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Abstract 1 

Translation modulates the timing and amplification of gene expression after transcription. Brain 2 

development requires uniquely complex gene expression patterns, but large-scale 3 

measurements of translation directly in the prenatal brain are lacking. We measure the 4 

reactants, synthesis, and products of translation spanning mouse neocortex neurogenesis, and 5 

discover a transient window of dynamic regulation at mid-gestation. Timed translation 6 

upregulation of chromatin binding proteins like Satb2, which is essential for neuronal subtype 7 

differentiation, restricts protein expression in neuronal lineages despite broad transcriptional 8 

priming in progenitors. In contrast, translation downregulation of ribosomal proteins sharply 9 

decreases ribosome number, coinciding with a major shift in protein synthesis dynamics at 10 

mid-gestation. Changing levels of eIF4EBP1, a direct inhibitor of ribosomal protein translation, 11 

are concurrent with ribosome downregulation and controls Satb2 fate acquisition during 12 

neuronal differentiation. Thus, the refinement of transcriptional programs by translation is 13 

central to the molecular logic of brain development. Modeling of the developmental neocortex 14 

translatome is provided as an open-source searchable resource: https://shiny.mdc-15 

berlin.de/cortexomics/. 16 

 17 

Introduction 18 

Changes in translation activity can lead to significant discrepancies between mRNA and 19 

protein for the same gene, and are a hallmark of many dynamic cellular transition states 1. 20 

Dynamic cellular transitions are uniquely complex during brain development from neural stem 21 

cells, which must deploy highly sophisticated gene expression programs 2,3. In evolutionarily 22 

advanced brain regions like the neocortex, a cell’s transcriptional signature alone appears 23 

insufficient to account for the enormous cellular diversity, with recent single-cell RNA 24 

sequencing (scRNA-seq) analyses supporting this idea 4–7. While transcriptional profiles define 25 

broad classes of neurons and non-neuronal cells, a striking conclusion from these studies was 26 

the degree of homogeneity in mRNA pools across neuronal lineages during stem cell 27 

differentiation 4, and between distinct neuronal circuits postnatally 7. Considering whether 28 

neuronal differentiation in the neocortex utilizes a more “generic” transcriptome 4 has led the 29 

field to ask recently whether neuronal identity is a stochastic rather than deterministic process 30 

8. Do “progenitors play dice” 9 while deciding their neuronal fate? Thus, the blueprint of gene 31 

expression in evolutionarily advanced brain regions is likely a multilayered, progressive 32 
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refinement – including and beyond transcription 3. Neocortex development may thus represent 33 

a particularly dynamic cellular system of translational control 10,11.      34 

 35 

Direct measurements of protein synthesis would provide a clearer picture of functional gene 36 

expression in the developing brain; however, a large-scale high-resolution analysis of mRNA 37 

translation during neurogenesis has lagged behind transcriptome analysis, in part due to 38 

current technical limitations in protein measurement. Recent work suggests that targeted and 39 

selective protein synthesis refines the output of gene expression in brain development 5,12–16. 40 

Importantly, abnormal ribosome levels and disrupted translation was found recently to be a 41 

mid-gestation etiology of neurodevelopmental disorders 17. However, how ribosomes decode 42 

mRNA in the transcriptome-to-proteome transition during developmental neurogenesis 43 

remains unknown.  44 

 45 

To circumvent these challenges and measure the temporal dynamics of the reactants, 46 

synthesis, and products of mRNA translation during brain development, we performed 47 

sequencing of ribosome-protected mRNA fragments (Ribo-seq; ribosome profiling) 18 in 48 

parallel with RNA-seq, tRNA qPCR array, and mass spectrometry across five stages of mouse 49 

neocortex neurogenesis. By capturing ribosome-mRNA interactions at codon-level resolution, 50 

we find that ~ 18 % of mRNAs change translation efficiency in the progressive specification of 51 

neural stem cells to post-mitotic neurons, with a transient peak window of dynamic translation 52 

at mid-gestation.  53 

 54 

Divergent cellular pathways are impacted by translation upregulation vs. downregulation during 55 

neurogenesis. Chromatin binding proteins like Satb2, essential for the differentiation of 56 

neuronal subtypes 19, are the most translationally upregulated mRNAs. We find Satb2 mRNA 57 

is transcribed unexpectedly broadly in neuronal lineages, but achieves restricted neuronal 58 

subtype-specific protein expression by timed translation. In contrast, ribosomal proteins are the 59 

most translationally downregulated, coinciding with dynamic expression of eIF4EBP1, a 60 

translational repressor targeting these transcripts directly 20,21. An acute decrease in ribosome 61 

number coincides with widespread changes in global translation kinetics at mid-gestation – a 62 

critical period for neurodevelopmental pathology 17. Finally, in utero knockdown of eIF4EBP1 in 63 

neural progenitors to disrupt the balance of translation during this window leads to decreased 64 

specification of the Satb2 neuronal lineage and migration arrest.      65 
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 66 

Thus, by mapping the quantitative landscape of the transcriptome-to-proteome transition in the 67 

neocortex, we find that protein synthesis is a powerful and widespread layer of gene 68 

expression regulation that shifts kinetics and impacts neuronal specification during 69 

development. We provide the developmental neocortex translatome as an open-source 70 

searchable web resource: https://shiny.mdc-berlin.de/cortexomics/. 71 

 72 

Results 73 

Deep sequencing of translation reveals a spike in regulation during neurodevelopment  74 

We focused our study on the mammalian neocortex, an evolutionarily advanced and dynamic 75 

developmental system with a tightly timed sequence of neurogenesis 2,22 (Fig. 1a). At 76 

embryonic day 12.5 (E12.5) this predominantly stem cell tissue gives birth to its first neurons. 77 

Neurons born early at E12.5 form distinct connections and control different functions than 78 

those born later at E15.5. By postnatal day 0 (P0), neurogenesis is largely complete. The 79 

timed sequence of gene expression is essential to specify neuronal fate from the stem cell pool.       80 

 81 

We designed a strategy to analyze the major reactants, synthesis, and products of mRNA 82 

translation across five stages encompassing neocortex neurogenesis (Fig. 1a), including Ribo-83 

seq measurement of ribosome-mRNA interactions, in parallel with RNA-seq, tRNA qPCR array, 84 

and mass spectrometry. Ribo-seq measures 80S ribosomes bound to the open reading frame 85 

of mRNA – a quantitative indicator of active protein synthesis at codon-level resolution 18. 86 

Optimizations for analysis of neocortex ribosomes ex vivo circumvented the requirement for 87 

pharmacological ribosome stalling with cycloheximide 15, which introduces ribosome footprint 88 

redistribution artifacts 23, and enabled efficient nuclease digestion to generate high fidelity 89 

ribosome-protected mRNA fragments (RPFs) (Extended Data Fig. 1). We obtained mRNA 90 

transcripts per-million (TPM) and RPF densities for 22,373 genes (Extended Data Fig. 2a, 91 

Supplementary Table 1). Reproducibility of both mRNA and RPF measurements permitted 92 

reliable calculation of mRNA translation efficiency (Extended Data Fig. 2b-e), which 93 

represents the ratio between ribosome binding to an mRNA’s coding sequence and the 94 

mRNA’s level overall (Fig. 1b). As a quality control, we focused further analysis on coding 95 

sequences with 32 or more Ribo-seq footprints in at least one stage as per 24, which resulted in 96 

a set of 12,228  translated GENCODE-annotated transcripts.  97 

 98 
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To detect translation-specific gene expression regulation, we first calculated fold changes 99 

between sequential time points in mRNA or RPF vs. protein (Fig. 1c, Supplementary Table 2). 100 

While gene expression overall is quite stable between E12.5 and E14, a burst of regulation 101 

occurs at E15.5 at both transcriptional and translational levels, with a significant impact on the 102 

proteome. However, robust RPF fold changes persist until P0, with mRNA changes less 103 

pronounced. Calculation of translation efficiency highlighted a transient window of robust 104 

regulation at E15.5, coinciding with the major transition in neuronal fate specification. 105 

Translation efficiency upregulation was found to occur in 1,129 genes and downregulation in 106 

1,131 genes. A further 2,253 genes change in steady state mRNA only, without any significant 107 

translation efficiency change. Thus, we estimate ~ 18 % of the transcriptome is dynamically 108 

translated across neocortex neurogenesis, with an acute inflection point during the mid-109 

neurogenesis transition at E15.5. 110 

 111 

Our Ribo-seq data shows a higher correlation with protein level changes than RNA-seq data, 112 

(Fig. 1c). We decomposed technical and systematic variation in protein levels, and estimated 113 

proportions explained by RNA-seq vs. Ribo-seq 25 (Fig. 1d and Extended Data Fig. 2f). A 114 

majority of protein level variance is accounted for by RNAseq, in agreement with prior 115 

observations 25,26. However, Ribo-seq consistently explains a higher fraction of protein 116 

variation than RNA-seq at each developmental stage, especially for proteins with increasing 117 

levels – concordant with Ribo-seq being a direct measure of protein synthesis. The protein 118 

level predictivity of Ribo-seq was particularly pronounced for genes with changing translation 119 

efficiency.  120 

 121 

Thus, our data enable detection of regulation that impacts the protein output of gene 122 

expression, which includes a transient window of robust translation control at E15.5.   123 

 124 

Translation upregulation of chromatin binding proteins like Satb2 establishes neuronal 125 

fate 126 

We first focused on the cohort of genes that are translation efficiency upregulated across 127 

neurogenesis after E12.5, to identify essential neurodevelopmental proteins with dynamic 128 

translation. Gene ontology analysis demonstrated chromatin binding proteins are particularly 129 

subject to translation upregulation (Fig. 2a). Chromatin binding proteins like transcription 130 

factors have a powerful influence on the neuronal fate of stem cells, which is tightly 131 
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coordinated in developmental time. Early-born post-mitotic neurons ultimately express 132 

transcription factors like Bcl11b, which drives them to connect sub-cortically 27. In contrast, 133 

late-born post-mitotic neurons after E15.5 ultimately express transcription factors like Satb2, 134 

which drives them to connect intra-cortically 19,28. How proteins like transcription factors 135 

achieve neuronal subtype and temporally restricted expression is a critical unresolved question. 136 

 137 

Among the most translationally upregulated neurodevelopmental proteins discovered in our 138 

data is the essential, late-born upper layer neuron transcription factor Satb2 (Fig. 2b). We 139 

assessed the trajectory of Satb2 synthesis in our RNA-seq, Ribo-seq, and mass spec data 140 

along with calculated translation efficiency; in comparison to the intermediate filament protein 141 

Nes expressed by neural stem cells 29, and early-stage transcription factor Bcl11b expressed 142 

in neurons positioned adjacent to the later Satb2 lineage. As expected, Nes demonstrates 143 

predominantly transcriptionally driven expression downregulation, as the neural stem cell pool 144 

is depleted by neuronal differentiation  30. Bcl11b is expressed in the early-born lineage with 145 

high concordance between RNA-seq and Ribo-seq, and with low fluctuations in translation 146 

efficiency. In contrast, fold changes in Satb2 Ribo-seq and MS signal are in excess of the 147 

RNA-seq, with 2-fold translation efficiency upregulation reaching a plateau at E15.5. These 148 

data suggest that Satb2 expression is amplified by translation. 149 

 150 

To begin testing the hypothesis that Satb2 mRNA undergoes translation regulation, we first 151 

examined the cellular distribution of Satb2 mRNA in scRNA-seq neuronal lineage-tracing data 152 

4. Surprisingly, we found that Satb2 mRNA is robustly expressed in differentiated neurons of 153 

both the early- and late-born lineages (Fig. 2c) – an apparent discrepancy with previous 154 

findings for Satb2 protein 19,28. Thus, transcription of this upper layer program may occur in 155 

neuronal lineages that include lower layers, and outside of the expected protein distribution.                 156 

 157 

To directly visualize the spatiotemporal expression of Satb2 mRNA and protein, we performed 158 

fluorescence in situ hybridization and immunohistochemistry in neocortical coronal sections 159 

(Fig. 2d), with probe and antibody specificity confirmed in Satb2-/- brains (Extended 160 

Data Fig. 3a), and signal quantified per cell (Fig. 2e and Extended Data Fig. 3b, 161 

Supplementary Table 3). At the onset of neurogenesis E12.5, initial scattered, weak Bcl11b 162 

protein signal is congruent with its mRNA signal in post-mitotic neurons. Satb2 protein is 163 

undetectable; however, we observed robust Satb2 mRNA signal throughout the neocortex, 164 
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from the ventricular zone in multipotent progenitors and throughout the nascent cortical plate in 165 

early-born post-mitotic neurons. In neurons differentiating in the cortical plate, almost half of 166 

all Satb2 mRNA clusters colocalize with Bcl11b mRNA, which rarely occurs in the stem cell 167 

niche of the ventricular zone.  168 

 169 

Weak Satb2 protein expression is first detected at E14.5, in contrast to strong Bcl11b protein 170 

now appearing in post-mitotic neurons. Only by E16.5 is Satb2 protein expression robust. 171 

Satb2 mRNA and protein are broadly expressed across upper layers, lower layers, and the 172 

intermediate zone by E16.5. However, neurons having migrated to their ultimate position in 173 

upper layers almost exclusively express Satb2 rather than Bcl11b protein, in contrast to 174 

regions like the intermediate zone where neurons continue to migrate. 175 

 176 

Taken together, Satb2 mRNA and protein expression are divergent in developmental time and 177 

space. This divergence includes broad, early Satb2 mRNA expression in multipotent 178 

progenitors despite Satb2 protein ultimately restricted to upper layer post-mitotic neurons later 179 

in development. Furthermore, while the distribution and colocalization of mRNA for Bcl11b and 180 

Satb2 neuronal programs remains broad and overlapping in post-mitotic neurons at E16.5, 181 

corresponding protein expression is more exclusive, with the intermediate zone a transitory 182 

region where specification at both the mRNA and protein levels are still lacking distinction. 183 

Thus, our bioinformatics analysis identifies Satb2 as a translationally upregulated mRNA, for 184 

which we observe incongruent spatiotemporal mRNA-protein expression in situ.   185 

 186 

Translation establishes the balance of neuronal fates after broad transcription  187 

Given the unexpected finding of Satb2 mRNA in early-born neural stem cells and overlap with 188 

the Bcl11b neuronal lineage, we next sought to monitor transcriptional activation of the Satb2 189 

locus. We employed a fate mapping approach with the Satb2Cre/+ mouse line 31. A Cre 190 

expression cassette is located in place of exon 2 at the Satb2 locus, which allows for timed in 191 

utero electroporation of Cre-inducible reporters like loxP-STOP-loxP-tdTomato that clonally 192 

labels cells with tdTomato that have a history of Satb2 transcription (Satb2tdTom) (Fig. 3a). Co-193 

electroporation with an eGFP plasmid serves as a generic label for all transfected cells. 194 

 195 

Remarkably, we detected Satb2tdTom cells in the ventricular zone as early as E12.5 forming 196 

clusters resembling clones or undergoing mitotic divisions (Fig. 3b), and express neural 197 
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progenitor markers like Pax6 (apical progenitors) or Tbr2 (intermediate progenitors) (Fig. 3c). 198 

Satb2 transcription was observed for progenitors in the neocortex, but not in adjacent brain 199 

regions (Extended Data Fig. 3c). Thus, Satb2 transcriptional priming occurs in early-born 200 

neocortex neural stem cells, indicating broad transcription of a protein expressed in a restricted 201 

neuronal lineage appearing later. 202 

 203 

The balance of the Bcl11b vs. Satb2 lineages is essential for normal neocortex development 204 

and function. Satb2 directly suppresses the Bcl11b genomic enhancer, and loss of Satb2 205 

engenders ectopic expression of Bcl11b in upper layer neurons, leading to abnormal 206 

connectivity 19. Therefore, we next investigated the expression of Bcl11b and Satb2 protein in 207 

cells that transcribe Satb2 mRNA (Fig. 3d-e, Supplementary Table 3). Among cells 208 

transcribing Satb2 mRNA, ~70% express Satb2 protein and ~30% express Bcl11b protein. 209 

Taken together, this observation indicates that despite unexpectedly broad and early 210 

transcription of the neuronal fate gene Satb2, translation of Satb2 protein restricts its 211 

expression to a late-born neuronal subtype, and maintains the balance of alternative neuronal 212 

fates. 213 

 214 

Translation downregulation decreases ribosome levels acutely at mid-neurogenesis 215 

E15.5 216 

We next focused on genes that are translationally downregulated across neurogenesis after 217 

E12.5. Gene ontology analysis highlighted structural constituents of the ribosome, 218 

predominantly ribosomal proteins, as strongly downregulated by translation (Fig. 4a). We 219 

calculated the developmental expression trajectory of all 79 ribosomal proteins in the large and 220 

small subunits by RNA-seq, Ribo-seq, mass spec, and translation efficiency (Fig. 4b). Results 221 

showed downregulation of nearly all ribosomal proteins at the Ribo-seq and MS level occurs 222 

acutely at E15.5, in advance of changes measured by RNA-seq, and reflecting translation 223 

downregulation until mid-neurogenesis. Decreasing ribosome levels by downregulation of 224 

ribosomal protein translation likely represents the coordinated regulation of this specific gene 225 

family, rather than a simple translation feedback loop, since numerous genes in other families 226 

undergo translation upregulation concurrently, such as chromatin binding proteins.  227 

 228 

To detect changing ribosome numbers sub-cellularly at high resolution, we performed immuno-229 

electron microscopy analysis labeling ribosomal protein uS7 at E12.5 and E15.5 in the 230 
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neocortex (Fig. 4c-d and Extended Data Fig. 4, Supplementary Table 3). A striking 231 

decrease in ribosome number was observed in differentiating neurons from early to late stages. 232 

Ribosomes are abundant in cortical plate neurons at E12.5, but scarce in both upper and lower 233 

layer neurons of the cortical plate at E15.5. Notably, a progressive increase in ribosome 234 

number was observed as newly born neurons traverse away from the ventricular zone into the 235 

cortical plate at E12.5; while at E15.5, ribosome numbers decrease precipitously outside the 236 

ventricular zone, with few ribosomes measured in sub-ventricular zone progenitors. Thus, 237 

ribosome number is temporally enforced by translation at mid-gestation. As ribosome 238 

abundance is a powerful determinant of translation kinetics and selectivity 32,33, global shifts in 239 

translation activity may occur at mid-neurogenesis. 240 

 241 

Ribosome density at the start codon and within the CDS are developmentally dynamic 242 

We next examined global translation activity during neocortex development by determining 243 

ribosome-mRNA interactions per-codon across all coding sequences. Ribosome position 244 

aligned to codons in the P-site demonstrated the characteristic 3-nucleotide periodicity in Ribo-245 

seq metagene plots (Fig. 5a). We found ribosome occupancy surrounding the start codon 246 

increases sharply at E15.5, with progressive increases per stage until P0, while stop codon 247 

occupancy demonstrates the opposite trend and occurs independent of start codon changes 248 

(Supplementary Table 4). We applied RiboDiPA 34, a linear modeling framework designed for 249 

positional analysis of Ribo-seq signal, to pinpoint the ~ 5-fold ribosome occupancy changes to 250 

the 4 codon bin surrounding the start and stop (Fig. 5b).  251 

 252 

Increased ribosome occupancy of the first four codons over time could represent a narrowing 253 

bottleneck in the transition from initiation to elongation, or signify increasingly robust initiation 254 

of target mRNAs. We correlated fold changes in start codon occupancy with translation 255 

efficiency and found an inverse relationship, suggesting that early elongation events 256 

progressively slow over time for a large cohort of proteins (Fig. 5c). Translation of the N-257 

terminus may become increasingly rate-limiting during synthesis Sbno2 and Pcdhgc4, in 258 

contrast to Tuba1c and Tuba1b representing more processive translation during development. 259 

Thus, as ribosome levels decline at E15.5 to P0, translation at the 5’-end of coding sequences 260 

occurs more slowly. 261 

 262 
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We next investigated distinct positions where variations in ribosome density take place 35 (Fig. 263 

5d; see Methods). A narrow region consistent with the ribosomal A-site accounts for most of 264 

the codon-specific variation in ribosome occupancy. Variation in A-site occupancy was most 265 

pronounced at E12.5-E14, with an acute decrease at E15.5-E17, and low variation by P0. 266 

Analysis of ribosome dwell time per codon – a measure of the codon-specific speed of 267 

translation 36 – demonstrated early developmental “fast” or “slow” kinetics in the bimodal 268 

distribution of codon dwell times in the A-site (Fig. 5e and Extended Data Fig. 5a-b; 269 

Supplementary Table 4). At E15.5, codon dwell times begin to equalize, progressively 270 

reaching a unimodal distribution by P0. Furthermore, ribosome density occupying A-site 271 

codons negatively correlates with P-site density in the embryonic period, but no correlation 272 

was measured after birth at P0 (Fig. 5f). Thus, the A-site codon in particular influences 273 

ribosome dwell time, which is a barrier most pronounced early in neurogenesis when ribosome 274 

levels are highest, and less pronounced after mid-neurogenesis when ribosome levels decline.      275 

 276 

Varying ribosome dwell time on a codon might be attributable to the availability of a given 277 

tRNA. Dwell time is strongly correlated with tRNA abundance in yeast 37–39, but is less 278 

correlated in some mammalian systems 36,40. We measured levels of 151 tRNA isodecoders by 279 

quantitative PCR (qPCR) array at each stage (Extended Data Fig. 6, Supplementary Table 280 

4) to determine if tRNA abundance is responsible for driving ribosome dwell time differences in 281 

the developing neocortex. Usage-corrected tRNA abundance (availability) 36 and codon 282 

optimality – the non-uniform decoding rate between synonymous codons 41 – failed to show 283 

any correlation with ribosome dwell time at the A-site (Extended Data Fig. 5c-d). 284 

 285 

However, we found that the amino acid coded for is a strong determinant of ribosome density 286 

occupying A-site codons, with synonymous codons showing similar occupancy (Fig. 5g, 287 

Supplementary Table 4). Codons for acidic amino acids are among those with the highest 288 

occupancy, suggesting they represent a kinetic barrier in early development translation 38,42. 289 

E12.5-E14 accounts for the extremes of A-site differences between amino acids and among 290 

synonymous codons, with a progressive, chronologic trend towards equalized occupancy by 291 

P0. Notably, some amino acids like leucine and isoleucine are coded for by both “fast” and 292 

“slow” synonymous codons, particularly apparent early in development, such as the fast TTA-293 

Leu and slow CTG-Leu. Neither codon optimality (Extended Data Fig. 5d) nor codon rarity 294 
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would account for such dwell time differences, as TTA-Leu is a relatively rare codon 43 with a 295 

short dwell time, while CTG-Leu is more common with a long dwell time. 296 

 297 

Taken together, “fast” and “slow” amino acids in the ribosome A-site characterize the early 298 

neurogenesis period when ribosome levels are transiently abundant, while ribosome 299 

accumulation at the start codon occurs late in neurogenesis when ribosome levels decline (Fig. 300 

6a). These data strongly indicate that the kinetics of translation shift sharply at mid-301 

neurogenesis during a steep decline in ribosome levels, which coincide with major transitions 302 

in neuronal fate.  303 

 304 

The ribosomal protein translation inhibitor eIF4EBP1 impacts neuronal fate and 305 

migration 306 

The overwhelming influence that changes in ribosome number can have on global protein 307 

synthesis kinetics and mRNA-specific translation is strongly supported by theoretical and 308 

experimental data 32,33. However, whether changes in ribosome number (Fig. 6a) impact 309 

neurogenesis is unknown. We first analyzed mRNAs for sequence motifs in their untranslated 310 

regions (UTRs), which are powerful regulators of neocortical translation by RNA-binding 311 

proteins 2,14,44. Distinct motifs are enriched in the 5’- and 3’-UTRs of mRNAs with increasing or 312 

decreasing translation efficiency (Fig. 6b). Translation downregulation motifs were only 313 

detected in 5’-UTRs and are enriched for terminal oligopyrimidine (5’-TOP) sequences. In 314 

translation upregulated mRNAs by contrast, 5’ GC-rich sequences and/or 3’ Pumilio binding 315 

motifs are prevalent. 5’-TOP sequences are a particular feature of ribosomal proteins coding 316 

mRNAs, and lead to their concerted translation downregulation when directly bound by their 317 

major upstream regulator eIF4EBP1 (Fig. 6c) 20,21. Since we found that ribosome levels are 318 

controlled by a timed decrease in ribosomal protein translation, we next focused on how 319 

eIF4EBP1 expression coincides with translation regulation during neocortex development.  320 

 321 

Western blot analysis demonstrated eIF4EBP1 levels change during neocortex development, 322 

with high expression at early stages until E15.5, followed by a sharp decrease at E17, and 323 

moderate recovery at P0 (Fig. 6d). eIF4EBP1 levels coincide with the translation 324 

downregulation of ribosomal protein expression measured until E15.5, after which translation 325 

inhibition is transiently released at E17 (Figs. 4b and 6d, bottom). We next assessed the 326 

developmental expression of eIF4EBP1 in situ by immunohistochemistry analysis in the 327 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2021. ; https://doi.org/10.1101/2021.06.23.449626doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.23.449626
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12 

neocortex (Fig. 6e). Robust eIF4EBP1 expression was observed in neural stem cells at E12.5-328 

E15.5 in the ventricular zone, with lower expression in cortical plate neurons. At E17, 329 

eIF4EBP1 levels decrease throughout both stem cell and neuronal zones, with some recovery 330 

at P0. These data suggest eIF4EBP1 may play a role in the early-mid neurogenic period, 331 

during a downregulation of ribosomal protein translation, which coincides with an increase in 332 

Satb2 translation.  333 

 334 

To measure the impact of eIF4EBP1 on neuronal fate during neocortex neurogenesis, we 335 

performed shRNA knockdown by in utero electroporation in ventricular zone progenitors at 336 

E13.5 when eIF4EBP1 levels are high, followed by immunohistochemistry assessment of 337 

Satb2 protein expression at E15.5 when translation regulation dynamics peak (Fig. 6f). 338 

eIF4EBP1 knockdown in early progenitors leads to a decrease in the fraction of Satb2 protein 339 

expressing neurons at E15.5 compared to scrambled control, and arrests neuronal entry into 340 

the cortical plate (Fig. 6f-g, Supplementary Table 3). These data indicate that eIF4EBP1 341 

impacts neuronal fate and migration during a large-scale transient shift in translation activity at 342 

mid-gestation. 343 

 344 

Taken together, our data supports a model where E15.5 is a major inflection point in 345 

translation regulation during neocortex neurogenesis (Fig. 6h). This critical window includes a 346 

robust decrease in ribosome number in differentiating neurons, a change in translation kinetics, 347 

and global shifts in the translation efficiency of mRNAs – including genes driving neuronal 348 

specification.        349 

 350 

Modeling the translatome of neocortex neurogenesis 351 

Having interrogated members of the most translationally upregulated and downregulated gene 352 

pathways, we pursued a more comprehensive bioinformatic analysis of the transcriptome-to-353 

proteome transition in coordinated developmental programs – where deviations between 354 

mRNA and protein may represent dynamic cellular transitions 1. We performed hierarchical 355 

clustering of mRNA and protein expression trajectories after E12.5 per gene, which divided the 356 

proteome into 13 broad clusters (Fig. 7a and Extended Data Fig. 7a, Supplementary Table 357 

5). We found clusters representing concordant and divergent trajectories between mRNA and 358 

protein, with E15.5 a common inflection point of divergent regulation. While genes with 359 

changing translation efficiency are found in all clusters, they are enriched in clusters that 360 
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demonstrate highly divergent mRNA and protein expression. Furthermore, several essential 361 

neural stem cell and differentiation markers segregate into distinct clusters, such as Nes in 362 

cluster J and Satb2 in cluster M. Reinforcing the biological significance of clusters representing 363 

different mRNA and protein trajectories, gene ontology analysis demonstrated many non-364 

overlapping, distinct pathways enriched in different clusters, such as neuron differentiation 365 

processes enriched in cluster D (Fig. 7b, Supplementary Table 5).  366 

 367 

The relationship between Ribo-seq density and steady state protein levels is complicated by 368 

the fact that protein half-lives are relatively long 45, and reflect the cumulative effects of 369 

synthesis and degradation over time. In contrast, Ribo-seq reflects synthesis at a given time 370 

point. Deviations between protein and Ribo-seq are expected whenever protein levels have not 371 

yet reached equilibrium with synthesis, making linear comparison of protein concentrations and 372 

Ribo-seq densities difficult to interpret. We therefore made use of a kinetic, time continuous 373 

model of protein translation similar to 46 (see Methods).  374 

 375 

We classified proteins into one of five categories (Fig. 7c): stationary, where protein levels 376 

showed little change; linear, where protein levels were in near-equilibrium with Ribo-seq 377 

measured synthesis; production, consistent with a non-equilibrium protein trajectory; 378 

degradation, for which protein degradation alone fit the data;  and “MSdev”, whose protein 379 

trajectories diverged from their Ribo-seq trajectory for any combination of parameters. Then, 380 

by using the approximation of single constant relating RPF density and synthesis rate, we were 381 

able to estimate half-lives for all genes, which show a strong correlation to experimentally 382 

determined degradation rates in NIH 3T3 cells 47 (Extended Data Fig. 7b). For example, our 383 

predicted MSdev category proteins are more likely to demonstrate non-exponential decay 384 

kinetics during their lifetime (Extended Data Fig. 7c).  385 

 386 

Genes in the five modeled categories showed distinct gene ontology term enrichment (Fig. 7d), 387 

such as the linear relationship between the translation and abundance of ribosome 388 

components, or the non-linear relationship for chromatin associated proteins. Interestingly, G-389 

protein coupled receptors and DNA replication genes are enriched in the MSdev category, 390 

suggesting their expression patterns are highly multifaceted. In contrast, transmembrane 391 

transporter protein levels are highly stable, buffering upstream transcription/translation 392 
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changes. Thus, our modeling highlights how multiple layers of post-transcriptional regulation 393 

impact distinct gene families during the time course of neuronal differentiation. 394 

 395 

Discussion 396 

Our study traces how functional gene expression is catalyzed in a complex developmental 397 

system, capturing the reactants, synthesis, and products of mRNA translation across the time 398 

course of neocortex neurogenesis. We find widespread deviations in the trajectory of mRNA 399 

and protein expression along with changes in translation for ~18% of the transcriptome, with a 400 

transient peak at mid-neurogenesis. We interrogate the protein families most enriched among 401 

translation up and downregulated genes. Translation upregulation particularly impacts 402 

chromatin binding proteins like Satb2, which are essential components of neurogenesis. 403 

Translation downregulation targets the translation machinery itself, with an acute decline in 404 

ribosome number at mid-neurogenesis. The transition from relative ribosome abundance to 405 

depletion is accompanied by a chronological shift in translation processivity at the start codon 406 

and A-site amino acid during peptide elongation. eIF4EBP1, the major upstream suppressor of 407 

ribosomal protein translation efficiency, is dynamically expressed during neurogenesis in 408 

tandem with ribosome abundance, and impacts Satb2 neuronal fate specification. Finally, we 409 

model the transcriptome-to-proteome transition in neocortex development, highlighting the 410 

impact of translation in a multilayered program of neurodevelopmental gene expression. 411 

 412 

Neural stem cells and differentiated neurons harbor a pool of mRNAs inclusive of diverse 413 

neuronal fates 4,7. We propose that a broad transcriptome is filtered at the protein level for 414 

tightly timed, rapidly scalable, and spatially targeted gene expression to assemble highly 415 

evolved neuronal circuits. Per gene per hour, translation is faster and more scalable than 416 

transcription by orders of magnitude 48, and neuronal specification transitions occur in very 417 

narrow developmental windows 2,3. The availability of a diverse mRNA repertoire including 418 

both lower and upper layer neuronal fates like Bcl11b and Satb2, respectively, which can be 419 

rapidly and selectively amplified by translation upregulation, is essential to specify Bcl11b or 420 

Satb2 protein exclusive neurons, in addition to Bcl11b-Satb2 double-positive neurons 6. Our 421 

translatome data provide a unique window into how the proteome emerges from the 422 

transcriptome in neurodevelopment (https://shiny.mdc-berlin.de/cortexomics/).    423 

 424 
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The timed decrease in ribosome number per cell in the cortical plate represents a coordinated 425 

translation downregulation of ribosomal protein synthesis. Control of ribosome number has a 426 

dominant influence on global protein synthesis kinetics and mRNA-specific translation, and can 427 

lead to “ribosomopathies” in disease states 32,33. With the role of eIF4EBP1 early in 428 

neurogenesis, our study joins an evolving body of work on RNA-binding proteins and ribosome 429 

cofactors that modulate protein synthesis in the developing brain 2,5,13–16,44. eIF4EBP1 is a 430 

master regulator of ribosome levels by suppressing ribosomal protein synthesis 20,21, which we 431 

find also impacts the fate and migration of a neuronal lineage prenatally. A timed mechanism 432 

to finely tune ribosome levels may impose essential control on how and when proteins are 433 

synthesized during neuronal fate decisions.       434 

 435 

We measure a timed, progressive developmental shift in ribosome density surrounding start 436 

and stop codons. Previous studies of the “5’ ramp” present in Ribo-seq experiments have 437 

proposed that it represents ‘slow’ synonymous codon choice near the coding sequence start – 438 

an adaptation to prevent ribosome collision further into the open reading frame 49. Our data 439 

argue against this as the sole mechanism of 5’ ramping, since numerous genes show an 440 

increase in start density despite the generally decreasing effect of codon choice. The 441 

increasing relative density at the 5’ of many mRNA coding sequences resembles what might 442 

be expected during a shift from ribosome abundant elongation-limited to ribosome scarce 443 

initiation-limited translation 50, when kinetic barriers to start codon initiation and elongation of 444 

early N-terminal peptides 51 become comparatively prominent. Of note, we do not observe 445 

increasing start codon density only for high translation efficiency genes, or correlation with 446 

neurite-localized translation (Extended Data Fig. 8). We therefore favor the hypothesis that 447 

ribosome occupancy at beginning of open reading frames becomes progressively rate-limiting 448 

for codon-independent reasons, such as scarcity of translation cofactors and ribosomal 449 

subunits later in development.  450 

 451 

We also find that the A-site amino acid strongly influences translation speed during early 452 

neurogenesis in particular, suggesting that factors like the electrostatics of peptidyl chain 453 

elongation 38,42, amino acid availability, and/or tRNA aminoacylation might play a more 454 

important role in early brain development. To our knowledge, our study is the first to 455 

demonstrate differences in the fundamental nature of codon-specific ribosome density over 456 

developmental time. Our study agrees with previous work that suggest tRNA levels are not a 457 
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limiting factor for translation elongation in mammals 36,40,52, as they are in exponentially 458 

dividing yeast 37–39. Notably, however, these findings do not rule out individual cases where a 459 

tRNA may influence ribosome stalling, as reported for one nervous system-specific tRNA 460 

postnatally 53. We measure the total tRNA pool with a protocol that does not address tRNA 461 

charging, which is a limitation of our study and an interesting future direction for investigation.    462 

 463 

The main limitation of our study is that parallel time course measurements of the transcriptome, 464 

tRNA pool, translatome, and proteome occur in brain tissue of mixed cell types rather than 465 

single cells. In addition to scRNA-seq, tremendous advances in analysis of the single-cell 466 

translatome by Ribo-seq 54 were just published. While development of single-cell proteomics is 467 

still underway 55,56, the input requirements for tRNA measurement remain a major obstacle. At 468 

the expense of cellular resolution, we opted to perform a comprehensive analysis that enables 469 

modeling of mRNA translation in developing brain tissue. Notably, while our study is well 470 

designed to measure changes in protein synthesis, we do not measure protein degradation 471 

directly. The unexpectedly large number of “MSdev” proteins identified in our model indicates 472 

that post-translational mechanisms like degradation 57–59 may also have a major impact by 473 

decoupling protein and Ribo-seq trajectories, highlighting the complexity of gene regulation in 474 

the neocortex. Despite these limitations, our approach detected two important phenomena 475 

validated at the cell type-specific level – mRNA-protein uncoupling of Satb2 by translation 476 

upregulation, and coordinated translation downregulation of ribosome abundance. Bulk tissue 477 

measurements can be very informative in tandem with single cell data deconvolution in the 478 

brain 60–62, and we anticipate our data will be leveraged as more single cell technologies 479 

emerge.                   480 

 481 

Taken together, our data suggests a model of developmental gene expression where the 482 

levels and kinetics of translation shift during a key window of neurogenesis in the brain – 483 

creating a major inflection point of translation at mid-gestation. These developmental windows 484 

correspond to timed changes in neuronal specification from neural stem cells, where broad 485 

transcription of neuronal subtype-specific programs is ultimately refined by translational control, 486 

more precisely demarcating the boundaries of neuronal circuits in the brain.   487 

 488 
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Methods 696 

Mice 697 

Mouse (Mus musculus) lines were maintained in the animal facilities of the Charité University 698 

Hospital and Lobachevsky State University. All experiments were performed in compliance 699 

with the guidelines for the welfare of experimental animals approved by the State Office for 700 

Health and Social Affairs, Council in Berlin, Landesamt für Gesundheit und Soziales (LaGeSo), 701 

permissions T0267/15, G0079/11, G206/16, and G54/19, and by the Ethical Committee of the 702 

Lobachevsky State University of Nizhny Novgorod. Mice were utilized in the embryonic (E12.5-703 

E17) and early post-natal (P0) period, inclusive of both male and female sexes in each litter 704 

without distinction. Timed pregnant wild-type (WT) CD-1 mice utilized for Ribo-seq, RNA-seq, 705 

tRNA qPCR array, mass spectrometry, and immuno-electron microscopy were obtained from 706 

the Charles River Company (Protocol: T0267/15). Experiments with fluorescent in situ 707 

hybridization and immunohistochemistry were performed in NMRI WT mice. For experiments 708 

with the tdTomato reporter, Satb2Cre/+ males 19 were mated to NMRI wild type females 709 

(Protocols: G0079/11, G54/19, and G206/16). Satb2Cre/+ mouse genotyping was performed as 710 

described 19. 711 

 712 

Neocortex sample preparation for bioinformatics analysis 713 

Dissection, cryogenic lysis, and determination of optical density units (ODU) were performed 714 

as described 15.  715 

 716 

Ribo-seq and RNA-seq sample preparation and sequencing 717 

Each replicate for paired neocortex Ribo-seq and RNA-seq included 40 brains (80 718 

hemispheres) at E12.5, 30 brains (60 hemispheres) at E14, 21 brains (42 hemispheres) at 719 

E15.5, 20 brains (40 hemispheres) at E17, and 17 brains (34 hemispheres) at P0 – performed 720 

in biological duplicate at each stage. Neocortex tissue was lysed on ice in 20 mM HEPES, 721 

100 mM KCl, 7.5 mM MgCl2, pH 7.4, supplemented with 20 mM Dithiothreitol (DTT), 0.04 mM 722 

Spermine, 0.5 mM Spermidine, 1x Protease Inhibitor cOmplete EDTA-free (Roche, 723 

05056489001), 0.3% v/v IGEPAL CA-630 detergent (Sigma, I8896) and clarified by 724 

centrifugation at 16100 xg for 5 min at 4 °C with a benchtop centrifuge. Samples were then 725 

measured for A260 ODU on a NanoDrop 1000 Spectrophotometer. Two thirds of the sample 726 

were transferred to a new tube for Ribo-seq preparation, with the remaining one third for RNA-727 
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seq was mixed with 100 U SUPERase-In RNAse inhibitor (ThermoFisher, AM2694) and frozen 728 

at -80 °C for downstream RNA isolation.  729 

 730 

For digestion of ribosome protected RNA fragments (RPFs), Ribo-seq samples were then 731 

mixed with 60U RNAse-T1 plus 96 ng RNAse-A per ODU, and incubated for 30 min at 25 °C, 732 

shaking at 400 rpm. To stop RNAse activity, 200 U of SUPERase-In RNAse inhibitor was then 733 

added.  734 

 735 

10-50 % 5 mL sucrose density gradients were prepared in Beckman Coulter Ultra-Clear Tubes 736 

(344057). Base buffer consisted of 20 mM HEPES, 100 mM KCl, 10 mM MgCl2, 20 mM 737 

Dithiothreitol (DTT), 0.04 mM Spermine, 0.5 mM Spermidine, 1x Protease Inhibitor cOmplete 738 

EDTA-free (Roche, 05056489001), 20 U/mL SUPERase-In RNAse inhibitor (ThermoFisher, 739 

AM2694), pH 7.4, prepared with 10 & 50 % sucrose w/v. Overlaid 10 & 50 % sucrose-buffer 740 

solutions were mixed to linearized gradients with a BioComp Gradient Master 107ip.  741 

 742 

Digested lysates were overlaid on gradients pre-cooled to 4 °C. Gradients were centrifuged in 743 

a SW55 rotor (Beckman Coulter) for 1 hr, 4 °C, 37000 rpm, and fractionated using a BioComp 744 

Piston Gradient Fractionator and Pharmacia LKB SuperFrac, with real-time A260 745 

measurement by an LKB 22238 Uvicord SII UV detector recorded using an ADC-16 746 

PicoLogger and associated PicoLogger software. Fractions corresponding digested 80S 747 

monosomes were pooled and stored at -80 °C.  748 

 749 

RNA isolation with TRIzol LS was then performed for both RNA-seq and Ribo-seq samples, as 750 

per the manufacturer’s instructions. For Ribo-seq and RNA-seq samples, downstream library 751 

preparation and sequencing were performed as described 15. RNA-seq data were utilized in a 752 

recent study 15 corresponding to NIH GEO entry GSE157425. Ribo-seq data in this study are 753 

deposited in the NIH GEO: GSE169457. 754 

 755 

Mass spectrometry sample preparation 756 

Total proteome analysis from neocortex lysates at E12.5, E14, E15.5, E17, and P0, including 757 

complete lysis in RIPA buffer, and downstream processing for mass spectrometry analysis, 758 

was performed in a recent study 15 corresponding to ProteomeXchange entry PXD014841. 759 

 760 
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tRNA qPCR array sample preparation and measurement 761 

tRNA qPCR array measurement of 151 tRNA isodecoders was performed by Arraystar 762 

(Maryland, USA) for neocortex lysates at E12.5, E14, E15.5, E17, and P0 from the same total 763 

RNA isolated for RNA-seq described above (Supplementary Table 4). Data are deposited in 764 

the NIH GEO: GSE169621. 765 

      766 

Ribo-seq and RNA-seq data processing 767 

Raw sequence data was converted to FASTQ format using bcl2fastq 768 

(https://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html). Adapters 769 

(sequence TGGAATTCTCGGGTGCCAAGG) were removed from Ribo-seq reads with 770 

cutadapt 63, as well as sequences with a quality score less than 20 or a remaining sequence 771 

length less than 12, and after removing duplicate read sequences, 4bp UMIs were trimmed 772 

from either end of each sequence using a custom perl script. Ribo-seq reads were then 773 

aligned to an index of common contaminants (including tRNA, rRNA, and snoRNA sequences) 774 

using bowtie2 64. The resulting processed read files were then aligned to coding sequences 775 

(the pc_transcripts fasta file), and separately, to the genome, from GENCODE release M12 776 

(Mus musculus) using STAR 65, with the following settings: STAR     --outSAMmode NoQS --777 

outSAMattributes NH NM --seedSearchLmax 10   --outFilterMultimapScoreRange 0 --778 

outFilterMultimapNmax 255 --outFilterMismatchNmax 1 --outFilterIntronMotifs 779 

RemoveNoncanonical. RNA-seq and Ribo-seq libraries achieved high coverage, with a median 780 

of 33M and 12M reads mapped to protein coding transcripts, respectively. For quality control, 781 

downstream analysis focused on coding sequences with 32 or more Ribo-seq footprints in at 782 

least one stage as per 24, which resulted in a set of 12,228  translated gencode transcripts 783 

(Supplementary Table 1). 784 

 785 

Linear fold changes for RNA-seq and Ribo-seq were calculated using limma 66, for TE was 786 

calculated using xtail 67, and for MS calculated using proDA (https://github.com/const-787 

ae/proDA) (Supplementary Table 2). 788 

 789 

Since ribosomes with their A-site over a given position will produce a distribution of read 790 

lengths mapping to nearby positions, A/P-site alignment represents a crucial step in the 791 

processing of Ribo-seq datasets. Frequently, algorithms for A-site alignment rely either 792 

explicitly 37,68 or implicitly (Ahmed et al., 2019;) on the presence of large peaks at the start 793 
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and/or stop codons, the known location of which provides a ‘true positive’ that can be used to 794 

choose P-site offsets for each read length. We found that such methods gave inconsistent 795 

results in our data, with optimal P-sites being chosen at biochemically implausible values (e.g., 796 

at 0 base pairs from the read 5’-end). This is likely due to 1) the variable occupancy of the 797 

start/stop peak in our data, and 2) the presence of cut-site bias in our data due to the necessity 798 

of RNAse T1 & A digestion. Calculating RUST scores and ‘metacodon’ 35 plots of RPF 5’-end 799 

occurrence showed that the most variation between different codons and time points (other 800 

than cut-site bias itself at RPF termini) was nonetheless limited to a narrow region a consistent 801 

distance from the codon, for each read length. Plotting KL-Divergence between observed and 802 

expected RUST scores at different distances from the read 5’ end and measuring the between-803 

codon variance at each position revealed that it aligned with an offset of approximately 14-15 804 

nt (consistent with the A-site position) for reads of length between 25 and 31, and so we chose 805 

these for further analysis of ribosome dwell time (Supplementary Table 4). We also observed 806 

an adjacent region of lesser variability 3bp towards the RPF 5’ end, consistent with a non-zero 807 

but significantly less influence of the P-site codon (Supplementary Table 4). 808 

 809 

The program DeepShapePrime 70, modified to accept our chosen P-site offsets instead of 810 

hardcoded ones, was then used to derive isoform specific abundance measurements for each 811 

protein coding transcript. 812 

 813 

In parallel to the above, iso-form level quantification of the RNA-seq was carried out using 814 

salmon 71, with an index built from coding M12 sequences, and the following settings: salmon 815 

quant -l SR --seqBias --validateMappings 816 

 817 

A snakemake 72 file automating the above workflow is available at: 818 

https://github.com/ohlerlab/cortexomics. 819 

 820 

We then converted DeepShape-prime’s output to salmon format to combine both outputs, 821 

using the ORF length as effective length. The R package tximport 73 was used to derive length-822 

corrected gene-level counts and isoform level counts and TPMs for both datasets. The voom 823 

package was used for variance stabilization and linear modelling of this data to derive 824 

confidence intervals for transcriptional and translational change, both relative to E12.5, and 825 

stepwise between each stage. The xtail package 67, which is specifically geared towards 826 
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estimation of translational efficiency (TE; i.e. the ratio of Ribo-seq density to RNA-seq density)  827 

change in the presence of transcriptional change, was used to detect changing TE. Numbers 828 

for TE change quoted in the text refer to xtail’s differential TE calls, with stepwise fold changes 829 

shown in Fig. 1, and TE changing genes being elsewhere defined relative to E12.5 830 

(Supplementary Table 2).  831 

 832 

For metagene plots, a ‘best transcript’ (the transcript with the highest median Ribo-seq 833 

coverage across all samples) was selected for each gene. These transcripts were further 834 

limited to those with a length of 192 or greater. Each of these transcripts was also also 835 

analyzed using the RiboDiPA 34 package, which looks for position-specific differences in Ribo-836 

seq occupancy between conditions. Since metacodon plots indicated that changes at the start 837 

and stop codon were limited to a distinct region 3-4 codons from the start and stop, we divided 838 

each coding sequence in to 15 bins, with 7 bins of 4 codons each centering on the start and 839 

stop, and a final ‘mid’ bin of variable size encompassing the rest of the ORF (ORFs too short to 840 

accommodate this were excluded). We then plotted bin-level log2 fold changes for each gene 841 

with significant q-value of using the AUG/stop changing bins. 842 

 843 

Fold changes were binarized into ‘significant’ (absolute fold change greater or less than 1.25, 844 

adjusted p-value < 0.05) and ‘non-significant’ for plotting up and down regulated genes, 845 

respectively, and GO term analysis – referred to as dTE and non-dTE in the case of TE fold-846 

change. For GO term analyses of TE change and positional Ribo-seq change, The R package 847 

topGO was used.  848 

 849 

A list of ribosomal proteins for the mouse large and small subunits were curated from Uniprot. 850 

 851 

tRNA abundance and codon dwell time analysis 852 

tRNA abundance was calculated from ArraystarTM Ct values by the negative delta Ct value for 853 

each tRNA compared to the mean of 5S and 18S rRNA levels in each sample 854 

(Supplementary Table 4). Abundance per-codon was calculated by taking the mean of each 855 

replicate, and summing values for all relevant iso-decoders. Availability 36 was calculated as 856 

the residual from a simple linear model regressing codon usage against abundance, where 857 

codon usage was defined as the occurrence of that codon in the M12 coding transcriptome, 858 
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weighted by the relevant TPM of each transcript in that sample. We attempted weighting by 859 

wobble base pairs as in 41 and found this did not impact the conclusions. 860 

 861 

We followed the approach of 35 and used RUST values as a robust estimator of codon specific 862 

dwell times. A-site occupancy was defined as the RUST value for that codon at the point of 863 

maximum variation (14 or 15 base pairs from the 5’ end) with P-site occupancy defined as the 864 

RUST value 3 bp closer to the 5’ from there (Supplementary Table 4) 865 

 866 

Relationships between codon dwell time, tRNA abundance/availability, and amino acid identity, 867 

were investigated using the R function lm. The dataset used consisted of 269 – (i.e. one per 868 

quantified codon, per sample) with terms for the stage of the sample (S), the amino acid coded 869 

for (AA), and the abundance (or availability) of the encoding tRNAs (AB). 870 

 871 

The largest explanatory variable was AA, which also showed a significant interaction with S, 872 

indicating that the amino acid coded for explained ~ 34% of the variance in dwell time between 873 

codons. This term also showed a significant interaction with sample stage, indicating that the 874 

amino-acid specific factors determining dwell time may vary over development (e.g., due to the 875 

availability of amino acids changing). Within a sample or across all samples, there was no 876 

association between tRNA abundance and dwell time, even after correcting for the effect of 877 

amino acid coded-for. Some codons however show a significant interaction between 878 

abundance and developmental stage, and because these codons were biased towards the 879 

high or low end of the abundance dwell time spectrum, we plotted time-relative change vs. 880 

abundance, for the top and bottom quartiles of dwell time abundance. This revealed a 881 

significant association between change in time-relative tRNA abundance and dwell time, with 882 

fastest codons showing decreasing tRNA abundance as they slowed, and the slowest codons 883 

also showing decreasing tRNA abundance. 884 

 885 

Mass Spectrometry data processing 886 

All raw data were analyzed and processed by MaxQuant (v1.6.0.1) 74 (Supplementary Table 887 

1). Default settings were kept except that ‘match between runs’ was turned on. Search 888 

parameters included two missed cleavage sites, cysteine carbamidomethyl fixed modification 889 

and variable modifications including methionine oxidation, protein N-terminal acetylation and 890 

deamidation of glutamine and asparagine. The peptide mass tolerance was 6ppm and the 891 
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MS/MS tolerance was 20ppm. Minimal peptide length of 7 amino acids was required. 892 

Database search was performed with Andromeda 75 against the UniProt/SwissProt mouse 893 

database (downloaded 01/2019) with common serum contaminants and enzyme sequences. 894 

The false discovery rate (FDR) was set to 1% at peptide spectrum match (PSM) level and at 895 

protein level. Protein quantification across samples was performed using the label-free 896 

quantification (LFQ) algorithm 76. A minimum peptide count required for LFQ protein 897 

quantification was set to two. Only proteins quantified in at least two out of the three biological 898 

replicates were considered for further analyses. 899 

 900 

To improve the match between mass spec data and sequence data, the peptides from each 901 

mass spec group were matched against M12 protein sequences. Instances in which a 902 

UNIPROT gene identifier did not match any gene in GENCODE, but in which the associated 903 

peptide sequences matched proteins for a single GENCODE gene, were updated to match 904 

that Gencode gene. All further analyses were carried out using gene-level proteomic data. 905 

 906 

The R package proDA  was used to calculate dropout-aware abundance estimates for each 907 

protein group, as well as fold changes and confidence intervals relative to E12.5. For each 908 

gene, a ‘best’ matching protein group was defined as the one with the least missing, and 909 

highest median, signal across all samples, and selected for further analysis. 910 

 911 

Analysis of variance  912 

Analysis of variance was carried out a manner similar to 25. We fit a linear model regressing 913 

measured protein levels, or protein fold changes, P, against measured Ribo-seq or RNA-seq 914 

levels R. We then performed variance decomposition using the following equation: 915 

 916 

𝜎
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ˆ
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𝑏
ˆ
&''
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ˆ
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%. 917 

Where 𝜎
ˆ
*++
%  represents total variance in measured protein abundance, (i.e. in proDA-normalized 918 

LFQ values) and is decomposed into stochastic error in protein measurement 𝜎
ˆ
"
%  (estimated 919 

standard error of the protein abundance model fit using proDA), systematic variation in protein 920 

levels independent of R 𝜎
ˆ
"#$
% , and error in R measurement, where 𝑏

ˆ
&'' 	is the linear coefficient 921 
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relating Ribo-seq and RNA-seq measurements to protein abundance, 𝑏
ˆ
( is the measurement 922 

bias for R, and	𝜎
ˆ
(
%	s the stochastic measurement error in R. Lacking a means of measuring 𝑏

ˆ
( 923 

in our data, we experimented with a range of values, including the experimentally determined 924 

value of 1.21 based on NanoString measurements by 34. We found that due to the relatively 925 

minor stochastic error in measurements of R, our estimates of 𝜎
ˆ
"#$
%  were robust to reasonable 926 

values of 𝑏
ˆ
( (between 0.75 and 1.5) and so we elected to fix its value at 1. We then calculated 927 

variance explained as: 928 

 929 
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 930 

 931 

We applied this equation both within each time point, and to the fold changes between each 932 

time point. Stochastic error terms for both within-stage and between stage values for R and P 933 

were calculated using limma and proDA respectively. Notably, correlation between the two 934 

sequencing assays and MS is strongly dependent on the magnitude of change at that time 935 

point, with technical noise specific to each assay non-correlated 1.  For the R implementation 936 

of the above equations, see our github repository (https://github.com/ohlerlab/cortexomics), 937 

and the file src/Figures/Figure4/2_vardecomp.R. 938 

 939 

Hierarchical clustering 940 

For hierarchical clustering (Supplementary Table 5), we took fold changes in RNA-seq and 941 

MS values relative to E12.5, for each gene, and carried out PCA on the resulting n x 8-942 

dimensional matrix. We calculated Euclidean distances between genes and performed 943 

hierarchical clustering using the R function hclust and the ‘ward’ clustering criterion – i.e., 944 

favoring the creation of large clusters rather than small clusters containing few outliers. We 945 

found that our expression data showed a smooth reduction in variance explained as the 946 

number of clusters varied, and so we plotted GO-term enrichment for different cluster numbers, 947 

and finding that clusters with similar GO-term enrichments began to appear at a cluster 948 

number of 13 chose this as our cutoff. Meta-trajectories for each cluster were plotted using the 949 

median and upper/lower quartiles for each cluster. Enrichment of dTE genes in each cluster 950 
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was calculated using Fisher’s exact test (with dTE status, and inclusion in the cluster, as binary 951 

variables). GO term analysis of each cluster was carried out using topGO. 952 

 953 

Nonlinear trajectory modeling 954 

In order to model the nonlinear relationship between steady-state protein levels and Ribo-seq, 955 

a measure of protein synthesis, we used an approach similar to that used by 46 - our full 956 

‘production’ model represents the expression of each protein as the result of a synthesis rate, 957 

directly proportional to Ribo-seq footprint density with a proportionality constant Ks (or SDR  - 958 

see 38), and a decay rate Kd: 959 

 960 

 961 

If the functional form of Ribo-seq density is modeled as a linear stepwise function, this 962 

equation has an analytic solution 46. In practice, the parameters Ks and Kd will be non-963 

identifiable depending on the trajectory shape and half-life of the protein involved; for many 964 

proteins, only their ratio, defining the equilibrium steady state, can be estimated (along with the 965 

initial value of P). In addition to the ‘production’ model, we included reduced versions of our 966 

model which fixed Kd at a high value (the ‘linear’ model) giving a linear protein-Ribo-seq 967 

relationship, fixed Ks at a low value and modeled protein as controlled by degradation only (the 968 

‘degradation’ model), or fixed both to leave protein levels stationary (the ‘stationary’ model). 969 

We further included a model allowing arbitrary deviations from the Ribo-seq trajectory (the 970 

‘MSdev’ model), since many proteins showed changes in their trajectory that were not 971 

explicable by any value of Ks and Kd. We used the bayesian information criterion (BIC) to 972 

select an optimal model for each gene, further requiring that residuals in this model be 973 

normally distributed (as per a chi-squared test). To estimate half-lives, we made the simplifying 974 

assumption of a single Ks value applying to all genes, allowing pi-half estimates to be derived 975 

for all proteins.  976 

 977 

Stan files detailing the above models are available on the project github, and data are in 978 

Supplementary Table 5. 979 

 980 

Single cell RNA-seq data 981 
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Single cell RNA-seq (scRNA-seq) data was derived from data and scripts in 4 and 982 

accompanying web resource: 983 

 http://genebrowser.unige.ch/telagirdon/#query_the_atlas.  984 

 985 

For each gene, it’s occurrence in neocortex cells measured by scRNA-seq is presented as a 986 

heat map arranged by chronological time of cell collection (x-axis) vs. time since cell birth (y-987 

axis), after a timed pulse with a FlashTag label in utero. These axes correspond to roughly 988 

orthogonal programs of gene expression change, with the y-axis describing differences 989 

between apical progenitors and differentiated neurons, and the x-axis describing differences 990 

between cells born at different stages of development. 991 

 992 

Sequence motif analysis  993 

Motif analysis was performed with the AME program from the Meme suite as per 46,77 because 994 

we observed a systematic difference in UTR length between TE changing and TE unchanging 995 

genes. AME requires that input and control sequences are of approximately equal length 996 

distribution, so we created a sample of TE changing genes whose length distribution matched 997 

that of the TE unchanging genes. We ran AME with the CISBP-RNA database of RNA-binding 998 

protein motifs 78. 999 

 1000 

Immuno-electron microscopy 1001 

Fixation, sectioning, immunolabeling, and electron microscopy were performed as described 1002 

previously 15. E12.5 and E15.5 neocortex coronal sections were labeled with mouse anti-Rps5 1003 

(uS7; Santa Cruz, sc-390935) followed by 2.5 nm nanogold conjugated secondary antibody 1004 

(Nanoprobes, 2001). Imaging was performed at 2700 x magnification on a Tecnai Spirit 1005 

electron microscope. Quantification was performed in FIJI 79 with the Process > Find Maxima 1006 

tool, and Measure > Area tool, followed by statistical analysis in GraphPad Prism (GraphPad 1007 

Software Inc.) to calculate puncta per μm2 (Welch’s ANOVA, Dunnett’s post hoc test) 1008 

(Supplementary Table 3). Primary antibody leave-out controls were prepared in parallel, and 1009 

were absent of nanogold signal. 1010 

 1011 

Expression vectors 1012 

For tdTomato reporter experiments, we used beta-actin driven expression constructs pCAG-1013 

EGFP and pCAG-flox-STOP-flox-tdTomato, as described previously 31. A control vector with 1014 
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scrambled non-silencing shRNA 59 was obtained from Thermo Scientific, and the shRNA to 1015 

knock-down plasmid for mouse eIF4EBP1 was obtained from Sigma Aldrich 1016 

(TRCN0000335381).  1017 

 1018 

In utero electroporation (IUE) 1019 

Mouse embryos were subjected to IUE exactly as described previously 31,59,80. For the 1020 

experiments with the tdTomato reporter in the Satb2Cre/+ line, we used an equal amount of 1021 

pCAG-GFP and pCAG-flox-stop-flox-tdTomato. 1022 

 1023 

Fluorescent in situ hybridization (FISH) 1024 

In situ hybridization using RNAscope Technology to detect mRNA of m. musculus Satb2 1025 

(413261) and Bcl11b (413271-C2) was performed according to the manufacturer’s protocols 1026 

(ACD, 323100). Prior to hybridization, embryonic brains at E12.5, E14.5 and E16.5 were 1027 

collected in PBS, fixed in 4 % PFA/PBS prepared with DEPC for 16-20 hours at 4 °C. Brains 1028 

were then incubated in sucrose solutions (10 % - 20 % - 30 %/PBS) until they reach osmotic 1029 

equilibrium, embedded in O. C. T. Compound (Tissue-Tek) in a plastic cryoblock mold and 1030 

frozen on dry ice. Coronal sections of 16 μm thickness were collected using a cryostat.  1031 

 1032 

Cryosectioning 1033 

For all histological procedures, brain sections were prepared on a Leica CM3050S cryostat. 1034 

Prior to cryosectioning, brains were incubated for at least 5 hours with 10% sucrose in PBS, 1035 

followed by incubation with 30% sucrose in PBS until the tissue reached osmotic equilibrium. 1036 

Next, brains were frozen in -38 to -40°C isopentane (Roth). For processing of the tissue after in 1037 

utero electroporation, coronal cryosections of 50 μm thickness were collected in PBS/0.01% 1038 

sodium azide solution. For in situ hybridization and the mRNA/protein colocalization 1039 

experiments, 16 μm sections were collected. 1040 

 1041 

Immunohistochemistry 1042 

Fixed brain sections were washed with PBS three times at room temperature prior to the 1043 

procedure to remove the sucrose and freezing compound residue. The sections were then 1044 

incubated with Blocking solution (5% goat serum, 0.5% (v/v) Triton X-100, PBS) for one hour 1045 

at room temperature, then with the primary antibody and DAPI diluted in blocking buffer for 16-1046 

20 hours at 4 °C, washed in PBS three times for 30 minutes and incubated with secondary 1047 
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antibody diluted in the blocking buffer for up to four hours at room temperature. Next, sections 1048 

were incubated with PBS for 30 minutes three times and mounted with a cover glass (Menzel-1049 

Gläser) and Immu-Mount mounting medium (Shandon, Thermo-Scientific). For experiments 1050 

with dual mRNA and protein labeling, instead of mounting after the hybridization protocol, the 1051 

sections were subjected to the immunohistochemistry as described here.        1052 

 1053 

Antibodies for immunohistochemistry 1054 

Primary antibodies used for immunocytochemistry were used at dilutions indicated: anti-Satb2 1055 

(1:500, rabbit, home-made; 31), anti-Bcl11b (1:500, rat, Abcam, 25B6, anti-Ctip2, 1056 

RRID:AB_2064130), anti-GFP (1:1000, goat, Rockland, RRID:AB_2612804), anti-Cre (1:1000, 1057 

rabbit, SySy, RRID:AB_2619968), anti-Tbr2 (1:300, rabbit, Abcam, RRID:AB_778267), anti-1058 

Pax6 (1:500, rabbit, Millipore, RRID:AB_1587367), Draq5 (1:2000), anti-eIF4EBP1 (1:1000, 1059 

rabbit, Abcam, ab32024, RRID:AB_2097990. All secondary antibodies were from Jackson 1060 

Immunoresearch and were used at 1:250. 1061 

 1062 

Confocal imaging 1063 

Imaging of brain coronal cross sections after IUE was performed at the level of primary 1064 

somatosensory cortex primordium. For imaging of the overview of immunostaining, a Leica 1065 

SPL confocal microscope with 20X, 40X and 63X objectives was used. For quantitative 1066 

imaging of FISH signal, a Leica Sp8 microscope with 40X objective was used. Quantification of 1067 

mRNA cluster sizes, and mRNA and protein localization, was performed using ImageJ 1068 

software.  1069 

 1070 

Quantification of distribution and size of mRNA clusters  1071 

mRNA puncta were quantified using ImageJ software. The maximum intensity of confocal 1072 

image Z-stacks was projected on a single 2D plane. After thresholding, the images were 1073 

binarized using the watershed segmentation to separate cluster clouds. The number of 1074 

particles of 0.1 μm2 or bigger were then quantified using Measure Particles tool and 1075 

normalized to the number of DAPI-labeled nuclei in a given cortical area (VZ, CP, etc.). Area of 1076 

clusters was quantified as well and expressed as an absolute surface. See Supplementary 1077 

Table 3. 1078 

 1079 

Quantification of colocalization 1080 
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Mander’s colocalization coefficient was quantified for neurons expressing Satb2 and Bcl11b 1081 

protein and mRNA. Protein colocalization was determined manually, and RNA colocalization 1082 

was quantified using binarized images after multiplication. See Supplementary Table 3. 1083 

 1084 

Quantification of neuronal cell markers 1085 

The manually quantified number of neurons expressing a given marker was normalized to the 1086 

entire number of IUE-labeled neurons or to DAPI-labeled nuclei count. See Supplementary 1087 

Table 3. 1088 

 1089 

Statistical analyses 1090 

Statistics were performed using SPSS v.17 (San Diego, USA) or GraphPad Prism software. All 1091 

numerical values and description of statistical tests used, definition of center, dispersion, 1092 

precision, and definition of significance can be found in Supplementary Table 3. Prior to 1093 

comparison of experimental groups, normality and log-normality test were performed. 1094 

 1095 

Data availability 1096 

Code generated during this study is supplied at: https://github.com/ohlerlab/cortexomics. 1097 

Further requests may be directed to and will be fulfilled by the Lead Contact, 1098 

matthew.kraushar@molgen.mpg.de (M.L.K.). Data have been deposited in publicly available 1099 

repositories as indicated: 1100 

RNA-seq data are publicly available in the NIH GEO: GSE157425.  1101 

Ribo-seq data are deposited in the NIH GEO: GSE169457. 1102 

tRNA qPCR array data are deposited in the NIH GEO: GSE169621. 1103 

Mass spectrometry data are publicly available in the ProteomeXchange: PXD014841. 1104 
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Fig. 1. A transient spike in translation regulation occurs at mid-neurogenesis during prenatal development.  
a, Neural stem cell differentiation in the brain’s neocortex, analyzed by RNA-seq, Ribo-seq, tRNA qPCR array, and MS at 
embryonic (E12.5-E17) and postnatal (P0) stages. b, Schematic of translation efficiency (TE). c, Sequential fold changes 
in post-transcriptional gene expression between adjacent stages, comparing mRNA vs. protein (top), mRNA translation 
vs. protein (middle), and calculated translation efficiency (bottom). Significance assessed at ≥ 1.25 FC, p < 0.05. d, The 
percent variance in MS explained by RNA-seq or Ribo-seq at each developmental stage, and for subgroups with MS and 
translation efficiency changes. See also Extended Data Figs. 1-2 and Supplementary Tables 1-2. 
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Fig. 2. Translation upregulation of Satb2 leads to divergent spatiotemporal mRNA and protein expression. 
a, Gene ontology (GO, molecular function) analysis of translationally up-regulated (TE up) mRNAs. b, The median 
trajectory of Satb2, Nes, and Bcl11b gene expression measured by RNA-seq, Ribo-seq, MS, and translation efficiency. 
The E15.5 timepoint is highlighted for Satb2 c, Satb2, Nes, and Bcl11b expression in scRNA-seq data tracking 
differentiating neocortex cells at 1, 24, or 96 hours after birth (y-axis), at birthdates E12, E13, E14, or E15 (x-axis) (Telley 
et al., 2019). Expected distribution of protein expression (DeBoer et al., 2013) is outlined. d, Neocortex coronal sections 
at E12.5, E14.5, and E16.5 analyzed for Satb2 and Bcl11b mRNA by fluorescence in situ hybridization, and protein by 
immunohistochemistry. Deep border of the cortical plate is demarcated at E16.5 (dotted line). DAPI (nuclei). Ventricular 
zone (VZ), cortical plate (CP), lower layers (LL), upper layers (UL). e, Quantification of (d). Mean ± SEM. See also 
Extended Data Fig. 3a-b and Supplementary Table 3. 
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Fig. 3. Satb2 transcription is broad across neuronal lineages with more restricted translation. 
a, Schematic of the experimental approach. b, Satb2 transcription activity visualized by Cre-driven (Satb2Cre/+) tdTomato 
expression, with reporter in utero electroporation (IUE) at E12.5, E13.5, or E14.5 and imaged after 24 hours. Co-
electroporation of an eGFP plasmid labels all transfected cells. Ventricular zone (VZ), subventricular zone (SVZ). c, 
Satb2tdTom co-immunolabeling with Pax6 (apical progenitors), Tbr2 (intermediate progenitors), and Draq5 (nuclei). d, 
Satb2tdTom expression at E12.5-E14.5, with co-immunolabeling for neuronal fate determinant proteins Satb2 and Bcl11b, 
among all electroporated cells (eGFP). Negative control is the absence of Cre (Satb2+/+). e, Quantification of (d) for the 
expression of Cre, Satb2, and Bcl11b proteins in cells transcribing Satb2 mRNA (Satb2 tdTom). Mean ± SD, unpaired t-test, 
***p < 0.0001. See also Extended Data Fig. 3c and Supplementary Table 3. 
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Fig. 4. Translation downregulation decreases ribosome levels acutely at mid-neurogenesis. 
a, Gene ontology (GO, molecular function) analysis of translationally down-regulated (TE down) mRNAs. b, The 
expression trajectories (grey) of all 79 ribosomal protein coding mRNAs in the large (Rpl) and small (Rps) subunits from 
E12.5 (t0) to subsequent stages (t), measured by RNA-seq, Ribo-seq, MS, and calculated translation efficiency. Median 
trajectories are shown (black). c, Immuno-electron microscopy labeling ribosomal protein uS7 (magenta) in the E12.5 and 
E15.5 neocortex neural stem cells and neurons, with d, quantification for ribosomes per cytoplasmic area. Mean shown 
(line), Welch’s ANOVA and Dunnett’s post hoc test, ***p < 0.001. Neural stem cells are located in the ventricular zone (VZ) 
and sub-ventricular zone (SVZ); post-mitotic neurons are located in the cortical plate (CP), lower layers (LL), upper layers 
(UL). Nuclei are outlined. See also Extended Data Fig. 4 and Supplementary Table 3. 
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Fig. 5. Ribosome density at the start codon and in the CDS shifts sharply at mid-neurogenesis.   
a, Ribosome occupancy metagene plot including all mRNAs (top) surrounding the start (left) and stop (right) codons at 
five stages. Separation of mRNAs by changing or unchanged start codon occupancy (bottom). b, Position specific fold 
changes in ribosome P-site counts surrounding the start and stop codons. c, Start (left) and stop (right) codon occupancy 
vs. TE fold change per gene. d, Between codon variance in ribosome occupancy of A-, P-, and E-sites at each stage. 
Calculation with both 29 nt (top) and 30 nt (bottom) RPF fragments shown. e, Distribution of per-codon A- and P-site 
occupancy at each stage. f, Correlation between A- and P-site occupancy per codon. g, Ribosome A-site occupancy for 
each amino acid with corresponding synonymous codons at each stage. See also Extended Data Figs. 5-6, 
Supplementary Table 4. 
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Fig. 6. eIF4EBP1 levels coincide with ribosome abundance and control neuronal Satb2 fate in vivo. 
a, Model of early vs. late neurogenesis ribosome levels and per-codon changes in ribosome occupancy. b, Positional 
weight matrix of the top two motifs ranked by p-value in the 5’ and 3’-UTRs of TE up or down mRNAs. 5’ terminal 
oligopyrimidine (TOP) motifs are highlighted for TE down genes. c, eIF4EBP1 inhibition of ribosomal protein coding mRNA 
5’-TOP sequence translation. d, Western blot analysis of eIF4EBP1 levels in neocortex lysates in biological duplicate (n = 
4-6 neocortex hemispheres per lane). Concurrent trajectory of Rpl and Rps translation shown below. e, 
Immunohistochemistry analysis of eIF4EBP1 expression in neocortex coronal sections across neurogenesis. Blood 
vessels (star) are a common staining artifact. f, shRNA knockdown of eIF4EBP1 compared to scrambled control by in 
utero electroporation (IUE) at E13.5 followed by analysis at E15.5 with Satb2 protein immunolabeling. Co-electroporation 
of eGFP labels all transfected cells. Cortical plate neuron boundary is demarcated (dotted line). g, Quantification of (f) per 
animal for the percent of electroporated cells expressing Satb2 protein (left), and number of cells migrating into the cortical 
plate (right). Median (line), Mann-Whitney test, *p < 0.05. h, Summary of timed translation changes and neuronal 
specification during neocortex development. See also Supplementary Table 3. 
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Fig. 7. Modeling divergent trajectories of mRNA and protein expression by translation regulation. 
a, mRNA (RNA-seq) and protein (MS) expression per gene from E12.5 (t0) to subsequent stages (t) clustered by trajectory. 
The median trajectory is shown, with upper and lower quartiles (grey). Enrichment and proportion of TE up and down 
genes in each cluster, with significant enrichment (*p < 0.05). Example neural stem cell and neuronal marker genes are 
indicated (right). b, Gene ontology (GO, biological process) enrichment for each cluster, with unique terms for a cluster 
outlined in grey. c, Modeling of non-linear relationships between Ribo-seq and MS comparing active translation vs. steady-
state protein, with representative genes shown for each category. See text for details. d, Proportion of total genes in each 
category from (c), with enriched GO terms per category. Fisher’s exact test, p < 0.05. See also Extended Data Fig. 7, 
Supplementary Table 5, and https://shiny.mdc-berlin.de/cortexomics/. 
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Extended Data 

 
 
Extended Data Fig. 1. Optimized ribosome protected mRNA fragment purification from neocortex. 
Nuclease digestion for the generation of ribosome protected mRNA fragments (RPFs) from P0 neocortex, with a, 
RNAse-I vs. b, a combination of RNAse-T1 & A. Absorbance at 260 nm (A260). Chains of actively translating ribosomes 
(polysome) should be digested into single ribosomes (monosome). RNAse-I, typically used in yeast, was inefficient in 
neocortex lysates, and thus an RNAse-T1 & A protocol was used for this study. c, Nuclease digestion and purification of 
neocortex RPFs in biological duplicates at each developmental stage with the optimized protocol from (b). Each 
biological replicate included 17-40 brains (34-80 neocortex hemispheres) as detailed in the Methods. d, RPF read 
length distribution. Associated with Fig. 1. See also Supplementary Table 1.	
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Extended Data Fig. 2. Neocortex RNA-seq, Ribo-seq, MS, and translation efficiency data characteristics. 
a, River plots demonstrating the number of unique genes detected across all 5 stages measured by RNA-seq, Ribo-seq, 
or mass spectrometry, compared to the number detected in <5 stages. b, Biological replicates of transcripts per million 
(TPM) measured by RNA-seq (mRNA), Ribo-seq (RPF), and calculated translation efficiency (TE), including correlations 
between RPF and TE with mRNA to highlight genes with robust translation regulation. c, The distribution of TE up and 
down fold changes (FC) compared to the earliest stage E12.5, with significant genes highlighted in black (p < 0.05). d, 
The distribution of TE and mRNA abundance (TPM) for all genes at each stage, and e, fold changes vs. the earliest 
stage E12.5. f, Principal component analysis (PCA) of developmental fold changes in RNA-seq, TE, and MS compared 
to the earliest stage E12.5. The first four components are shown, with percent variance annotated. Associated with Fig. 
1. See also Supplementary Tables 1-2.	
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Extended Data Fig. 3. Satb2-/- control for FISH and IHC and neocortex-specific Satb2 transcription.  
a, Fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) probing for Satb2 and Bcl11b mRNA and 
protein, respectively, in wild-type (Satb2+/+) and Satb2 knockout (Satb2-/-) neocortex coronal sections at E14.5. 
Ventricular zone (VZ), cortical plate (CP). b, Measurement of Satb2 and Bcl11b mRNA cluster sizes in FISH probed 
neocortex sections at three developmental stages. Intermediate zone (IZ), lower layers (LL), upper layers (UL). Mean ± 
SEM. c, Satb2 transcription activation visualized in Satb2Cre/+ mice by in utero co-electroporation of the neocortex and 
ganglionic eminence with a loxP-STOP-loxP-tdTomato (Satb2tdTom) fluorescence reporter at E12.5, along with eGFP 
reporter for all transfected cells, and analysis in coronal sections at E13.5. Sub-ventricular zone (SVZ). Associated with 
Figs. 2-3. See also Supplementary Table 3.	
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Extended Data Fig. 4. Immuno-electron microscopy labeling of ribosomes. 
a, Raw images of neocortex coronal sections at E12.5 and E15.5 shown in Fig. 4c, immunolabeled with anti-ribosomal 
protein uS7 followed by 2.5 nm gold secondary (dark black spots), which were automatically detected and quantified in 
FIJI (magenta spots in Fig. 4c). Electron microscopy was performed in regions corresponding to the stem cell niches of 
the ventricular zone (VZ) and sub-ventricular zone (SVZ), in addition to regions of differentiating neurons in the cortical 
plate (CP), which includes both lower layers (LL) and upper layers (UL) at later stages. Quantification of nanogold 
secondary signal was performed per unit area of the cytoplasm, with nuclei excluded by tracing the nuclear membrane 
(black lines in Fig. 4c). b, Primary antibody leave-out controls were prepared in parallel.	
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Extended Data Fig. 5. Analysis of per-codon ribosome density. 
5' normalized ribosome-protected mRNA fragment (RPF) density for a, all codons and b, the top 3 slowest/fastest 
codons. Plotting the normalized density of Ribo-seq read 5' ends relative to each codon/read length/sample shows two 
strongly variable regions corresponding to 5'- and 3'-end cut site biases during nuclease digestion. A third variable 
region in between corresponds to RPFs with their A/P-sites positioned over the codon. We infer the location of the A-site 
as the 3 bp region showing the most inter-codon variability, and use the normalized occupancy here to measure codon 
dwell times, and variance between codons. Independently, this region also identifies the location of intra-codon variability 
between samples. c, Per-codon correlation between tRNA availability calculated from tRNA qPCR array (see Methods), 
and the ribosome occupancy of that codon when positioned in the A- or P-site of the ribosome footprint. d, Correlation 
between ribosome dwell time per codon and the optimality of the codon as defined in (dos Reis et al., 2004), with the 
mean across all stages shown. Associated with Fig. 5. See also Supplementary Table 4. 
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Extended Data Fig. 6. Neocortex tRNA qPCR array.  
Total tRNA levels at each stage measured by qPCR array in biological duplicate, with Ct values for each tRNA 
isodecoder (left) or averaged across isodecoders (right) compared to the mean of 5S and 18S rRNA levels in each 
sample (delta Ct). Associated with Fig. 5.  See also Supplementary Table 4. 
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Extended Data Fig. 7. Modeling of mRNA translation. 
a, Hierarchical clustering based on mRNA (RNA-seq) and protein (MS) expression trajectories per gene. Fold change 
expression increasing or decreasing from E12.5 (t0) to subsequent developmental stages (t) shown in heat map. Neural 
stem cell and neuronal marker genes are indicated (right). b, Protein half-lives measured by SILAC MS and categorized 
as exponential decay (ED), non-exponential decay (NED), or neither (UN) in 47 correlated with the model estimates from 
our data as per 46. c, The fraction of genes modeled as MS deviating or non-deviating in this study that are categorized 
as NED proteins in 47. Associated with Fig. 7. See also Supplementary Table 5.  
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Extended Data Fig. 8. Start codon effect analysis.  
a, TE distribution for genes with increasing start codon occupancy across developmental stages, compared to those 
without start occupancy changes. b, The association of mRNAs demonstrating start codon occupancy changes with 
translation in neurites vs. the soma of cultured neurons 81. Associated with Fig. 5.  
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