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Abstract

In the time of the global climate crisis, it is vital to protect and restore peatlands to maintain
their functioning as carbon sinks. Otherwise, their transformations may trigger a shift to a
carbon source state and further contribute to global warming. In this study, we focused on
eutrophication, which resulted in its transition from rich fen to poor fen conditions. The prior
aim was to decipher how i) climate, ii) human, and iii) autogenic processes influenced the
pathway of peatland changes in the last ca. 250 years. We appli2d a high-resolution
palaeoecological analysis, based mainly on testate amoebae (T A) “\nd plant macroremains.
Our results imply that before ca. 1950 CE, dry shifts on the Ka :anie fen were generally
climate-induced. Later, autogenic processes, human p.es.'ire and climate warming
synergistically affected the fen, contributing to its transition to poor fen within ca. 30 years.
Its establishment not only caused changes in \qetation but also altered TA taxonomic content
and resulted in a lower diversity of TA. Acv-ording to our research M. patella is an incredibly

sensitive testate amoeba that after ca. 200 ‘ears of presence, disappeared within 2 years due to

changes in water and nutrient coi.Jitions. As a whole, our study provides a long-term
background that is desired in m>dern conservation studies and might be used to define future
restoration targets. It alsc cor firms the already described negative consequences connected

with the Anthropocene 2rd not sustainable exploitation of nature.

Keywords: testate amoebae, peatland degradation, global warming, human impact, rich fen,

Central Europe
1. Introduction

Peatlands are ecosystems that accumulate organic matter which decomposes slowly
thanks to anoxic conditions, resulting in carbon sequestration (Rydin and Jeglum, 2013;

Mitsch and Gosselink, 2015). Their efficiency is not to be underestimated because even



though they cover, depending on the source, about 3-8 % of the land surface (Mitsch and
Gosselink, 2015; Loisel et al., 2021), they are responsible for holding 20-30% of soil carbon
(Lal, 2008; Xu et al., 2018). Hence, in the time of global climate crisis, it is vital to protect
those areas and restore them, if possible, to maintain their functioning as carbon sinks (e.g.
Fennessy and Lei, 2018; Moomaw et al., 2018). Otherwise, their transformations may trigger
a shift to a carbon source state (Payne et al., 2016), as happened in the case of many European
peatlands (e.g. Wheeler et al., 1995; Jassey et al., 2019; Swenson et al., 2019; Swindles et al.,
2019), and further contribute to the global warming. Nowadays, the most threatening changes
involve the drying of peatlands. The phenomenon of dryinr, .. s neen recognized throughout
the whole of Europe, even at the sites considered the less (isturbed (Swindles et al., 2019).
The water tables started to decrease abruptly ca. 200 *‘ea.< ago (Swindles et al., 2019), as an
effect of global climate changes and human ac*iv:-ie7, such as peat cutting, burning and
draining of peatlands, and afforestation ( ee “oosten and Clarke, 2002). Lower water tables
lead to enhanced decomposition and in.ease the probability of wildfires, which results in the
release of peat carbon into the atmnsp.e.e (Turetsky et al., 2015). They also affect local
vegetation (e.g. Breeuwer et al., 20u3) and microbial communities (e.g. Reczuga et al., 2018),

and thus peatland functionan.’ /Chaudhary et al., 2018) and growth (Charman et al., 2013).

Other changes, at »cting mostly fens, involve acidification, which is a part of
autogenic peatland processes (Gorham et al., 1987) but might be an effect of human activity
(Lamers et al., 2015), and eutrophication. The acidification is connected to the gradual loss of
contact with the mineral-rich water due to the accumulation of peat above the water level,
which leads to succession from rich fen to poor fen (Rydin and Jeglum, 2013, Lamers et al.,
2015). However, in the contemporary epoch of Anthropocene, determined by severe human-

induced changes affecting synchronously ,,key physical, chemical, and biological processes at

the planetary scale” (Zalasiewicz et al., 2011; Waters et al., 2018), the process might



accelerate (Kooijman and Paulissen, 2006; Lamers et al., 2015). Acid rain, air pollution, the
use of fertilizers, and artificial drainage promote fen acidification (Gorham et a., 1984;
Lamers et al., 2015). Acidification results in a loss of ecosystem services and biodiversity
(Lamers et al., 2015) that applies to testate amoebae (Heal 1961, 1964), mosses and vascular
plants (Glaser et al., 1996; Hajek et al., 2006). Although, sometimes, the diversity of the latter
does not change (Lamentowicz et al., 2010). The causes of peatland eutrophication include
the input of nutrient-rich surface and groundwaters, and/or increased deposition of nutrients
from the atmosphere (Bragazza, 2006; Lamers et al., 2015). Th= su.rce might be fertilizers,
water and air pollution, and forestry practices (e.g. Bragaz=a, 20u6). The result is lower
species diversity due to the replacement of slowly growing fen vegetation by fast-growing
highly productive species (van Diggelen et al., 2015) anc acidification of the environment due
to the establishment of Sphagnum species (Ko~iy. ar,, 2012). Eutrophication also hampers
later restoration efforts, making them a c’«all~.nging and often expensive venture (Lamers et

al., 2015).

In this study, we focused un ~e Kazanie fen, situated ca. 25 km from Poznan. The
analyzed peat section develog~a . the last 250 years (Czerwinski et al., 2021), which
encompasses the Anthror.uuone (sensu Waters et al., 2018). This calcareous fen, like many
others in Poland, is listea Ymong the Natura 2000 protected areas (code: 7210, Polish site code
PLH300030). However, in the last ca. 50 years, as most of the alkaline peatlands in Europe, it
has been drained and experienced both acidification and eutrophication (Czerwinski et al.,
2021). Hence, the detailed study regarding palaeoecology of baseline conditions and further
fen degradation should contribute to the already implemented environmental
management/restoration plans for this fen, as well as others in Central Europe. Testate
amoebae (TA) and plant macrofossils might be used for biomonitoring programmes and

conservation management of peatlands (Lavoie et al., 2001) because these palaeoecological



proxies supplement each other well (both respond to local environment changes but not
necessarily the same factors; Mitchell et al., 2008a). However, TA response to environmental

changes, due to short life cycles, should be faster than that of plants.

The prior aim of our study was to decipher how i) climate, ii) human, and iii)
autogenic processes influenced the pathway of peatland changes in the last ca. 250 years.
Hence, we applied a high-resolution palaeoecological analysis, based mainly on testate
amoebae (TA) and plant macrofossils. The second aim of our study was to explore the
indicative value of TA concerning rapid trophic fen transform aticxs. Even if knowledge about
Central European TA (palaeo-)ecology is growing systemeticaily (van Bellen and Lariviére,
2020), the studies on TA communities from rich fens are ~tul substantially deficient (Hajkova
etal., 2012; Lamentowicz et al., 2011, Lamentowicz et al., 2013; Marcisz et al., 2020, 2021).
The reason might be the much higher taxonor.>‘c aiversity of TA on rich fens in comparison
with bogs (e.g. Lamentowicz et al., 2011; .- ssey et al., 2014), which makes such studies more
time-consuming. Moreover, the high ~=cumposition of peat material accumulated by rich fens
prevents efficient TA analysis, as su.e shells are selectively dissolved (Marcisz et al., 2020).
Fortunately, the profile from the .“azanie fen revealed exceptionally well-preserved TA shells,

which makes this site uniguc in terms of long-term TA ecology on rich fens.

2. Material and methods

2.1. State of art

2.1.1. Study site

Kazanie fen (ca. 3 ha) is of limnogenic origin and is located in western Poland, 25 km
northeast of Poznan. The fen is classified as calcareous (chalk-bed) fen (Natura 2000 code:
7210) and is situated in ‘Ostoja Promna’, the Natura 2000 area (Polish site code PLH300030).

The peat deposits thickness reaches 3 m, under which gyttja, sands, and lacustrine clays are



present (Mig¢tkowicz and Sydow, 1999). The surrounding land relief that originated during the
last glaciation (Marks 2012) is dominated by morainic hills and small depressions filled with
water or overgrown with wetland vegetation (Laskowicz et al., 2015). The fen is surrounded
by the riparian woodlands in the north and east, and wastelands, arable fields and households
in the south and west. Farther, mixed forests with Pinus sylvestris, Quercus robur, Carpinus
betulus, and Betula pendula are present in the landscape (Forest Data Bank). VVegetation from
the ass. Thelypteridi-Phragmiteteum dominates now on the fen. However, in the past, the
Kazanie fen harboured the population of threatened orchid Lip~*is :~eselii and other rare
species, e.g. Drosera anglica and D. rotundifolia. Moreovr, . small water bodies, Chara
vulgaris, Utricularia minor and U. minor were present (V. ~hatowska and Rymon-Lipinska,
2008). In 2017, poor fen patches from the Scheuchzerio- "aricetea class were designated for
protection (Regionalna Dyrekcja Ochrony Srorlo. [is’.a w Poznaniu, 2017). As our study was
focused on the rich to poor fen transform «tio'i, we selected a site on the border of two
habitats — Sphagnum fallax patch surro.nded by progressively expanding reed bed

communities dominated by Phragmite = “wstralis, Typha latifolia and Cladium mariscus.

The climate is typical ~f v e temperate zone and is influenced mostly by the Atlantic
air masses. The mean July wmperature is 18°C, whereas that of January is -2°C. The annual
precipitation is 507 mm, \ 'hereas the growing season lasts for 215-227 days (Laskowicz et al.,

2005).
2.1.2. Core retrieval and chronology

A 91-cm long profile was collected from the Sphagnum lawn, at the margins of the
Kazanie rich fen, in June 2017 (52°27'32.4"N, 17°17'45.2"E), using a Wardenaar sampler
(dimensions 100x10x10 cm). Ten AMS (Accelerator Mass Spectrometry) *C dates, obtained
in the Poznan Radiocarbon Laboratory (Poland; laboratory code — Poz), are the basis for

profile chronology. The dated material was carefully selected and consisted of terrestrial plant



remains (Supplementary Data 1a). The absolute chronology was inferred from the Bayesian
age-depth model, constructed using the OxCal v. 4.2 software, by applying the P_Sequence
function (Bronk Ramsey, 1995; Bronk Ramsey, 2008; Supplementary Data 1 b). The IntCal13
(Reimer et al., 2013) and post-bomb NH1 (Hua et al., 2013) atmospheric curves were the

calibration set.

The top 49.5 cm of the model was validated by **°Pb dates (Supplementary Data 1 b
and c). The activity of >2°Pb was determined as an activity of ite daughter radionuclide **°Po
(half-life 138 days) from 59 peat samples from the top of the rroi.'e (each 1-cm thick). The
laboratory treatment and measurements were carried out ir the Institute of Nuclear Physics,
Polish Academy of Sciences, Krakdw (for details see: C..~rwinski et al., 2021). The excess of
219y (unsupported) was calculated as the difference vetween the total *°Pb activity and the
supported 2'°Pb activity. The supported level \as calculated from the mean 2°Pb activity for
the bottom layers (27 £ 2 Bg/kg). Constan. "<ate of Supply (CRS) and Constant Flux/Constant
Sedimentation (CF/CS) models were ~nni.2d to estimate the age-depth relationships in this
part of the core (Appleby, 2002; Saichez-Cabeza and Ruiz-Fernandez, 2012). The total >:°Pb
unsupported inventory was cz'cui~ted and was equal to 6038 + 63 Bg/m?. Next, we corrected
this value, based on the exucnoitation of the exponential equation, to eliminate a systematic
deviation of CRS dates to vard erroneously old ages, i.e. the so-called “old-date error”
(Binford, 1990; Tylmann et al., 2016). Most of the 2°Pb dates overlapped with dates retrieved
from the Bayesian age-depth model. The maximum difference between the parallel dates was
identified at a depth of 35.5 cm and ranged from ca. 4.5 to 11.5 years (*:°Pb: ca. 1974 CE;

14C: ca. 1982 CE; Supplementary Data 1 d).

The dates used in this paper, expressed as CE (Common Era), are the 4 (mean) values

retrieved from the model + o error (Supplementary Data 1).

2.1.3. Plant macrofossils



Plant macrofossils reflect the local vegetation and peatland development and describe
past TA habitats (Maugouy et al., 2010). The 1-cm contiguous slices of profile (10 cm®) were
analysed to identify plant macrofossils. Plant macrofossil findings were previously published
by Czerwinski et al. (2021), but the interpretation of these data focused mostly on the regional
changes/forest communities. The identification of Sphagnum and brown mosses species was
performed separately, with the use of specialistic literature (Hedenés, 2003; Smith, 2004;
Holzer, 2010; Laine et al., 2011), to obtain reliable results. The volume percentages of
unidentified plant remains and mosses were estimated and rour-eu *o the nearest 5%. The

plant taxonomic nomenclature follows Mirek et al. (2002) v Ochyra et al. (2003).
2.2. Testate amoebae (TA)

TA enable (i) quantitative estimation of cna.ines of the depth to the water table (DWT)
(Charman et al., 2007; Lamentowicz etal. 2"1.; Amesbury et al., 2016), i.e. potential
evidence for climate humidity and/or human “mpact changes, (ii) reconstruction of pH
changes and conductivity, i.e. insigh. i"i.> ten succession (Mitchell et al., 2013) and (iii) study
on the microbial food webs (Rec.''ga et al., 2018). The 1-cm contiguous slices of profile (3-5
cm?®), parallel to those selectea :~r plant macrofossils, were analysed in search of TA. The
material for testate amoe yae « nalysis underwent standard treatment (Booth et al., 2010). The
material was washed witt distilled water on a sieve of 300-pm mesh size and the filtrate was
used for microscopic analyses. Samples were counted under a light microscope at 400x
magnification until a minimum of 150 tests was obtained (Booth et al., 2010; Payne and
Mitchell, 2008). The exception was eight samples where such a number was difficult to
obtain. Identification was done using literature on the subject and aimed at achieving the
highest possible taxonomical resolution (e.g. Clarke, 2003; Mazei and Tsyganov, 2006;

Meisterfeld, 2001; Ogden and Hedley, 1980).

2.3. Statistical analyses and visualization



The results of both analyses were drawn as diagrams, divided into zones based on
CONISS (Grimm, 1987), using the TILIA Graph programme (Grimm, 1991). Depth to the
water table (DWT) and conductivity (indicator of the presence of ions/minerogenic
sediments) changes were reconstructed using the transfer function performed on the testate
amoebae data from surface samples from Poland (DWT — Lamentowicz and Mitchell, 2005;
conductivity — Lamentowicz et al., 2011). For the reconstruction of DWT, a weighted
averaging (WA\) tolerance down-weighting model (Lamentowicz et al., 2008) was applied,
whereas for the conductivity WA inverse deshrinking model (] »mcntowicz et al., 2013).

We performed non-metric multidimensional scaline; ¢ {™MDS) to determine the
correspondence between (i) TA and local peat-formine micnts (those expressed as percentages
based on peat volume) and (ii) TA and palynological Ja.> (human impact indicators and the
most frequent arboreal pollen taxa). This analysi. w=s performed using the R software,
version 3.6.0 (R Core Team, 2018), with <he vegan package (Oksanen et al., 2017). Plant
macrofossil and palynological data weic orojected on the NMDS using the envfit function.
NMDS was calculated using the Rray “urtis distance. To access the changes in TA
biodiversity, we also used the Channon diversity index (H) that was calculated and drawn

along the stratigraphic order, '<’ng the PAST 4.0.3 software (Hammer et al., 2001)

3. Results and interpretation

Analysis of 90 peat samples revealed the presence of 113 testate amoebae (TA) taxa,
whose patterns were linked with the fen vegetation (Figs 2-5). The results of the CONISS
clustering revealed 2 distinct phases of TA-vegetation assemblages. These results pointed out
the boundary between phases at 36 cm (plant macrofossils) or 35 cm (TA), so then we

arbitrarily positioned the boundary at a depth of 35.5 cm (ca. 198213 CE).

3.1. Mire succession: plant macrofossils, testate amoebae, water table and conductivity



3.1.1. Phase | —rich fen; 91-35.5 cm; ca. 1767+45-1982+3 CE

The rich fen developed as a result of the lake terrestrialisation and was dominated by
brown mosses, mostly Scorpidium cossonii, with the addition of Pseudocalliergon trifarium
and Meesia triquetra (Fig. 2). The presence of these mosses indicates the rich fen conditions
then (Hedenas, 2003; Atherton et al., 2010; Rehell and Virtanen, 2015). In this phase, the
most abundant TA genera were Centropyxis, Cyclopyxis, Difflugia, and Pyxidicula, which
were accompanied by Arcella discoides, A. vulgaris, Cryptodiffugia crenulata, Heleopera
petricola, Hyalosphenia platystoma, Microchlamys patella, Gibb. carina galeata, and
Paraquadrula irregularis (Fig. 3). The presence of Centrcyxi: species and Arcella vulgaris
confirms a high pH level (Lamentowicz and Mitchell 2.7, whereas wet conditions are
proved by the occurrence of Difflugia sp., Pyxidictile sp. (Jax, 1985), Cryptodifflugia
crenulata (Bobrov and Mazei, 2017), Microct..amys patella (Anderson, 1988; Vincke et al.,
2006), Paraquadrula irregularis, and Arce!'a discoides (Beyens et al., 1990). However, the
last species is also considered an indiz~to, of water level fluctuations, i.e. unstable

hydrological conditions (Lamentcwi27 and Mitchell, 2005).

A slight change in the ccmposition of plant macroremains starts at ca. 1955+7 CE
when S. cossonii decreas »d, v'hereas Bryum pseudotriquetrum, Calliergon cordifolium and
Fissidens sp. gained impr.tance subsequently. At the same time, Lycopus europaeus, Carex
lasiocarpa, Comarum palustre, and Thelypteris palustris appeared (Fig. 2; Czerwinski et al.,
2021). Whereas all these moss taxa are typical of rich fens, the appearance of C. lasiocarpa
and C. palustre points to slow acidification of the environment (Ellenberg and Leuschner,
2010) and the development of communities from the Caricion lasiocarpae alliance
(Matuszkiewicz, 2007). A similar change is reflected in testate amoebae composition and
slightly decreasing TA-inferred conductivity, pointing to gradual acidification. Some taxa

disappeared or retreated around that time (Fig. 3). Among them were Awerintzewia



cyclostoma which prefers deep water bodies, according to Heckman (1998), or soils and soil
mosses, as Bankov et al. (2018) claim. Although no deep water body was present at the coring
spot then, this species occurred probably in shallow pools. Other taxa that withdrew back then
were Centropyxis aerophila sphagnicola, Centropyxis discoides, Heleopera petricola,
Hyalosphenia platystoma and Pyxidicula sp. H. platystoma, C. discoides and Pyxidicula sp.
withdrew probably due to lowering of the water level and disappearance of microhabitats with
long-lasting shallow water (cf. Siemensma, 2019; Satkauskiené et al., 2014; Jax, 1985)). In
the case of H. petricola, it was replaced by Heleopera rosea th=* ac~nite preferring more
alkaline conditions, may survive in drier habitat (Lamentovvic. and Mitchell, 2005).
Quadrulella symmetrica that appeared little earlier, forna ~otimal conditions for life, as

indicated by its maximum values then.

The TA-inferred water table revealed < vony fluctuations in that phase. The extrema
were represented by values -4.1+£8.1 cm (o, :n water) and 25.5£7.9 cm (mean: 8.4 cm). The
TA-inferred conductivity was relative®/ s.oble and ranged between 510 and 320 puS/cm
(mean: 420 uS/cm), which confir ns *he supplementation of fen with waters rich in ions. This
phase was characterized by tr.» n.hest TA biodiversity, as indicated by the Shannon diversity

index (H) that oscillated wru.nu a value of 2.5.
3.1.2. Phase Il — poor fen: 35.5-0 cm; ca. 1982+3-2017 CE

Together with the disappearance of brown mosses and the appearance of Sphagnum,
the TA communities changed (Fig. 2 and 3). The progressing acidification is reflected in the
drop of conductivity and the spread of Sphagnum (Figs 2 and 3). The dominance of S. teres
confirms the further development of communities from the Caricion lasiocarpae alliance
(Matuszkiewicz, 2007). The subsequent succession of S. fallax and then S. fimbriatum reflects
the transition from minerotrophic to more oligotrophic conditions (Wilcox and Andrus, 1987),

however not stable, as visible in the curves of both taxa (Fig. 2; Czerwinski et al., 2021).



Quasi-stable conditions were reached with the appearance of mesotrophic state indicator S.
centrale (Laine et al., 2009) and the spread of Betula at the site (proved by macroremains).
The development of a birch stand points to the progressive drying of the fen. Such conditions
enabled probably the appearance of S. palustre that, among other habitats, occurs in drying
mires, gradually colonized by trees (Melosik, 2006).

Among the TA, the most numerous were Euglypha sp. and Nebela sp., as well as
Assulina muscorum, Corythion dubium, Heleopera rosea, cf. Pseudodifflugia sp.,
Sphenoderia splendida, and Tracheleuglypha dentata. The char=cw -istic feature of this stage
is an almost constant presence of Arcella discoides that mey 1> qicate fluctuations in the water
table (Lamentowicz and Mitchell, 2005). Unstable condiuons may have enabled the
appearance of species characteristic of either dry micronchitats or tolerant of frequent
moisture fluctuations. The former, such as Net 2. tir.cta, Heleopera rosea and Euglypha
rotunda (Koenig et al., 2017; Lamentow: *z #ad Mitchell, 2005; Tolonen et al., 1992), are
indeed well represented in the diagram then. The latter, e.g. Arcella catinus, Assulina
muscorum, Corythion dubium and “ei tropyxis aerophila (Couteaux, 1976, after Smith, 1992;
Tolonen et al., 1992), seem to o=nent as well. Moreover, within the Euglypha sp., the most
abundant were spineless forr,.~ rf E. ciliata and E. compressa. According to Bobrov et al.
(2002), such forms prev il w1 drier habitats in comparison with their spined relatives. This
phase is also characterized by the abundant occurrence of ubiquitous Trinema lineare and T.
enchelys, and unidentified cf. Pseudodifflugia sp. In the period of the latter species dominance
(1986+2-2012+2 CE), the prominent decline of TA diversity was recorded (Shannon
diversity index (H)<1), probably the result of the cf. Pseudodifflugia sp. overrepresentation.

Toward the top, an expansion of some taxa is observed (Fig. 3). Among them were
many species considered indicators of dry habitats, such as Alabasta militaris, Cryptodifflugia

oviformis and Nebela parvula (Bobrov et al., 2002), and besides acid, e.g. E. rotunda and E.



strigosa (Lamentowicz and Mitchell, 2005). However, in the top layer (ca. 5 cm/ last 7-8
years), some of the rich fen taxa became again more abundant (e.g. Centropyxis aerophila,
Cyclopyxis eurystoma) and the taxa connected with the higher water level, such as Euglypha
cristata, E. filifera, E. laevis, and Sphenoderia lenta spread (Bobrov et al., 2002;
Lamentowicz and Mitchell, 2005). This could have reflected the higher minerotrophy caused
by the increase in the water level (Cusell et al. 2012), but the reconstructed DWT does not
confirm it (Fig. 3). Nevertheless, the changes might be connected with the restoration efforts,
undertaken in the last couple of years, which might result in the slu.* recovery of the rich fen.
The transition from rich fen to poor fen is also visite .0 1 A-inferred conductivity that
dropped and oscillated between 35.7 and 302.8 uS/cm fmcan: 192.6 uS/cm). Moreover, the
values of the reconstructed water table decreased to the i.»ean value of 19.8 cm but still

fluctuated (7.4-33.2 cm).

3.2. Non-Metric Multidimensional Scai.ng (NMDS)

The results of NMDS corriew out on TA and plant macrofossils revealed a clear
division between TA commu. it’as related to rich and poor fen habitat (Fig. 4, Supplementary
Data 2a). The highes. siotisucal significance (p<0.001), in relationships between plant
macrofossils and TA, was revealed by Sphagnum fallax, S. fimbriatum, S. centrale,
Scorpidium cossoni, and unidentified herbaceous plants. The strong significance (0.001<p<
0.01) was characteristic of Thelypteris palustris, Sphagnum teres, Pseudocalliergon trifarium,
and unidentified brown mosses. Difflugia pulex was strongly linked to S. fimbriatum, whereas
Nebela collaris to S. fallax. In the case of brown mosses, the strongest link revealed (i)

Lesquereusia spiralis and S. cossoni, and (ii) Heleopera petricola and herbs.



NMDS based on TA and regional/local vegetation, including human impact (derived
from palynological data; Czerwinski et al., 2021), revealed the highest statistical significance
(p<0.001) in relationships between Pinus sylvestris, Betula, Alnus, Salix, the sum of ruderal
taxa (major ruderals, i.e. these wind-pollinated), and cultivated taxa. A strong significance
was recorded for the microscopic charcoal influx and coprophilous fungi (Fig. 5,
Supplementary Data 2b). The most distinct and positive correlations occurred between
cultivated taxa and Quadrulella symmetrica, Difflugia globulosa, Centropyxis platystoma, and
Centropyxis aerophila, whereas cultivated taxa were negatively’ ~o., elated with Arcella
discoides and Difflugia pulex type. Nebela sp. was correlatzu ~1tn the increases in micro- and
macrocharcoal. However, because it was not possible tn 1.~ntify this species to the lower
taxonomic level, this might be a group of species and it .~ould not be interpreted as a reliable
indicator. Heleopera rosea, Trinema lineare, Mew. :12 parvula, and Sphenoderia splendida

revealed strong affinity to Alnus.

4. Discussion

4.1. An abrupt rich to poor 1. *ransition — causes of change

The processes thau lead to further succession stages are almost inevitable, it is usually
a question of time (cf. Jabtonska et al., 2020). The vegetation reaches the level above which
the contact with mineral-rich groundwater is limited (Rydin and Jeglum, 2013). At the same
time, rich fens undergo natural acidification. This contributes to the spread of Sphagnum
which accelerates the process and results in the vegetation shift and the development of poor
fen (Rydin and Jeglum, 2013). The shift might be quite fast and irreversible when Sphagnum
expands (cf. Granath et al., 2010; Faber et al., 2016). Moreover, Kooijman (2012) shows that

in nutrient-rich fens, where Calliergonella cuspidata (a taxon of similar preferences to C.



cordifolium, Fig. 2) is a dominant species, the succession to poor fen conditions may progress
faster. In the case of the Kazanie fen, from the rapid decline of Scorpidium scorpioides to the
development of poor fen conditions, ca. 30 years passed (Fig. 2) and, at the end of the rich fen
phase, Calliergon cordifolium was an important species. However, the transition was not
synchronous on the entire surface, as S. scorpioides was still present in the central part 10
years ago. It disappeared a couple of years later due to a water table decrease and a succession
of reeds and willows on the fen surface (cut in the process of restoration). Nevertheless, in the
palaeoecological research, similar quick changes were attribute” rather to extrinsic factors
like climate and human activity (comp. Lamentowicz et al , 29+; Payne and Pates, 2008;

Tahvanainen, 2011; Pedrotti et al., 2014).

The shifts in TA and vegetation started in 1905+7 CE and they demonstrate slow
acidification and decreasing conductivity (bot:- TA-Inferred; Fig. 3). At the same time, there
were no sharp shifts in TA-inferred DWT (" (g.3) that could indicate human intervention
(drainage) or climate influence (drousht; (¥. Singer et al., 1996). However, Czerwinski et al.
(2021) suggest that in the 1950°s Cr, tne intensification of agriculture took place in the
region. It could result in the ircre2sed deliveries of phosphorous (P) and nitrogen (N) to the
fen because, in the seconi 1ot of the 20" century CE, many agricultural areas became
eutrophic and hypereutro hic due to the use of fertilizers and manure (Lamers et al., 2015).
The eutrophication of the fen could accelerate its acidification and further transformation
(Kooijman, 2012). Indeed, in 1955+7 CE, the vegetation shift, connected with acidification,
was observed (Fig. 2). Moreover, many authors (Bakker et al., 1994; Verhoeven and Bobbink,
2001; van Diggelen et al., 2015) stressed that the eutrophicated fens undergo a fast
transformation, such as in the case of the Kazanie fen (Fig. 2 and 3). Besides, in the transient
phase, the highest micro- and macrocharcoal accumulation rates were recorded (Czerwinski et

al., 2021). It might have been a result of combined (i) severe winters that forced people to



burn more wood and fossil fuels, (ii) the grass burning that was a popular method of
fertilization then, and (iii) increased frequency of droughts (Fig. 6) that contributed to local
fires. Hence, most probably, the first changes might have been accelerated by the indirect
human impact. The final transition to poor fen conditions took place at 1982+3 CE and it
progressed within less than one decade. Numerous TA species that occurred over the last two
centuries disappeared (Fig. 3). These changes, judging by the magnitude of the sudden DWT
increase, were an effect of digging a drainage ditch then (still present in 2008, Michatowska
and Rymon-Lipinska, 2008). It successfully drained the area ir the farthcoming years,
contributing to the acidification process and changes in ver,ew.*ton and microbial

communities, revealing pronounced declines in TA divers:*v (Figs 2, 3 and 6).

Climate affects peatlands through the inflirence on cheir hydrology (Holden, 2006;
Labadz et al., 2010). Moreover, it may indirec:'v ennance acidification because desiccation of
peat leads to the production of acidifying 1 " ions (Lamers et al., 2015). Moreover, Laiho et al.
(1999) report that after a drainage, the are:'ndwater influx is limited and uptake of base
cations by the advancing trees, to jeuer with the longer nutrient retention in the biomass, may
further increase the acidity in *he ~urface soil. Hence, climate-driven drying of peatlands
results in desiccation, fol’ov.~a py oxidation and acidification of the environment (comp.
Cusell et al., 2013). Durii.y the Holocene, many dry and wet shifts were recognized in peat
profiles and linked with hydro-climatic events (e.g. Bond et al., 1997; Magny, 2004). Such
climate shifts contributed to the changes in vegetation and trophic conditions at other sites
(e.g. van der Knaap et al., 2011; Dobrowolski et al., 2016). The more recent influence of
climate on mires has also been recognized (e.g. Payne and Pates, 2008). The early record of
dry years in Poland, from 1851 to 1950 CE (Posucha IMGW, 2010), was reflected with quite
a good accuracy in the reconstructed DWT, i.e. concurrent drier conditions on the Kazanie fen

(Figs 3 and 6). However, in the last century, droughts became more common (cf. Lloyd-



Hughes and Saunders, 2002). In Poland, about 20 dry years were recorded from 1950 to 2020
CE (Kasprzak and Salamon, 2020). Some of them positively correspond with the TA-inferred
DWT, but they seem to be more chaotic than those between 1851+26 and 1950+7 CE.
Nevertheless, the general shift toward drier conditions, reconstructed from TA, started in the
1980’s CE and was concurrent to the final transition from rich to poor fen. This may imply
that before 1950+7 CE, dry shifts on the Kazanie fen were generally climate-induced. Later,
autogenic processes, human pressure and climate warming synergistically affected the fen.
This is visible in some water table drops in Kazanie, simultanenis .~ the drought events. The
beginning of the transition phase (1950+£7-1965+5 CE) toc« .'ace in the period of the
increased number of meteorological droughts, when three ~xtreme droughts per decade
occurred (Przybylak et al., 2020, Fig. 6). This suggests v 3t their frequency might have
influenced the fen transformation as well. Prolar,_ad droughts have a similar effect, as shown
by the example of kettle hole mires, whe: 2 pr.at mat expansion occurred rapidly, as a
threshold response to extreme water-lev ~1 fluctuations (Ireland and Booth, 2011). What is
striking, in the case of Kazanie fer_th final switch into poor fen conditions (1982+3 CE)
occurred in the decade when tr." positive anomaly in annual temperatures in Poland began
(Fig. 6). Since then, annual wwmr.eratures grow constantly (IPCC, 2019), but without the
changes in the frequenc, or droughts in the decadal time window (Przybylak et al., 2020).
Global warming that enhances evapotranspiration further limited the contact of the fen
vegetation with the groundwater (Lamers et al., 2015). That way, the effect of the drainage

ditch strengthened and sustained the path toward ombrotrophy.

Nowadays, the state of the mire is far from natural, despite being perceived that way
due to Sphagnum occurrence. Hence, Kazanie fen should be classified as the anthropogenic
ecosystem that is an effect of various overlapping processes, such as vegetation succession,

climate changes, drainage, and eutrophication. Their combination contributed finally to the



transition from rich fen to poor fen conditions (comp. Czerwinski et al., 2021). Despite the
complicated history, our study site provides a long-term background that is desired in modern
conservation studies (Bowman et al., 2017) and might be used to define the restoration target
(Rolecek et al., 2020). However, due to global warming, water shortage and degradation of

the fen, the target will not be easy to reach (Vellend et al., 2017).

4.2. Quality of testate amoebae indicators of the rich-poor fen transformation

Some testate amoebae reflect greater sensitivity to dryin,* acidification and probable
eutrophication, making them potential indicators of such chan es. According to our data, the
most sensitive to the combined effect of probable nutrier.c e..~*chment and lowering of the
water table are Awerintzewia cyclostoma, Hyalosphe. *a p atystoma, Pyxidicula cymbalum, P.
operculata, and P. patens. All these testate amor o072 disappeared/retreated in 1970+4 CE,
when the drop in the water level (DWT=1€ .m, ~ig. 3), an effect of the hydrological drought
(Farat et al., 1998), was recorded. Their reac..on is adequate to their ecological preferences
for the aquatic or wet habitats (Heckar . 1998; Jax, 1985; Lamentowicz et al., 2013b;
Siemensema, 2019). However, ti.> droughts were recorded earlier and none resulted in the
disappearance of these TA faxa herore. Hence, their retreat might be connected with the

concurrent eutrophicatio.: of ‘he adjacent area.

The acidification connected with the sudden shift in moss communities toward ones
dominated by Sphagna might have been responsible for the disappearance of Centropyxis
aerophila sphagnicola, Centropyxis ecornis, Centropyxis gasparella, and Cyclopyxis kahli.
Representatives of Centropyxis genus are generally considered opportunistic tolerant to
various trophic conditions and dust and heavy metal pollutions, but pH is a controlling factor
in their distribution in lakes (Patterson and Kumar, 2000). It is true also for peatlands
(Lamentowicz and Mitchell, 2005), including the Kazanie fen, where lowering of pH allowed

Sphagna encroachment (cf. Lamers et al., 2015) that caused the disappearance of most of



Centropyxis representatives (Fig. 3). However, some of them, such as C. discoides and C.
delicatula, seem to be more sensitive to progressing acidification, as they reacted faster than
moss communities and retreated/disappeared earlier than Sphagna appeared, i.e. before
194048 CE. Cyclopyxis kahli, which is often considered indicative of oligotrophic conditions,
responded similarly (Schénborn, 1967). Nevertheless, it can occur in mesotrophic and even
eutrophic waters (Prentice et al., 2018), as well as in the soil (Warner, 1994). According to
Opravilova and Hajek (2006), C. kahli has its optimum in calcareous fens dominated by
brown mosses, so progressing acidification in the Kazanie fen <~arn.~ to explain its

withdrawal.

The group of amoebae that reacted to fen transroir.macion consists of Arcella vulgaris,
Microchlamys patella and Quadrulella symmetric2 “'hese taxa relative abundance increased
after the drought episodes in 1969 and 1970 C:~ but disappeared when the drainage ditch was
probably dug ca. 1985 CE (Fig. 3). In earno research, Microchlamys patella occurred in wet
or even aquatic habitats (Vincke et al , 20C4; 2006). Moreover, studies on the surface samples
along a poor-rich gradient, done ky »2mentowicz et al. (2011), revealed that M. patella is
abundant in calcium-rich brovm i rosses habitats. However, this species expanded in the
transition zone, where th: w.oter level was generally lower than before 1970+4 CE (Fig. 3).
Simultaneously, the highe st charcoal influx was recorded in the period of M. patella optimum
(Fig. 6), which suggests that potential dust fallout (with calcium, cf. Lurdes Dinis and
Gongalves, 2020) was also present. It might have enriched the fen and compensated for the
effect of limited supplies of calcium-rich groundwater. Its later disappearance, at the
beginning of the poor fen section of the profile, happened due to the habitat transformation
resulting in low pH and low water level. Hence, a probable explanation for the M. patella
spread in the transition period is eutrophication (by dust). A pattern similar to M. patella was

observed in the case of Arcella vulgaris. The research conducted in lakes in Mexico showed



that A. vulgaris might be indicative of stressful environmental conditions, as it was common
in water with higher levels of heavy metal contamination (Regalado et al., 2018). The authors
also suggested that this species has similar ecological preferences both in temperate and
tropical regions (Regalado et al., 2018). It might be confirmed by Patterson and Kumar
(2000), who also connected the occurrence of A. vulgaris with higher contamination with
heavy metals in the research regarding Swan Lake in Canada. The link between
contamination and eutrophication was provided by Su et al. (2014), who showed that the use
of fertilizers contributes to soil contamination with heavy meta's r.~nce, the expansion of A.
vulgaris at that time might have been linked with the incre-se!! application of fertilizers.
Moreover, it also fits an explanation regarding increasing Just fallout indicated by micro- and
macrocharcoal accumulation in peat (Fig. 6). The last ta..on, Quadrulella symmetrica,
confined its presence to the transition zone most,, Cpravilova and Hajek (2006) link this
species with calcareous fens dominated £ brown mosses. In our study, Quadrulella
symmetrica revealed a positive link wiw cultivated fields in the catchment (Fig. 5). This
species also occurred during the srreal «f eutrophent Calliergon cordifolium (but it is not
visible in NMDS analysis, Fig. 1)(kooijman, 2012). Its expansion might have been connected
with eutrophication inducen ./ *ne use of fertilizers in the catchment area of the fen.
Kooijman and Bakker 2 9y5) found a relationship between increased nutrient levels and the
replacement of Scorpidium scorpioides by Calliergonella cuspidata in fens, the latter occurs
in similar habitats as Calliergon cordifolium (Kooijman, 2012; https://cisfbr.org.uk/).
According to Kooijman and Bakker (1993), eutrophication seems to have little effect under
wet conditions but might be important in a drier environment, such as in the case of the
Kazanie site. The later research by Kooijman (2012) confirmed the link between the
occurrence of C. cuspidata and nutrient enrichment. To sum up, not only a decrease in the

water table during the rich to poor fen transition but also an increased application of fertilizers



and dust deposition might have contributed to the establishment of optimum habitat for M.
patella, A. vulgaris and Q. symmetrica. Nonetheless, it must be stressed that the final turnover
toward poor fen conditions was a very fast process and M. patella is the best example of how
small might be the difference between optimal and intolerable habitat. After ca. 200 years of
presence, M. patella disappeared within 2 years, which proves the high sensitivity of this

species to changing conditions.

From 1982+3 to 2017 CE drought-tolerating TA taxa pr2vailed (Fig. 3, cf.
Lamentowicz et al., 2011) in the studied area of the Kazanie f:n. Zven though TA-inferred
DWT failed to reflect the occurrence of all droughts, as fo. the period before 19507 CE, it
still indicated some of them (Fig. 3). A similar resporse .‘as revealed by extensively drained
peatlands in the Orawa-Nowy Targ Depression, whe, e the potential impact of droughts was
marked by TA communities of xerothermic s cies (cf. Kotaczek et al., 2018). The poor fen
stage was characterized by rapid and recui.” nt events of domination of Trinema lineare,
Trinema enchelys, and cf. Pseudodiff':'aic. sp. These taxa were recorded earlier, during the
rich fen stage, but they did not vi.ib, " influence the TA diversity (Fig. 3). Trinema sp. shells
are not embedded with thick crguic matter (Mitchell et al., 2008b; Aoki et al., 2007), which
makes them less resistant w 1ecomposition than other testate amoebae possessing
agglutinated (e.g. Centroyyxis sp., Difflugia sp.) or organic-coated idiosomic tests (e.g.
Assulina sp.) (Payne et al., 2012; Marcisz et al., 2021). Hence, their preservation depends
highly on the conditions of peat accumulation. The highest frequency of Trinema sp. shells
occurs usually in the topmost sections of peat columns, as was recorded in other fens and bogs
(e.g. Lamentowicz et al, 2013; Kotaczek et al., 2018). Moreover, even though there is still a
deficiency of experimental studies regarding the rate of TA reproduction (Marcisz et al.,
2020), such small species like Trinema and Pseudodifflugia reproduce faster than larger TA

(Heal, 1964), which contributes to the rapid increases in their frequency. When we add that a



drier microhabitat, as in the case of poor fen stage at the Kazanie site, promotes TA of smaller
body size (Marcisz et al., 2016; Marcisz et al., 2020), this all together leads to the smaller
biodiversity of poor fens. Moreover, the alkaline conditions provided by brown mosses, as
were at the site before 1982+3 CE, support a high diversity of TA in comparison with more
acidic Sphagnum-dominated peat (Lizonova and Horsék, 2017). The study by Lizonové and
Horsék (2017) also shows that the diversity of rich fen TA might have been underestimated
due to the standard number of tests counted per sample (N=150). Hence, the differences in
TA diversity between rich and poor fens might be even more si*hsw.tial. Summing up, rapid
decreases in the water table on the poor fen favours small ™A *hat can reproduce fast, which
contributes to the lower diversity of TA during dry spells. However, further experimental
research on small TA reproduction rates is highly desira.'e for a better understanding of the

mechanisms that influence TA diversity.

Conclusions

1. A high-resolution study on tt e . ~nsformation from rich to poor fen, based on testate
amoebae (TA) and plant \.»acrufossils, revealed the long-term resistance of rich fen
habitats during the Indu.trial Period. The transformation into poor fen was linked with
many coinciding ‘actc rs, making the unambiguous culprit impossible to point. Climate
warming, combin~.d with autogenic processes (hatural peat growth), led to the loss of
contact between the groundwaters rich in calcium and the moss layer. The increased
use of fertilizers in the fen vicinity probably stimulated eutrophication, which also
contributed to faster fen transformation. Finally, melioration, linked with regularly
occurring droughts (symptoms of global warming), settled poor fen conditions and a
path toward ombrotrophy. The reversion of the process is difficult, as restoration
efforts on degraded rich fens may be hampered by disturbed water balance and climate

changes.



2. Our study revealed that transformation from rich to poor fen habitat leads to a decline
in TA diversity. The transitional stage provided habitat for TA Quadrulella
symmetrica and Difflugia globulosa, which distinctly revealed optima at that time.
Moreover, Microchlamys patella and Arcella vulgaris, taxa characteristic of brown
mosses, also positively reacted to the fen transformation. Their sudden rises might be
considered indicators of such changes. What is striking, Microchlamys patella
disappeared (or it became too scarce to be detected in TA analysis) within 1-2 years
after 250 years of regular and frequent occurrence. This shy ~s that some TA taxa are
very sensitive to environmental disturbances and m:gi.* be a diagnostic tool for

detecting rapid ecosystem changes in the era of the alobal climate crisis.

3. The establishment of poor fen conditions nnt only caused changes in vegetation but
also altered TA taxonomic content anc vesuited in a lower diversity of TA. In general,
drought-tolerant taxa dominated th. (A assemblages. Among them, the most frequent
were Trinema lineare, Trinem? enchelys, cf. Pseudodifflugia, Nebela tincta, and
Assulina muscorum. How :ve: even though these are taxa linked with low water
tables, their record is cne ~f the rapid and recurrent events of domination that might be
connected with drought occurrences. This shows that even TA assemblages indicative
of dry conditions 1 1ay reveal susceptibility to droughts. The result might be the

depletion of TA diversity due to the promotion of small size taxa.
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Fig. 1. The locality of the Kazanie fen. A — on the aerial pl oto, raphy. B — on the map of

Poland.

Fig. 2. Plant macrofossils in the Kazanie fen (Cz.. . 1aski et al., 2021).

Fig. 3. Short percentage diagram of the m st ‘reqJent testate amoebae (TA) in the Kazanie
profile. The grey area reflects percentrae values exaggerated 10 times. Red belts reflect
periods of droughts (Kasprzak and Salanon, 2020; Nauka o Klimacie, 2016; Posucha IMGW,

2010).

Fig. 4. NMDS scatter plot shc.vng the correspondence between peat-forming plants
(reconstructed from pla..* macrofossils; Czerwinski et al. in review) and TA. Note that the
thickness of lines expressing vectors reflects the p-values. TA abbreviations: arcsp — Arcella
sp., arcart — A. cf. artocrea, arccat — A. catinus, arccon — A. cf. conica, arccre — A. cf.
crenulata, arcden — A. dentata, arcdis — A. discoides, arcgib — A. gibbosa, archem — A.
hemispherica, arcvul — A. vulgaris, argsp — Argynnia sp., argden — A. dentistoma, assmus —
Assulina muscorum, asssem — A. seminulum, awecyc - Awerintzewia cyclostoma, censp -
Centropyxis sp., cenacu — C. aculeata, cenacuobl — C. aculeata oblonga, cenaer — C.

aerophila, cenaersph — C. aerophila sphagnicola, cencas — C. cassis, cencon — C. constricta,



cendel — C. delicatula, cendis — C. discoides, ceneco — C. ecornis, cenecogua — C. ecornis
quadripannosa, cengas — C. gasparella, cengib — C. gibba, cenorb — C. orbicularis, cenplg —
C. plagiostoma, cenplt — C. platystoma, censpi — C. spinosa, cycsp — Cyclopyxis sp., cyceur —
C. eurystoma, cyckah — C. kahli, cordub — Corythion dubium, crymin - Cryptodifflugia cf.
minuta, crycre — C. crenulata, cryovi — C. oviformis, difsp — Difflugia sp., difacc — D.
accuminata, difcap — D. cf. capreolata, difele — D. elegans, difgeo — D. cf. geosphaira, difgig
— D. gigantea, difglo — D. globulosa, difmam — D. cf. mammillaris, difmin — D. cf. minuta,
diflan — D. lanceolata, difluc — D. lucida, difobl — D. oblonga, ~itp ! — D. pulex type, difpyr —
D. cf. pyriformis, difrot — D. rotunda, difrub — D. rubescer., <''gsp — Euglypha sp., eugcil —
E. ciliata, eugcilgla — E. ciliata glabra, eugcom — E. comp.essa, eugcomgla — E. compressa
glabra, eugcri — E. cristata, eugfil — E. filifera, euglar — ;= laevis, eugrot — E. rotunda, eugstr
— E. strigosa, helsp — Heleopera sp., helpet — F!. atr,cola, helros — H. rosea, helsph — H.
sphagni, helsyl — H. sylvatica, hyasp — H ralcsphenia sp., hyacun — H. cuneata, hyapap — H.
papilio, hyapla — H. platystoma, lagsph - Lagenodifflugia cf. sphaeoroides, lesspi —
Lesquereusia spiralis, lesepi — L. eniscoraium, micpat — Microchlamys patella, nebsp — Nebela
sp., nebali — N. aliciae, nebbol. - N. bohemica, nebcol — N. collaris type, nebgal — N. galeata,
nebmil — Alabasta militaris. ,.=kpar — Nebela parvula, nebpen — N. penardiana, nebtin — N.
tincta, nebtinmaj — N. u.>cwa major, netcor — Netzelia cf. corona, padlag — Padaungiella
lageniformis, parirr — Paraquadrula irregularis, parcya — Parmulina cyatus, parobt — P.
obtecta, phygri — Physochila griseola, psesp — Pseudodifflugia sp., pyxsp — Pyxidicula sp.,
pyxcym — P. cymbalum, pyxope — P. operculata, pyxpat — P. patensquasym — Quadrulella
symmetrica, sphfis — Sphenoderia fissirostris, sphlen — S. cf. lenta, sphspl — S. splendida,
traden — Tracheleuglypha dentata, triarc — Trigonopyxis arcula, trimin — T. minuta, tricom —
Trinema complanatum, trienc — T. enchelys, trilin — T. lineare. Other abbreviations: Bryum

pseudotr. — Bryum pseudotriquetrum, Herbs — unidentified herbs.



Fig. 5. NMDS scatter plot showing the correspondence between human activity and changes
in woodlands (main taxa; reconstructed from palynological and micro- and macrocharcoal

data; Czerwinski et al., in review) and TA. Note that the thickness of lines expressing vectors
reflects the p-values. Abbreviations: copr. fungi — coprophilous fungi, MAC — macrocharcoal

accumulation rate, MIC — microcharcoal accumulation rate. TA abbreviations as in Fig. 4.

Fig. 6. The rich to poor fen transformation in the light of TA indicators across climate and

human impact changes.
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Direct habitat for testate amoebae - occurrence within the coring spotand probably in its vicinty

Vicinity of the coring spot
andior or fen outskirt

Potentially occuring within the coring spot andior its direct vicinity
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Climate changes in Poland

The most characteristic testate amoeba indicators of peatland transformations
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Highlights

- Multi-proxy study on the rich fen - poor fen transition during the Anthropocene
- New high-resolution data on testate amoebae from fens in Central Europe

- Human activity and global warming as the main drivers of rich-fen loss

- Long-term palaeoecological record for ecological restoration

- Testate amoeba as susceptible indicators of rich fen degradation



