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Highlights
5mC was discovered in mammals and
found to have a nonrandom distribution
that suggested a possible biological
function.

In the early 1980s, DNA methylation
within 5′ promoter regions, but not else-
where, was found to inhibit transcription
of the associated gene.

Throughout the 1990s and 2000s,
mechanisms of gene regulation by DNA
In 1925, 5-methylcytosine was first reported in bacteria. However, its biological
importance was not intuitive for several decades. After this initial lag, the ubiqui-
tous presence of this methylated base emerged across all domains of life and re-
vealed a range of essential biological functions. Today, we are armed with the
knowledge of the key factors that establish, maintain, and remove DNAmethyla-
tion and have access to a staggering and rapidly growing number of base-
resolution methylation maps. Despite this, several fundamental details about
the precise role and interpretation of DNA methylation patterns remain under in-
vestigation. Here, we review the field of DNA methylation from its beginning to
present day, with an emphasis on findings in mammalian systems, and point
the reader to select experiments that form the foundation of this field.
methylation were elucidated as well as
its relationship with histone modifications
and influence on the 3D genome organi-
zation uncovered.

Over the past decade, high-throughput
sequencing technologies complemented
earlier single-gene efforts and ultimately
provided a global understanding of DNA
methylation and its dynamics in develop-
ment and disease.
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DNA methylation: why (still) bother?
A quarter century ago, one of the pioneers in the field of DNA methylation, Rudolf Jaenisch,
outlined in the August 1997 issue of Trends in Genetics why we should bother caring about
DNA methylation and speculated in which developmental contexts it might function [1]. Here,
we would like to review why we still bother, what we have learned in nearly a century of research,
and what we still need to address in the coming years. Since its initial discovery in bacteria in
1925, DNA methylation has been investigated in a vast range of organisms and is linked to bio-
logical topics from gene regulation and genome organization, to reproduction and development,
and to disease and aging. It is the most well-studied epigenetic mechanism and is often used as
the classical example of epigenetic inheritance, although recent advances have shown this mod-
ification to be more dynamic, and hence more complex, than previously thought [2–4].

Despite an ever-growing body of work published on DNA methylation each year, it remains diffi-
cult to pinpoint the precise function of most DNA methylation found across the genome. It is also
still unresolved why DNA methylation is essential to differentiated, but not pluripotent, cells [5–7]
and why it is altered into a distinct landscape across most cancer types [8]. As typical review ar-
ticles by design focus on summarizing more recent discoveries and advances around their time
[9–18], we decided to complement this by providing a systematic review covering the entire
history of the field to highlight many foundational discoveries on which our current work is built.
As expected, the primary literature is vast, and we apologize for having to omit many elegant
experiments as we summarize the emergence and progression of the field of DNA methylation
across a century.

1900–1959: From genetics to epigenetics
At the turn of the 20th century, Walter Sutton (1902) and Theodore Boveri (1903) independently
proposed the chromosomal theory of inheritance, linking Gregor Mendel’s (1866) long
overlooked laws on gene behavior and inheritance to their own work on meiosis [19,20]. This ini-
tially controversial theory gained credence following a 1910 paper from one of its detractors,
Thomas Hunt Morgan, who demonstrated that eye color in Drosophila melanogaster is
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Glossary
Bisulfite sequencing: a method used
to detect 5-methylcytosine at single
base resolution. Sodium bisulfite is used
to selectively deaminate cytosines into
uracils, while methylcytosines remain
unchanged. PCR amplification of
bisulfite-converted DNA with regular
dNTPs converts the U into T. When
sequenced and aligned to the reference
genome, mapped Cs are inferred to be
5mC, while C to T transitions indicate
unmethylated cytosines.
BLAST: basic local alignment search
tool, a widely used algorithm developed
by Altschul and colleagues in 1990 to
align and compare nucleotide or protein
sequences.
CCCTC-binding factor (CTCF): a
highly conserved, ubiquitously
expressed zinc-finger protein and
transcription factor known for its function
as an insulator and anchor for
enhancer–promoter communication that
establishes cohesion loops via
dimerization.
CpG dinucleotide: cytosine linked to
guanine via a phosphate group on the
same strand.
Embryonic carcinoma (EC) cells: the
first pluripotent cells to be cultured in
vitro originally isolated in 1964 from a
mouse testicular teratocarcinoma, a
germ cell tumor comprised of
undifferentiated cells aswell as cells from
all three germ layers.
Heterochromatinization: the process
of compacting chromatin, generally
associated with transcriptional silencing.
Histone 3 lysine 4 (H3K4)
methylation: methylation of lysine 4 on
histone 3 tails marking active or primed
regulatory elements, such as promoters
and some enhancers, as well as
transcribed gene bodies. H3K4 can be
mono-, di-, or tri-methylated.
Histone 3 lysine 9 (H3K9)
methylation: methylation of lysine 9 on
histone 3 tails marking transcriptionally
inactive chromatin, such as silenced
repetitive elements. H3K9 can be mono-,
di-, or tri-methylated.
5-Hydroxymethylcytosine (5hmC):
the oxidation product of 5-
methylcytosine that is the product of TET
activity, the enzymes responsible for
active DNA demethylation. Subsequent
rounds of oxidation can produce
5-formyl- and 5-carboxylcytosine.
Imprinting control region (ICR): a
genomic locus involved in controlling the
expression of imprinted genes via DNA
determined by inheritance of a gene on the X chromosome, which provided the first decisive
piece of evidence in support of this theory [21]. Levene and Jacobs’ research on nucleic acids
revealed that they reside in a polymer chain of nucleotides [22] and the growing interest in the
composition of these nucleic acids laid the foundation among others for the field of epigenetics,
with DNA methylation as a central actor (Figure 1A).

The discovery of 5-methylcytosine in living cells
In 1925, Johnson and Coghill isolated and crystalized nucleic acids from Mycobacterium
tuberculosis in an effort to identify its pathogenic determinant. One of their candidates was
5-methylcytosine (5mC) (see Glossary), a nucleotide Johnson had postulated might occur
naturally in living organisms based on his previous success with its in vitro biochemical synthesis
[23]. Microscopic examination of their hydrolyzed nucleic acid picrate crystals under polarized
light indeed distinguished cytosine from 5mC [24].

Despite this early and seemingly relevant discovery, the next report on 5mC was only published
23 years later. Using recent advances in paper chromatography [25], Hotchkiss observed a faint
band near that of cytosine on his chromatograph of calf thymus DNA that behaved like cytosine,
yet was slightly shifted in its migration, leading him to suggest it is cytosine but with some
modification and therefore labeled it ‘epi-cytosine’ [26] (Figure 1B). Specifically, he noted that
the epi-cytosine relates to cytosine in terms of its absorption spectrum and mobility in the
same manner that thymine relates to uracil. As thymine is 5-methyluracil, Hotchkiss inferred
that epi-cytosine could possibly be 5mC. Two years later, Wyatt confirmed the presence of
5mC in mammalian, insect, and plant DNA with a broad range of quantities [27,28].

As nucleic acids were confirmed to be the carriers of genetic information [29,30], and the
structure of the DNA double helix was reported [31], interest in the field of DNA methylation
grew. Sinsheimer subsequently noted that 5mC is not randomly distributed in DNA but is
found specifically in the CpG dinucleotide context (Figure 1C). Interestingly, the CpG doublet
was not found as frequently as expected in eukaryotic DNA [32,33].

Summary
Why did it take so long from its initial biological discovery before research on 5mC started to
progress more rapidly? One obvious reason is the historical context of its discovery. In 1925,
we did not know yet that polymer chains of nucleic acids carry genetic information. The 1928
transformation experiments by Frederick Griffith [34], the 1944 Avery-MacLeod-McCarty exper-
iment [29], the conclusion of the Second World War, the 1952 Hershey-Chase experiment [30],
and the resolution of the DNA double helix [31] helped lay the needed foundation that
enabled the exploration of the possible relevance of 5mC in DNA. Two additional factors may
have caused some initial hesitation: other groups did not find 5mC in their DNA isolates
of M. tuberculosis [27,35], and the low abundance of 5mC reported by Hotchkiss and
Wyatt seemed disqualifying for 5mC to have a major biological function. As an aside, it is worth
mentioning that in parallel to these experimental advances, the developmental biologist Conrad
Waddington coined the term ‘epigenetics’ in 1942 [36] and published his widely used epigenetic
landscape in 1957 [37]; however, these concepts were not linked to DNA methylation until its
function became clearer over subsequent decades.

1960–1969: Insights into the utility and mechanisms of 5mC in bacteria
The dawn ofmolecular biology set the stage for a more thorough investigation and appreciation of
DNAmethylation from plants to mammals. However, essential progress was first made by study-
ing the methylation of nucleic acids in bacteria [38]. As a tractable and abundant model organism,
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methylation, where each allele of the
locus displays parent-of-origin specific
DNA methylation.
Isoschizomer: meaning ‘same cut’, a
restriction enzyme with the same
recognition sequence as another
restriction enzyme.
5-Methylcytosine (5mC): a pyrimidine
resulting from the addition of a methyl
group to the fifth carbon of cytosine.
Methyltransferase: an enzyme
catalyzing the transfer of a methyl group
from a donor, most commonly
S-adenosylmethionine (SAM), to a
recipient molecule, in the context of this
review to DNA or histone proteins.
Moloney murine leukemia virus
(M-MuLV): a type C retrovirus first
isolated from a sarcoma and
propagated in BALB/c mice. The virus
causes leukemia within a few months
after newborns are infected, though
integrated copies are usually methylated
and silenced following germline
passage.
Restrictionandmodification system
(R-M system): an immune-like system
used by bacteria for the defense against
foreign invading DNA. Each bacterial
strain expresses a specific set of
restriction endonuclease (e.g., HpaII)
and its cognate methyltransferases
(e.g., M.HpaII) that recognize the same
DNA sequence. The endonuclease
digests foreign, unmethylated DNAwhile
the host’s DNA is methylated and thus
protected from its own endonucleases.
Satellite repeats: large noncoding
tandem DNA repeats that can extend
over 2000 kb in length, found primarily at
centromeres and the telomeres, but also
heterochromatic regions of the genome.
X inactivation: a method of dosage
compensation in therian female cells
where one of the two X chromosomes is
silenced during development.
bacteria provided major insights into the biology of 5mC in prokaryotes and thereby paved the
way for its study in higher organisms (Figure 2A).

The bacterial restriction and modification system
Luria, Bertani, and Weigle first demonstrated that different families of bacteriophage diverge in
their ability to infect certain bacterial strains [39,40]. The basis for their strain specificity of viral
infection was not due to a phage’s differential ability to enter the bacterial strains, but rather
because once inside, incompatible phage DNA was found to be degraded in an immune-like re-
sponse [41]. A key mechanistic advance was the discovery that different bacteria have strain-
specificmethyltransferase activity, which raised the possibility of a role for 5mC in the defense
against phages [42]. Thus, Arber proposed the restriction and modification system (R-M
system) where methylation-sensitive ‘restriction enzymes’ defend the bacterial host against
invading viruses by digesting their DNA. Bacterial DNA is protected from these restriction
enzymes due to modifications to their DNA in the form of species-specific DNA methylation [43].

DNA methylation during DNA replication in bacteria
Beyond its role in host protection, a link between bacterial DNAmethylation andDNA replicationwas
observed [44]. Billen found that during normal Escherichia coli growth, DNAmethyltransferase activ-
ity was evident behind the replication fork where 5mC was exclusively placed on the unmethylated
nascent strand of DNA (Figure 2B). DNA replication in the absence of methionine, the methyl donor,
led to the synthesis of an unmethylated nascent strand, which retained the ability to get methylated
after S phase when methionine was added back into the media [45]. However, it seemed that
the unmethylated nascent strand of DNA cannot serve as template DNA in the subsequent round
of replication [46] and strains deficient for the methyl-donor showed DNA degradation [47].

5mC and methyltransferase activity in rat tissues
In their 1964 review on nucleic acid modifications, Srinivasan and Borek speculated that because
5mC plays a defining role in bacteria, similar mechanisms might act in eukaryotes that could
underlie their cell type diversity [48]. Four years later, they reported DNAmethyltransferase activity
in the nuclear extracts of different tissues of embryonic as well as adult rat and tested their ability
to methylate DNA from various species. Interestingly, these experiments showed that some
extracts, such as from kidney or liver, harbor more potent methyltransferase activity than brain
or spleen extracts. Based on these observations, they suggested that different tissues from the
same organism might have different 5mC content [49].

Summary
The first biological roles for DNAmethylation were gleaned from studies on the basics of bacterial
immunity and DNA replication, though it remained unclear whether any of these functions would
be conserved in higher organisms. A key advance was based on the discovery that enzymes are
responsible for adding the methyl group to cytosines in nucleic acid polymers. This suggested
that DNA methylation could be regulated, thus providing a path for specific target modification.
In particular, the possible tissue-specific roles of 5mC in rodents were intriguing, but the data
were too sparse to draw more meaningful conclusions yet.

1970–1979: DNA methylation in higher organisms
Once it became clear that 5mC, despite its relatively low abundance, does have a biological func-
tion in bacteria, the possibility that DNAmethylation could also play a more general regulatory role
across species gained credibility. As in many fields, important technological advances were
needed to enable a thorough and informative investigation of the theoretical models that emerged
in this decade.
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Broader quantification of DNA methylation
The presence of 5mC in bacteria, plants, and mammals indicated that 5mC is a widespread DNA
modification, which led to further exploration of methylation content using mass spectrometry. In
the early 1970s, Vanyushin quantified 5mC levels present in different cell types of many animals,
including sponges, mollusks, sea urchins, bony fish, amphibians, reptiles, and mammals [50,51].
These analyses showed that while both GC and 5mC content can differ between species, they
are often more similar between closely related species and generally comparable between differ-
ent tissues. Interestingly, Vanyushin later found 5mC in sequence contexts other than the CpG
dinucleotide in plants and in varying quantities across different plant species [52].

A role for DNA methylation in gene regulation
As more reports of methylation profiling by mass spectrometry accumulated, several groups
speculated about the possible role of 5mC in higher organisms, including that: (i) 5mC may
play no role in eukaryotic development [53,54]; (ii) 5mC may guide DNA mutations, which at
the time were thought to be required for transcriptional changes [55]; and (iii) 5mC may act as
a transcriptional activator [56] (Box 1). In 1975, three notable reviews were published that each
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Figure 1. The discovery of 5-methylcytosine. (A) Timeline of early studies that established the field of DNA methylation between 1900 and 1959, including the in vivo
discovery of 5mC in bacteria and then mammals. Web of Science citation counts as of March 9, 2022 are shown. (B) A schematic illustration of a paper chromatograph
shown by Hotchkiss in his 1948 paper that reports the UV absorption of the products of hydrolyzed calf thymus genomic DNA. A base of low abundance believed to be 5-
methylcytosine due to its characteristics was labeled by Hotchkiss as ‘epi-cytosine’ given the uncertainty of its exact identity. (C) Sinsheimer digested calf thymus DNA
into dinucleotides that were fractionated by column chromatography. The plot shows the UV absorptions of these nucleotide doublets. MG = 5-methylcytosine
followed by guanine. See [24,26,27,33].
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Figure 2. Propagation of stable methylation patterns and first theories on their functions. (A) In the 1960s and 1970s, the first major roles for DNA methylation
were discovered and explored. (B) To determine where methyl groups are added after DNA synthesis, Billen cultivated bacteria first in the presence of 14C-labeled thymine
for one cycle of replication followed by 5-bromouracil (5bU) present for the second cycle, to label the parent and nascent strand, respectively. In the second cycle, 3H-labeled
methionine was added to track the placement of methyl groups. As shown, the 3H-labeled methyl groups were found solely on nascent DNA (blue line) and not parent DNA
(purple line) when separated by density. (C) Schematic of Holliday and Pugh’s model for the generation and stable propagation of DNA methylation. Enzyme E1 methylates
unmodifiedDNA at target sites, but this activity alone is unstable due to the expected loss through DNA replication (top: Unstable state). Thus, a second enzyme E2 is required
to enable maintenance of the methylation pattern by specifically recognizing hemimethylated DNA and complementing methylation at the symmetrical nascent CpG (bottom:
Stable state). E1 and E2 were not known at the time and were hypothetical enzymes. (D) Densitometer tracing of gel-fractionated mouse DNA, digested with MspI or its
methylation-sensitive isoschizomer HpaII, by Singer et al. The abundance of smaller MspI fragments compared with HpaII fragments indicates that the genome-wide cut
sites are predominantly methylated. (E) Schematics of C3H 10T1/2 C18 fibroblasts by phase-contrast microscopy in Constantinides et al. revealed a striking change in
morphology after treatment with the mutagen and methylation inhibitor 5-aza for 9–10 days, indicating differentiation into myotubes. See
[43–46,50,53,57–59,64,65,79,94]. Abbreviations: 5-aza, 5-azacytidine; 5mC, 5-methylcytosine; R-M system, restriction and modification system.
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Box 1. Early theories on the function of DNA methylation

Work prior to the 1970s led several scientists to propose formal hypotheses about the function of DNA methylation in
eukaryotes. In the late 1960s, Scarano and colleagues observed that 90% of 5mC in sea urchin DNA is found in the
CG context and is thus not randomly distributed in DNA, leading them to speculate about a role for 5mC in differentiation
[277,278]. In 1971, Scarano proposed that spontaneous deamination of 5mC, which generates a C→T conversion, could
lead to heritable changes in the DNA sequence. A popular theory from the 1960s up until the early 1980s was that
sequence mutations in genes direct differentiation. Scarano therefore speculated that 5mC-guided mutation could direct
cellular differentiation during embryogenesis [55].

In the same year, Adams’ work on 5mC patterning following DNA replication in mouse fibroblasts revealed that early
replicating DNA is methylated quickly, while late replicating DNA takes several hours to become fully methylated. The
observation that active DNAmethylation occurs predominantly in S-phase led Adams to conclude that 5mCmust not play
a role in controlling transcription [53]. His conclusionsmight also have been influenced by the bacterial studies by Billen and
Lark that implicated 5mC as a regulator of DNA replication [45,46]. Interestingly, in 1972 Comings came to a different
conclusion looking at Chinese hamster ovarian cells, where he found that late replicating AT-rich DNA is undermethylated
to a greater extent than would be expected from its base composition, while early replicating GC-rich DNA is highly
methylated. Comings speculated that if DNA methylation is needed in high amounts in euchromatic DNA where it might
play a role in active transcription, then spontaneous deamination of 5mC leading to CG→TA mutations would be actively
selected against in euchromatin [56]. To Comings, the idea that 5mC is enriched in active DNA regions in eukaryotes
implicated it as a transcriptional activator.

In 1973, Adams demonstrated that sea urchin DNA is twice as methylated at the pluteus stage than at the morula stage
[54], in agreement with earlier findings suggesting that methylation in sea urchins does not occur until gastrulation
[278,279]. Adams’ report was the first to quantify such changes at each developmental stage, which led him to revise
his previous theory that DNA methylation does not regulate gene expression and to instead propose the new idea that
DNA methylation could function to ‘switch off’ genes after contributing to their specific function in early development.

Trends in Genetics
OPEN ACCESS
provided unique frameworks for contemplating and investigating the biological effects of DNA
methylation [57–59]. While each review differed in its specific, well rationalized mechanisms,
they all fundamentally agreed that 5mC would play a role in regulating gene expression and
orchestrating development.

Holliday and Pugh proposed a model for switching genes on and off that utilizes two different
specialized enzymes for de novo methylation and maintenance methylation (Figure 2C) [57].
They argued that DNA methylation seemed a better candidate than sequence mutation
to reversibly control gene expression, considering experiments by Gurdon and colleagues
that showed transplanting a somatic cell nucleus into an enucleated oocyte can reprogram it to
totipotency [60].

Riggs detailed the theoretical connection between DNA methylation and the process of
X inactivation and proposed that the evolutionarily ancient 5mC could serve as its initiator in a
two-step process carried out by one enzyme [58]. Interestingly, Riggs argued that the rules
governing his X inactivation model could be applied more broadly to the control of gene expres-
sion, with a high barrier to transcriptional change in either direction that, once triggered, could
respond quickly. Specifically, inspired by the mechanism of the bacterial R-M system, he
suggested that 5mC found in gene regulatory sequences could influence the ability of proteins
to bind there, but when 5mC occurs outside of regulatory sequences, such as at satellite
repeats, it may serve other roles [58].

Sager and Kitchin also took inspiration from the work in bacteria to extrapolate a parsimonious
role for 5mC as an R-M system in all organisms harboring genomic methylation [59]. Broadly
speaking, the proposed systemwould generate small, inheritedmodifications to DNA that enable
its later ‘restriction’ by degradation or heterochromatinization, therefore leading to inactivation.
In eukaryotes, they proposed that the insertions or deletions resulting from double strand breaks
6 Trends in Genetics, Month 2022, Vol. xx, No. xx
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created by restriction endonuclease activity could provide the heritable sequence mutations
thought to be needed to stably regulate gene expression changes during differentiation. Changes
in DNA methylation throughout development could direct those cut sites and their subsequent
mutation.

The restriction enzyme toolbox
Shortly after Arber postulated their existence [43], restriction enzymes were isolated for the first
time from Escherichia coli and Haemophilus influenzae [61–63]. Their potential as invaluable
tools was quickly realized and commercialization led to their widespread use in all of molecular
biology. Arguably one of the most important restriction nucleases used in the field of DNA meth-
ylation was discovered in a strain of Haemophilus parainfluenzae grown at Cold Spring Harbor
and then sent to New England Biolabs for the production and sale of what was thought to be
the previously characterized enzyme HpaII. In 1978, two groups simultaneously published their
independent observation that this new HpaII behaved differently than the HpaII they had used be-
fore and instead turned out to be HpaII’s isoschizomer MspI [64,65]. These papers illustrated
how a methylation-insensitive (for the inner C) MspI digestion can locate all CCGG sites in the ge-
nome and the complementary methylation-sensitive HpaII digestion can reveal the CpG methyl-
ation status (Figure 2D). Together, this pair of enzymes finally enabled researchers to determine
the methylation status of specific CpGs within their local sequence contexts.

DNA methylation and gene expression
Combining HpaII/MspI digestions with Southern blots, many research groups began to investi-
gate the methylation status of genes with tissue-specific expression patterns, such as β-globin
and albumin [66–68]. Comparing the methylation of individual genes across different cell types
of the same organism quickly revealed sites that were always, never, or variably methylated.
These variably methylated sites were much less methylated in cell types where their associated
gene was active, meaning that the methylation status of this gene was anticorrelated with its ex-
pression [69,70]. This observation, which was verified by many others, led to the wider consen-
sus that 5mC acts as a repressive DNA modification.

5-Azacytidine (5-aza) and loss of methylation
Research on a compound called 5-aza intersected with the field of DNA methylation in the late
1970s and eventually provided another important tool for the field [71–74]. 5-aza is a nucleoside
analog of cytosine that can be incorporated into DNA and RNA [75] and was widely used in the
late 1960s and early 1970s as a mutagen [76] and anticancer drug [77]. While studying the muta-
genic effects of 5-aza on cells in vitro, Jones and colleagues observed that treatment was accom-
panied by morphological changes indicating differentiation [78,79]. Constantinides et al. showed
that 5-aza-treated mouse fibroblasts became tubular and multinucleated, which suggested their
differentiation into muscle cells [79] (Figure 2E). Similarly, Taylor and Jones treated mouse fibro-
blasts with a selection of known mutagens to test whether the induced mutations could cause
any differentiation in vitro and found that only 5-aza had this specific effect [80]. In an important
next step, Friedman found that 5-aza treatment in E. coli decreased 5mC but not 6mA levels, dem-
onstrating that in addition to its mutagenic properties, 5-aza may act as a specific inhibitor of 5mC
methyltransferases [81]. A year later, Jones and Taylor extended these findings to eukaryotes and
reported that 5-aza reduces 5mC, and speculated it may impede the advance of the presumably
progressive methyltransferase activity along the DNA [82].

Summary
The 1970s saw notable advances in both research and hypothetical models about the role of
DNA methylation in gene regulation. Improved 5mC detection methods enabled locus-specific
Trends in Genetics, Month 2022, Vol. xx, No. xx 7
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methylation analysis, serving as a major accelerator for the field. Careful reading of these early pa-
pers reveals additional points to highlight, including the global differences in genome methylation
between invertebrates and vertebrates [50], though other results such as hypomethylation of
vertebrate sperm did not hold true when repeated by others [83]. At the end of this decade,
the field had a good appreciation of DNA methylation within and across species and it became
generally accepted that DNA methylation acts as a repressor of gene expression.

1980–1989: Gene and genome regulation by 5mC
Several advances in in vitro and in vivo cloning [84–88] as well as transgenic techniques from the
mid-1970s to mid-1980s [89–93] enabled a suite of new experiments to explore the sequence
context and functional role of DNA methylation. For instance, the possibility of inserting both
unmethylated and methylated DNA constructs into living cells served as the foundation of
many studies in this decade (Figure 3A).

DNA methylation and gene regulation
The 1980s began with the observation by Bird and colleagues that 5mC seemed to be distributed
in vertebrate and invertebrate genomes in an ‘all or none’ fashion, with stretches of methylated
DNA punctuated by stretches of unmethylated DNA, each occupying different chromatin
fractions. They speculated that methylation distinguishes transcriptionally inert DNA from
transcribable DNA [94,95]. This idea was in line with the earlier 5-aza experiments that demon-
strated demethylation could lead to the activation of genes [82]. However, it was not yet clear
to what extent the relative quantity of DNA methylation at a gene or the location of DNA methyl-
ation within and around this gene mattered for its expression. Nevertheless, the observation of
transcriptional inactivity of some relatively unmethylated genes already suggested that loss or
lack of methylation alone does not always lead to gene activation [96–98]. A few examples
were also reported where tissue-specific genes were active while methylation was high across
the gene [99,100] and, in another case, methylation was noted to be lost upstream of the 5′
end of the gene, but not elsewhere, upon its activation [97]. Due to these various observations
and the as of yet incomplete information on this topic, questions remained about the general
rules for when and where methylation acts as a gene repressor and how its removal may lead
to gene activation.

In addition, while DNA replication was one possible cellular mechanism of passive methylation
loss, it was expected, but not known, whether an enzyme or other biological process could
more specifically demethylate certain genes during in vivo development. In 1982, Gjerset and
Martin published initial evidence of a demethylating activity found in the nucleoplasm isolated
from mouse erythroleukemia cells. The nuclear extract was shown to have proteinase K sensitive
CpG demethylation capabilities in the absence of DNA replication [101]. However, there was no
further purification or characterization of the putative demethylating enzyme.

Repression of viral DNA elements
Some mouse strains carrying germline copies of Moloney murine leukemia virus (M-MuLV)
show virus activation at different stages of development and therefore provided an opportunity
to study the potential of viral genes to be regulated by DNA methylation [102]. In line with the
findings that endogenous genes can become activated by loss of methylation, Jaenisch and
colleagues found that cloned, and thus unmethylated, copies of M-MuLV were active and infec-
tious when transfected into fibroblasts, while their endogenous and methylated counterparts
were not [103]. Injecting mouse embryos at different developmental stages with viral DNA re-
vealed that in addition to germline silencing, preimplantation embryos quickly de novomethylated
and inactivated the viral sequences, while post-implantation embryos failed to do so [104]
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(Figure 3B). Therefore, Jaenisch and colleagues reasoned that the early mouse embryo might be
uniquely capable of retroviral de novomethylation due to the existence of a specific methyltrans-
ferase activity that would be absent or less active later in development.

Injections of various constructs into Xenopus oocytes together with in vitro cell culture transfec-
tion experiments revealed that mammalian and viral gene expression is sensitive to methylation
at the 5′ end of the genes. These promoter regions are rich in CpGs and overlap with a
nucleosome-free gap [105–107] (Figure 3C), where methylation was proposed to directly influ-
ence protein binding, nucleosome positioning, and thus transcription [105,108]. Further work
suggested that only certain CpGs within these regions are responsible for controlling a gene’s ex-
pression [107,109,110]. Intriguingly, two studies that infected embryonic carcinoma (EC) cells
with M-MuLV showed that proviral sequences are quickly silenced upon infection, yet only be-
come methylated days later, demonstrating that DNA methylation is not the primary silencer of
these genes [111,112]. Furthermore, Niwa and colleagues showed that removing methylation
using 5-aza on EC cells did not reactivate the virus; however, if the cells were first differentiated
before 5-aza treatment, methylation removal was sufficient to activate M-MuLV. The authors
therefore hypothesized that there could be two distinct mechanisms regulating gene expression
during different stages of development, with early development being independent of DNA
methylation and late development being dependent on it [112].

The discovery of CpG islands (CGIs)
Although sperm is overall highly methylated, undermethylated stretches like those found in
early metazoan embryos were also seen in sperm cells at constitutively expressed genes
[94,95,113–115]. Bird and colleagues then showed that these unmethylated regions are
comprised of CpG-rich DNA and are preserved unmethylated across many mouse tissues.
Given their sensitivity to HpaII nuclease digestion, they were initially named HpaII tiny fragments
(Figure 3D) [116] and later popularized as CGIs. Bird reasoned that the structure of CGIs at
housekeeping genes could reflect their continuous occupancy by proteins protecting them
from methyltransferases and, thus, from the accompanying mutational loss of CpGs by
spontaneous deamination of 5mC [117] (Box 2). CGIs, with their genomic rarity but genic
abundance, may present unique platforms for protein–DNA interaction that could be modulated
by DNA methylation [110,118]. The possibility of a more complex translation of the methylation
signal on DNA emerged through experiments initially aimed at identifying proteins that exclusively
bind the characteristic stretches of unmethylated, CpG-rich DNA. However, in these
experiments, Bird and colleagues unexpectedly found the MeCP1 protein complex that formed
not on unmethylated DNA, but rather on methylated probes or highly methylated genomic DNA
[119].

5mC dynamics from gametes through early development
In 1987, Monk et al. applied a novel low-input DNA end-labeling technique to assess DNA meth-
ylation in germ cells, zygotes, and early developing mouse embryos [120]. They found oocyte
preimplantation but not postimplantation embryos, suggesting that only the preimplantation embryo is capable of de novomethylation. (C) Kruczek and Doerfler tested the
positional effect of 5mC on the expression of viral chloramphenicol acetyl-transferase (CAT) by cloning viral promoters with varying CpG distribution and content into a
vector they then methylated with M.HhaII in vitro before measuring its expression capabilities. CAT expression was assessed by detecting the acetylation of
chloramphenicol (CAM) using thin-layer chromatography. Methylation within a promoter sequence inhibited transcription, while methylation flanking the promoter or within
the gene did not. (D) Bird and colleagues used end-labeling to visualize the low quantity of DNA resulting from HpaII digestion of sea urchin genomic DNA into tiny
fragments. These HpaII tiny fragments (HTF) are the result of the presence of regions containing many HpaII motifs (5′ C-C-G-G 3′) that are unmethylated, regions now
known as CpG islands (CGIs). (E) Monk and colleagues investigated methylation changes during mouse embryonic development using end-labeling of digested genomic
DNA. The varying amounts of large HpaII fragments indicate a differential gain of 5mC in the embryonic and extraembryonic tissues. The strong signal at the bottom of the
lanes stems from the sensitive detection of canonically unmethylated CGIs. See [104,107,111,112,116,120,126].
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Box 2. Mutagenic effects of 5mC

Several studies in the 1950s and 1960s demonstrated that animal and plant DNA is relatively AT rich and GC poor and
that the CpG dinucleotide specifically is under-represented. This raised questions about the biological function and evo-
lution of 5mC, yielding the hypothesis that 5mC may direct DNA sequence mutations controlling gene expression
[32,33,48,277,278,280]. Evidence supporting this hypothesis first came from Coulondre and colleagues who found that
mutational hotspots in an E. coli genewere located at 5mC residues but disappearedwhen this gene was demethylated by
being introduced into bacterial strains deficient in DNA methyltransferases [281]. The authors proposed that spontaneous
deamination of 5mC to thymine is the basis of its increased mutagenesis. When cytosine is deaminated it produces uracil,
which results in a mismatch that is easily recognized as an unnatural base in DNA, excised, and repaired by DNA-uracil
glycosylase. However, deamination of 5mC produces thymine. Coulondre et al. found that the resulting mismatch is
often not properly corrected; instead, the guanine on the opposite strand may be excised and repaired as adenine, thus
generating the frequent CG→TA mutations [281]. These findings were corroborated by an analysis looking at the potential
correlation of CpG frequency with DNA methylation levels in animals. Bird found that organisms with the lowest CpG
frequency had higher levels of DNA methylation and an excess of CpTs and CpAs, whereas lowly methylated genomes
displayed no deficiency in CpGs and no excess of CpTs and CpAs [282].

In 1989, Cooper and Krawczak sought to determine the rate of deamination of 5mC in vivo, however, the process is too
slow for accurate measurements. They therefore measured the rate of 5mC deamination using controlled in vitro condi-
tions and used these values in a mathematical model to estimate the time span over which the ‘CpG suppression’
observed in vertebrate genomes would have occurred [283]. They estimated the length of time needed to achieve the
GC:AT composition of the vertebrate genome today to be 450 million years. The authors proposed that the adaptive
radiation of vertebrates might have coincided with the evolution of a heavily methylated genome [283]. More recent
estimates predict CpGs to be about 18 times more likely to mutate than non-CpGs in the human germline and the CpG
context is over-represented among germline mutations, suggesting that the hypermutability of 5mC may be an important
contributor to human genetic diseases [284,285]. Given that the cost of 5mC in the genome is a slow erosion of CpGs with
potentially deleterious consequences for germline mutation, tolerance of these negative effects further supported the likely
functional importance of 5mC in the genomes of vertebrates [282,285].
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DNA was relatively undermethylated, while sperm DNA was highly methylated. Following zygote
formation, embryonic methylation decreased steadily to its lowest point around the onset of
implantation. Next, the extraembryonic lineages and embryo proper were progressively and
distinctly de novo methylated through gastrulation (Figure 3E) [121].

Cloning the first DNA methyltransferases
Cloning and protein sequencing of bacterial methyltransferases provided important insights
about the evolutionary conservation and functionality of their catalytic domains [122,123]. In
particular, elucidation of the chemistry of the methyl-transfer reaction, as well as the enzymology
of bacterial methyltransferase sequence specificity, came from studies of the bacterial enzyme
M.HhaI [124–126]. Building on this momentum, a series of studies that purified and characterized
DNA methyltransferase activities from mammalian tissues [127–130] led to the successful cloning
of murine DNA methyltransferase 1 (Dnmt1), the first mammalian DNA methyltransferase, by
Bestor and colleagues in 1988 [131].

Summary
The 1980s provided crucial insights into the overall distribution and function of DNA methylation,
including the discovery of CGIs and a much-improved understanding of the role of 5mC in gene
regulation. The successful cloning and characterization of over a dozen bacterial and the first
mammalian methyltransferases represented another milestone. Although a general consensus
emerged that 5′ promoter methylation suppresses transcription, some exceptions to this rule
highlighted that further studies were still needed to appreciate and interpret the context-
specific role of DNA methylation [97,99,100]. Despite these key advances in mammalian sys-
tems, it is worth noting that the dominant model organisms at the time included Saccharomyces
cerevisiae,Drosophila melanogaster, andCaenorhabditis elegans, which do not have DNAmeth-
ylation; this may explain some remaining concerns in the community about the wider significance
of 5mC.
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1990–1999: The eukaryotic methyltransferases
The 1990s saw major progress in our molecular understanding of phenomena such as genomic
imprinting and X chromosome inactivation that we are unable to cover here in detail but have
been reviewed extensively elsewhere [132–134] (Box 3). Beyond that, this decade was particu-
larly noteworthy for a series of studies that identified, cloned, and knocked out mammalian
methyltransferases, revealing their essential roles during development. In parallel, Arabidopsis
thaliana gained traction as a powerful model organism for epigenetic studies, including DNA
methylation (Figure 4A).

Methylation artifacts of in vitro culture
As the Bird lab continued their investigation of CGIs, in 1990 they noted a propensity of certain
CGIs to become aberrantly methylated during in vitro culture (Figure 4B). The mechanism that
protects these in vivo and the reason for their susceptibility in cell culture remained unclear.
CGIs typically lie in open, accessible chromatin and, hence, they speculated, would have to be
actively protected from methylation during normal development and tissue homeostasis [135].

The essential role of DNA methylation in mammalian development
In 1992, the Jaenisch Lab disruptedmouseDnmt1 activity that resulted in global loss of most, but
not all, DNA methylation in vitro and in vivo (Figure 4C) [136]. Undifferentiated Dnmt1 knockout
(KO) mouse embryonic stem cells (ESCs) remained viable, while differentiated ESCs arrested or
died. Similarly Dnmt1 KO mice displayed developmental delays and lethality around embryonic
day E8.5–E9.5 [136–138]. Reintroducing a Dnmt1 cDNA into the endogenous locus of KO
cells restored global DNA methylation but failed to rescue imprinted methylation [139], which
could only be achieved through germline passage [140] (Figure 4D). Combined, these studies
Box 3. Imprinting and X inactivation

The term ‘imprint’ was coined by Helen Crouse in 1960 following her experiments on sex determination in Sciara, a species of
fungus gnat, that loses the paternal X chromosome during differentiation of the germline. Chromosomal translocations revealed
that a specific region of the X chromosome carries an ‘imprint’ established during germline development that determines which X
chromosome is lost [286]. In the mid-1980s, several studies demonstrated that the maternal and paternal genomes are both
needed for mammalian embryonic development, which led to the discovery of genes whose expression was determined by
the parent that gene was inherited from [287,288]. The idea that DNA methylation may play a role in imprinted gene expression
arose following studies showing that germ cells display sex-specific methylation patterns [120,289,290] and that DNA
methylation plays a role in the imprinted expression of single-copy transgenes [291–293].

During the first half of the 1990s, many imprinted genes, such as Igf2, Igfr2, H19, Snrpn, and Peg1 were mapped and fur-
ther characterized in mouse and human [294–298]. To date, 25 clusters of ICRs regulating multiple imprinted genes have
been discovered [134]. Maternally or paternally imprinted alleles are methylated at the imprinting control regions (ICRs) in
the oocyte and sperm, respectively, by DNMT3A and DNMT3L [192,194]. Though the oocyte and spermmethylomes dif-
fer quite extensively such that thousands of genes show differential DNA methylation in the early embryo, only a subset
resist preimplantation DNA demethylation and maintain their parent-of-origin specific DNA methylation [299,300]. The
zinc-finger protein ZFP57 recruits the KAP1-complex and DNMT1, maintaining methylation at these select sites
[301–303]. In addition to DNA methylation imprints, a small number of noncanonical, maternal H3K27me3 imprints were
found in the extraembryonic ectoderm [304], and more recent work has described the different imprinting mechanisms at
play in the embryonic and extraembryonic lineages [305].

Prior to Crouse’s studies on sex determination, research on the regulation of X chromosomes in female cells had already been
underway for a decade following the 1949 description of the Barr body, by Barr and Bertram, as a nucleolar satellite found in fe-
male cat neurons that they speculated to be ‘sex chromatin’ [306]. Ten years later, Ohno confirmed that the Barr body is indeed
the X chromosome, reporting that one mammalian female X is condensed and heterochromatinized, while the other is euchro-
matic [307]. In 1961, Lyon’s observations about the coat color of female mice provided critical evidence that one female X is in-
active while the other is active, and she postulated that the condensed X is genetically inactive [308]. In 1975, Riggs was the first
to propose the X chromosome inactivation center and that the process of X inactivation as a whole might be controlled by DNA
methylation [58].While this idea was investigated by several groups throughout the early 1980s [309–312], DNAmethylation was
ultimately ruled out as the primary initiator of X inactivation, although it, along with other epigenetic modifications, plays a role in
stable gene silencing on the X chromosome [313].
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provided crucial insights and highlighted the essential role that DNA methylation plays in normal
development.

The first crystal structure of a DNA methyltransferase
In 1993, the Roberts lab published the first crystal structure of a DNA methyltransferase, M.HhaI,
in a complex with the methyl donor SAM at 2.5 Angstrom resolution [141]. The core structure of
M.HhaI, being one of the smallest methyltransferases, was found to consist largely of the se-
quence motifs conserved across all 5mC methyltransferases. The mechanism of a methyl
group transfer to DNA as determined byWu and Santi in 1987 [126] revealed that the nucleophilic
attack on the targeted cytosine central to this mechanism results in a covalent intermediate
between DNA and the methyltransferase [142]. This intermediate can be trapped by substituting
the hydrogen at the C5 position with a fluorine [143]. Using this technique, the crystal structure
of the M.HhaI-SAM complex trapped in its covalent intermediate revealed that both methyltrans-
ferase and DNA change conformation. B-formDNA is bound in a cleft formed by the two domains
of M.HhaI with the target cytosine base flipped completely out of the DNA helix and into the active
site of M.HhaI [144].

Discovery and characterization of the mammalian de novo Dnmts
The residual methylation present in Dnmt1 KO cells provided an indication of the existence of
additional methyltransferases [136,137]. Previous work demonstrated that the catalytic domains
of different bacterial cytosine methyltransferases exhibit a great degree of homology with each
other as well as DNMT1 [123,126,131,145–147]. Therefore, different groups took advantage of
homology-based BLAST searches and independently identified additional eukaryotic DNA
methyltransferases [148–151]. Dnmt2 was subsequently ruled out as a candidate de novo
methyltransferase, given its apparent lack of 5mC methyltransferase activity in ESCs [150].
Dnmt3a and Dnmt3b, however, were able to methylate CpGs of both hemimethylated and fully
unmethylated substrates with equivalent efficiencies in vitro while showing high expression in
mouse ESCs and generally lower expression in somatic cells [151]. Single and double KO of
Dnmt3a and -b in mouse ESCs and their corresponding KOmousemodels demonstrated the es-
sential and partially overlapping roles of these enzymes during embryonic development
(Figure 4E) [152].

DNA methylation readers
The Bird lab showed that the methylated versions of four different promoters were each tran-
scribed equivalently to their unmethylated versions when MeCP1 binding was diluted by adding
methylated competitor DNA to the in vitro reaction [153]. Likewise, extracts from cells deficient for
MeCP1 used in analogous assays were unable to efficiently repress transcription of methylated
DNA. Similar results obtained from the transient transfection of methylated DNA and competitor
DNA suggested these mechanistic principles might also apply in vivo. These experiments led the
Figure 4. Discovery and characterization of the eukaryotic DNAmethyltransferases. (A) Key advances in the field of DNAmethylation between 1990 and 1999 include
the cloning and characterization of plant andmammalian DNMTs. (B) Antequera and colleagues tested the methylation status of CpG islands (CGIs) at housekeeping and tissue-
specific genes in a variety of cell lines using amethylation-sensitive HpaII digestion. They detected varying degrees of aberrantmethylation at CGIs of tissue-specific genes that are
not active in the respective cell lines, while CGIs of housekeeping genes remained methylation free. (C) Li et al. assayed genomic 5-methylcytosine (5mC) levels by methylation-
sensitive HpaII digestion in wild type (wt) (+/+) andDnmt1mutant (+/–, –/–) embryonic stem cells (ESCs) and E10.5 embryos. Dnmt1–/– cells were extensively demethylated and,
while these hypomethylated ESCs were viable, Dnmt1–/– derived embryos were not. (D) Tucker et al. stably integrated a Dnmt1 cDNA into the endogenous locus of Dnmt1–/–
cells. While global methylation was restored, methylation of imprints, exemplified here by methylation-sensitive digestion of the Igf2r locus, was not restored until the rescued
cells were passaged through the germline. (E) This digestion by Okano et al. visualized the methylation status of the intracisternal A-particle (IAP) repeat of Dnmt1
knockout (KO) (Dnmt1c/c), Dnmt3a/Dnmt3b double KO, and wt embryos, as well as wt blastocysts. KO of Dnmt3a and -b resulted in widespread demethylation of this
repeat, indicated by the presence of small and medium-sized fragments; however, the loss of methylation was not as extensive as in Dnmt1 KO embryos. See
[135,136,138,140,150,152,157,159,167,171,180]. Abbreviations: Blast, Blastocyst; ESCs, embryonic stem cells; HII, HpaII; M, MspI; MBD, methyl-CpG binding domain.
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Bird lab to hypothesize that it is not the direct effect of DNAmethylation that inhibits transcription,
but rather an indirect effect involving MeCP1 binding of promoter proximal methylated CpGs
[153]. The next year, a second methyl-CpG binding protein, MeCP2, was found to be capable
of binding a single symmetrically methylated CpG. It localized predominantly, but not exclusively,
to pericentromeric heterochromatin, which in themouse genome covers approximately 40%of all
5mC and is therefore readily visible by immunofluorescence [154]. MeCP2 also repressed tran-
scription from the DNA templates it bound in vitro [155]. While MeCP2 is not necessary for
ESC viability, the mouse KO of MeCP2 by chimera formation frommutant ESCs showed a variety
of mutant phenotypes scaling with the degree of contribution [156]. In a series of pulldown exper-
iments, it was found that the transcriptional repression domain of MeCP2 binds another repres-
sive complex containing a histone deacetylase and the repressor mSin3A. To test themechanism
implied by the association of these complexes, cells were treated with a histone deacetylase in-
hibitor, which resulted in transcriptional derepression [157], findings in line with the previously
shown repressive nature of histone deacetylation in yeast [158] (Box 4). Several other proteins
containing methyl-CpG binding domains (MBDs) were identified in mouse and human with
both overlapping and unique expression patterns. All MBDs except MBD3 appear to bind meth-
ylated, but not unmethylated, DNA [159], and MBD2 was found to belong to the MeCP1 histone
deacetylase complex [160].

DNA methylation in Arabidopsis thaliana
Some of the earliest studies on DNA methylation had observed high 5mC content in plant DNA
[27,32,52] and noted that both CpG and CpXpG (X = A, C, or T) methylation occur [52,161]. While
the genomes of plants such as wheat were an asset for obtaining large quantities of DNA, this
property proved difficult for mapping and cloning genes. In the 1980s, Arabidopsis thaliana became
a popular genetic model, in part due to its smaller genome size [162] as well as advances in
transformation protocols [163–165] that made it amenable to mutational studies [166].

In 1993, Finnegan and Dennis identified and cloned the first plant DNA methyltransferase,MET1,
using sequence homology to murine and bacterial methyltransferases [167]. That same year, a
mutational screen looking for genes involved in DNA methylation in Arabidopsis identified the
Box 4. Histone modifications in gene regulation

As the field of DNA methylation grew to cover ever broader disciplines of study, parallel work on the organization of DNA
helped show that gene regulation did not just occur at the DNA surface but also involved histone proteins. As early as
1950, histones were first proposed to be possible gene repressors [314] and, by 1964, histone acetylation was found
to be associated with active transcription [315]. This implied that DNA did not need to be stripped of all nucleosomes to
be used for active transcription, contrary to previous thinking about the mechanics of transcription. Until 1984, when
the first crystal structure of the nucleosome was published [316,317], it was not known in what manner a histone might
be modified. These structures revealed that histones have amino-terminal tails that extend beyond the DNA wrapped
octamer and that are free to be chemically modified. In 1991, a series of studies from Grunstein and colleagues led to
the important finding that modification of H4 histone tails in yeast is required for activation of promoters [318]. By 1996,
important cross species comparisons of a yeast transcriptional activator and repressor to the Tetrahymena histone ace-
tyltransferase [319] and mammalian histone deacetylase [158], respectively, confirmed a role for histone deacetylation in
the repression of transcription in yeast. As histone modifications are essential not only in organisms lacking DNA methyl-
ation, such as yeast, but also in the highly methylated mammalian genome, a critical question in the 1990s was how DNA
methylation might interface with histone modifications to regulate gene expression and control access to the DNA. By the
year 2000, the histone code hypothesis postulated that combinations of histone tail modifications provide a code for ge-
nome regulation [320]. The next year, several groups demonstrated that H3K9 methylation placed by SUV39 creates het-
erochromatin protein 1 (HP1) binding sites, which in turn recruits more SUV39. This process establishes a propagative
cycle of silencing by heterochromatinization [321–323]. Though clear mechanistic connections between the different
layers of epigenetic modifications have been elucidated, it remains to be investigated how and when DNAmethylation acts
in concert with or independently from histonemodifications to coordinate gene expression, andwhat role methylation-sen-
sitive protein binding plays in this process.
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DDM1 locus, disruption of which resulted in the demethylation of mainly repeat elements
[168,169]. Despite seeming to be nonessential for plant development, DNA methylation was
demonstrated to be involved in a number of physiological processes, such as the vernalization
required to induce flowering in Arabidopsis, where both vernalization and 5-aza treatment re-
sulted in similar degrees of DNA demethylation. Burn and colleagues therefore hypothesized
that demethylation of genes involved in flowering may be required for the initiation of this process
[170]. Further studies revealed that the developmental defects associated with hypomethylation
increase in severity with several rounds of self-fertilization [171]. In contrast to mice, methylation
levels in Arabidopsis were only slowly restored when functional alleles of DDM1 and MET1
were reintroduced through crossing, implying that plants do not reset their DNA methylation be-
tween generations and do not undergo phases of strong de novo methylation during develop-
ment [168,172]. Finnegan and colleagues demonstrated that demethylation results in the
aberrant expression of floral homeotic genes in leaves, further linking DNA methylation to tran-
scriptional regulation in plants [172].

Dnmt classes in plants
Loss ofMET1was found to reduce 5mC at CpG dinucleotides only, while loss of DDM1 reduced
5mCwithin both the CpG andCpXpG contexts [168,172]. Biochemical studies of peaMET1 sup-
ported the idea that MET1 is closely related to the mammalian maintenance methyltransferase
DNMT1, as it also preferentially acts on hemimethylated CpGs [173]. These findings pointed to-
wards the existence of further putative Dnmts in plants. In addition, in 1997, Jacobsen and
Meyerowitz showed that a phenotype observed in plants with reduced MET1 activity is caused
by the hypermethylation of a specific regulatory region [174].

The next year, chromomethylase 1 (CMT1) was identified in Arabidopsis [175] and more genes
encoding MET1-like and CMT1-like methyltransferases were detected [176]. By 1999, DDM1
was shown to encode a SWI2/SNF2-type chromatin remodeler required for the methylation of re-
peat elements as well as high-fidelity maintenance methylation of low-copy sequences [177].
Linking their findings to the recently uncovered interplay between 5mC and histone deacetylation,
Jeddeloh and colleagues proposed that chromatin remodeling to alter histone modifications or to
increase DNA accessibility is required for proper DNA methylation [177].

Finally, a third class of DNAmethyltransferases was identified. Using the sequence of the recently
identified Dnmt3 enzymes in mammals [151], Jacobsen and colleagues discovered homologous
genes in maize, soy, and Arabidopsis [178]. However, in contrast to all previously identified clas-
ses of DNA methyltransferases in plants and mammals, the conserved sequence motifs in the
catalytic domain of these novel enzymes were found to be arranged in a different order, leading
to the name domains rearranged methyltransferase (DRM) in Arabidopsis [178].

Biological function remained controversial
In 1997, the Bestor lab published a review article in Trends in Genetics, the central thesis of which
was the idea that the primary function of DNAmethylationmay be to suppress parasitic sequence
elements in the mammalian genome [179]. Bestor and colleagues noted that a subset of genes
were subject to allele-specific expression via imprinting or part of X chromosome inactivation. Be-
yond that, it seemed less clear that methylation of silent genes in somatic tissues prevents their
transcription and that promoter demethylationwould result in gene activation in vivo. Although dif-
ferentiation of cells upon 5-aza treatment pointed to a demethylation mechanism of gene activa-
tion [79], more recent work had shown that the CGI promoters of such genes are not normally
methylated in vivo, but frequently become so in vitro [135]. Thus, their activation by demethyla-
tion, at least in this context, was not a true developmental mechanism. However, they argued
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that the detection of transposon transcripts during lowly methylated developmental stages was
good evidence of their regulation by DNA methylation. The Bestor lab continued to study the
regulation of retrotransposons and a year later showed the massive upregulation of intracisternal
A-particles (IAPs) in Dnmt1-deficient mouse embryos [180].

In a response article in the same journal, Bird argued strongly against this hypothesis, stating that
there was little to no evidence for the silencing of transposable elements in germ cells and stem
cells by DNA methylation. In contrast, he pointed to evidence consistent with the silencing of
transposons by DNA methylation in somatic cells, where transposon activity would be more det-
rimental than in germ and stem cells [112]. Why, Bird asked, would an organism fail to protect its
germline from these parasitic DNA elements while it can do so effectively in somatic cells? Fur-
thermore, given the relatively low number of individual loci studied in great detail, it was too
soon to conclude that none of the many genes with promoters that lie within highly methylated
regions rely on DNA methylation for silencing [181].

Summary
The 1990s were clearly defined by the functional evaluation of the mammalian and plant DNA
methyltransferases and 5mC readers having methyl-binding domains, as well as investigations
of transcriptional repression. The essential, though incompletely understood, role for genomic
methylation helped create a broader interest in DNA methylation within the scientific community.
Unfortunately, despite much excitement, the question of whether and how active DNA demeth-
ylation occurs, remained unresolved at the end of this decade, which yielded no clear mechanism
despite many attempts and publications.

2000–2009: Genome-wide DNA methylation landscapes
The early 2000s saw a major transition in the biological sciences with the completion of several
draft genome assemblies, including Arabidopsis, mouse, and human [182–184]. These genome
maps in turn enabled investigation of additional layers of the epigenome and hence served as the
basis that allowed inferences first made about the regulation of individual genes to be expanded
to whole genome scales by the end of the decade. Computational tools and more cost-effective
sequencing methods emerged in the second half of this decade. A technique called bisulfite se-
quencing, first reported in 1992 [185], became the gold standard for quantifying and mapping
methylation. These tools were rapidly applied to generate the first genome-scale methylation
maps (methylomes). In parallel, major advances in the fundamental biology of methylation
readers, writers, and erasers were reported (Figure 5A).

Impact on enhancer–promoter loops
The study of the role of 5mC in imprinted gene expression led to the finding that Igf2 and H19
have reciprocal expression controlled by the same imprinting control region (ICR), raising
the question of how methylation can lead to the transcription of one gene and the repression of
the other. Two studies identified four CCCTC-binding factor (CTCF) binding motifs in the
Igf2/H19 ICR. The methylation or deletion of these binding sites, which then prevented CTCF
binding, reduced the ICR’s enhancer blocking activity [186,187] (Figure 5B). This suggested
that methylation of this ICR may determine whether an enhancer contacts the Igf2 or H19 pro-
moter through the methylation-sensitive binding of CTCF and that methylation outside of pro-
moters can have regulatory activity that influences looping of the DNA.

Linking DNMTs to histone modifications
In 2001, Tamaru and Selker found the Neurospora crassa gene dim-5 to be required for normal
DNA methylation patterns and showed it encodes an enzyme catalyzing histone 3 lysine 9
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(H3K9) methylation [188]. Partially replacing H3K9 with H3L9 or H3R9 led to reduced 5mC
levels, demonstrating that H3K9 methylation is required upstream of some DNA methylation.
This led to the idea that eukaryotic Dnmts may depend on specific histone modifications as co-
factors guiding their activity [188]. Jackson and colleagues next demonstrated that this principle
holds in plants, reporting that the Arabidopsis H3K9 methyltransferase KRYPTONITE is required
for CpXpG methylation placed by the DNA methyltransferase CMT3 [189,190]. In addition, they
showed that LHP1, an Arabidopsis homolog of heterochromatin protein 1 (HP1) and reader of
H3K9methylation, interacts with CMT3, and proposed amechanistic link that extends across an-
imals and plants that have homologs of HP1 (Box 4).

Structure and function of Dnmts with their cofactors
The discovery and subsequent KO of the catalytically inactive cofactor DNMT3L highlighted its
role in imprinting [191–193]. Kaneda and colleagues later used germline conditional KOs to
show that both Dnmt3a and Dnmt3l are essential for the establishment of maternal and paternal
imprints [194]. Protein biochemistry of DNMT3L revealed that it binds to DNMT3A, DNMT3B, and
histone H3, but this interaction with H3 is inhibited by histone 3 lysine 4 (H3K4) methylation.
This provided experimental evidence that DNMT activity can be directly blocked by a specific
histone modification [195] (Figure 5C). Further structural insights into the mechanisms guiding
de novomethylation were provided by the first crystal structure of a mammalian DNMT published
in 2007 [196]. The structure comprised the C terminal domains of DNMT3A and DNMT3L in com-
plex with each other. Later that year, an essential cofactor for DNMT1, ubiquitin like with PHD and
ring finger domains (UHRF1 or NP95), was discovered and shown to bind the methylated cyto-
sine of hemimethylated DNA. Its depletion led to global loss of CpG methylation that largely
phenocopied the loss of DNMT1, demonstrating that UHRF1 is required for the recruitment or
activity of DNMT1 [197,198] (Figure 5D).

Genome-wide methylation maps: the first methylomes
The first genome-scale methylation maps were produced in the mid-2000s for the Arabidopsis
genome using enzyme- and antibody-based enrichment of 5mC followed by microarray hybrid-
ization [199,200]. While previous work in Arabidopsis had identified DNA methylation at repeats
and transposable elements [201], genome-scale maps both confirmed and extended these find-
ings. They showed that the 5′ ends of genes are largely devoid of CpG methylation, while bodies
of constitutively expressed genes are extensively methylated and relatively CpG depleted.
Henikoff and Jacobsen hypothesized that genic methylation might serve to silence cryptic intra-
genic promoters [199]. Extensive methylation at regions producing small interfering RNAs and
intergenic noncoding RNAs suggested that these elements may also be controlled by DNAmeth-
ylation [200]. In parallel with these plant studies, the Bestor and Schübeler labs used similar
enrichment-based techniques to create the first comprehensivemaps of humanDNAmethylation
[202,203]. These maps strengthened previous work supporting the idea that promoter CGIs are
Figure 5. Interplay of histonemodificationswith 5-methylcytosine (5mC) and active demethylation by the TET enzymes. (A) In the 2000s, global surveys of 5mCand
the discovery of Dnmt cofactors underscored the connection of 5mC to other epigeneticmodifications. (B) This binding assay byHark and colleagues determined that CTCF cannot
bind its methylated motifs (MS1-4) within the imprinting control region (ICR) of the H19/Igf2 locus when they are methylated, as it is the case on the paternal allele. (C) Ooi et al.
characterized the dissociation behavior of H3 tail peptides from recombinant human DNMT3L using fluorescence polarization. This assay showed that DNMT3L efficiently binds
unmodified H3 peptides (H3K4me0), but hardly binds peptides methylated at lysine 4, even at high DNMT3L concentrations. (D) Methylation-sensitive restriction digestion of
genomic DNA probed for the intracisternal A-particle (IAP) sequence by Sharif and colleagues indicated extensive demethylation of both Dnmt1 and Uhrf1 knockout (KO)
embryonic stem cells (ESCs). (E) Reduced representation bisulfite sequencing (RRBS) data generated by Meissner et al. showed a loss of methylation at highly conserved
noncoding sequences, indicative of regulatory elements, upon differentiation of ESCs to neural progenitor cells (NPCs). The alignment with ChIP data revealed a concomitant
gain of H3K4 methylation at these regions. (F) Tahiliani and colleagues transfected HEK293 cells with various constructs to determine the effect of TET1 on 5mC levels. This
included the catalytic domain of TET1 or full-length TET1, either in its wild type (wt) or a catalytically inactive mutant form. Genomic DNA was digested with MspI and the
fragments were resolved by thin-layer chromatography and then quantified, revealing the presence of a novel nucleotide, subsequently confirmed to be 5-
hydroxymethylcytosine. See [186–188,192,194–198,200,206,208,211,214]. Abbreviations: CGI, CpG islands; PMD, partially methylated domain.
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predominantly unmethylated in normal human cells; however, the Schübeler lab found hyperme-
thylation at CGIs in one colon cancer cell line, consistent with the earlier observations of the Bird
lab [135]. Interestingly, this cell line also showed notable hypomethylation across large gene-poor
domains and the inactive X chromosome [202].

Further advances in sequencing technologies then enabled the first single-base resolution
methylation maps in Arabidopsis, mouse, and human ESCs as well as somatic tissues
[204,205]. Reduced representation bisulfite sequencing (RRBS) showed limited dynamic
methylation over the majority of promoters and uncovered specific focal methylation changes
at more distal, highly conserved putative regulatory sites [206] (Figure 5E). Paired with histone
modification maps [207] these studies highlighted clear correlations between changes in 5mC
and changes in H3K4 methylation during differentiation as well as the relationship to other
modifications, including H3K27me3 [206,208]. In addition, maps of 5mC during neural differ-
entiation showed that aberrant culture-induced CGI hypermethylation can also occur in
nontransformed cells [206]. Ecker and colleagues showed that CpG methylation in immortal-
ized cells, in contrast to human pluripotent stem cells, is reduced across large areas of the ge-
nome, with about 40% of the genome now being covered by partially methylated domains
(PMDs) [208]. Furthermore, both mouse and human maps demonstrated the hypomethylation
of active enhancers, which may be a cause or consequence of protein–DNA interactions at
these regulatory sites [206,208].

Promoter architecture and function
Saxonov and colleagues performed computational analysis of the human genome that revealed
two classes of promoters: low CpG (LCG, 30% of promoters) and high CpG (HCG, 70% of pro-
moters) density promoters [209]. Genes associated with LCG promoters tended to have tran-
scriptional potential independent of their promoter methylation and most of these promoters
were typically methylated. In contrast, most HCG promoters were found to be unmethylated,
even when their associated gene was not being transcribed. In specific contexts where these
HCG promoters do get methylated, such as germline genes in somatic cells, this methylation is
sufficient to prevent transcription [203]. These studies, together with previous work [210], further
highlighted that most endogenous promoters are not primarily regulated by methylation and that
unmethylated promoters are enriched for H3K4 methylation [211]. Combined with the DNMT
structure and biochemistry papers from 2007 [195,196], these studies helped build a consensus
that H3K4 methylation may shield these promoters from DNMTs.

Active DNA demethylation
Immunostainings of 5mC in early mouse preimplantation embryos showed a rapid loss of 5mC
within the paternal pronucleus before the first cleavage division [212]. In contrast, 5mC signal in
the maternal pronucleus was largely stable up to the two-cell stage. Importantly, the paternal
loss of 5mC was independent of DNA replication, meaning that an active mechanism must be
at work in the first hours following fertilization. In the decade before and after this finding, many
papers had been published that claimed to have identified this demethylation activity, but none
led to robust and reproducible mechanisms [213]. Finally, a computational search in 2009
pointed towards TET1, TET2, and TET3 and their orthologs [214]. Specifically, TET1 was then
shown to catalyze the conversion of 5mC to 5-hydroxymethylcytosine (5hmC) in mammalian
cells (Figure 5F). Published back-to-back, Kriaucionis and Heintz also demonstrated that 5hmC is
abundant in neurons, further strengthening the role of 5hmC in the active demethylation pathway
[215]. Despite the general conservation of the TET enzymes across metazoans, fungi, and algae,
plants appear to rely more on DNA glycosylases for the removal of methylation, particularly at
genes near highly methylated repetitive sequences [216].
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Summary
This decade provided key insights into the genome-wide distribution of DNA methylation that,
together with mechanistic and structural advances, established a more holistic view of DNA
methylation. These efforts allowed the principles that had been established individually and
at lower resolution in the prior decades to be generalized across the genome, for example,
by showing the sufficiency but not necessity of 5mC to repress transcription from CpG-
dense promoters. However, the finding that most promoters are in fact not regulated by
5mC prompted a paradigm shift away from a promoter-centric view to a more comprehensive,
global approach to understanding DNA methylation. Importantly, the interconnectedness of
5mC with other epigenetic modifications, such as lysine 4 methylation of H3 peptides, also be-
came increasingly clear. The long-sought discovery of an actual demethylating enzyme was a
major milestone to explain the focal DNA methylation dynamics that occur during differentiation
and in normal development.

2010–2019: DNA methylation is dynamic
Several comprehensive reviews have been published over the past years covering the more
recent discoveries from this decade [14,16,17,217–219]. To complement this, we selected a
subset of experimental advances that further expanded the fundamental principles of 5mC and
its role in genome regulation. Increased sensitivity, throughput, and affordability in sequencing
technologies enabled a range of new mapping studies that provided the basis for a number of
novel insights (Figure 6A).

Crosstalk of DNA methylation and transcription factors (TFs)
As DNA methylomes were measured with increasing resolution for various cell types, it became
clear that lowly methylated CpGs are often concentrated in short regions that do not overlap
with CGIs [220–222]. Schübeler and colleagues took a closer look at lowly methylated regions
(LMRs) in mouse ESCs and neural progenitors and showed that they comprise about 4% of all
CpGs and adopt an intermediate level of methylation between 10% and 50% [222]. The majority
of LMRs are lost or gained de novo during differentiation and are enriched for the motifs of TFs
expressed in their respective cell types [221,222]. Earlier studies had shown that the binding of
individual TFs is directly affected by DNA methylation [110,118,223]. However, DNA methylation
also changes chromatin organization and accessibility, which in turn may influence TF binding.
Computational predictions suggest a significant effect of 5mC on DNA shape, which may impact
TF access to target sequences [224]. To quantify this effect, high-throughput in vitro screens
were developed [225,226], finding that the affinity of 90% of the studied TFs containing a CpG
in their motif was influenced by DNAmethylation [226], but only few studies have gone on to dem-
onstrate this in vivo [227,228]. Nonetheless, it is also worth noting that the binding of CTCF and
RE1-silencing transcription factor (REST) can induce the formation of LMRs [222]. Moreover,
classic pioneer factors, such as FOXA2, also possess the ability to trigger targeted loss of DNA
methylation [229]. Elevated levels of 5hmC have been found at LMRs, suggesting a role for active
demethylation at LMRs [222].

DNA methylation valleys (DMVs)
Closer inspection of whole genome bisulfite sequencing (WGBS) data frommouse hematopoietic
stem cells and human in vitro differentiation experiments revealed another characteristic feature:
DMVs or canyons, long stretches of unmethylated DNA that often cover multiple CGIs [230,231]
(Figure 6B). These are generally conserved across tissues and species, are near developmental
genes, and have a median length of several kilobases [230,231] (Figure 6C). Follow-up work
showed that DMV borders seem to be dynamically regulated inmouse ESCs by the dual targeting
of DNMT3A and TET1 [232].
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Figure 6. Recruitment mechanisms of the DNMTs and global methylation architecture. (A) Comprehensive mapping studies in the last decade enabled new
insights into the recruitment and regulation of DNMTs and highlighted several novel elements of global methylation architecture. (B) Simplified schematic of a DNA
methylation canyon using whole genome bisulfite sequencing (WGBS) data from mouse hematopoietic stem cells by Jeong and colleagues. (C) Interrogation of WGBS

(Figure legend continued at the bottom of the next page.)

Trends in Genetics
OPEN ACCESS

22 Trends in Genetics, Month 2022, Vol. xx, No. xx

CellPress logo


Trends in Genetics
OPEN ACCESS
Allosteric regulation of the DNMTs
Several structural and biochemical studies showed that all of the DNMT3 enzymes bind to the H3
peptide via their highly conserved ADD domain, which is sensitive to the methylation status of
H3K4 [233]. DNMT3A mutated to be insensitive to inhibition by H3K4me3 aberrantly methylated
a subset of H3K4me3-marked promoters in mouse ESCs, leading to the downregulation of their
associated genes [234]. The mechanism of how methylated H3K4 inhibits DNA methylation was
revealed when Guo and colleagues resolved the crystal structure of DNMT3A in conformations
with and without bound H3 peptide (Figure 6D). It was found that unbound DNMT3A adopts
an autoinhibitory conformation where the ADD domain occludes the DNA binding site within
the catalytic domain. When DNMT3A is bound to unmethylated H3, the ADD-catalytic domain in-
teraction is disrupted and allows for DNA binding and its subsequent methylation [235]. This
study proposed a model for DNMT regulation where the de novo methyltransferases adopt the
autoinhibitory conformation until they are locally activated by binding H3 tails. Additional studies
showed that this regulatory principle not only applies to the canonical de novo methyltransfer-
ases, but also to DNMT1. In this case, binding of the replication foci targeting (RFT) domain to
allosteric activators such as UHRF1 is required to expose the catalytic site [236–238]. UHRF1,
in turn, has been shown to adopt an autoinhibited conformation that can be relieved by binding
to hemimethylated DNA and H3K9me3 [239,240].

Recruitment and targeting of de novo DNMTs
In contrast to the shielding effect of H3K4 methylation, several studies found that methylation of
H3K36 recruits DNMTs. In 2010, the PWWP domain conserved in the de novo methyltransferases
was found to interact with H3K36 di- and trimethylation in vitro and this interaction was required for
the proper localization of DNMT3A in human cells [241]. A few years later, the Schübeler lab showed
that while both DNMT3A and -B are generally recruited to CpG-dense regions, DNMT3B is specifi-
cally recruited to the bodies of actively transcribed genes through its PWWP domain interacting
withH3K36me3 [242] (Figure 6E).Weinberg and colleagues then showed that DNMT3A is specifically
recruited to intergenic regions by H3K36me2. Removing H3K36me2 frommouse ESCs redistributed
DNMT3A binding to H3K36me3 marked regions [243]. Another study reported that H3K36 methyl-
transferases, NSD1 andSETD2 play key roles in shaping the DNAmethylation landscape ofmale and
female germ cells in mice [244,245]. Together, these studies showed that the de novomethyltrans-
ferases typically bind CpG-rich regions, unless protected by H3K4methylation, while H3K36methyl-
ation recruits de novo DNMTs to additional targets such as actively transcribed gene bodies.
Combined with earlier work in plants, these observations strengthened the hypothesis that gene
body methylation might serve to regulate the use of intergenic promoters [199]. In support of this,
Neri et al. uncovered a significant increase of spurious transcripts originating from cryptic intragenic
promoters in Dnmt3b KO and Setd2 KO mouse ESCs [246].

With the advent of Cas9-based gene-editing tools [247,248], the ability of Cas9 to recognize spe-
cific genomic sequences was harnessed to build tools for the targeted recruitment of various
data of the human ESC line H1 by Xie et al. uncovered long stretches (>5 kb) of lowly methylated DNA, termed DNA methylation valleys (DMVs). Canyons and DMVs are
describing the same type of DNA methylation architecture that is largely preserved across tissue types and species. (D) Crystal structures of DNMT3A (ADD and catalytic
domain) and DNMT3L (catalytic domain-like) by Guo et al. demonstrating the autoinhibitory conformation the complex adopts when not bound to the unmodified H3 tail.
(E) Baubec et al. overexpressed DNMT3B1 in mouse ES cells and determined its genome-wide binding using ChIP-seq. Average binding profiles centered around the
transcription start site (TSS) and binned by transcriptional activity of the gene revealed an enrichment of DNMT3B1 at highly transcribed, H3K36me3-marked gene bodies
(top and middle). This strong binding was not observed when the PWWP domain of DNMT3B1 was mutated (bottom). (F) Smith et al. profiled DNA methylation during
early mouse embryonic development separately in the embryonic and extraembryonic tissues using WGBS. The levels of 5-methylcytosine (5mC) and the difference
between the epiblast and the extraembryonic ectoderm are displayed for a subset of TSSs. While methylation is similar in both precursor lineages in the blastocyst, upon
implantation the extraembryonic ectoderm displays hypermethylation at this subset of TSSs and hypomethylation of the flanking regions relative to the epiblast. See
[210230,231,233,235,237,238,240,242,243,246,250,255,256,259,260,266]. Abbreviations: CGIs, CpG islands; PMD, partially methylated domain.
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Figure 7. (Top left) 5-methylcytosine (5mC) occurs at symmetrical CpG dinucleotides. DNA replication produces two hemimethylated molecules. The hemimethylated
DNA is recognized by UHRF1, which in turn recruits DNMT1 to add methylation onto the nascent strand. Proofreading by DNMT3A/B increases the fidelity of
maintenance methylation by filling sites omitted by DNMT1 or counteracting active demethylation by the TETs. (Top right) In essentially all somatic cell types, the
methylome adopts a bimodal distribution. About half of the genome is covered by megabase-size domains, termed partially methylated domains (PMDs), that exhibit
slightly lower methylation and alternate with highly methylated domains (HMDs). This high level of methylation is punctuated by unmethylated DNA methylation valleys
(DMVs) spanning several kilobases and shorter CpG-dense stretches called CpG islands (CGIs). (Bottom left) DMVs or canyons demarcate extended regions devoid of
5mC, often near developmental genes. When active, these promoters are marked by H3K4me3, which ensure DNMT3A and -B remain in their autoinhibitory
conformation. DMVs remain free of methylation even when the associated genes are silenced by H3K27me3. (Bottom center left) A subset of enhancers in pluripotent
cells is highly methylated but undergoes constant turnover of 5mC through the counteracting activities of DNMT3A/B and TETs. These enhancers can stay methylated
or become hypomethylated upon differentiation. CpG-dense promoters are generally unmethylated, irrespective of transcriptional status. (Bottom center right) If
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regulators [249]. The first generation of epi-editing tools included fusion proteins of catalytically
inactive Cas9 (dCas9) and the catalytic domain of DNMT3A or TET1. These systems were de-
signed to control transcription of reporter genes by methylating or demethylating their promoters
[250]. Fusing multiple DNMT3A or TET1 units to dCas9 using the SunTag system further
improved their efficiency [251,252]. However, as expected, extensive off-target effects were
observed and further improvements to on-target specificity are needed to restrict catalytic activity
to the desired targets only [253].

Escaping targeted DNA methylation
Genome-scale methylation maps of early development helped highlight other more specific fea-
tures of the mammalian genome that are targeted for methylation during discrete windows of de-
velopment. For example, many but not all repetitive elements escape the global erasure during
preimplantation development [254–256]. Among the human long interspersed nuclear elements
(LINEs), the younger L1PA subfamilies are the only LINEs that continue to be active and, together
with L1HS, account for nearly all LINE transcription in human preimplantation embryos. These
select LINE subfamilies were also found to be demethylated early in development, while the
older subfamilies maintained higher methylation during this period. Notably, the demethylated
and active subfamilies shared a deletion in their 5′ UTRs compared with their nontransposing
ancestors that appeared to co-occur with the evolutionary emergence of LINEs that evade a
sequence-based repressive mechanism [255]. Shortly thereafter, it was revealed that this
sequence contains the Krab zinc finger ZNF93 binding site that would normally have repressed
these elements by binding and recruitment of TRIM28/KAP1 [257].

Global methylation alterations in development and disease
More comprehensivemapping of 5mC improved the description of the distinct global architecture
of highly methylated domains (HMDs) and PMDs [208]. While PMDs can be detected in most
healthy cell types, aged, cancerous, and extraembryonic tissues all display a further reduction
in methylation levels within PMDs [258–261]. Zhou et al. suggested that the degree of PMD hy-
pomethylation relates to the number of mitotic cell divisions. Incomplete methylation in these
late replicating regions may result in a continued loss of DNA methylation during an organism’s
life, a process that may be accelerated during tumor development and progression [259].

As noted, the early extraembryonic lineages and placenta, as well as somatic cancers, share the
reduction in PMDmethylation, but also exhibit specific gain of methylation over CpG-rich domains
that overlap with H3K27me3 repressed developmental genes [260,262–265] (Figure 6F), which
often lie within DMVs. Once the DNA methylation landscape is set up in the early epiblast, meth-
ylation appears static at most features, with the exception of the subset of CpGs typically found
outside of promoter regions that shows dynamic methylation changes during differentiation
[206,208,222,266].

Summary
The use of sequencing technology to map methylomes of hundreds of cell types and develop-
mental stages from different organisms has refined insights from the prior decades, closed
some important knowledge gaps, and provided a comprehensive overview of the distribution
present in sufficient density, 5mC silences associated promoters and is bound by methyl-CpG binding domain proteins (MBDs). Some transcription factors (TFs) are
repelled by 5mC at their motifs. Promoter–enhancer contacts involve binding of methylation-sensitive CTCF. (Bottom right) Intergenic regions are marked by
H3K36me2, attracting DNMT3A. Transcribed genes are marked by H3K36me3, recruiting DNMT3B to methylate the gene body. Gene body methylation does not
impede transcriptional elongation but suppresses cryptic promoter activity. Binding of some TFs may require 5mC at their motifs.
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Outstanding questions
The past decade has highlighted that
DNA methylation is much more dy-
namic than classically portrayed, but
how elastic is DNA methylation really
and why?

Most promoters are not regulated by
DNAmethylation and, while it correlates
with active enhancers, its functional role
there is not well understood. We there-
fore still need to define what its precise
function in cell and lineage regulation is.

What role does the intergenic recruitment
(through H3K36me2) of DNA methyla-
tion play?

Does methylation have a function in
parts of the genome that have been
ignored so far and become mappable
in new T2T assemblies?

How are ubiquitous enzymes like the
DNMTs and TETs targeted or recruited
to their specific substrates and how
does their regulation and activity
change during differentiation? Is there
a biological role for the oxidation
products of TETs?

What are the mechanistic underpinnings
of aging clocks? What are the changes
and why do they occur at defined rates
over time?

Given the mutational burden of 5mC and
the gradual depletion of CpGs from the
genome, will vertebrate genomes have
to evolve a new mechanism for genome
regulation in the future?

Why do virtually all cancer cells
converge on a common DNA methyla-
tion pattern and how does this pattern
affect development and progression of
disease? What is the function and dis-
ease relevance of the intermediate
CGI hypermethylation and genome-
wide hypomethylation typical of cancer
(and aging)?
and dynamics of 5mC. Combined with structural studies, this led to a detailed understanding of
the recruitment and activity of DNMTs as well as the impact of DNA methylation on gene regula-
tion. How some of that is mechanistically translated and what role it plays in other parts of the
genome remains to be explored.

Concluding remarks
In this review, we have provided a chronological overview of the field of DNA methylation from its
start to the present day. This historical perspective highlights key experiments that document the
innovation and tremendous progress the field has made. It also serves to contextualize former
hypotheses that have withstood or been challenged over time. Many of the core concepts of
the field were established by the 1990s, however, recent work continues to provide insights,
including unexpected discoveries that add complexity and nuances to these well-established
views (Figure 7, Key figure). For example, another mammalian methyltransferase, Dnmt3c, was
discovered in male germ cells in 2016 [267] and several papers have reported functional
de novo methylation capabilities of the canonical maintenance methyltransferase DNMT1
[268–271]. Another example is the discovery of active turnover of 5mC at highly methylated
somatic enhancers in pluripotent stem cells, a finding that changes the assumption that DNA
methylation is, once established, a stably propagated modification that remains static over suc-
cessive cell divisions [2–4]. In addition, several new regulators, including QSER1 and BANP,
have been reported to play a role in shaping mammalian methylation landscapes and their inter-
pretation [272,273]. In addition, two recent publications provide evidence that DNMT1 may be
able to directly interact with H3K9me3 [274] as well as H4K20me3, a modification frequently
co-occurring with H3K9me3 in ESCs [275]. Furthermore, DNMT3A was found to be recruited
to regions marked by ubiquitinated H2AK119 placed by the Polycomb repressive complex 1,
an interaction usually masked by the stronger recruitment to H3K36me2 [276]. As we are ap-
proaching the end of a century since the discovery of 5mC in bacteria [24], the field has matured
and DNAmethylation is now frequently used as a tool to study other biological processes and dis-
ease phenotypes. Nonetheless, questions remain that need to be addressed in the coming years
before we can claim to have a complete understanding of this small but essential and impactful
chemical modification to DNA (see Outstanding questions).
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