
ARTICLE

Genetic and phylogenetic uncoupling of structure
and function in human transmodal cortex
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Brain structure scaffolds intrinsic function, supporting cognition and ultimately behavioral

flexibility. However, it remains unclear how a static, genetically controlled architecture sup-

ports flexible cognition and behavior. Here, we synthesize genetic, phylogenetic and cognitive

analyses to understand how the macroscale organization of structure-function coupling across

the cortex can inform its role in cognition. In humans, structure-function coupling was highest

in regions of unimodal cortex and lowest in transmodal cortex, a pattern that was mirrored by

a reduced alignment with heritable connectivity profiles. Structure-function uncoupling in

macaques had a similar spatial distribution, but we observed an increased coupling between

structure and function in association cortices relative to humans. Meta-analysis suggested

regions with the least genetic control (low heritable correspondence and different across

primates) are linked to social-cognition and autobiographical memory. Our findings suggest

that genetic and evolutionary uncoupling of structure and function in different transmodal

systems may support the emergence of complex forms of cognition.
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Cognition helps an animal to satisfy core biological goals in
a changing environmental context. In humans, cognition
allows our species to successfully navigate through a broad

array of situations and socio-cultural contexts. Although the need
for flexible cognition is well-established, it remains unclear how a
relatively static brain organization can give rise to functional
patterns with sufficient flexibility to encounter and manage
complex and culturally rich landscapes found in human societies.

Contemporary perspectives suggest that higher human cogni-
tion is grounded in a cortical organization that encompasses
parallel axes of microstructural differentiation and function1 [for
nomenclature: Table 1]. On the one hand, sensory/motor systems
as well as unimodal association cortices are involved in operations
related to perceiving and acting in the outside world. These
systems are differentiated from transmodal systems that are less
tied to a specific modality, and are increasingly engaged in
abstract and self-generated cognition, and interface with the
“internal milieu”1–4. These functional differences are reflected in
well-established differences in the microstructure of sensory/
motor and transmodal cortex. Histological studies demonstrate
that unimodal sensory and motor regions have more distinctive
lamination patterns relative to agranular/dysgranular transmodal
cortex with less apparent lamination5. Complementing these
findings, in vivo studies have shown that transmodal regions have
overall lower myelin content6–9, yet more complex dendritic
arborization patterns, which could facilitate integrative processing
and increased potential for plasticity10. According to its classic
definition1, transmodal cortex encompasses both paralimbic and
heteromodal association networks11, and in particular the default
mode and fronto-parietal functional networks that are particu-
larly expanded in humans11. These latter two networks are known
to participate in a broad class of abstract cognitive processes12,
including autobiographical memory13,14, language15–17, as well as
executive control2,18,19.

Post-mortem studies in non-human animals together with
emerging data in humans20–22 suggest that regions with a similar
cytoarchitecture are also more likely to be structurally and
functional interconnected, an observation framed as the “struc-
tural model” of brain connectivity23,24. Yet, it remains to be
established how mappings in cortical structure and function vary

across different cortical areas. Recent in vivo work suggests that
structure–function coupling as measured by the association of
white matter tractography and functional connectivity is pro-
gressively diminished towards transmodal cortex relative to sen-
sory/motor and unimodal areas25–27. Similar findings can also be
observed when studying associations between cortical micro-
structure based on T1-weighted/T2-weighted (T1w/T2w) and
functional connectivity22, collectively pointing to a differential
organization of transmodal systems in terms of cortical structure
and function relative to unimodal systems22,28,29.

Transmodal systems are assumed to play a role in more
abstract cognition that is less constrained to specific modalities of
information, so a reduction in the constraining influence of
cortical structure on function in transmodal systems may be
an important evolutionary adaptation supporting human
cognition1,3,11,27. Heteromodal regions have been reported to
show increased expansion in surface area and untethering from
external and internal inputs, associated with non-hierarchical
circuit properties1,11. Such untethering may enable parallel and
recursive computations linked to human cognition1,11. To better
understand functional properties of these untethered regions of
cortex, our study set out to understand if associations between
cortical structure and function may enable an architecture
hypothesized to give rise to abstract human cognition11,12 using
two related approaches. First, we examined the heritability of
structure–function relationships across the cortex in humans.
Heritability serves as a backbone for evolutionary change, as
natural selection acts upon inherited traits under variation30. In
humans, patterns of cortical microstructure and functional con-
nectivity are heritable, indicating partial genetic control over
individual variation31–37 and our study aimed to understand if
this relationship extends to transmodal cortex where function is
thought to be untethered. Complementing the heritability
assessment in humans, we examined how structure–function
associations seen in our species are preserved in non-human
primates (NHP). Phylogenetic comparisons between humans and
NHP can help establish the degree to which specific brain pat-
terns are conserved across primate species38,39 providing a
mechanistic perspective on human cognition that complements
work on heritability. Previous work has shown that spatial

Table 1 Replication of table in Paquola, 2019 of Mesulam classes nomenclature.

Mesulam, 2000 Regional namesa Brodmann, 1909 Von Economo and Koskinas, 1925

Idiotypic primary Striate 17 OB, OC
Auditory 41, 42 TC
Somatosensory 3a, 3b, 1, 2 PA, PB, PC
Motor 4, 6 FA

Modality-specific unimodal Upstream peristriate 18, 19 OA
Inferotemporal 20, 21, 37 PH, TE
Superior temporal 22 TB, TD
Superior parietal lobule 5, anterior 7 Part of PE

Part of PF
Inferior parietal lobule Anterior 40 FB
Premotor Anterior 6, posterior 8, 44 FCBm

Higher-order heteromodal Prefrontal cortex 9, 10, 45, 45, 47, anterior 11, anterior 12, anterior 8 FC, FD, FDdelta, FDT, FE
Posterior parietal Posterior 7, 39, 40 PD, PG, parts of PE & PF
Lateral temporal Parts of 21 and 37 Part TE
Parahippocampal Parts of 36 and 37 TF

Paralimbic Orbitofrontal cortex Posterior 11, posterior 12, 13 FF, FG, FH, FJK, FLMH
Insula 14–16, IA, IB
Temporal pole 38 TG
Parahippocampal 27,28,35 HA, HB, HC
Cingulate 23–26, 29–33 LA1, LA2, LC1–3, LD, LE

aAscribed by Mesulam (2000). The transmodal cortex is defined as areas without modality-specific input, i.e., heteromodal and paralimbic isocortex (based on Mesulam, 2013).
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variations in cortical microstructure15,40 and functional con-
nectivity seen in humans41,42 are present in NHP, but that several
evolutionary changes may have emerged in humans. Comparing
markers of cortical myelin content between NHP and humans,
recent studies have established that the arcuate fasciculus, a fiber
bundle that connects temporal and parietal cortex, underwent
evolutionary modifications particularly in humans15. More gen-
erally, humans have a greater proportion of transmodal cortex
than NHP40,43, a pattern of cortical expansions that may have
also altered the locations of heteromodal functional networks
when comparing humans and macaques41.

Combining heritability and cross-species approaches to probe
structure–function associations, our study examined genetic
processes that determine the uniqueness of human
structure–function coupling and decoupling in transmodal areas,
which are assumed to play key roles in abstract human
cognition11,12. In particular, we quantified node-level correlation
of T1w/T2w microstructure profile covariance (MPC)22 and
resting-state functional connectivity (rsFC). The T1w/T2w ratio
has been shown to reflect myelin content44–47 but also iron,
water, as well as cytological variations including dendritic
arborization, cell size, and cell density8,48,49. To study heritability,
we utilized the pedigree design and multimodal imaging data of
the Human Connectome Project (HCP) S1200 release50.
Equivalent analyses in macaques were performed using the
PRIMate-Data Exchange repository38, which allowed us to
examine phylogenetic differences in microstructural and func-
tional organization. We combined node-level network neu-
roscience approaches with the use of unsupervised dimensionality
reduction techniques, which identified large-scale microstructural
and functional gradients and provided a coordinate system
to map genetic and evolutionary influences on cortical
organization29,51,52. In particular, we evaluated the relationship
between structure–function coupling with evolutionary axes
functional reorganization41, and the dual origin model53,54. The
latter model assumes that cortical areas develop from waves of
laminar differentiation that have their origin in either the piri-
form cortex (paleocortex) or the hippocampus (archicortex)53,55.
Finally, we contextualized the likely functional profile of these
regions through meta-analytical data from the task-based func-
tional magnetic resonance imaging (fMRI) literature56. We also
performed various robustness analyses to assess the stability of
our findings. See Supplementary Fig. 1 for schematic of analyses.

In this work, we show that structure–function coupling (i.e.,
the regional correlation between microstructural profile covar-
iance and resting-state functional connectivity) in humans is
highest in primary regions and lowest in transmodal cortex.
Uncoupling of structure and function is paralleled by genetic
uncoupling, as probed by twin-based heritability analysis, parti-
cularly in heteromodal regions. Structure–function uncoupling in
macaques has overall a comparable spatial distribution to that
seen in humans. However, in heteromodal regions, structure and
function are more coupled in macaques than in humans.
Structure–function patterns were confirmed when assessing
organizational gradients of microstructure and function. Our
findings suggest genetic and phylogenetic uncoupling of structure
and function in transmodal systems believed to play important
roles in human cognition.

Results
Cortex wide decoupling of function and structure (Fig. 1). We
first established the spatial distribution of structure–function
coupling in the human brain, using node-level association ana-
lyses. Specifically, we mapped how patterns of intrinsic functional

connectivity reflect similarity of cortical microstructure across all
cortical regions, using the S1200 sample of the Human Con-
nectome Project young adult dataset50 (see Methods for details on
participants and neuroimaging processing). To construct micro-
structure profile covariance (MPC) matrices, we sampled intra-
cortical T1w/T2w values at 12 different cortical depths22, and
correlated dept-wise cortical profiles between the parcels
(Fig. 1A). To control for curvature effects, equivolumetric sur-
faces were used57. Resting-state functional connectivity (rsFC)
matrices were calculated by cross-correlating the neural time-
series between all pairs of 400 cortical nodes58 (Fig. 1B). Corre-
lating node-wise patterns in both measures, averaged across
participants (Fig. 1C), we observed an overall edge-level asso-
ciation between MPC and rsFC, in line with the predictions of the
structural model21. As expected, however, there was also a pro-
gressively decreasing correspondence between MPC and rsFC
(r= 0.525, p < 0.001) along a sensory-fugal gradient of
cytoarchitectural classes, capturing cytoarchitectural complexity
[ref. 59, for nomenclature: Table 1 and Fig. 1C] from high cor-
relations in primary regions (mean ± SD: Spearman’s
r= 0.465 ± 0.181), to weak correlations unimodal association
cortices (Spearman’s r= 0.149 ± 0.263), followed by close to zero
correlations in transmodal cortex (heteromodal association cor-
tices, Spearman’s r= 0.063 ± 0.199; paralimbic areas, Spearman’s
r= 0.012 ± 0.146). Findings were consistent in a replication
sample (N= 50)60, when using an alternative node parcellation
(Supplementary Results). Relative to sensory/motor and unim-
odal areas, transmodal systems show the strongest decoupling
between cortical microstructure and functional connectivity.

Genetic control over structural and functional connectivity
profiles (Fig. 2). Having documented reductions in the associa-
tion between in MPC and rsFC in transmodal cortices, we next
examined whether this difference is heritable, i.e., under genetic
control. The HCP S1200 sample contains both unrelated as well as
genetically related individuals, allowing us to analyze heritability
through maximum likelihood analysis. We first computed the
node-wise heritability of MPC and rsFC using Sequential Oligo-
genic Linkage Analysis Routines (http://www.solar-eclipse-
genetics.org; Solar Eclipse 8.4.0.). To assess to what extent rsFC
and MPC interregional patterns were under genetic control, we
compared mean seed-wise connectivity/covariance profiles with
seed-wise heritability of each measure separately. This index
provides us with a local measure to what extent mean and heri-
table patterns are similar, analogous to the MPC-rsFC coupling
measure. In this context, high correlations suggest that edges with
high MPC/rsFC correspondence also show high heritability,
whereas low correlations suggest low heritability. At the whole
network level, MPC was heritable (mean ± SD h2= 0.167 ± 0.030),
but effects appeared weaker than for rsFC (h2= 0.340 ± 0.042). At
a node level, primary sensory/motor regions showed positive
correlation between mean and heritable connectivity profiles for
both MPC and rsFC, whereas transmodal regions showed less
correlations between mean and heritable connectivity profiles in
both measures (MPC: mean ± SD primary (idiotypic): Spearman’s
r= 0.482 ± 0.145; unimodal: 0.318 ± 0.220; heteromodal:
0.168 ± 0.191; paralimbic: 0.295 ± 0.206 and rsFC: primary:
Spearman’s r= 0.656 ± 0.185; unimodal: 0.537 ± 0.204; hetero-
modal: 0.385 ± 0.210; paralimbic: 0.446 ± 0.172). Assessing differ-
ences in genetic coupling as a function of cytoarchitectural class,
we found that for MPC, only heteromodal regions showed con-
sistently reduced coupling relative to other classes (idiotypic:
t= –12.363, p < 0.001; unimodal: t= –6.129, p= 0.006; para-
limbic: t= –4.022, p= 0.03). For rsFC transmodal classes
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displayed reductions in genetic coupling relative to non-
transmodal classes (heteromodal: idiotypic: t= –9.320, p < 0.001;
unimodal: t= –6.062, p < 0.001 and paralimbic regions (idiotypic:
t= –6.340, p < 0.001; unimodal: t= –2.780, p= 0.024). Genetic
coupling between heteromodal and paralimbic regions showed no
significant difference in rsFC (t= 1.839, puncorr= 0.067). These
associations were not significantly linked to test–retest reliability
affecting the measures in the same direction and showed com-
parable patterns in an alternative measure of heritability of rsFC
that accounts for intra-subject variations61 (Supplemen-
tary Results). In addition, we assessed the heritability of MPC-
rsFC coupling. Overall coupling was heritable (h2= 0.260 ±0.088),
at the same time, we found that in particular coupling in het-
eromodal regions was less heritable relative to other cortical types
(primary (idiotypic): h2= 0.284 ± 0.073; unimodal: 0.270 ± 0.093;
heteromodal:0.235 ± 0.087; paralimbic: 0.273 ± 0.082) with only
differences between heteromodal and other cytoarchitectural class
being below p < 0.05 (idiotypic: t= –4.158, p < 0.001; unimodal:
t= –3.223, p= 0.006; paralimbic: t= –2.702, p= 0.03), (Fig. 2).
This indicates that while in primary regions the correlation
between MPC and rsFC as well as the correspondence of mean
and heritable connectivity profiles is strong, we observed genetic
decoupling in transmodal regions, particularly in heteromodal
areas.

Correspondence between microstructure and function in non-
human primates (Figs. 3 and 4). Having established that
structure–function coupling is reduced in human transmodal
cortex, we next examined whether the above structure–function
relations are also seen in NHPs, by evaluating 19 macaques from
the PRIMate-Data Exchange who had microstructural MRI and
resting-state fMRI available38. Analogous to the human analysis,
we created MPCs using multiple equivolumetric surfaces between
pial and gray matter/ white matter surfaces to extract depth-

dependent T1w/T2w profiles in each monkey (details in Sup-
plementary Results). We carried out an rsFC analysis, and co-
registered humans and macaques using a recently introduced
cross-species alignment41. Comparing edges of MPC and rsFC in
macaques, we found an overall correlation between MPC and
rsFC (r= 0.22, p < 0.0001). Correspondence between MPC and
rsFC was similar in both species (Spearman’s r= 0.48, pspin=
0.016), albeit stronger in macaques (t= 7.020, p < 0.001). Com-
paring associations at the microstructural level, using cytoarchi-
tectural classes (Table 1), we found no difference between
coupling in paralimbic regions (uncoupled in humans and
macaques; t= 0.854, p > 0.1) and primary sensory/motor regions
(coupled in humans and macaques; t= 0.063, p > 0.1). However,
both unimodal (t= 6.399, p < 0.001) and heteromodal association
regions (t= 6.445, p < 0.001) were generally more coupled in
macaques than in humans. Replacing the macaque rsFC matrix
with two other samples, including males and females with a
different age-range, and awake as well as anesthetized monkeys,
yielded broadly similar patterns of structure–function coupling
(Fig. 4 and Table 2). Differences between humans and macaques
did not show a significant relation with differences in tSNR.
Moreover, structure–function coupling in humans was repro-
ducible in another human sample (eNKI; N= 100, age =
18–40 years) preprocessed analogous to the macaque sample
(r= 0.94 with structure–function coupling in HCP, difference
between humans and macaques as a function of cytoarchitectural
class: idiotypic t= –1.199, p > 0.1; unimodal t= 5.161, p < 0.001;
heteromodal t= 5.690, p < 0.001; paralimbic: t= –2.182, p > 0.1),
suggesting differences between humans and macaques went
beyond differences in preprocessing (Supplementary Results).
This analysis shows that while humans and macaques have
broadly similar spatial trends of reduced structure–function
correspondence from sensory to transmodal areas, both uni- and
heteromodal association cortices are characterized by reductions
in structure–function coupling in humans compared to NHPs.

Fig. 1 Structure–function coupling and heritability in human cortical regions. AMicrostructural profile covariance (MPC) was chosen to map networks of
microstructural similarity for each cortical node, sorted along cytoarchitectural class22,59; B Resting-state functional connectivity (rsFC) analysis maps
nodal patterns of intrinsic functional connectivity, sorted along cytoarchitectural class; C Row-wise coupling of MPC and rsFC Middle: raincloud plot of
distribution within cytoarchitectural classes of coupling in the 400 Schaefer parcels, box shows the median and interquartile (25–75%) range, whiskers
depict the 1.5*interquartile range (IQR) from the quartiles; Right: Reference visualization cytoarchitectural class. Source data are provided as a Source
Data file.
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Organizational differences in microstructure and functional
connectivity (Figs. 5 and 6). To further understand divergence
between MPC and rsFC, we evaluated the differences in main
organizational axes of MPC/rsFC. Applying non-linear dimen-
sionality reduction techniques to both modalities separately62,63,
we observed that both MPC and rsFC followed similar spatial
axes as their heritability (Fig. 5). Next, we calculated the nodal
difference between standardized and aligned MPC and rsFC
principal gradients (ΔMPC-rsFCG1). In line with previous reports22,
gradients were uncoupled in heteromodal regions (t= –3.878,
p < 0.01), but not in other classes (idiotypic: t=−2.42, p > 0.06,
unimodal: t= –1.731, p > 0.1, and paralimbic: t= 2.51, p > 0.05).
The MPC gradient ran from sensory/motor to paralimbic regions,
while the rsFC gradient radiated from sensory/motor to

heteromodal networks (Fig. 6A). Organizational gradients did not
correlate with test–retest intraclass correlations of the respective
measures (Supplementary Results), suggesting that differences
between rsFC and MPC G1 are not linked to variable levels of
noise. We then selected homolog gradients of MPC and rsFC in
macaques (Supplementary results) and again observed the most
marked difference within heteromodal networks (t= –5.557,
p < 0.001), but no other classes (idiotypic: t= 0.554, p > 0.1,
unimodal: t= –2.24, p > 0.1, paralimbic: t= 1.925, p > 0.1). There
was also a moderate positive correlation between MPC and rsFC
gradient differences in humans and macaques (Spearman’s
r= 0.176, p < 0.01, pspin > 0.1), and no significant difference in
loadings of the different cytoarchitectural classes (idiotypic:
t= –1.388, p > 0.1; unimodal: t= –0.357, p > 0.1; heteromodal:

Fig. 2 Genetic basis of structure–function coupling. A Heritability of MPC and rsFC; B Row-wise association between mean and heritable seed-wise
connectivity—reflecting genetic control over connectivity profiles, Right: distribution of coupling in 400 parcels per cytoarchitectural class, box shows the
median and interquartile (25–75%) range, whiskers depict the 1.5*IQR from the quartile; C Heritability of microstructure-function coupling, Right:
distribution of heritability in 400 parcels per cytoarchitectural class, box as in B22,59. Source data are provided as a Source Data file.
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t= 1.942, p > 0.1; paralimbic: t= –1.63, p > 0.1) across species.
This suggests that the differentiability of axes organizing trans-
modal regions for MPC and rsFC is present in both humans and
macaques, establishing it as a general feature of the primate
cortex.

Multiscale quadrants of structure–function coupling (Fig. 7).
The axes of structure–function coupling and gradient differences
offer a two-dimensional coordinate system to visualize and

conceptualize how cortical organization is linked to function. As
expected, the axis describing structure–function coupling differ-
entiates primary from transmodal regions (upper and lower half
of the quadrant). Conversely, the MPC-rsFC gradient difference
axis segregates heteromodal and paralimbic regions. To establish
whether this space has implications for functional organization,
we assessed its ability to differentiate different motifs of neural
structure, evolution, and function (see Methods).

We first projected cytoarchitectural classes and intrinsic
functional communities into our two-dimensional coordinate

Fig. 3 Microstructure-function coupling in macaques. A Creating MPC in macaques; B MPC matrix in macaques, ordered along cytoarchitectural class
based on ref. 59 and Markov labels116; C rsFC matrix in macaques, ordered along cytoarchitectural class; D Correspondence between MPC and rsFC in
macaques; E Cytoarchitectural classes; F Functional communities based on ref. 28; G Row-wise association of MPC and rsFC; upper panel: human map in
macaque space; lower panel: macaque map; right: scatter between human and macaque MPC-rsFC coupling; H Raincloud plots of coupling in humans and
macaques as a function of cytoarchitectural class and functional communities28 in macaque space (182 parcels of Markov parcellation), boxes show the
median and interquartile (25–75%) range, whiskers depict the 1.5*IQR from the quartile. Source data are provided as a Source Data file.
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system to understand the large-scale communities linked to
reduced structural–function coupling (Fig. 7A). In humans and
macaques, both upper quadrants include sensory/motor and
unimodal networks. However, while in macaques the left upper
quadrant is also occupied by fronto-parietal and default mode
networks, these networks are in the lower left quadrant in
humans. The lower right quadrant is dominated by the limbic
and ventral attention networks in humans, and the limbic
network in macaques. Comparing the relative number of nodes
distributed in each quadrant, more areas were uncoupled in
humans relative to macaques (χ2: 16.044, p < 0.001), particularly
in the left half of the quadrant (χ2: 10.249, p= 0.0014).

In line with the observed cross-species differences, the
quadrants also reflected a differentiation of cortical reorganiza-
tion between humans and macaques reported in prior findings41,
and these differences may reflect archi- vs paleocortical trends
hypothesized by the dual origin model of cortical differentiation53

(Fig. 7B). Furthermore, projecting gene expression maps from the
Allen Human Brain Atlas (AHBA) into the 2D space64 suggested
that the quadrants may also capture different biological pathways.
For example, the lower left quadrant was associated with genes
that are mainly expressed in prenatal states in cortical areas, while
the lower right quadrant was additionally associated with both the
prenatal expression of nodes in the hippocampus together with
the cortical regions and thalamus, striatum, and hippocampus
postnatally (Fig. 7C and Table S2–5). Thus, the genetic
uncoupling observed in twins in our main analyses may reflect
differential time-windows of developmental expression in cortical
and non-cortical regions.

Finally, we identified the most likely cognitive consequences of
the structure–function decoupling in transmodal cortex. To this
end, we mapped cognitive ontologies based on NeuroSynth into
the two-dimensional space56 (Fig. 7D). Quadrants with high
structure–function coupling included primary and unimodal

Fig. 4 Structure–function coupling in different macaque samples. A Anesthetized macaque (sample: Davis) structure–function coupling and correlation
with human structure–function coupling projected to macaque space; B Awake macaque (sample Newcastle) structure–function coupling and correlation
with human structure–function coupling projected to macaque space; C Anesthetized macaque (sample Oxford) structure–function coupling and
correlation with human structure–function coupling projected to macaque space; D Structure–function coupling averaged in cytoarchitectural classes59

across 182 parcels of the Markov parcellation for HCP, Davis, Newcastle and Oxford samples, boxes show the median and interquartile (25–75%) range,
whiskers depict the 1.5*IQR from the quartile. Source data are provided as a Source Data file.

Table 2 Difference in structure–function coupling between humans and macaque across samples.

Sample Idiotypic [mean (SD)] Unimodal Heteromodal Paralimbic

Davis- HCP 0.0628 (p > 0.1) 6.399 (p < 0.001) 6.445 (p < 0.001) 0.063 (p > 0.1)
Newcastle-HCP −0.6713 (p > 0.1) 4.516 (p < 0.001) 4.759 (p < 0.001) 2.184 (p > 0.1)
Oxford-HCP 0.699 (p > 0.1) 7.744 (p < 0.001) 7.905 (p < 0.001) 3.157 (p= 0.01)

Difference between human, HCP, sample as a function of cytoarchitectural class as measured by a two-sample t-test, reported p-values corrected for number of classes (4).
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regions and related to terms such as “working memory”,
“attention”, and “executive control” (left upper quadrant) and
“action”, as well as “multisensory processes” (right upper
quadrant). Quadrants with low coupling included the paralimbic
regions, which were related to affective processes (“emotion”,
“reward”, “pain”; lower right), and, heteromodal regions, which
were associated with abstract cognition (“episodic/autobiographi-
cal memory”, “social-cognition”, lower left). Moreover, we
explored how individual differences in behavior, measured using
task batteries included in HCP, were differentiated along the two
axes identified in our study. In particular, decreased differentia-
tion between principal gradients of MPC and rsFC related to
“stress” and “pain”, whereas increased difference related to
“working memory” and “cognition”. This observation suggests
that the dimensions identified by our analysis may have
behavioral relevance, an important hypothesis for future studies
to examine (Supplementary Results).

Discussion
Our study set out to understand how flexible cognition and
behavior emerge from the interplay of cortical structure and
function. The work was motivated by an emerging hypothesis that
reductions in structure–function associations in transmodal
regions of cortex may enable cognitive processes that are less
constrained to specific modalities of information1,11,21,22,24,25,29,65.
Our analysis confirmed prior observations that human brain
structure and function are least coupled in transmodal cortex. We
found a shared reduction in genetic control over structure and
function of heteromodal cortex that included both default mode
and fronto-parietal networks. Notably, this decoupling was not
consistently present in paralimbic components of transmodal
cortex, such as in anterior insula and cingulate regions. Analyses
in macaques showed a similar structure–function decoupling,
indicating that the overarching organization is likely broadly
conserved across primate species66. However, the decoupling in

Fig. 5 Principal gradient of heritability and individual variability. A Principal gradient of MPC and rsFC, left: gradients based on mean data on MPC and
rsFC and right gradients of heritable data alone, lower left panel: mean versus heritable MPC G1, as well as heritably along the principal mean gradient in
MPC; lower right panel: mean versus heritable rsFC G1, as well as heritably along the principal mean gradient in rsFC; B Principal gradient of individual
variation (std) in MPC and rsFC, lower panel left: correlation between mean and std MPC G1, and std along the mean gradient of MPC; lower panel right:
correlation between mean and std rsFC G1, and std along the mean gradient of FC. Source data are provided as a Source Data file.
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macaques was less pronounced than in humans, particularly in
unimodal and heteromodal but not in paralimbic areas, an
observation that warrants further investigation. Within transmo-
dal cortex, our functional analysis indicated variable degrees of
structure–function coupling: heteromodal regions were implicated
in processes such as social-cognition and episodic memory, while
paralimbic regions were more closely implicated in affective/
motivational processes. Moreover, the topography of
structure–function coupling related to different gene expression
patterns, with regions with greater structure–function coupling
associated with genes expressed later in development. Collectively,
our assessment of how genetic and evolutionary factors contribute
to cortical structure–function coupling disentangles in particular

different components of transmodal cortex, believed to be key to
culturally enriched thought and, thus, human cognition.

The transmodal regions in which MPC and rsFC diverge are
also recognized as those areas in where experience-induced
development is heightened and plasticity is greatest67. Moreover,
transitions from late childhood to early adulthood also show
altered structure–function coupling in transmodal regions27, and
consistent changes in cortical microstructure and myelination
patterns9. Protracted and reduced myelination of axons may aid
the coordination of distributed neural activity later in life,
allowing neural motifs to emerge over time that reflect the specific
experiential constraints faced by the individual27,68. In the adult
brain, regions of transmodal cortex are associated with higher

Fig. 6 Difference in organizational gradients of MPC and rsFC in humans and macaques. A Left panel: principal MPC and rsFC gradient; middle panel:
alignment; right panel: ΔrsFC-MPCG1; B principal gradient of MPC and tertiary gradient of rsFC in macaques; C Difference between principal gradients of MPC
and rsFC in humans, mapped to macaque space, and difference between corresponding gradients in macaques (lower panel); right: correlation between
human and macaque maps; D Raincloud plots of organizational differences as a function of cytoarchitectural class59, and functional networks28 in humans
(400 parcels, Schaefer parcellation) and macaques (182 parcels, Markov parcellation), boxes show the median and interquartile (25–75%) range, whiskers
depict the 1.5*IQR from the quartile. Source data are provided as a Source Data file.
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degrees of synapse formation and growth, as measured by aerobic
glycolysis69. The apparent reduction in the genetic control over
structure–function decoupling in heteromodal cortex established
by our study may reflect the conditions that facilitate cortical
adaptation to continue to occur after birth. Consistent with this
view, regions within the default mode and fronto-parietal net-
works show most evidence of dynamic changes and experience-

dependent plasticity at short and longer time scales70–72. For
example, studies of spontaneous cognition suggest that dynamic
reconfigurations of default mode and fronto-parietal systems are
linked to ongoing changes in patterns of thought73,74. At the
same time, microcircuit models of cortical dynamics have been
shown to benefit from integrating regionally varying myelin-
sensitive MRI information, highlighting that cortical dynamics

Fig. 7 Multiscale quadrants of structure–function coupling. A Cytoarchitectural class59 and functional community28 decoding along 2D model of the
difference between microstructural and functional connectivity gradients in humans and macaques (x-axis) and microstructure-functional connectivity
coupling (y-axes); B Phylogenetic models using cortical reorganization41 and a model of dual patterning in the cerebral cortex53; C Transcriptomic
developmental decoding of coupling and gradient differences between structure and function, Red/Blue/Green tones represent the log transformed false
discovery rate (FDR)-corrected p-values [–20 –3]. The bar plot above represents the log transformed (FDR)-corrected p-values, averaged across all brain
structures. Red indicates the genes that were attributed to the left upper quadrant, blue indicates the values were higher for the functional end of the
difference gradient and untethered, whereas green reflects the microstructural apex and untethered. Only values that are below FDRq < 0.05 are displayed;
D 2D projection of NeuroSynth meta-analysis56 of regions of interest along ΔrsFC-MPCG1 map (x-axis) and structure–function uncoupling (y-axis) using 24
topic terms. We binned both ΔrsFC-MPCG1 and coupling maps in 20 equally sized bins, averaged the z-scores of meta-analytical activations per bin and
ranked their weighted means along the x- and y-axes. Source data are provided as a Source Data file.
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vary as a function of local microstructural context75. This indi-
cates a different coupling of microstructure and intrinsic function
along the cortical hierarchy.

Our functional analysis defines potential constraints on human
cognition that structure–function decoupling may support.
Regions with maximal structure–function coupling were asso-
ciated with cognitive terms such as “attention” and “working
memory”. Conversely, uncoupled regions that were similar in
humans and macaques were linked to emotional and motivational
states, processes that are important in most if not all mammals1.
Notably, however, regions in which structure–function decoupling
showed differences between human and macaques, and differ-
ences between structural and functional organization, were asso-
ciated with functions such as “social-cognition” and “episodic/
autobiographical memory”. Although both declarative memory,
and explicit social functions have been reported in non-human
primates76,77 these types of process are thought to be part of a set
of processes that form the foundations of cultural learning in our
species. Our study, therefore, adds to a growing body of work
suggest that coordinated coupling of structure and function itself
is under genetic control and that this likely determines variation in
cognitive phenotypes27,78. Notably, studying heritability of cou-
pling itself, we found heteromodal coupling to be least heritable, a
pattern consistent with the spatial distribution of coupling herit-
ability in previous work78. More generally, our analysis provides
insights into the broader neural organization of human cognition.
The microstructural gradient captures spatial shifts in cortical
lamination patterns22, representing a “sensory-fugal” axis running
towards paralimbic cortices1. This axis has been implicated in
predictive processing of allostatic needs and motivation79. Also
anchored on sensory systems, but radiating towards heteromodal
networks such as the default mode network, the principal func-
tional gradient closely relates the distance of brain regions from
sensory input3,80,81 and may in part capture a divergent pattern of
connectivity from that described by the sensory-fugal hierarchy.
For example, heteromodal regions show the most long-range
functional connectivity patterns, linked to changes in supra-
granular layers82–84. In this context, it is notable that heteromodal
networks such as the default mode network are physically distant
from unimodal systems, a topological principle that may allow for
the integration of external and internal information3,11. Our
findings are also consistent with the notion that rapid evolutionary
expansion of the cerebral cortex may have shifted away from
bottom-up activity cascades in primary sensory-motor regions
towards a network of relatively untethered, long-distance, and
increasingly parallelized heteromodal regions11,41,84. Interestingly,
dissociations within transmodal systems are also aligned with
distance from archi- and paleocortex. The dual origin theory of
cortical organization53,55 argues that neural differentiation pro-
gressively stems from an archicortical and paleocortical origin53.
Based on our findings, it is possible that archicortical trends
preferentially relate to heteromodal cortices, while paleocortical
trends encompass paralimbic regions. Together, these observa-
tions suggest that differentiable genetic processes may underlie
transmodal uncoupling in heteromodal and paralimbic cortices,
an important hypothesis for future studies to examine.

We also observed different transcriptomic associations across
the sensory-fugal axis more generally, and a divergence of het-
eromodal and paralimbic cortices within the transmodal system
specifically21,24,65. Primary sensory regions with close coupling
showed an association with postnatal expression of genes in
neocortical regions, thalamus, and cerebellum, in line with
cerebellar-thalamic-cortical circuits85. On the other hand, para-
limbic transmodal regions were associated with prenatal genetic
expression in the neocortical regions, thalamus, and hippocampus
and with postnatal genetic expression in the striatum and

hippocampus. Finally, heteromodal regions harbored genes
expressed in neocortical regions in prenatal stages. The different
expression time-windows observed may be a genetic indicator of
how heteromodal regions, associated with genes expressed early
in development, can develop richer connectivity profiles that are
able to be transformed by experience, a pattern sometimes
described as the “older get richer” principle11,86. Conversely,
those regions associated with genetic expression later in devel-
opment are under heightened genetic control, and not only
include primary regions that show a tight coupling of structure
and function—associated with cortical, thalamic, and cerebellar
genetic expression, but also uncoupled paralimbic regions—
associated with hippocampal and striatal genetic expression.
Thus, transmodal decoupling may be understood from a per-
spective reaching beyond the cortex, guided by interactions with
subcortical regions, such as the thalamus and striatum85,87,88. In
particular, the thalamus alongside the cerebellar hemispheres,
show recent evolutionary alterations89,90 that are paralleled by
increased connectivity to prefrontal cortices91,92. As such, it is
possible that the uncoupling of particularly heteromodal regions
observed in humans builds upon evolutionary alterations that
shape not only in the cortex but also the subcortex, supporting
key features of human cognition. It is of note that although the
Allen human brain atlas is the most densely sampled tran-
scriptomic dataset of the human brain to date, it comes with
various limitations, such as sex and age imbalance64,93. Thus,
findings from our study relating to gene expression should be
interpreted with caution. In particular, although we selected only
genes that were relatively consistent across donors, there may still
be a bias toward those genes having higher expression rates in
males than in females.

In the current study, we report genetic uncoupling in trans-
modal regions in humans using a twin-design and differences
between humans and macaques in terms of structure–function
associations. We were able to compare humans and macaques
directly using previously established cross-species alignment
techniques41 in combination with histologically validated in vivo
microstructure profile covariance analysis22. As it stands, mean-
ingful comparisons between species using the current techniques
are limited to these two species. Thus, although we could show
that the patterning of structure–function uncoupling is consistent
in humans and macaques, and therefore, likely important in
many primates, we can only speculate about the evolutionary
relevance of the observed differential uncoupling in unimodal and
heteromodal regions across species. Anatomical differences in
these regions, including frontal and parietal cortices, of other
primates relative to humans have been reported, including dif-
ferences in cortical and deep white matter architecture15,40,94.
Though previous functional work has reported homologs of the
default mode network in other primates beyond macaques41,
including marmosets95 and chimpanzees96, it has recently been
reported that the functional network hierarchy is different in
humans relative to macaques, with regions in the default mode
regions showing most divergence41. One possible hypothesis is
that there is an evolutionary adaptation in structure and function
of unimodal and heteromodal association regions between
humans and NHPs41,95,97, resulting in progressive untethering of
structure and function in the former that gives rise to aspects of
cognition that are most developed in humans11. Secondly,
structure–function coupling shows some association with indi-
vidual variations such as sex and behavioral traits and states.
Indeed, though uncoupling was similar in both sexes in humans
and macaques, ours and previous work also report subtle differ-
ences in coupling between (human) males and females. Such
patterns may reflect sex-biased brain development98 and hor-
monal variations99. Moreover, previous work has indicated
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differences in brain function at rest relate to the level of con-
sciousness in humans and macaques100,101, and also our findings
suggest subtle differences in coupling of structure and function
between awake and anesthetized macaques. Despite this variation,
we observed a consistent difference in unimodal and heteromodal
coupling between (awake) humans and awake as well as anes-
thetized macaques. Future work may expand on this work to
further explore variations in structure–function coupling by level
of consciousness, particularly in humans by exploiting the capa-
city for introspection. Such analysis may provide additional
insight in the relation between structure–function coupling and
features of internal cognition.

In conclusion, our study set out to understand how flexible
cognition emerges from a genetically controlled microstructural
architecture. Our analyses suggest that the previously docu-
mented pattern of reduced structure–function coupling in
transmodal cortices is heritable in humans, and broadly con-
served across primate species. In NHPs, this pattern was reduced
relative to humans, and functional meta-analyses indicated that
this difference was most likely associated with social-cognition
and autobiographical memory. These data are consistent with the
hypothesis that primate brain organization has evolved to support
structure–function decoupling, which may facilitate types of
cognition that benefit from learning and social interactions,
enabling important features of cultural enrichment that are
thought to be a characteristic of our species. To test this
hypothesis, future work should expand our approach to include a
wider range of species, and explore their association with different
functional states in a more detailed manner. These studies will be
an important step towards the understanding of how evolution
has shaped neural function to support important features of
human cognition, a research goal, which is likely to become
increasingly feasible with growing availability of open multi-
species in vivo datasets38,39,95.

Methods
The current research complies with all relevant ethical regulations as set by The
Independent Research Ethics Committee at the Medical Faculty of the Heinrich-
Heine-University of Duesseldorf (study number 2018–317).

HCP sample
Participants and study design. We used publicly available data from the Human
Connectome Project (HCP) S1200 release (http://www.humanconnectome.org/),
which comprised data from 1206 individuals (656 females) that are made up by 298
MZ twins, 188 DZ twins, and 720 singletons, with age mean ± SD= 28.8 ± 3.7 years
(age range= 22–37 years). The informed consent for all subjects was obtained by
HCP. Our data usage was approved by HCP, and complies with all relevant ethical
regulations for work with human participants. We included individuals for whom
the scans and data had been released after passing the HCP quality control and
assurance standards. The full set of inclusion and exclusion criteria are described
elsewhere7,50. In short, the primary participant pool comes from healthy indivi-
duals born in Missouri to families that include twins, based on data from the
Missouri Department of Health and Senior Services Bureau of Vital Records.
Additional recruiting efforts were used to ensure participants broadly reflect ethnic
and racial composition of the U.S. population. Healthy is broadly defined, in order
to gain a sample generally representative of the population at large. Sibships with
individuals having severe neurodevelopmental disorders (e.g., autism), documented
neuropsychiatric disorders (e.g., schizophrenia or depression) or neurologic dis-
orders (e.g., Parkinson’s disease) are excluded, as well as individuals with diabetes
or hypertension. Twins born prior to 34 weeks of gestation and non-twins born
prior to 37 weeks of gestation were excluded. After removing individuals with
missing structural and functional imaging data, our sample consisted of 992 (529
females) individuals (including 255 MZ twins and 150 DZ twins) with an age
mean ± SD= 28.71 ± 3.72 years (range= 22–37 years).

Structural-imaging processing. MRI protocols of the HCP are previously
described7,50. In short, MRI data used in the study were acquired on the HCP’s
custom 3T Siemens Skyra equipped with a 32-channel head coil. Two T1w images
with identical parameters were acquired using a 3D-MP-RAGE sequence (0.7 mm
isovoxels, matrix= 320 × 320, 256 sagittal slices; TR= 2400 ms, TE= 2.14 ms,
TI= 1000 ms, flip angle= 8°; iPAT= 2). Two T2w images were acquired using a
3D T2-SPACE sequence with identical geometry (TR= 3200 ms, TE= 565 ms,

variable flip angle; iPAT= 2). T1w and T2w scans were acquired on the same day.
The pipeline used to obtain the Freesurfer-segmentation is described in detail in a
previous article7 and is recommended for the HCP data. The preprocessing steps
included co-registration of T1- and T2-weighted scans, B1 (bias field) correction,
and segmentation and surface reconstruction using FreeSurfer version 5.3-HCP.
Using these data, the equidistant surfaces are computed for MPC measurement.

Parcellation approach. For our main analysis, we used the Schäfer parcellation
scheme58 that combines local gradient and global similarity approaches via
gradient-weighted Markov Random models. The parcellation has been evaluated
with regards to stability and convergence with histological mapping and alternative
parcellations. We focused on a 400-parcel atlas, but additionally evaluated results
using the Glasser 360 atlas44.

Cortical microstructure and microstructural covariance networks. We estimated
MPC using myelin-sensitive MRI, in line with the previously reported protocol22.
The myelin-sensitive contrast was T1w/T2w from the HCP minimal processing
pipeline, which uses the T2w to correct for inhomogeneities in the T1w image. The
MPC approach complements mean T1w/T2w ratio mapping, tapping into
microstructural profiles across cortical depths. Depth-dependent cortical micro-
structure analysis has a long tradition in neuroanatomy102,103, and depth-
dependent shift in cellular and myelin characteristics have been shown to reflect
architectural complexity103 and cortical hierarchy1. We generated 12 equivolu-
metric surfaces between outer and inner cortical surfaces. The equivolumetric
model compensates for cortical folding by varying the Euclidean distance ρ
between pairs of intracortical surfaces throughout the cortex to preserve the
fractional volume between surfaces. ρ was calculated as follows for each surface (1):

ρ ¼ 1
Aout � Ain
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in which α represents a fraction of the total volume of the segment accounted for
by the surface, while Aout and Ain represents the surface area of outer and inner
cortical surfaces, respectively. We systematically sampled T1w/T2w values for each
of the 64,984 linked vertices from the outer to the inner surface across the whole
cortex. Subsequently, we computed the average value of T1w/T2 in each of the 400
parcels58. In turn, MPC (i,j) for a given pair of parcels i and j is defined by (2):
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in which s is a participant and n is the number of participants, ric the correlation
coefficient of the intensity profile at node i with the average intensity profile across
the entire cortex, and rjc the correlation of the intensity profile at node j with the
average intensity profile across the cortex. We used the MPC for further analysis.

Functional connectivity. Functional connectivity matrices were based on 1-h of
resting-state fMRI data acquired through the HCP7, which underwent HCP’s
minimal preprocessing7,44. Briefly, for each individual, a functional connectivity
matrix was calculated using the correlation coefficient of the average of the four
minimally preprocessed, spatially normalized, and concatenated to 4 15-min
resting-state fMRI scans which were co-registered using MSMAll to template HCP
32k_LR surface space50. 32k_LR surface space consists of 32,492 total nodes per
hemisphere (59,412 excluding the medial wall). Following average timeseries were
extracted in each of the 400 cortical parcels58 and individual functional con-
nectivity matrices were computed. The individual functional connectomes were
generated by averaging preprocessed timeseries within nodes, correlating nodal
timeseries and converting them to z scores. Here we used the individual timeseries
of individuals with complete data in the S1200 sample.

Measuring structure–function coupling. Structure–function coupling was defined as
the row-wise correlation between the mean MPC and rsFC connectomes. In short,
the values of each row in two matrices were selected and correlated; next, the
Spearman’s rho-value resulting from this analysis was projected on the surface. A
similar approach quantified genetic coupling, i.e., we correlated row-wise mean
MPC/rsFC with the row-wise heritability maps.

Heritability analysis. To investigate heritability of MPC and intrinsic functional
connectomes, we analyzed edge-wise connectomes of both measures in a twin-
based analysis. The quantitative genetic assessments were implemented with
Sequential Oligogenic Linkage Analysis Routines (SOLAR)104. This toolbox uses
maximum likelihood variance-decomposition methods to assess the relative
importance of genetic-vs-environmental (G+ E) influences on a phenotype by
modeling the covariance among family members as a function of genetic proximity.
Based on previous work indicating G+ E is more parsimonious and leads to more
reproducible results in HCP, we used a G+ E model to assess heritability in this
sample105. SOLAR can handle pedigrees of arbitrary size and complexity. To
ensure that our functional connectivity and microstructural profile covariance
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measures were conform to the assumptions of normality, an inverse normal
transformation was applied, similar to previous work106.

Heritability (h2) reflects the share of the phenotypic variance (σ2p) accounted
for by the total additive genetic variance (σ2g), i.e., h2= σ2g/σ2p. Phenotypes
showing stronger covariances between genetically more similar individuals than
between genetically less similar individuals have higher heritability. SOLAR
contrasts the detected covariance matrices, here node-wide rsFC/MPC and
coupling of rsFC and MPC, with the structure of the covariance matrix predicted
by kinship. We studied heritability with simultaneous estimation for the effects of
potential covariates. For this study, we included covariates including age, sex, age2,
and age * sex. To evaluate robustness of our heritability findings of rsFC with
respect to intra-individual variation we additionally computed heritability
considering possible within-subject variation described in previous work61,78.

Macaque data. All datasets in this study were from openly available sources. The
macaque data used for our main analyses stemmed from one cohort (University of
California, Davis) of the recently established PRIME-DE (https://fcon_1000.pro-
jects.nitrc.org/indi/indiPRIME.html)38. The full dataset consisted of 19 rhesus
macaque monkeys (macaca mulatta, all female, age ± SD = 20.38 ± 0.93 years,
weight= 9.70 ± 1.58 kg) scanned on a Siemens Skyra 3T with 4‐channel clamshell
coil. All the animals were scanned under anesthesia. In brief, the macaques were
sedated with injection of ketamine (10 mg/kg), dexmedetomidine (0.01 mg/kg),
and buprenorphine (0.01 mg/kg). The anesthesia was maintained with isoflurane
at 1–2%. The details of the scan and anesthesia protocol can be found at (https://
fcon_1000.projects.nitrc.org/indi/PRIME/ucdavis.html). The neuroimaging
experiments and associated procedures were performed at the California National
Primate Research Center (CNPRC) under protocols approved by the University of
California, Davis Institutional Animal Care and Use Committee107. The resting-
state fMRI data were collected with 1.4 × 1.4 × 1.4 mm resolution, TR= 1.6 s,
6.67 min (250 volumes) under anesthesia. No contrast-agent was used during
the scans. Structural data (T1w and T2w) were acquired with 0.3 × 0.6 × 0.6 mm
resolution, with interpolation on to generate 0.3 mm isotropic resolution
(T1w: TR= 2500 ms, TE= 3.65 ms, TI= 1100 ms, flip angle= 7 degrees,
FOV= 154 mm; T2w: TR= 3000 ms, TE= 307 ms).

To evaluate robustness of the macaque findings, we evaluated two additional
macaque samples with rsFC data openly available in PRIME-DE (https://
fcon_1000.projects.nitrc.org/indi/indiPRIME.html)38, previously used in ref. 41. The
samples varied in age-range, sex, and acquisition parameters. The Newcastle dataset
(awake108,109) consisted of 10 rhesus macaques (8 males, age mean± SD= 8.28 ± 2.33,
weight= 11.76 ± 3.38) scanned on a Vertical Bruker 4.7 T primate scanner. The fMRI
session was acquired with 1.2 × 1.2 × 1.2mm resolution, TR= 2000ms, 8.33-min per
scan (250 volumes × 2 scan) per animal. No contrast-agent was used during the scans.
In the case of the Oxford dataset (anesthetized), we included nineteen rhesus macaques
with preprocessing and surface reconstruction as in previous work41 (all males,
age= 4.01 ± 0.98 years, weight= 6.61 ± 2.04 kg). The macaques were scanned on a 3T
with a 4-channel coil110. Resting-state fMRI (rs-fMRI) data were collected with 2mm
isotropic resolution, TR= 2000ms, 53.3min (1600 volumes). No contrast-agent was
used during the scans.

MRI data processing. The structural T1w and T2w images were preprocessed using
the customized HCP-like macaque pipeline (doi:10.5281/record/zenodo.3888969).
In short, the preprocessing includes (1) spatial denoising by a non‐local mean
filtering operation111, (2) brain extraction using ANTs registration with a reference
brain mask followed by manually editing to fix the incorrect volume (ITK‐SNAP,
https://www.itksnap.org)112; (3) tissue segmentation using ANTs joint label fusion
algorithm and surface reconstruction (FreeSurfer)113; (4) T1w and T2w alignment
(linear) followed by the linear and non-linear registration to the high-resolution
template space (0.3 mm); (5) the native white matter and pial surfaces were
registered to the Yerkes19 macaque surface template114,115. MPC was computed
similarly to the human approach, however due to the thinner cortex in macaques
relative to humans we decided to only focus on 9 equidistant surfaces. The
macaque monkey intrinsic functional data were preprocessed using a customized
Connectome Computational System pipeline for nonhuman primates41. Briefly, the
rs-fMRI data were preprocessed including temporal de-spiking, motion correction,
4D global scaling, nuisance regression using white matter (WM), and cerebrospinal
fluid (CSF) signal and Friston-24 parameter models, bandpass filtering
(0.01–0.1 Hz), detrending and co-registration to the native anatomical space. The
data were then projected to the native mid-cortical surface and smoothed along the
surface with FHWM=3 mm. Finally, the preprocessed data were down-sampled to
a standard 10k (10,242 vertices) resolution surface114. Similar with human pre-
processing, functional timeseries were averaged within the Markov parcellation116,
and a connectivity matrix was constructed.

Alignment of human to macaque space. To evaluate the similarity between human
and macaque cortical patterns we transformed the human pattern (rsFC-MPC
coupling/gradients) to macaque cortex based on a functional-alignment techniques
recently developed. This method leverages advances in representing functional
organization in high-dimensional common space and provides a transformation
between human and macaque cortices41. This, enabled us to directly compare
between species within the same space.

Gradient decomposition. To compute macroscale gradients, we performed several
analysis steps. The input of the analysis was the MPC and rsFC matrix, cutoff at 90%
similar to previous studies3,22. To study the relationships between cortical regions in
terms of their features, we used a normalized angle similarity kernel resulting in a
non-negative square symmetric affinity matrix. Next, we used diffusion mapping, a
non-linear dimensionality reduction method62. The algorithm estimates a low-
dimensional embedding from a high-dimensional affinity matrix. In this space,
cortical nodes that are strongly interconnected by many supra-threshold edges or few
very strong edges are closer together, whereas nodes with little or no covariance are
farther apart. The name of this approach, which belongs to the family of graph
Laplacians, derives from the equivalence of the Euclidean distance between points in
the embedded space and the diffusion distance between probability distributions
centered at those points. It is controlled by a two parameters α and t, where α controls
the influence of the density of sampling points on the manifold (α= 0, maximal
influence; α= 1, no influence), and t controls the scale of eigenvalues. Based on
previous work3,22 we followed recommendations and set α= 0.5 and t= 0, a choice
that retains the global relations between data points in the embedded space and has
been suggested to be relatively robust to noise. Gradient parameters were identical for
human and macaque data. To evaluate robustness of the gradient measures we varied
alpha between 0 and 1 with steps of 0.1 and diffusion time between 0 and 9 with steps
of 1 in humans and macaque rsFC and MPC data.

Functional decoding. For functional decoding, we selected 24 behavioral paradigms
as previously reported3,22, averaged in the 400 Schaefer parcels. To perform
functional decoding, we averaged the z-scores of NeuroSynth topic terms along the
pattern of interest across 20 equally sizes bins and performed weighted averaging,
and ranked the values accordingly to capture which functions are associated with
MPC-rsFC uncoupling and the difference between MPC and rsFC gradients.
Following the ranking of the tasks is projected in 2D space.

To assess the association between structure–function coupling and gradient
difference and individual-level behavior, we selected 20 markers of individual
difference from the HCP battery i.e., total cognition, card sorting, list sorting,
friendship, picture vocabulary, reading English, pain, endurance, flanker, picture
sequence, self-efficiency, perceived stress, noise, SCPT, sadness, and NEO-FFI50.
Subsequently, we performed linear regression using SurfStat117 to probe association
between parcel-level variation in coupling and gradient difference, while controlling
for age and sex. Then we correlated the 20-task-based t-maps with mean maps of
coupling difference and gradient differences and visualized them in 2D space to
evaluate their relationship to patterns of coupling and gradient difference.

Comparisons between gradients and modalities. To assess correlations between
spatial maps, we used spin-tests to control for spatial autocorrelation when
possible118.

Phylogenetic maps of cortical reorganization and archi-paleocortex distance. To
perform phylogenetic decoding, we used cortical reorganization between macaque
monkeys and humans41 (https://github.com/tingsterx/alignment_macaque-
human), as well as a model of the dual origin, similar to previous work106. Here, we
combined the distance to paleo- and archicortex in one map, assigning each parcel
with the distance closest to either origin.

Transcriptomic association analysis. Given the association between phylogeny and
ontogeny21, we correlated both maps with post-mortem gene expression data from
the Allen Human Brain Atlas (AHBA)64 and evaluated the spatiotemporal time
windows in which these genes are most frequently expressed using developmental
gene set enrichment analysis119. We assessed spatial correlations of
structure–function coupling and the difference between large-scale principal gra-
dients of MPC and rsFC and gene expression patterns. First, we correlated the
t-statistics map of the two axes with the post-mortem gene expression maps provided
by Allen Institute for Brain Sciences (AIBS) using Neurovault gene decoding64,120.
Neurovault implements mixed-effect analysis to estimate associations between the
input map and the genes of AIBS donor brains yielding the gene symbols associated
with the input map. Gene symbols that passed a significance level of FDR-corrected
p < 0.05 were further tested whether they are consistently expressed across the donors
using abagen (https://github.com/rmarkello/abagen), which implements prior
recommendations for imaging-transcriptomics studies93. For each gene, we estimated
the whole-brain expression map and correlated it between all pair of different donors.
Only genes showing consistent whole-brain expression pattern across donors (r > 0.5)
were retained. In a second stage, gene lists that were significant were fed into
enrichment analysis, which involved comparison against developmental expression
profiles from the BrainSpan dataset (http://www.brainspan.org) using the cell-type-
specific expression analysis (CSEA) developmental expression tool (http://genetics.
wustl.edu/jdlab/csea- tool-2)119. As the AIBS repository is composed of adult post-
mortem datasets, it should be noted that the associated gene symbols represent
indirect associations with the developmental data.

Replication and robustness
MICs dataset. Participants: Data were collected in a sample of 50 healthy volunteers
(21 women; age mean ± SD= 29.82 ± 5.73 years; 47 right-handed) between April 2018
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and September 202060. Each participant underwent a single testing session. All par-
ticipants denied a history of neurological and psychiatric illness. The Ethics Committee
of the Montreal Neurological Institute and Hospital approved the study. Written
informed consent, including a statement for openly sharing all data in anonymized
form, was obtained from all participants.

MRI data acquisition. Scans were completed at the Brain Imaging Centre of the
Montreal Neurological Institute and Hospital on a 3T Siemens Magnetom Prisma-
Fit equipped with a 64-channel head coil. Participants underwent a T1-weighted
(T1w) structural scan, followed by resting-state functional MRI (rs-fMRI). In
addition, a pair of spin-echo images was acquired for distortion correction of
individual rs-fMRI scans. A second T1w scan was then acquired, followed by qT1
mapping. Total scan time for these acquisitions was ~45 min.

Two T1w scans with identical parameters were acquired with a 3D magnetization-
prepared rapid gradient-echo sequence (MP-RAGE; 0.8mm isovoxels,
matrix= 320 × 320, 224 sagittal slices, TR= 2300ms, TE= 3.14ms, TI= 900ms, flip
angle= 9°, iPAT= 2, partial Fourier= 6/8). Both T1w scans were visually inspected to
ensure minimal head motion before they were submitted to further processing. qT1
relaxometry data were acquired using a 3D-MP2RAGE sequence (0.8mm isovoxels,
240 sagittal slices, TR= 5000ms, TE= 2.9ms, TI 1= 940ms, T1 2= 2830ms, flip
angle 1= 4°, flip angle 2= 5°, iPAT= 3, bandwidth= 270Hz/px, echo
spacing= 7.2ms, partial Fourier= 6/8). We combined two inversion images for qT1
mapping in order to minimize sensitivity to B1 inhomogeneities and optimize intra-
and intersubject reliability121,122. One 7min rs-fMRI scan was acquired using
multiband accelerated 2D-BOLD echo-planar imaging (3mm isotropic voxels,
TR= 600ms, TE= 30ms, flip angle= 52°, FOV= 240 × 240mm2, slice
thickness= 3mm, mb factor= 6, echo spacing= 0.54ms). Participants were
instructed to keep their eyes open, look at a fixation cross, and not fall asleep. We also
include two spin-echo images with reverse phase encoding for distortion correction of
the rs-fMRI scans (3mm isotropic voxels, TR= 4029ms, TE= 48ms, flip angle= 90°,
FOV= 240 × 240mm2, slice thickness= 3mm, echo spacing= 0.54ms, phase
encoding=AP/PA, bandwidth= 2084Hz/Px).

MRI data preprocessing. Raw DICOMS were sorted by sequence into distinct direc-
tories using custom scripts. Sorted files were converted to NIfTI format using
dcm2niix (v1.0.20200427; https://github.com/rordenlab/dcm2niix)123, renamed, and
assigned to their respective subject-specific directories according to BIDS standards124.
Agreement between the resulting data structure and BIDS standards was ascertained
using the BIDS-validator (v1.5.10; DOI: 10.5281/zenodo.3762221). All further pro-
cessing was performed via micapipe, an openly accessible processing pipeline for
multimodal MRI data (https://micapipe.readthedocs.io/). As previously described60, rs-
fMRI data were preprocessed using a combination of AFNI125 and FSL126. To ensure
magnetic field saturation, the first five volumes were disregarded. Images were reor-
iented, motion and distortion corrected. Motion correction was performed by regis-
tering all timepoints to the mean volume, while distortion correction leveraged main
phase and reverse phase field maps acquired alongside rs-fMRI scans. Nuisance
variable signal was removed using an in-house trained ICA-FIX classifier127 and via
spike regression using motion outlier outputs provided by FSL. Volumetric timeseries
were averaged for registration to native FreeSurfer space using boundary-based
registration128, and mapped to individual surface models using trilinear interpolation.
Native surface cortical timeseries underwent spatial smoothing once mapped to each
individual’s cortical surface models (Gaussian kernel, FWHM=10mm)7,129, and were
subsequently averaged within nodes defined by the Schaefer 400 parcellation.

eNKI dataset. To evaluate whether differences in rs-fMRI preprocessing between
humans and macaques can explain differences observed in coupling of MPC and
rsFC between both species, we evaluated structure–function coupling in an addi-
tional human sample (eNKI subsample. N= 100, age-range 18–40 years) pre-
processed analogously to the macaque datasets, including temporal compression,
motion correction, 4D global scaling, nuisance regression (Friston’s 24 model,
cerebrospinal fluid and white matter), linear and quadratic detrends, bandpass
filtering (0.01–0.1 Hz), and surface registration (for details, see ref. 130). The NKI
dataset was obtained from the publicly shared enhanced Nathan Kline Institute-
Rockland Sample data repository.

Test–retest reliability. To evaluate test–retest reliability of our measures we used the
test–retest sample of HCP7 with complete T1wT2w and rsFC data at baseline and
retest, leaving us with n= 46, 32 females, age: mean/SD 30.196/3.364, range: 22–35,
mean days of test–retest interval: 139.304 days, SD 68.994, min-max: 18–343 days. ICC
was quantified using a Median Absolute Deviation Intraclass Correlation Coefficient;
https://warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/scripts/matlab/
madicc.m.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This study followed institutional review board guidelines of corresponding institutions.
Human data analyzed in our main results were obtained from the open-access HCP

S1200 young adult sample (HCP; http://www.humanconnectome.org/). MICs replication
data is openly available at https://portal.conp.ca/dataset?id=projects/mica-mics.
Macaque data was obtained from PRIME-DE (https://fcon_1000.projects.nitrc.org/indi/
indiPRIME.html; University of California, Davis). Heritability analyses were performed
using Solar Eclipse 8.4.0 (https://www.solar-eclipse-genetics.org), and data on the
pedigree analysis is available here: https://www.nitrc.org/projects/se_linux/104,131.
Gradient mapping analyses was based on BrainSpace (https://brainspace.readthedocs.io/
en/latest/). Transcriptomic association analyses were conducted using NeuroVault
(https://neurovault.org), abagen tools (https://github.com/rmarkello/abagen)93, and cell-
type-specific expression analysis (CSEA) (http://genetics.wustl.edu/jdlab/csea-tool-2)119

Supplementary analysis were performed using the MICS dataset (https://portal.conp.ca/
dataset?id=projects/mica-mics) and eNKI dataset (https://fcon_1000.projects.nitrc.org/
indi/enhanced/). Source data are provided with this paper and code for visualization of
parcel results on surface linked in our study’s Github repository (https://github.com/
CNG-LAB/structure_function). Source data are provided with this paper.

Code availability
Code for generation of MPC is available at (https://github.com/MICA-MNI/MPC, now
https://github.com/MICA-MNI/micapipe). Heritability analyses were performed using
Solar Eclipse 8.4.0 (http://www.solar-eclipse-genetics.org), and data on the pedigree
analysis is available here: https://www.nitrc.org/projects/se_linux/. The code for
connectome gradient generation are available at https://github.com/MICA-MNI/
BrainSpace. Transcriptomic association analyses were conducted using NeuroVault
(https://neurovault.org), cell-type-specific expression analysis (CSEA) (http://genetics.
wustl.edu/jdlab/csea-tool-2), and abagen tools (https://github.com/rmarkello/abagen).
Further code to visualize the data is available at (https://github.com/CNG-LAB/
structure_function) and Zenodo: (https://doi.org/10.5281/zenodo.6406172).
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