS
run. This implies that a relatively large-scale mag-
netic field with a scale of ≈ 106cm is generated in
the HLLE-CT HLLE run compared to the HLLD-CT GS
run. On the other hand, at small scales (i.e. with
k/(2π) & 10−5cm−1), the power spectrum density is
higher in the HLLD-CT GS run than in the HLLE-CT HLLE
run. This shows the HLLD-CT GS solver is able to sustain
smaller-scale magnetorotational instability-driven turbu-
lence than the HLLE-CT HLLE solver.

Figure 24 indicates that the electromagnetic energy
is still increasing for t & 90 ms. We find that (i)
the growth is not exponential, and (ii) the growth rate
with the HLLE-CT HLLE solver is higher than with the
HLLD-CT GS solver. This indicates that magnetic wind-
ing of a coherent poloidal magnetic field proceeds more
efficiently (though spuriously) in the simulation with the
HLLE-CT HLLE solver than with the HLLD-CT GS solver.
This in turn enhances the launch of a magnetic tower
outflow in the polar direction, as shown in the bottom
panels of Fig. 25. While this outflow is observed regard-
less of which solver is used, we observe a more powerful
magnetic tower outflow with the HLLE-CT HLLE solver,
which reflects the greater (but spurious) coherency of the
magnetic-field lines when we use of this solver.

To quantify how powerful the magnetic tower outflow
is, we plot the angular distribution of the Poynting flux
−√−g(T rt)

(EM) = −√−g(b2urut − brbt) on a sphere
of r ≈ 50 km in Fig. 27. The snapshot is taken at
t ≈ 103 ms. In the polar region, the Poynting flux with

the HLLE-CT HLLE solver is much stronger than with the
HLLD-CT GS solver. This plot suggests that the power
of the magnetic tower outflow is overestimated when we
employ the HLLE-CT HLLE solver.

VI. SUMMARY AND CONCLUSION

We implemented the advanced Riemann solvers
HLLC [1] and HLLD [2] in our numerical relativity
neutrino-radiation magnetohydrodynamics code. We val-
idated our implementation by performing one- and multi-
dimensional test problems in both Minkowski spacetime
and in a fixed background spacetime, both in relativistic
hydrodynamics and relativistic (ideal) magnetohydrody-
namics. In the relativistic hydrodynamics test problems,
we found that the HLLC solver is always superior to the
HLLE solver, in particular, for the multi-dimensional case:
the spurious waves associated with the HLLE solver dis-
appear, and the grid resolution is effectively improved,
when we employ the HLLC solver. For relativistic magne-
tohydrodynamics test problems, we also found that the
performance of the HLLD solver together with the con-
strained transport method proposed by Gardiner and
Stone [3], which relies on the accuracy of a Riemann
solver, is the best for both one-dimensional as well as
multi-dimensional test problems.

We also performed simulations of a non-magnetized
asymmetric binary neutron star merger in a dynamical
spacetime with the HLLC and HLLE solvers. We found that
spurious broadening of the neutron star surface during
the inspiral phase can be mitigated by employing the
HLLC solver. As a result, the less massive companion of
the binary is less subject to tidal elongation during the
late inspiral phase than when the HLLE solver is used.
This point is particularly important for deriving a high-
precision gravitational waveform during the late inspiral
phase, because one has to compute the orbital evolution
precisely, i.e. excluding spurious numerical effects for this
problem. The solution with the HLLC solver also differs
from that with the HLLE solver in the subsequent post-
merger evolution. For example, the amount of dynamical
ejecta driven by the tidal interaction of the two stars
and the lifetime of the remnant massive neutron star are
overestimated when we employ the HLLE solver.

The neutron-rich dynamical ejecta and post-merger
ejecta, the latter of which is launched from the merger
remnant by an effective turbulent viscosity due to the
magnetorotational instability [49–51, 53, 54, 78], will
shine by means of radioactive decay of r-process elements
which have been freshly synthesized in the ejecta (see,
e.g., [18, 20, 127]). One of the most important aims in
the observation of binary neutron star mergers is to ob-
serve this signal and to infer the binary parameters by
comparing the observational results with the theoretical
prediction from numerical relativity simulations. There-
fore, we conclude that employing a better solver (i.e.,
the HLLC solver rather than the HLLE solver) is crucial for
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FIG. 27. Angular distribution of the Poynting flux on a sphere of r ≈ 50 km at t ≈ 103 ms with the HLLD-CT GS solver (left)
and the HLLE-CT HLLE solver (right).

reliable modeling of electromagnetic counterparts from
binary neutron star mergers.

We also performed simulations of the binary neutron
star merger remnant, i.e. a black hole surrounded by
a massive torus, in the framework of neutrino-radiation
magnetohydrodynamics. We embedded a purely poloidal
magnetic-field loop inside the torus and performed sim-
ulations with the HLLD-CT GS and HLLE-CT HLLE solvers.
We found that (i) artificial magnetic-field dissipation is
suppressed, and (ii) a well-resolved magneto-turbulent
state is reproduced, when we employed the HLLD-CT GS
solver. On the other hand, when we employed the
dissipative HLLE-CT HLLE solver, the coherency of the
magnetic-field lines is artificially enhanced, resulting in
the launch of a powerful magnetic tower outflow due to
magnetic winding of this coherent poloidal field. The
emergence of a Poynting flux-dominated outflow from
the black hole-torus system could be a key ingredient for
driving a short gamma-ray burst from the compact bi-
nary merger remnant [55]. Therefore, we conclude that
employing the HLLD solver paired with the constrained
transport method proposed by Gardiner and Stone [3] is
crucial for reliable modeling of the central engine of short
gamma-ray bursts.

As a future project, we plan to perform long-term sim-
ulations of binary neutron star mergers and black hole-
neutron star binary mergers, employing the advanced
Riemann solvers which we have implemented in our code.
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Appendix A: Tetrad basis in the y- and z-directions

For convenience, we explicitly show the tetrad basis for
the Riemann problem in the y- and z-directions.

a. y-direction

In the y-direction, the contravariant components of the
tetrad basis are:

e(t̂)
µ = nµ, (A1)

e(x̂)
µ = Ĉ (0, 1, 0, 0) , (A2)

e(ŷ)
µ = B̂

(
0, γyi

)
, (A3)

e(ẑ)
µ = D̂ (0,−γxz, 0, γxx) , (A4)

where

B̂ =
1√
γyy

, (A5)

Ĉ =
1√
γxx

, (A6)

D̂ =
1√

γxx (γxxγzz − γ2
xz)

. (A7)

The covariant components of the tetrad basis are given
by

e(t̂)µ = nµ, (A8)

e(x̂)µ = Ĉ (βx, γxi) . (A9)

e(ŷ)µ = B̂ (βy, δi
y) , (A10)

e(ẑ)µ = D̂
(
βzγxx − βxγxz, 0, γxxγyz − γxyγxz, γxxγzz − γ2

xz

)
.

(A11)
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The components of the numerical flux at the y-interface
in the Eulerian frame are

(F̃ y0 )j,k+ 1
2 ,l

= (Dvy)j,k+ 1
2 ,l

=
(
α
(
e(t̂)

yD + e(ŷ)
y f̃

(ŷ)
0

))
j,k+ 1

2 ,l
, (A12)

(F̃ y1 )j,k+ 1
2 ,l

= (αT yx)j,k+ 1
2 ,l

=
(
α
(
e(t̂)

ye(x̂)xJ(x̂) + e(ŷ)
ye(x̂)xf̃

(ŷ)
1

))
j,k+ 1

2 ,l
, (A13)

(F̃ y2 )j,k+ 1
2 ,l

= (αT yy)j,k+ 1
2 ,l

=
(
α
(
e(t̂)

ye(ı̂)yJ(ı̂) + e(ŷ)
ye(ı̂)y f̃

(ŷ)
i

))
j,k+ 1

2 ,l
, (A14)

(F̃ y3 )j,k+ 1
2 ,l

= (αT yz)j,k+ 1
2 ,l

=
(
α
(
e(t̂)

ye(ı̂)zJ(ı̂) + e(ŷ)
ye(ı̂)z f̃

(ŷ)
i

))
j,k+ 1

2 ,l
, (A15)

(F̃ y4 )j,k+ 1
2 ,l

= (−αT yµnµ)j,k+ 1
2 ,l

=
(
α
(
e(t̂)

yρH + e(ŷ)
y f̃

(ŷ)
4

))
j,k+ 1

2 ,l
, (A16)

(F̃ y5 )j,k+ 1
2 ,l

=
(
Ẽz

)
j,k+ 1

2 ,l
= (α∗F xy)j,k+ 1

2 ,l

=
(
α
(
e(t̂)

ye(ı̂)
xB̄(ı̂) − e(t̂)

xe(ŷ)
yB̄(ŷ)

+ e(x̂)
xe(ŷ)

y f̃
(ŷ)
5 + e(ẑ)

xe(ŷ)
y f̃

(ŷ)
7

))
j,k+ 1

2 ,l
, (A17)

(F̃ y6 )j,k+ 1
2 ,l

= 0, (A18)

(F̃ y7 )j,k+ 1
2 ,l

=
(
−Ẽx

)
j,k+ 1

2 ,l
= (α∗F zy)j,k+ 1

2 ,l

=
(
α
(
e(t̂)

ye(ı̂)
zB̄(ı̂) − e(t̂)

ze(ŷ)
yB̄(ŷ)

+ e(ẑ)
ze(ŷ)

y f̃
(ŷ)
7

))
j,k+ 1

2 ,l
. (A19)

The interface velocity is

v
(ŷ)
interface =

dŷ

dt̂
=

βy

α
√
γyy

. (A20)

b. z-direction

In the z-direction, the contravariant components of the
tetrad basis are:

e(t̂)
µ = nµ, (A21)

e(x̂)
µ = D̂ (0, γyy,−γxy, 0) , (A22)

e(ŷ)
µ = Ĉ (0, 0, 1, 0) , (A23)

e(ẑ)
µ = B̂

(
0, γzi

)
, (A24)

where

B̂ =
1√
γzz

, (A25)

Ĉ =
1
√
γyy

, (A26)

D̂ =
1√

γyy
(
γxxγyy − γ2

xy

) . (A27)

The covariant components of the tetrad basis are

e(t̂)µ = nµ, (A28)

e(x̂)µ = D̂
(
βxγyy − βyγxy, γxxγyy − γ2

xy, 0, γyyγxz − γyzγxy
)

(A29)

e(ŷ)µ = Ĉ (βy, γyi) . (A30)

e(ẑ)µ = B̂ (βz, δi
z) . (A31)

The components of the numerical flux at the z-interface
in the Eulerian frame are given by

(F̃ z0 )j,k,l+ 1
2

= (Dvz)j,k,l+ 1
2

=
(
α
(
e(t̂)

zD + e(ẑ)
z f̃

(ẑ)
0

))
j,k,l+ 1

2

, (A32)

(F̃ z1 )j,k,l+ 1
2

= (αT zx)j,k,l+ 1
2

=
(
α
(
e(t̂)

ze(ı̂)xJ(ı̂) + e(ẑ)
ze(ı̂)xf̃

(ẑ)
i

))
j,k,l+ 1

2

, (A33)

(F̃ z2 )j,k,l+ 1
2

= (αT zy)j,k,l+ 1
2

=
(
α
(
e(t̂)

ze(ŷ)yJ(ŷ) + e(ẑ)
ze(ŷ)y f̃

(ẑ)
2

))
j,k,l+ 1

2

, (A34)

(F̃ z3 )j,k,l+ 1
2

= (αT zz)j,k,l+ 1
2

=
(
α
(
e(t̂)

ze(ı̂)zJ(ı̂) + e(ẑ)
ze(ı̂)z f̃

(ẑ)
i

))
j,k,l+ 1

2

, (A35)

(F̃ z4 )j,k,l+ 1
2

= (−αT zµnµ)j,k,l+ 1
2

=
(
α
(
e(t̂)

zρH + e(ẑ)
z f̃

(ẑ)
4

))
j,k,l+ 1

2

, (A36)

(F̃ z5 )j,k,l+ 1
2

=
(
−Ẽy

)
j,k,l+ 1

2

= (α∗F xz)j,k,l+ 1
2

=
(
α
(
e(t̂)

ze(ı̂)
xB̄(ı̂) − e(t̂)

xe(ẑ)
zB̄(ẑ)

+ e(x̂)
xe(ẑ)

z f̃
(ẑ)
5

))
j,k,l+ 1

2

, (A37)

(F̃ z6 )j,k,l+ 1
2

=
(
Ẽx

)
j,k,l+ 1

2

= (α∗F yz)j,k,l+ 1
2

=
(
α
(
e(t̂)

ze(ı̂)
yB̄(ı̂) − e(t̂)

ye(ẑ)
zB̄(ẑ)

+ e(x̂)
ye(ẑ)

z f̃
(ẑ)
5 + e(ŷ)

ye(ẑ)
z f̃

(ẑ)
6

))
j,k,l+ 1

2

, (A38)

(F̃ z7 )j,k,l+ 1
2

= 0. (A39)

The interface velocity is

v
(ẑ)
interface =

dẑ

dt̂
=

βz

α
√
γzz

. (A40)
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Appendix B: Coordinate transformation to the
maximal trumpet black hole puncture solution

Bondi flow is usually described in Schwarzschild co-
ordinates. However, our numerical relativity code has
a high affinity with puncture coordinates because the
solver for Einstein’s equations handles a black hole with
the moving puncture gauge. In numerical relativity with
this gauge condition, black holes relax to a stationary
solution in the so-called limit hypersurface. This implies
that the code test should be done employing this special
stationary hypersurface. To do this, one needs to seek a
coordinate transformation from the Schwarzschild coor-
dinates to the puncture coordinates (i.e., the coordinates
of the limit hypersurface). One simple way of doing this
is to describe a black hole as the maximal trumpet black
hole puncture solution described in Ref. [94]. In these
coordinates, the fluid quantities are well-behaved on the
horizon.

1. Maximal trumpet black hole puncture

The stationary solution of the Schwarzschild spacetime
in the limiting hypersurface can be written by

ds2 = −(α2 − βRβR)dt2 + 2βRdtdR+ f−2dR2 +R2dΩ2,
(B1)

where

f =

(
1− 2M

R
+
C2

R4

)1/2

, (B2)

α = f, (B3)

βR =
Cf

R2
. (B4)

Here, C is the integration constant and R is the circum-
ferential radius. A number of numerical relativity simu-
lations of a single black hole spacetime using the moving
puncture gauge showed that the numerical solution set-

tles down to a member of the family with C = 3
√

3M2

4 ,
which has a limiting surface at R = 3M/2 [93]. If we con-
sider a transformation of this solution into the isotropic
coordinates by identifying the spatial metric in both co-
ordinates as

f−2dR2 +R2dΩ2 = ψ4(dr2 + r2dΩ2), (B5)

one may find a solution for r and ψ as [94]

r =

[
2R+M + (4R2 + 4MR+ 3M2)1/2

4

]

×
[

(4 + 3
√

2)(2R− 3M)

8R+ 6M + 3(8R2 + 8MR+ 6M2)1/2

]1/
√

2

, (B6)

ψ2 =
R

r
, (B7)

where we assumed C = 3
√

3M2/4. The lapse function,
shift vector, and non-zero components of the extrinsic
curvature are given by

α =

√
1− 2M

R
+

27M4

16R4
, (B8)

βr =
3
√

3M2r

4R3
, (B9)

Krr = −6
√

3M2ψ4

4R3
, (B10)

Kθθ =
Kφφ

sin2 θ
=

3
√

3M2

4R
. (B11)

2. Velocity field and magnetic field of Bondi flow

The velocity field of Bondi flow in Schwarzschild co-
ordinates should be transformed into the isotropic co-
ordinates described in the previous section. The radial
component is obtained by

ur =
uR

ψ2f
, (B12)

where uR is the radial velocity of Bondi flow in
Schwarzschild coordinates (see, e.g., Ref. [83]). The time
component is obtained by the normalization of the four
velocity:

ut = − Cψ2uR

R(R− 2M)

×

−1 +

(
1 +

R3(R− 2M)

C2ψ4 (uR)
2

(
ψ4
(
uR
)2

+ 1
))1/2

 .
(B13)

Note that the four velocity in these coordinates does not
exhibit pathological behavior on the horizon, which can
be confirmed by a Taylor expansion of Eq. (B13) near the
horizon [95]. Note also that the lower components of the
four velocity, ut and ur, are well-behaved at the horizon
because the metric has a regular form in the maximal
trumpet geometry (B5).

For magnetized Bondi flow, the radial component of
the magnetic field in the maximal trumpet geometry is
given by

Br =
BR

ψ2f
, (B14)

where BR is the radial component of the magnetic field
in Schwarzschild coordinates. In the case of a purely
radial magnetic field, the divergence-free condition (2.15)
requires the radial component of the magnetic field in
Schwarzschild coordinates be

BR ∝ 1/
√
γ ∝ f

R2
. (B15)
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