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Need for cognition does 
not account for individual 
differences in metacontrol 
of decision making
Florian Bolenz1,2,3*, Maxine F. Profitt4, Fabian Stechbarth1, Ben Eppinger1,4,5 & 
Alexander Strobel1

Humans show metacontrol of decision making, that is they adapt their reliance on decision-making 
strategies toward situational differences such as differences in reward magnitude. Specifically, when 
higher rewards are at stake, individuals increase reliance on a more accurate but cognitively effortful 
strategy. We investigated whether the personality trait Need for Cognition (NFC) explains individual 
differences in metacontrol. Based on findings of cognitive effort expenditure in executive functions, 
we expected more metacontrol in individuals low in NFC. In two independent studies, metacontrol 
was assessed by means of a decision-making task that dissociates different reinforcement-learning 
strategies and in which reward magnitude was manipulated across trials. In contrast to our 
expectations, NFC did not account for individual differences in metacontrol of decision making. In fact, 
a Bayesian analysis provided moderate to strong evidence against a relationship between NFC and 
metacontrol. Beyond this, there was no consistent evidence for relationship between NFC and overall 
model-based decision making. These findings show that the effect of rewards on the engagement of 
effortful decision-making strategies is largely independent of the intrinsic motivation for engaging in 
cognitively effortful tasks and suggest a differential role of NFC for the regulation of cognitive effort in 
decision making and executive functions.

Human decision making can be guided by different strategies1. The framework of Reinforcement Learning2,3 
discriminates between at least two strategies. First, a model-free strategy guides decisions based on previously 
learnt action-reward associations. This strategy is considered to be computationally simple but can be inaccurate 
in dynamically changing environments. Second, a model-based strategy guides decisions by using a mental model 
of the environment to predict the consequences of potential decisions. This strategy is usually more accurate, but 
also requires more cognitive effort because it relies at least partly on executive functions4,5.

The regulation of cognitive processes relying on executive functions is called metacontrol6 and humans show 
metacontrol of decision-making strategies, that is they adapt their relative reliance on a model-based strategy (vs. 
a model-free strategy) to situational demands7,8. For example, people shift more toward a model-based strategy 
when rewards become higher and thus investing into the more effortful strategy also pays off more7. Following 
the definition of metacontrol as the regulation of decision-making strategies, pronounced metacontrol should 
thus be reflected in a strong upregulation or downregulation of a strategy when the situational demands change. 
Here, we will focus on metacontrol in response to changes in reward magnitude which is most commonly studied 
in studies investigating individual differences in metacontrol of decision-making strategies9–11.

Previous work has emphasized the reliance on a model-based strategy as an important computational phe-
notype providing mechanistic explanations for behavioral and psychological differences between individuals12. 
For example, reduced model-based control has been linked to psychopathological traits11,13 suggesting a role as a 
transdiagnostic impairment14. It is an open question whether there are also complementary groups of individuals 
on the other side of this spectrum showing inflexibly high model-based control. To address this question, we 
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investigated the personality trait Need for Cognition (NFC)15 as a potential explanation for reduced, context-
insensitive metacontrol of these decision-making strategies.

NFC reflects an individual’s intrinsic motivation for cognitively demanding activities16. Previous research 
has shown that individuals high in NFC need less monetary incentives to exert cognitive effort than individuals 
low in NFC: Higher NFC is associated with an increased willingness to spent time with a cognitively demanding 
activity in the absence of reward17 and high-NFC individuals need fewer additional rewards to prefer a high-effort 
task over a low-effort task18. In line with these findings, a recent study reported that NFC modulates how rewards 
affect effort expenditure for executive functions19. Specifically, while individuals low in NFC invested more 
cognitive effort in a high-reward condition compared to a low-reward condition of a task-switching paradigm, 
this reward-induced effect vanished for individuals high in NFC. This suggests that the adaptation of cogni-
tive effort toward different payoffs is more pronounced when the intrinsic motivation to engage in cognitively 
effortful behavior is low.

Based on these findings of how the intrinsic motivation for cognitive effort modulates the reward-related 
upregulation of cognitive effort19, we expect that NFC explains individual differences in metacontrol of decision-
making strategies. Specifically, individuals high in NFC should show less metacontrol of decision making (i.e. a 
weaker upregulation of model-based decision making when rewards are amplified) than individuals low in NFC. 
We therefore hypothesize that NFC negatively correlates with reward-related metacontrol of decision making. 
We tested this prediction in datasets from two studies (Ns = 126 and 205) employing a decision-making task that 
has been developed to dissociate model-free from model-based strategies7,20. This task has been adapted from 
previous sequential decision-making tasks1,21 but in contrast to its predecessors, in the task employed in our 
studies, more reliance on a model-based strategy pays off in terms of higher rewards.

Results
Study 1.  Reliance on decision-making strategies was assessed with a sequential decision-making task that 
dissociates model-free and model-based decision making (Fig. 1; Refs.9,20) in a sample of 126 participants (76 
female, age range 18–36 years). In this task, participants collect rewards (“space treasure”) by choosing between 
spaceships that travel to two different planets. The number of rewards available at these planets ranged between 0 
and 9 and slowly drifted over the course of the task at both planets independently. Across trials, we manipulated 
how rewards were converted into points7. In low-stakes trials, participants received one point for every piece of 
space treasure; in high-stakes trials, participants received five points for every piece of space treasure (Fig. 1B). 
Moreover, we manipulated task complexity by imposing additional demands on structure learning in some trial 
blocks. In stable-transitions blocks, spaceships maintained their destinations throughout the entire block, while 
in variable-transitions blocks, one pair of spaceships switched their destinations every 6–14 trials (Fig. 1C). By 
means of this manipulation, we were able to assess metacontrol at two different levels of effort required for using 
a model-based strategy.

We used an established hybrid reinforcement-learning model1,9,22 to determine individual reliance on model-
based decision making in the decision-making task. This model integrates model-free reward expectations 
QMF(s,a) attained by simple temporal-difference learning and model-based reward expectations QMB(s,a) based 
on weighting reward expectations for the final states according to the probability of getting there. The model-
based weight ω (ranging between 0 and 1) reflects the relative influence of the model-based learner with higher 
values of ω representing relatively more reliance on model-based decision making. Our model includes four 
model-based weights, one for low-stakes trials and one for high-stakes trials in both stable-transitions blocks 
and variable-transitions blocks. Following the definition of metacontrol as the regulation of decision-making 
strategies toward changing situational demand and in line with other studies investigating individual differences 
in metacontrol9–11, we defined metacontrol as the difference between the model-based weight for high-stakes 
trials and the model-based weight for low-stakes trials, such that a higher difference value reflects a stronger 
upregulation of model-based decision making.

Metacontrol of decision making.  We found increased model-based weights for high-stakes trials compared to 
low-stakes trials (Fig. 2A), both in stable-transitions blocks (BF10 = 6.9 × 106) and in variable-transitions blocks 
(BF10 = 19.3). In line with results previously reported in a subsample of our participants and in other studies7,9, 
this indicates that participants increased reliance on model-based decision making when rewards were ampli-
fied. Moreover, there were reduced model-based weights in variable-transitions blocks compared to stable-tran-
sitions blocks, both for low-stakes trials (BF10 = 29.4) and for high-stakes trials (BF10 = 2.0 × 1013). Thus, par-
ticipants showed less model-based decision making during blocks with additional structure learning demands.

To better understand how the reliance on model-based decision making affects task behavior, we analyzed 
differences in task performance between the experimental conditions. Task performance was assessed as number 
of collected rewards corrected for the baseline of the average number of rewards available. In stable-transitions 
blocks, task performance was increased in high-stakes trials compared to low-stakes trials (Ms = 0.62 vs. 0.32, 
BF10 = 198,883,045). Similarly, task performance was higher in high-stakes trials than in low-stakes trials in 
variable-transitions blocks (Ms = 0.41 vs. 0.25, BF10 = 5065). This shows that the differences in model-based 
decision making reported above are mirrored by similar increases in task performance.

Need for cognition and metacontrol.  We found considerable individual differences in how strongly participants 
adapted decision-making strategies in response to amplified rewards with some participants showing almost 
no difference in model-based decision making as a function of reward magnitude (points close to the identity 
line in Fig. 2B,C) whereas other participants showed pronounced differences in model-based decision making 
between low-stakes and high-stakes trials (points far away from the identity line in Fig. 2B,C). Therefore, we 
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next analyzed whether NFC (as assessed with the German NFC short-scale23) explains individual differences in 
metacontrol of decision-making. We found moderate evidence against a correlation between NFC and metac-
ontrol (Fig. 3) for both stable-transitions blocks (r = 0.00, BF10 = 0.11) and variable-transitions blocks (r = 0.12, 
BF10 = 0.28). Based on findings showing stronger reward-induced increases in executive function performance 
for individuals low in NFC19, we also tested the hypothesis of a negative correlation between NFC and metac-
ontrol. We found moderate evidence against a negative correlation in stable-transitions block (BF10 = 0.11) and 
strong evidence against a negative correlation in variable-transitions blocks (BF10 = 0.05). These results were 
largely unaffected by different prior assumptions about the population correlation (see Supplementary Fig. S2 in 
the supplementary information). These findings speak against the idea that individuals low in NFC show more 
metacontrol of decision making.

Similarly, we found moderate evidence against a correlation between NFC and the stakes-related increase 
in task performance in stable-transitions blocks (r = − 0.10, two-sided BF10 = 0.21) and in variable-transitions 
blocks (r = 0.05, two-sided BF10 = 0.13). Thus, individuals low in NFC did not more strongly increase task per-
formance as a function of reward magnitude and this suggests that they also do not differ in the adaptation of 
other decision-making processes that contribute to performance in this task.

Need for cognition and model‑based decision making.  We also investigated whether NFC explains individual 
differences in model-based decision making. There was moderate evidence against a correlation between NFC 
and model-based weights in low-stakes trials for both stable-transitions blocks (r = 0.09, BF10 = 0.18) and vari-
able transitions-blocks (r = 0.07, BF10 = 0.15). There was inconclusive evidence regarding a correlation between 
NFC and model-based weights for high-stakes trials in both stable-transitions blocks (r = 0.13, BF10 = 0.34) and 

Figure 1.   The sequential decision-making task. (A) Task transition structure. Each trial offered the choice 
between one pair of spaceships, both leading deterministically to one of two planets. At the planet, a reward 
was obtained and the amount of reward slowly drifted over the course of the task. (B) Trial structure. At the 
beginning of each trial, a stakes condition was cued. Low-stakes trials and high-stakes trials differed in how 
rewards were converted into points. (C) Transition conditions (only in Study 1). In stable-transitions blocks, the 
task transition structure remained unchanged throughout the block of 80 trials. In variable-transitions blocks, 
every 6–14 trials, the pair of spaceships in one first-stage state swapped their destination planets. This figure was 
reprinted from Ref.9 (license: https://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/).

https://creativecommons.org/licenses/by/4.0/
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variable-transitions blocks (r = 0.21, BF10 = 1.73). Thus, our results do not show that NFC explains individual 
differences in model-based decision making.

Similarly, there was moderate evidence against a correlation between NFC and task performance for both low-
stakes (r = 0.11, BF10 = 0.24) and high-stakes trials (r = 0.01, BF10 = 0.11) in stable-transitions blocks as well as for 
low-stakes trials in variable-transitions blocks (r = 0.05, BF10 = 0.13). There was inconclusive evidence regarding 
a correlation between task performance and NFC in high-stakes trials in variable-transitions blocks (r = 0.14, 
BF10 = 0.38). Thus, NFC does not seem to be related to performance in the decision-making task.

Study 2.  To scrutinize the unexpected findings in Study 1, we tried to replicate these findings in an inde-
pendent, larger sample (N = 205, 149 female, age range 18–32 years). This sample was assessed as part of a more 
comprehensive study investigating the relationship between cognitive effort expenditure and ADHD personality 
traits in a student sample. For our purposes, we will focus our analysis here only on the variables corresponding 
to Study 1. We used an adapted version of the decision-making task that was employed in Study 1. Similar to 

Figure 2.   Metacontrol of decision making in Study 1. (A) Mean model-based weights. Error bars represent 
standard error of the mean. (B,C) Individual differences in model-based weights. Plots show model-based 
weights in high-stakes trials (y-axis) against model-based weights in low-stakes trials (x-axis) for stable-
transitions blocks (B) and variable-transitions blocks (C). Points on the identity line represent individuals that 
showed no adaptation of model-based weights toward stakes conditions. Points above (below) the identity line 
represent individuals that showed higher (lower) model-based weights in high-stakes trials compared to low-
stakes trials.

Figure 3.   Relationship between NFC (x-axis) and metacontrol of decision making (y-axis) in Study 1.
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Study 1, we manipulated how rewards were converted into points, with each piece of reward being worth one 
point in low-stakes trials and being worth five points in high-stakes trials. In contrast to Study 1, the spaceships 
kept their destination planets throughout the entire task, i.e., the complete task corresponded to the stable-
transitions condition from Study 1.

Metacontrol of decision making.  We found increased model-based weights in high-stakes trials compared to 
low-stakes trials (BF10 = 2.3 × 107, Fig. 4A). Moreover, task performance was increased in high-stakes trials com-
pared to low-stakes trials (Ms = 0.31 vs. 0.18, BF10 = 24,567). Thus, similar to Study 1, participants showed metac-
ontrol of decision making and relied more on model-based decision making when rewards were amplified. This 
increased reliance on model-based decision making was associated with better performance in the task.

Need for cognition and metacontrol.  As in Study 1, we observed considerable individual differences in metac-
ontrol of decision making with some participants showing no adaptation of model-based weights toward the 
different stakes conditions while other participants showed a strong upregulation of model-based decision mak-
ing when rewards were amplified (Fig. 4B). We found moderate evidence against a correlation between NFC 
(as assessed with the English NFC short-scale16,24) and metacontrol (r = 0.06, BF10 = 0.24, Fig. 5). Moreover, we 
found strong evidence against a negative correlation between NFC and metacontrol (BF10 = 0.09). Consistent 
with our findings in Study 1, these results speak against a role of NFC in explaining individual differences in 
metacontrol of decision making. Bayes Factor robustness checks indicated that these findings were largely unaf-
fected by different prior assumptions (see Supplementary Fig. S3 in the supplementary information).

We found moderate evidence against a correlation between NFC and the stakes-related increase in task 
performance (r = − 0.11, BF10 = 0.27). Thus, individuals low in NFC did not seem to increase task performance 
more strongly when rewards were amplified.

Need for cognition and model‑based decision making.  We found inconclusive evidence regarding a correlation 
between NFC and model-based weights in low-stakes trials (r = 0.10, BF10 = 0.47). In contrast to our findings in 
Study 1, we found strong evidence for a correlation between NFC and model-based weights in high-stakes trials 
(r = 0.21, BF10 = 15).

There was a positive correlation between NFC and task performance in low-stakes trials (r = 0.22, BF10 = 10) 
and inconclusive evidence regarding a correlation between NFC and task performance in high-stakes trials 
(r = 0.14, BF10 = 0.70). Thus, different from Study 1, the results from Study 2 partly indicate that higher NFC is 
associated with more model-based decision making or better task performance.

Discussion
We investigated individual differences in metacontrol of decision making in two independent studies. Based on 
previous research showing that individuals high in NFC show less regulation of cognitive effort in response to 
different incentive sizes, we expected metacontrol to be reduced with higher NFC. In contrast to our expectations, 
NFC did not explain individual differences in metacontrol. That is, individuals low and high in NFC similarly 

Figure 4.   Metacontrol of decision making in Study 2. (A) Mean model-based weights. Error bars represent 
standard error of the mean. (B) Individual differences in model-based weights. Plots show model-based weights 
in high-stakes trials (y-axis) against model-based weights in low-stakes trials (x-axis). Points on the identity line 
represent individuals that showed no adaptation of model-based weights toward stakes conditions. Points above 
(below) the identity line represent individuals that showed higher (lower) model-based weights in high-stakes 
trials compared to low-stakes trials.
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increased their reliance on the more accurate but more effortful model-based decision-making strategy when 
rewards were amplified. These findings show that the effect of incentives on the engagement of effortful decision-
making strategies is largely independent of the intrinsic motivation for engaging in cognitively effortful activities. 
By means of a Bayes Factor analysis, we were indeed able to show that the data support the independence of NFC 
and metacontrol and that the lack of an association is not merely due to low statistical power (in which case the 
Bayes Factors would support neither independence nor a correlation between the variables; cf.25). Mirroring the 
independence of NFC and metacontrol of decision making, participants low in NFC also did not show more 
adaptation of general task performance as a function of reward magnitude.

Our findings suggest that NFC may have a differential role for the expenditure of cognitive effort in decision-
making and executive functions. In a study by Sandra and Otto19, participants low in NFC showed a stronger 
ramp-up of cognitive effort in a task-switching paradigm when rewards were amplified than participants high in 
NFC. Although model-based decision making relies at least partly on executive functions4,5, we did not observe 
a similar relationship between NFC and cognitive effort expenditure during decision making. This could point 
to a potential process specificity regarding the role of NFC in the regulation of cognitive effort.

Furthermore, we obtained inconsistent evidence of the relationship between NFC and model-based decision 
making. While the results from Study 2 suggest that high-NFC individuals show more model-based decision 
making than low-NFC individuals under high-stakes conditions, this was less evident in Study 1. This does in 
parts parallel findings in the domain of multi-attribute decision making where NFC was not associated with 
individual tendencies to engage in more complex weighting of different attributes instead of relying on a more 
simple take-the-best heuristic26. Taken together, NFC does not seem to be a reliable predictor for strategy use in 
decision making that generalizes across tasks.

While NFC generally has been associated with more cognitively effortful modes of information processing16, 
a recent study points to no relationship between NFC and basic executive functions27 which largely mirrors 
the results from our studies. A potential explanation for these inconsistent findings could be that our decision-
making task—like most paradigms in experimental psychology—poses strong situational affordances and thus 
might reduce interindividual variability, making it more challenging to use in correlational research28.

A possible limitation of our studies is that they were based on student samples with a distribution of NFC 
scores shifted above the scale mean. This restricted range could have attenuated the association between NFC and 
metacontrol and future studies should rely on more representative samples. However, this sample characteristic 
equally holds for the study by Sandra and Otto19 and we therefore think it is unlikely that this factor explains the 
absence of a correlation in our two studies.

Other studies reporting associations between model-based decision making or its metacontrol and person-
ality traits11,13 based their findings on considerably larger sample sizes than in our two studies presented here. 
However, in contrast to these previous studies we did not test participants via online crowdsourcing platforms 
but in lab-based studies, potentially making up for the lower sample size with a more controlled, less noise-
prone experimental setup. Moreover, we additionally fitted the data with a hierarchical Bayesian version of the 
reinforcement-learning model (see Supplementary Information) which can account for uncertainty of parameter 
estimates. In this analysis, we also found moderate to strong evidence against a negative correlation between 
NFC and metacontrol, consistent with the results reported in the main analysis.

The stakes manipulation used in our task (factor 1 versus factor 5) was comparable in size to the stakes 
manipulation in the study by Sandra and Otto19 (1 cent versus 5 cent). In contrast to our experimental design, 
where the stakes condition was assigned to each trial randomly, Sandra and Otto19 employed a blockwise stakes 

Figure 5.   Relationship between NFC (x-axis) and metacontrol of decision making (y-axis) in Study 1.
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manipulation, keeping the stakes condition constant for several trials in a row. Thus, in our two studies, individual 
differences in the willingness to exert cognitive effort might have been attenuated by individual differences in the 
ability to adapt cognitive effort dynamically and immediately. However, since young adults can adapt behavioral 
performance in cognitive control tasks rapidly to changes in the reward structure29, we think that this difference 
in task design is unlikely to explain the different patterns in our study and the study by Sandra and Otto19. Further 
research is needed to better understand the temporal dynamics of metacontrol.

In conclusion, we found that NFC does not account for individual differences in metacontrol of decision 
making. That is, individuals low and high in NFC equally adapted their reliance on a more accurate but more 
effortful strategy when rewards were amplified. While some of our findings suggest that high-NFC individuals 
exert more cognitive effort during decision making, this relationship was not observed consistently in both stud-
ies and encourages more research on the role of personality traits in reinforcement learning.

Methods
Study 1.  For Study 1, we report how we determined our sample size, all data exclusions, all manipulations, 
and all measures in the study30. The dataset and all analysis scripts can be found at osf.io/9wc4u.

Participants.  128 participants took part in this study. Data from a subset of this sample (N = 63) have been 
collected as part of a different study9 and for these participants additional measures such as cognitive control 
and processing speed were assessed that are not reported here. For the purpose of the current study we recruited 
additional participants based on considerations that it would take around 120 participants to detect a true cor-
relation of r = 0.25 with a power of 1 − β = 0.80. We excluded two participants from data analysis due to the fol-
lowing reasons: missing responses in more than 20% of trials in the decision-making task (1) and missing values 
in the NFC scale (1). Thus, the effective sample consisted of 126 participants (76 female, age range 18–36 years, 
mean age = 23.4 years). All participants gave informed written consent and received either monetary compen-
sation (5€/h) or course credit for their participation, as well as an additional monetary compensation related 
to their performance in the decision-making task (10 cents for every 60 points in the decision-making task). 
The ethics committee of Technische Universität Dresden approved the study and all research was performed in 
accordance with the relevant guidelines and regulations.

Decision‑making task.  We employed a sequential decision-making task that had been developed to dissoci-
ate model-free and model-based decision making7,9,20. In contrast to previous tasks it has been adapted from 
Refs.1,21, more reliance on model-based decision making pays off in terms of higher rewards in the task employed 
here.

Each trial started with an intertrial interval (black screen, 750 ms) and the presentation of a stakes cue 
(1000 ms) that signal how the rewards earned in this trial were converted into points. Both stakes cues (low-
stakes cue = “1×” and high-stakes cue = “5×”) were assigned with equal probability to trials. After this, one of two 
first-stage states was presented (3000 ms) with two spaceships displayed side by side (an orange and a turquoise 
spaceship in one first-stage state, and a green and a blue spaceship in the other first-stage state; all spaceships 
were displayed equally often on the left or the right side). Participants selected the left or the right spaceship using 
the keys F and J on a standard computer keyboard and after a choice was made, the respective spaceship was 
highlighted for the remaining time of the presentation of the first-stage state. Subsequently, one of two second-
stage states (a red or a purple planet with an alien) was presented and the second-stage state was deterministically 
determined by the choice of the spaceship. For each pair of spaceships, there was always one spaceship leading to 
the red planet and the other spaceship leading to the purple planet. In stable-transitions blocks, the mapping from 
spaceships to planets was held constant throughout the block, whereas in variable-transitions blocks, every 6–14 
trials, one of the two pairs of spaceships switched their destination planets. Participants had 2000 ms to respond 
to the second-stage state by pressing the space bar. After this response window, the amount of rewards available 
at this planet and points received in this trial was shown. Rewards available at both planets were based on two 
independent Gaussian random walks (mean = 0, standard deviation = 2, reflecting boundaries at 0 and 9, values 
were rounded to integers). During the task, a total point count was displayed in the top-right corner of the screen.

If no response was given during the first-stage state or the second-stage state within the respective response 
window, the trial was canceled, no reward was given and the task proceeded with the next trial. Trials with 
missing responses at the first-stage state were not included in the analysis (1% of all trials). Different to previous 
studies with this task, we included trials with missing responses at the second-stage state because these trials 
could be potentially informative for updates of the transition structure.

The task consisted of 320 trials, grouped into four blocks of 80 trials. Between blocks, the transition condi-
tion (stable vs. variable) was alternating and participants were informed at the beginning of each block about 
the transition condition for the upcoming trials.

In order to decrease variability between participants due to random variations in the task, we kept the reward 
trajectories and the sequence of first-stage states identical for all participants. The assignment of stakes conditions 
to trials and of transition conditions to blocks was counterbalanced across participants.

Before starting with the sequential decision-making task, participants received a detailed instruction about 
the nature of the reward distribution, the transition structure and the stakes manipulation. To ensure their 
understanding of the task, participants had to select the spaceship leading to a planet (with 10 consecutive correct 
choices necessary for each planet to proceed) and to specify the number of points given a number of rewards and 
a stakes cue (with 10 consecutive correct answers necessary to proceed). Moreover, they performed 20 training 
trials for the stable-transitions condition and 20 training trials for the variable-transitions condition.
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Reinforcement‑learning model.  The model-free learner holds reward expectations QMF(si,ai) for each action ai 
and state si at the i-th stage of the task. At the beginning of the task, all reward expectations are set to 4.5 (reflect-
ing the mean of the range of possible rewards). After each choice, all reward expectations are updated according 
to a temporal-difference learning rule:

Here, α is the reward learning rate (bounded between 0 and 1) reflecting how quickly new experiences are 
integrated into reward expectations. The eligibility trace e(si,ai) is set to 0 for all combinations of si and ai at the 
beginning of a trial; before updating reward expectations, the eligibility trace for the immediately preceding 
state-action pair (si′, ai′) is set to 1 and after the update, all eligibility traces are decayed by the eligibility trace 
decay parameter λ (bounded between 0 and 1). The reward prediction error δ reflects the discrepancy between 
experienced and expected reward and is computed as

where r is the immediate reward obtained after a choice (note that r is always 0 after first-stage choices) and QMF(
si′+1,ai′+1) is the reward expectation associated with the subsequent action ai′+1 in the new state si′+1 (note that QMF
(si′+1,ai′+1) is always 0 after second-stage choices because the states that offer rewards are terminal).

The model-based learner maintains a model of the task structure represented by a transition matrix T(s2|s1, 
a1) that holds probabilities for moving to a second-stage state given an action and a first-stage state. At the begin-
ning of the task, all transition probabilities are 0.5 and after observing a transition to a second-stage state, these 
probabilities are updated according to

Here, η is the transition learning rate (bounded between 0 and 1) that reflects how quickly observations of 
transitions are integrated into the representation of the task structure. To ensure that the sum of transition prob-
abilities stays 1, the probability for transitioning to the alternative second-stage state ⌐s2 needs to be adjusted. 
The state prediction error δSPE is computed as

It is possible to infer the second-stage state to which the alternative, not-chosen first-stage action would have 
led because both actions available in a first-stage state always lead to different second-stage states. Thus, the 
model-based learner also updates transition probabilities for the alternative action in the same way as it does for 
the actual actions, using a counterfactual transition learning rate ηCF (bounded between 0 and 1).

While the model-based reward expectations at the second stage are identical to the model-free reward expec-
tations (because both reflect an estimate of the immediate reward), the model-based reward expectations at the 
first stage are computed as

At the first stage, both model-free and model-based reward expectations are combined to an integrated 
reward expectation Q(s1,a1) with the model-based weight ω (bounded between 0 and 1) reflecting the relative 
influence of the model-based learner.

Choice probabilities at the first stage are modeled by a softmax function:

Here, β is the inverse softmax temperature (left-bounded at 0) that reflects how consistently choices are guided 
by reward expectations. The choice stickiness π and the response stickiness ρ (both unbounded) capture perse-
veration (positive values) or switching (negative values) of choices (which stimulus was selected) or responses 
(which key was pressed) across trials. The indicator variables rep(a1) and resp(a1) are set to 1 if the same stimulus 
or the corresponding response key were selected in the previous trials (and are set to 0 otherwise).

Model‑fitting procedure.  We obtained individual maximum a posteriori parameter estimates using the mfit 
toolbox in Matlab31 with the following priors: Beta(2, 2) priors for α, λ, η, ηCF and ω; Normal(0,1) priors for π and 
ρ; a Gamma(3, 0.2) prior for β. To avoid local optima, the optimization procedure was started 100 times for each 
participant and we used the parameters of the run with the highest posterior probability. Model-based weights 
were estimated separately for low-stakes and high-stakes trials in both stable-transitions and variable-transitions 
blocks. Transition learning rates were estimated only for variable-transitions blocks and set to 1 during stable-
transitions blocks. We fitted different versions of the model where the parameters λ, η, ηCF, π and ρ were varied 
to be free or fixed parameters and we selected the best-fitting model version based on the Akaike Information 
Criterion (free parameters: λ, π, ρ; fixed parameters: η = ηCF = 1). As reported in Bolenz et al.9, the model shows 

QMF(si , ai) ← QMF(si, ai)+ α × e(si , ai)× δ.

δ = r +QMF

(

si′+1, ai′+1

)

−QMF

(

si′ , ai′
)

,

T(s2|s1, a1) ← T(s2|s1, a1)+ η × δSPE ,

T(¬s2|s1, a1) ← T(¬s2|s1, a1)× (1− η).

δSPE = 1− T(s2|s1, a1).

QMB(s1, a1) =
∑

s2

T(s2|s1, a1)QMB(s2, a2).

Q(s1, a1) = (1− ω)QMF(s1, a1)+ ωQMB(s1, a1).

P(a1|s1) =
exp(β

[

Q(s1, a1)+ π · rep(a1)+ ρ · resp(a1)
]

)
∑

a′exp(β[Q(s1, a
′)+ π · rep(a′)+ ρ · resp(a′)])

.
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good identifiability of parameters. Moreover, posterior predictive checks indicated that the model could capture 
individual differences in task behavior well (see Supplementary Information).

To better account for the uncertainty in the parameter estimates, we also fitted the data with a hierarchical 
Bayesian version of the reinforcement learning model (see Supplementary Information).

Task performance.  Task performance was assessed as the number of rewards obtained in a trial (before any 
multiplication related to the stakes condition) subtracted by the baseline computed as the average number of 
rewards available at the two planets in the same trial. Thus, our measure of task performance reflects how much 
more rewards a participant had earned compared to the expected reward for a random decision maker. For each 
participant, we averaged task performance across all trials of the same experimental condition.

NFC scale.  We assessed NFC with the German NFC short-scale23. This scale consists of 16 items that are 
recorded on a 7-point Likert scale, ranging from − 3 (“totally disagree”) to + 3 (“totally agree”). While the scale in 
our study actually ranged between 1 and 7, we transformed all values to the original scale for reasons of consist-
ency with previous studies. In our sample, NFC scores ranged between − 26 and 47 (mean = 14.63, sd = 13.48). 
Internal consistency was α = 0.88.

Data analysis.  For quantifying the evidence regarding our hypotheses, we computed Bayes Factors using the 
BayesFactors package in R32. Bayes Factors reflect how much more likely it is to observe some data under the 
assumption of the alternative hypothesis than under the assumption of the null hypothesis. Bayes Factors rang-
ing between 3 and 10 are commonly interpreted as providing moderate evidence and Bayes Factors above 10 
are interpreted as providing strong evidence for the alternative hypothesis. Conversely, Bayes Factors ranging 
between 1/3 and 1/10 are interpreted as providing moderate evidence and Bayes Factors below 1/10 are inter-
preted as providing strong evidence for the null hypothesis33.

For Bayes Factors concerning hypotheses about differences in means, we used JZS priors with scaling param-
eter r = √2/234 and for Bayes Factors concerning hypotheses about correlations, we used stretched beta priors 
with scaling parameter κ = 135 which assign equal prior probabilities to correlations between − 1 and 1. We also 
conducted Bayes Factor robustness checks for our primary analyses, varying κ between 0.01 and 1 (see Supple-
mentary Fig. S2 in the supplementary information).

We performed a Bayesian analogue to power analysis for a two-sided correlation test (i.e., comparing evidence 
for a non-zero correlation and for no correlation) and a one-sided correlation test (i.e., comparing evidence for 
a negative correlation and for no correlation). For different true population correlations ρ in a population of 
N = 1000, we computed the proportion of 10,000 random samples of n = 126 for which a Bayes Factor would show 
at least moderate evidence for the null hypothesis or the alternative hypothesis. With our sample of N = 126 and 
in a two-sided correlation test, we would find at least moderate evidence with 80% probability for a non-zero 
correlation if the true population correlation is |ρ|≥ 0.31 and for no correlation if the true population correlation 
is |ρ|≤ 0.06. In a one-sided correlation test, we would find at least moderate evidence with 80% probability for a 
negative correlation if the true population correlation is ρ ≤ − 0.28 and for no correlation if the true population 
correlation is ρ ≥ − 0.02.

Study 2.  For Study 2, we report how we determined our sample size, all data exclusions and all manipulations30. 
The dataset and all analysis scripts can be found at osf.io/9wc4u.

Participants.  214 participants took part in this study. Sample size was determined based on feasibility consid-
erations and with respect to research questions regarding the relationship between cognitive effort expenditure 
and ADHD personality traits that were the focus of a more comprehensive study. Participants completed the 
decision-making task and the NFC scale as part of a larger task battery, the results of which will be reported else-
where. We excluded nine participants from data analysis due to the following reasons: missing responses in more 
than 20% of trials in the decision-making task (1), key repetitions in more than 95% of trials in the decision-
making task (1), no or incomplete recording of the decision-making task due to technical difficulties (3), dupli-
cate assessments with the NFC scale (4). Thus, the effective sample consisted of 205 participants (149 female, 
age range 18–32  years, mean age = 22.0  years). All participants gave informed written consent and received 
monetary compensation ($25 or course credit as baseline, 22 cents for every 100 points in the decision-making 
task). The Human Research Ethics Committee at Concordia University approved the study and all research was 
performed in accordance with the relevant guidelines and regulations.

Decision‑making task.  We used a variant of the sequential decision-making task from study 1. Trials followed 
the same structure, but with a different pacing. The intertrial interval was presented for 300 ms, the stakes cue 
was presented for 800 ms, and both first-stage state and second-stage state were presented for 1500 ms each. The 
entire task consisted of 280 trials, equally distributed between low-stakes and high-stakes trials. There were no 
changes in the transition structure, so all spaceships kept their initial destination planets.

We excluded all trials from analysis in which no response was given during the presentation of either the 
first-stage state or the second-stage state (3% of all trials).

In order to decrease variability between participants due to random variations in the task, we created two 
independent trial sequences that determined reward trajectories and first-stage states and that were counter-
balanced across participants. Within each trial sequences, the assignment of stakes conditions to trials was 
counterbalanced.
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Before starting the task, participants received a similar task instruction as in study 1, apart from performing 
25 training trials, all with a stable task structure.

Reinforcement‑learning model.  We adapted the reinforcement-learning model from study 1. Due to no changes 
in the transition structure in this version of the task, we set the transition matrix T to reflecting the true transi-
tion probabilities at the beginning of the task and did not model any updates of the transition matrix, thus aban-
doning the transition learning rate and the counterfactual transition learning rate as model parameters. Also, 
this model only contained two model-based weights (one for low-stakes trials and one for high-stakes trials).

Model‑fitting procedure.  We used the same model-fitting procedure as in study 1 with the following exceptions: 
Only two model-based weights were fitted for each participant, one for low-stakes trials and one for high-stakes 
trials. We fitted different versions of the model where the parameters λ, π and ρ were varied to be free or fixed 
parameters and we selected the best-fitting model version based on the Akaike Information Criterion (free 
parameters: π, ρ; fixed parameter: λ = 0). Posterior predictive checks indicated that the model could capture 
individual differences in task behavior well (see supplementary information). Again, we also fitted the data with 
a hierarchical Bayesian version of the reinforcement learning model (see Supplementary Information).

NFC scale.  We assessed NFC with the English NFC short-scale16,24. This scale consists of 18 items that are 
recorded on a 5-point Likert scale, ranging from 1 (“extremely uncharacteristic”) to 5 (“extremely characteris-
tic”). In our sample, NFC scores ranged between 39 and 88 (mean = 64.81, sd = 9.68). Internal consistency was 
α = 0.84.

Data analysis.  Different from Study 1, we used a scaling parameter κ = 1/3 for the stretched beta priors for 
Bayes Factors concerning hypotheses about correlations. Thus, more prior weight was given to correlation coef-
ficients closer to 0, reflecting our findings in Study 1. We also conducted Bayes Factor robustness checks for our 
primary analyses, varying κ between 0.01 and 1 (see Supplementary Fig. S3 in the supplementary information).

We performed a Bayesian analogue to power analysis similar to Study 1. With our sample of N = 205 and in 
a two-sided correlation test, we would find at least moderate evidence with 80% probability for a non-zero cor-
relation if the true population correlation is |ρ|≥ 0.23 and for no correlation if the true population correlation 
is |ρ|≤ 0.01. In a one-sided correlation test, we would find at least moderate evidence with 80% probability for a 
negative correlation if the true population correlation is ρ ≤ − 0.21 and for no correlation if the true population 
correlation is ρ ≥ − 0.001.
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