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Abstract

Improving charge carrier mobilities in organic semiconductors is a challenging task

that has hitherto primarily been tackled by empirical structural tuning of promis-

ing core compounds. Knowledge-based methods can greatly accelerate such local ex-

ploration, while a systematic analysis of large chemical databases can point towards

promising design strategies. Here, we demonstrate such data mining by clustering an in-

house database of > 64.000 organic molecular crystals for which two charge-transport

descriptors, the electronic coupling and the reorganization energy, have been calculated

from first principles. The clustering is performed according to the Bemis-Murcko scaf-

folds of the constituting molecules and according to the sidegroups with which these

molecular backbones are functionalized. In both cases, we obtain statistically signif-

icant structure-property relationships with certain scaffolds (sidegroups) consistently

leading to favorable charge-transport properties. Functionalizing promising scaffolds
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with favorable sidegroups results in engineered molecular crystals for which we indeed

compute improved charge-transport properties.

1 Introduction

In the last few years, organic semiconductors have received considerable attention due to

their comparatively small ecological and economical footprint, as well as due to their great

versatility promising a wide spectrum of novel material properties.1–5 Their potential uses in-

clude organic field effect transistors (OFETs),6 photovoltaics (OPVs),7 light emitting diodes

(OLEDs)8 or even sensors.9 A major limitation to the commercial application of this promis-

ing class of materials has been the failure to reproducibly yield high charge-carrier mobilities

as a prerequisite for the electronic performance.10,11 Thanks to intense research efforts,12–15

a number of materials now exist with mobilities exceeding even that of amorphous silicon.16

Yet, the sheer endless materials spaces constituted by assembling building blocks of func-

tionalized organic molecules raise the suspicion that these few materials are nothing but the

top of an iceberg.

So far, experimental discovery of new materials commonly follows a cycle of synthe-

sis, device manufacture, performance evaluation and subsequent molecular tuning, based on

chemical intuition, experience and—to a certain degree—trial and error.5,6,17 Theoretical

investigation is then often used to understand and exploit the key charge-transport mech-

anisms.18–22 Although highly successful, such efforts are limited by the pace of iterative

improvement, while only locally exploring the chemical space around a compound family.

As a more recent development, a number of groups have therefore started to conduct in sil-

ico materials discovery calculations,23–28 to guide synthetic studies to promising targets. In

these screening approaches, readily available or easily calculable properties of the system—

so called descriptors—which are correlated with critical observables of the system (such as

the carrier mobility) are determined for a larger set of candidate materials. These then
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yield a ranking of the screened candidate materials based on their suitability as an organic

semiconductor.

In other fields of science, such as heterogenous catalysis,29–31 superhard materials,32 or

drug discovery,,33 such screening studies are already followed up with modern large-scale

data mining or even machine learning approaches to extract more general design criteria.34

Corresponding approaches undertaken for organic semiconductors (OSCs) have so far been

limited to a much smaller scale.35,36 In this work, we now take this step and combine the sta-

tistical tools of modern data mining approaches with the molecular analysis methods known

as cheminformatics to uncover guiding principles for the design of organic semiconducting

materials.

1.1 Descriptor-Based Data Mining of OSCs

Two of the most prominent charge-transport descriptors for organic semiconductors are

the network of electronic couplings |Hab| between microscopic sites involved in the charge

transport and the reorganization energy λ, which measures the cost of accommodating a

new charge state after the carrier has moved to the next site. While |Hab| and λ are most

closely associated with the small polaron hopping mechanism of carrier transport known from

Marcus theory,37,38 both also significantly influence the carrier mobility in other transport

regimes.39 In evaluating λ, usually only the dominant local, intra-molecular reorganization

energy is considered.40 In contrast to |Hab|, the reorganization energy can then be estimated

cheaply as a single site property, while at the same time decisively—in Marcus-like models

even exponentially—determining the carrier mobility.18,41

A number of screening studies thus initially focused on the optimization of λ through

modification of molecular sidegroups in, for example, dinaphtho-thienothiophene (DNTT),42

triarylamine-based donor molecules for solar cells,43 or high-performance polymer semicon-

ductors.44 Taken together, the studies impressively demonstrated how in silico exploration

of material spaces can efficiently identify high-performance organic semiconductors. While
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similar approaches are now also starting to surface in experimental studies,45 most recent in

silico design studies start to optimize λ in newly generated derivates. The design problem

is thereby mainly tackled by construction and computational screening of highly focused

molecular libraries based on a number of different strategies. These range from the genera-

tion of polymer semiconductors from preselected building blocks41,46 to the optimization of

λ through heteroatom replacement,47,48 introduction of sidegroups41,48–55 or ring fusion.56,57

Modern data-driven approaches instead pursue a complementary strategy. Rather than

screening a focused library for potential candidate materials, in particular data mining tech-

niques unveil correlations in large data sets and thereby provide leads for a rational opti-

mization beyond the originally considered design space.58–60 Size and especially diversity of

the underlying data source are thus key for the generality and transferability of the identified

correlations. A suitable representation of the data critically determines the efficiency with

which these correlations can be extracted, whether by machine learning or more traditional

fitting techniques. In several fields, development and application of such knowledge-based

approaches has already led to a greatly accelerated materials design.61–63

Here, we show, that a data-mining rooted in the chemical understanding of the structure—

often termed chemical intuition—can indeed yield general design principles for organic semi-

conductors. To this end, we concentrate on the class of crystalline molecular organics and an-

alyze an in-house dataset containing > 64.000 experimentally characterized mono-molecular

crystals. This dataset was originally assembled to computationally screen for hitherto un-

known organic crystals with favorable charge-transport properties.25 As further described

below, it contains an unprecedented molecular diversity and a wealth of promising semi-

conductors as identified on the basis of computed high electronic couplings |Hab| and low

reorganization energies λ. In this work, we now perform a two-step data mining proce-

dure on this dataset. Using the concept of Bemis-Murcko scaffolds64 that has already been

successfully used in pharmaceutical research, we establish a useful data representation that

uncovers statistically significant performance differences between the individual molecular
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building blocks of the crystals. Clustering the data first according to their Bemis-Murcko

scaffolds, i.e. the molecular backbones, we find clear structure-property relationships, with

a range of scaffolds consistently leading to favorable charge-transport properties, despite

the positional disorder brought about by differing sidegroups and anchor points on them.

In a second step, we then cluster the data according to the sidegroups that are attached

to the molecular scaffolds. Again, we obtain clear relationships with a range of sidegroups

generally lowering the reorganization energy, regardless of the scaffold they are attached to.

These findings suggest the combination of certain, high-coupling scaffolds with reorganization

energy-reducing sidegroups as a promising design criterion for optimized charge transport

in organic molecular crystals. We validate the transferability and accuracy of this criterion

by a corresponding sidegroup-engineering of molecular testsets and indeed find significant

improvements in the charge-transport properties.

2 Methods

2.1 Dataset

Our study is based on the “64k-dataset”,25 containing information on 64.725 organic crystals

composed of 61.770 unique molecular structures, extracted from the Cambridge Structural

Database65 and screened for favorable charge-transport related descriptors λ, |Hab|. All

crystals are mono-molecular, i.e. they contain only a single type of molecule. For a chem-

informatics based analysis, xyz-coordinates of the molecular structures were extracted from

the crystal and converted to canonical smiles strings66 using Openbabel.67 All subsequent

molecular analysis was carried out using the RDKit.68 Marvin was used for drawing chemical

structures.69 Pymatgen was used to analyze the occurrence of molecular point groups and

crystal space groups.70
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2.2 Electronic Structure Calculations

The computational settings and methodology were described in detail in the preceding

work that established the “64k-dataset”.25 Thus, we here only briefly summarize them for

completeness. Charge-transport related descriptors λ and |Hab| were computed using first-

principles Density-Functional Theory (DFT) at the GGA (BLYP71,72) level of theory. All cal-

culations were done using the FHI-aims package73,74 employing its well-established basis-sets

and integration grid settings, detailed below in this section. Our work on the “64k-dataset”

showed that even semi-local DFT was able to recover trends among different crystals for

both |Hab|75 and λ.25 For each crystal in the dataset, the nearest-neighbor molecular dimers

were first extracted by a purpose-built python program. Electronic couplings |Hab| for each

dimer were then calculated using the fragment molecular orbital approach (FO-DFT)76 in

the H2n−1@D + A variant.75 The electronic wave functions were expanded in an extended

”tier 1” basis set of FHI-aims using light integration settings. The highest electronic cou-

pling among all dimers was extracted from this data and constitutes the |Hab| entering the

dataset.25 Keeping in mind that the “64k-dataset” consists solely of crystals composed of

a single species of molecule each, the internal reorganization energy was evaluated for each

molecule based on the 4-point scheme,77 using a non-periodic QM/MM embedding setup.25

In this ONIOM-based scheme,78 a shell of nearest neighboring molecules mimics the steric

hindrance due to a realistic solid-state environment during geometry optimization of a cen-

tral molecule. The shell of nearest neighbours was thereby extracted based on the minimal

distance found between the atoms of any two molecules in the crystal. All molecules that

approach the central molecule to within this distance times 1.5 were included in the neighbor

shell. Then, keeping the shell of nearest neighbors fixed, the local structure optimisation of

the central molecule was performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS)

implemented in the Atomic Simulation Environment79 using a convergence criterion fmax <

0.05 eV/Å. The MM parts of these calculations were based on the LAMMPS package80

with the ”Universal Force Field” (UFF)81 and the QEq charge equilibration scheme82 in
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order to determine interaction parameters and fixed partial charges, respectively. To ensure

maximum accuracy of our main descriptor, we re-calculated all reorganization energies λ in

the present database using default ”tight” settings and the respective ”tier 2” basis-sets of

FHI-aims.

2.3 Statistical Methods

We used the two-tailed Mann-Whitney-U test83 to assess whether two samples are drawn

from the same distribution (null hypothesis) or not (alternative hypothesis). Note that the

Mann-Whitney-U test is non-parametric and therefore avoids assumptions on the underly-

ing distributions. To account for the great number of statistical tests we carried out, we

corrected the computed p-values for each descriptor using the false discovery rate correction

of Benjamini-Hochberg,84 as implemented in the statsmodels package.85 These corrected p-

values are then named q-values. Results were marked statistically significant, if the q-value

was found to be below 0.05, i.e. if the probability that the statistical testing wrongly rejects

the null hypothesis is smaller than 5 %. Similar methods and criteria are commonly used in

Gene Set Enrichment Analysis86 and have also been applied to cheminformatics87,88 for the

identification of active compound series.

3 Results

3.1 Molecular Scaffolds

Compared to earlier, focused studies on OSCs, the dataset used in this study covers a wide

range of molecular diversity to ensure the generality of our data mining results. This is

reflected by 83 crystal space groups occuring at least 3 times in the dataset, while the mono-

molecular building blocks are correspondingly distributed over more than 20 molecular point

groups. The molecules comprise H, B, C, N, O, F, Si, P, S, Cl, Se, Te, Br, I, and As species

and therewith cover the entire range of elements commonly found in OSCs. As further
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Figure 1: Illustration of the Bemis-Murcko partitioning scheme. For two example molecules,
the decomposition into scaffold and sidegroups is illustrated by highlighting the scaffold in
light blue on the left and by highlighting the sidegroups on the right.

specified below, a variety of molecular backbones is contained in the database, featuring

single to multiple (hetero)cycles. These backbones are functionalized with 4229 different

sidegroups, 828 of which occur in more than three different crystals.

In order to extract correlations from such a diverse set of data, a suitable representation

is required that collapses its dimensionality to a tractable size. In contrast to more abstract

substructure or statistical learning based approaches,89 we here pursue a chemically intuitive

concept that partitions the molecular building block of the organic crystal into ring systems,

linkers and sidegroup atoms. The Bemis-Murcko (BM) scaffold64 is thereby specifically de-

fined as the molecular core comprised of connected ring systems and their linkers, resulting

after removal of all sidegroup atoms. Figure 1 provides two illustrative examples of this

decomposition scheme. While BM scaffolds have so far mainly been used in medicinal chem-

istry to study properties of drug-like molecules,90–92 the concept is also well-suited for our

purpose. It mainly extracts π-conjugated ring systems which to date almost exclusively form

the basis of molecular electronics.93,94 The scaffold also constitutes the largest part of the

molecule which is likely most decisive in terms of electronic structure, shape, conformational

flexibility87 and possibly geometric arrangement in the crystal. Consequently, we disregard

some structures in the “64k-dataset” where very extensive sidegroups constitute more than
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50 % of the non-hydrogen atoms.

Using this BM representation allows us to cluster the dataset entries based on their

respective scaffolds. In order to obtain representative sample sizes, we required each such

cluster to contain at least 15 crystals. Although this rigorous filtering discards many clusters

due to too small cluster sizes, it leads to a well-analyzable subset of the “64k-dataset” that

contains 7.569 molecular crystals distributed over 195 scaffold clusters. These molecular

crystals are made of 6.936 unique molecules, since 633 crystals appear as polymorphic struc-

tures or had entered the Cambridge Structural Database more than once, e.g. coming from

different reported experimental sources. Nevertheless, each scaffold cluster comprises at least

10 unique molecules and we provide a list of BM cluster scaffolds, the detailed distributions

of cluster sizes, as well as |Hab| and λ values in this subset in the Supporting Information

(SI) Figs. S2-4. For the remainder of the study we will focus on this data subset and will

consistently refer to it as our database.

In Fig. 2 we first analyze the median over |Hab| and λ for each scaffold cluster and contrast

it with the corresponding medians over the entire database. This provides a chemically

intuitive assessment of the performance and tuning potential of each particular scaffold.

Within the scope of structures in each scaffold cluster, this averaging step accounts for

changes in electronic and crystal structure, brought about by differing anchor points of the

varying sidegroups, thus to a certain extent accounting for the so called positional disorder95

in each scaffold.

To provide a reference of a well-performing scaffold, we highlight in Fig. 2 the anthracene

scaffold cluster. With anthracene a well-known base material for organic electronics,96 this

reference cluster is predominantly composed of high charge-carrier mobility crystals with

relatively low λ and high |Hab|. Compared to this reference cluster, there is a wide spread of

the median descriptors among the 195 scaffold clusters. In particular, there are many scaf-

folds with exceedingly poor median charge-transport characteristics (very high λmed,scaffold

and/or very low |Hab|med,scaffold). On the other hand, there are also several scaffold types
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Figure 2: Top: Scatterplot displaying the median |Hab|med,scaffold and λmed,scaffold for each
of the 195 scaffold clusters. Orange crosses mark clusters with a |Hab| and λ distribution
significantly differing from each of the respective background distributions, and blue crosses
mark clusters with no such significant difference. The medians of the two descriptors over
the entire dataset are marked with dashed lines. The anthracene cluster is highlighted in red
as a reference cluster containing well-known high charge-carrier mobility crystals. Bottom:
Examples of BM-scaffolds further discussed in the text. The datapoints for these scaffolds
are labeled and depicted in green color in the top panel.
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that exhibit at least as favorable characteristics as the anthracene reference cluster. Note,

that in particular improvements in the reorganization energy, i.e. a decrease, can thereby

also readily compensate for a deterioration in the electronic coupling (or vice versa). Within

a Marcus model, a 50% improvement (deterioration) of λ could for instance tolerate a de-

crease (increase) of |Hab| by up to 18 meV (26 meV) to still yield the same hopping rates,

and by implication mobilities, as anthracene. Essentialy all of the scaffolds highlighted in

Fig. 2 fall in approximately the same range of mobility. Considering the immense range of

λmed,scaffold values included in our dataset and comparing it to the narrow range of available

|Hab|med,scaffold values, we again find that the reorganization energy is an ideal first level target

for molecular optimization. The large spread of λmed,scaffold seen in Fig. 2 over all scaffolds

indicates thereby the vastly different degrees of inner-sphere reorganization caused by the

different molecular cores. A spread along |Hab|med,scaffold, on the other hand, can be caused by

a number of factors, such as varying capabilities of scaffolds to stabilize their most favorable

packing motives, as well as intrinsic differences of the involved frontier orbital geometries.39

In order to assess the statistical significance of this observed spread in the median descrip-

tors we employ non-parametric statistical testing based on the two-tailed Mann-Whitney-U

test.83 As further detailed in the methods section, this test determines non-parametrically

the probability p of two sets of values to belong to the same distribution. By correcting

detection bias due to the relatively large number of tests being carried out, this yields the q

probability and we judge from a value q < 5 % that the distribution of descriptor values in a

given scaffold cluster differs significantly from the distribution in the whole database. With

respect to the λ descriptor, 105 clusters, i.e. more than half of all considered scaffolds, fulfill

this restrictive criterion. With respect to the |Hab| descriptor, this number is a bit lower,

but with 69 still extends over more than a third of the 195 scaffolds (the full data for all

scaffolds is given in Table S1 in the SI). A total of 44 clusters exhibits statistically different

distributions in both descriptors and the corresponding data is color-coded in Fig. 2. The

statistical analysis therewith confirms our initial notion that BM scaffolds are a suitable data
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representation that allows to differentiate molecular crystals in terms of their charge-transfer

properties. Favorable scaffolds with a general tendency to high electronic couplings and low

reorganization energies can thus be identified from the available data. Smaller such scaffolds

featuring one or two aromatic rings could then be used as promising building blocks, while

larger scaffolds can serve as a starting point for further functionalization. In Fig. 2 we specif-

ically highlight a few such identified smaller scaffolds that we further discuss in Section III

below.

3.2 Molecular Sidegroups

Having identified suitable molecular scaffolds, we next turn our attention to the sidegroups.

The introduction of appropriate sidegroups has been shown to improve carrier mobilities

by influencing the stable crystal structure20,45,97 or by suppressing vibrationally induced

disorder.98,99 Here, we focus specifically on the influence on the reorganization energy. Pre-

vious work has confirmed this critical influence in comparative studies attaching different

sidegroups to a given single scaffold.41,48–54 Building on this empirical concept, we now use

our extensive database to investigate whether there are molecular sidegroups that generally

lower the reorganization energy, independent of the scaffold they are attached to. We achieve

this with the same techniques of statistical analysis as before for the scaffolds, i.e. we first

identify all sidegroups in the database and then cluster the data. This time, one cluster

corresponds to all molecules (of any scaffold type) that contain a given sidegroup. This does

not differentiate between specific attachment positions to the scaffold or the coexistence of

multiple sidegroups in one molecule, and we return to this point below. To ensure meaning-

ful statistics, we only consider sidegroup clusters comprising at least 10 different molecules,

with the notable exception of the –Se–CH3 sidegroup. This sidegroup occurs only in six

molecular crystals in the database, but is nevertheless considered because of its exceptional

properties (vide infra). Altogether this yields 70 sidegroup clusters containing a total of

6.162 unique molecules.
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For each molecule in a given sidegroup cluster we determine its relative reorganization

energy ∆λ as the difference between the reorganization energy λ of the molecule and the

median reorganization energy λmed,scaffold over the cluster of molecules with this particular

scaffold, i.e. the λmed,scaffold evaluated in the last section. Thus, a negative value of ∆λ

indicates that the attachment of the sidegroup to the scaffold leads to compounds of lower

reorganization energy as compared to the attachment of other sidegroups to the same scaffold.

Note that due to the diversity of the database it is possible that certain sidegroups appear

multiple times on a single scaffold. In order not to over-emphasize such cases, we divide each

∆λ by the number of occurrences. Taking the median of all ∆λ within one sidegroup cluster,

we finally arrive at ∆λmed,sidegroup, which evaluates how the attachment of the sidegroup

generally influences the reorganization energy over different scaffold types.

For many sidegroups, the obtained ∆λmed,sidegroup differ significantly from zero. This

indicates that these sidegroups indeed either consistently worsen or consistently improve

the reorganization energy, regardless of the scaffold they are attached to. Mann-Whitney-U

testing83 is again employed to verify that these results are not due to chance or a biased

sample selection. For 34 of the 70 sidegroup clusters this statistical testing confirms that

their relative reorganization energy distributions differ significantly from the distribution in

the entire database (q < 5 %). In particular for the –Se–CH3 functional group a very low

q-value of 1 % confirms the statistical relevance despite the smaller sample size.

Figure 3 compiles the ∆λ distributions of these 34 sidegroup clusters. Groups appearing

at the left side of Fig. 3 tend to reliably decrease λ, while those on the right tend to increase

the reorganization energy. As apparent, a ∆λ distribution within a sidegroup cluster dif-

fering significantly from the distribution over the entire database does not necessarily mean

that the median ∆λmed,sidegroup has to differ markedly from zero. For the corresponding

sidegroups in the middle of Fig. 3, the effect of the sidegroup seems more subtle, sometimes

increasing, sometimes decreasing the reorganization energy. We speculate that in these cases

the (presently unresolved) specific attachment position or the coexistence of other sidegroups
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could play a decisive role.51 More importantly, there are, however, 12 sidegroups which on

average decrease the reorganization energy by more than 25 meV, see Fig. 3. These side-

groups are obviously good candidates for λ-tuning approaches and will be further discussed

in Section III below.

3.3 Sidegroup Engineering

Our data analysis to this point has identified suitable scaffolds that yield generally high |Hab|

and low λ values, as well as suitable sidegroups that consistently lower λ. This suggests

an appealing design principle to arrive at new molecular crystals with optimized charge-

transfer properties: Select a favorable scaffold with high |Hab| and further optimize the

reorganization energy by addition of favorable sidegroups or by exchange of unfavorable with

favorable sidegroups. Unfortunately, this neglects the known sensitive influence of sidegroups

on the crystal structure.43,100 In contrast to λ, which is predominantly determined by the

intramolecular structure, |Hab| describes the electronic coupling between molecules in the

crystal and is thus critically dependent on the crystal structure. While sidegroup tuning

could improve the reorganization energy, it could also change the crystal structure and then

potentially worsen |Hab|.

To address this aspect we use matched molecular pair (MMP) analysis101,102 to identify

those molecules in the database, where the resulting molecule after addition or exchange of a

single sidegroup is still contained in the database. This way, the crystal structure of both the

initial and the modified molecule is available, enabling us to explicitly analyze the influence

of the sidegroup engineering on the electronic coupling |Hab|. Specifically, we thereby focus

on the exchange of an unfavorable sidegroup (∆λmed,sidegroup > 0 meV) with a sidegroup

identified as very favorable above (∆λmed,sidegroup < −25 meV), cf. Fig. 3. This generates

a testset S1 containing 206 optimized molecules. As a control series, we also generated a

testset S2 containing 124 molecules, where a favorable sidegroup (∆λmed,sidegroup < 0 meV)

is replaced with a highly unfavorable one (∆λmed,sidegroup > 25 meV). In analogy, testset
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S3 with 161 molecules (S4 with 91 molecules) contains molecules where a highly favorable

(unfavorable) sidegroup has been added to the molecular scaffold. The size discrepancy

between the four testsets is due to the different availability of experimental crystal structures.

A full description of the testsets and the ensuing analysis is provided in the SI.

Fully supporting our sidegroup analysis above, we obtain marked improvements of the

reorganization energy (up to changes of a factor of 5) for the overwhelming majority of

modified crystals in the two “optimized” testsets (87% of all crystals in S1, 77% in S3),

see Fig. 4. Similarly, the “worsened” control sets S2 and S4 show predominantly a large

deterioration of the λ (in 80% of cases in S2, 73% in S4). As expected, the sidegroup

engineering also influences the electronic coupling. However, the changes there are mostly

unsystematic. In the “optimized” testsets S1 and S3 we find a roughly equal number of

cases where |Hab| is improved to those where the coupling deteriorates. Interestingly, in

the “worsened” testsets S2 and S4, we still obtain a slight improvement of |Hab| in 58

% and 59 % of all cases, respectively. This is most likely attributed to selection bias,

as the same correlation of large couplings with regrettably large reorganization energies is

already present in the molecules of “64k-dataset”.25 Notwithstanding, in particular for the

relevant larger coupling values, the induced unsystematic changes are comparatively small.

As the reorganization energy furthermore enters e.g. the Marcus model exponentially, this

suggests that these changes in |Hab| should not break the overall trend. Indeed, when

we compute the Marcus transfer rates kMarcus on the basis of the obtained couplings and

reorganization energies,18 we still find increased rates in 71% (61%) of the molecular crystals

in the “optimized” testset S1 (S3), and decreased rates in 67% (59%) of the molecular crystals

in the “worsened” control testsets S2 (S4). This suggests that sidegroup engineering is (at

least to a certain extent) robust with respect to induced changes in the crystal structure

and is therefore a viable approach to optimize the charge-transport properties of molecular

crystals.
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4 Discussion

In this work we explored the possibility of optimizing organic crystals for charge transport

using a data-driven approach. Mining a large database of two major charge-transport de-

scriptors, the reorganization energy λ and the electronic coupling |Hab|, for close to 7.000

mono-molecular crystals, we transferred the concept of Bemis-Murcko scaffolds from phar-

maceutical research to cluster the data according to molecular scaffolds and the attached

sidegroups. For both types of clusters we obtain statistically confirmed structure-property

relationships, i.e. we identify scaffolds or sidegroups that are generally favorable for charge

transport.

A number of promising scaffolds with generally low λ and high |Hab| regardless of their

functionalization are identified in the lower right quadrant of Fig. 2. Among them are

scaffolds contained in well-known OSCs: anthracene96 (Fig. 2 I), pyrene103 (Fig. 2 II), or

carbazole21 (Fig. 2 III). Based on our strict statistical significance criterion, all three exhibit

consistently improved charge-transport parameters compared to the database background.

The only exception is |Hab|med,scaffold of the pyrene scaffold II, which shows only little statis-

tical significance due to the limited occurrence of this scaffold in our database.

Next to these more common aromatic systems, there are also a few promising linked ring

systems like scaffolds IV and V shown in Fig. 2, which one would not immediately associate

with the OSC context. They do, however, exhibit much higher median electronic couplings

and comparable reorganization energies as the anthracene reference cluster. Multiple other

scaffolds are particularly appealing with regard to only one of the two charge-transport

descriptors. In particular, scaffolds like Fig. 2 VI exhibit extraordinarily high electronic cou-

plings suitable for organic electronics, but feature on average unsuitably high reorganization

energies. These scaffolds are naturally of specific interest for a targeted optimization through

functionalization with favorable sidegroups.

Our data-driven analysis of sidegroups paired with tests of statistical significance allows

for a broader perspective on existing empirical strategies of sidegroup tuning. Among the
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34 identified sidegroups that significantly alter the reorganization energies of their respec-

tive scaffolds are sidegroups like –OH, –O–CH3, –NH2, –F, –Cl, –CF3, or –C–––N that

had been considered in preceding comparative studies.41,48–55,104 In parts, these earlier stud-

ies found trends that match the general structure-property relationships established in this

work, for example for –C–––N, –F, –CF3, and –NH2 substitutions on thiophenes, furans,

and pyrroles.41 Interestingly, with the exception of the cyano group, these often studied

sidegroups not always seem to have a favorable effect on reorganization energies, with some

(–CF3, and –NH2) even showing—on average—the opposite trend. The here confirmed

favorable influence of the cyano group has been explained in the literature50 by the intro-

duction of a local nonbonding character in the frontier orbitals. In contrast, the common and

much studied class of alkyl sidegroups is, with the exception of –CH(CH3)2, not represented

among the 34 sidegroups with significant influence. On the basis of our present database we

can thus not confirm any systematic improvement or deterioration of the reorganization in-

duced by this class of sidegroups. Instead and most intriguingly, many of the here identified

12 sidegroups that lead to a marked improvement of λ have to the best of our knowledge

only rarely been discussed in the OSC context. This holds for –Se–CH3, –N(CH2 –CH3)2,

–SH,54 – I, –CH2 –NO2, –S–CH3,104 –C–––CH,,54 –CH––O,54 or –N(CH3)2,55,104 where

we added the few references to works addressing these sidegroups we could find at all. A

detailed analysis of the reason for the consistent λ reduction induced by these sidegroups

is presented in the SI. It confirms that each of these sidegroups yields first of all an ex-

pected additional contribution to the reorganization energy.51 However, this contribution

is more than compensated by a reduction of the scaffold reorganization energy. Especially

the best performing –Se–CH3 sidegroup achieves this by efficiently delocalizing the charge

throughout the scaffold and the sidegroup.

The clear structure-property relationships for both scaffolds and sidegroups suggest the

possibility of a targeted molecular design by combining favorable scaffolds with reorganiza-

tion energy-lowering sidegroups. This effect is expected to lead to improved charge transport
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rates, with the reorganization energy entering e.g. a Marcus-like38 model exponentially, while

|Hab| only enters quadratically.18 Our data analysis indicates that such a design strategy is

robust (at least to a certain extent) to a change in the crystal structure that might be induced

by such functionalization. Accordingly, we would presently predict the addition for instance

of most favorable –Se–CH3 or –N(CH2 –CH3)2 sidegroups to any of the favorable scaffolds

highlighted in Fig. 2 to yield highly promising OSC candidates for experimental synthesis.

Much of the uncertainty in these predictions could be removed by explicitly validating that

the electronic couplings remain indeed favorable in the crystal structure adopted by the cor-

responding compound. Unfortunately, computational crystal structure prediction is still a

highly challenging task.105,106 In fact, the limitations in rapidly and reliably determining the

crystal structure for a larger number of promising candidates represent in our view currently

the major bottleneck to a large-scale data-driven in silico discovery of improved OSCs. This

prevents a targeted extension of the database through additional first-principles calculations,

and correspondingly restricts the data mining to compounds for which experimental crystal

structures are available in the Cambridge Structural Database.65 The concomitant relative

scarcity of data also prohibits refined data clustering that notably would distinguish different

anchor points of sidegroups to a scaffold or the coexistence of multiple sidegroups. Efficient

crystal structure prediction and the concerted buildup of experimental and computational

structural databases are therefore key to unleash the full potential of modern data mining

or machine learning approaches for organic semiconductors, and thereby navigate the vast

and largely unexplored design spaces of this intriguing class of molecular materials.

Supporting Information Available

Additional detailed information on the BM scaffold dataset: Distributions of |Hab|, λ over

the dataset, as well as a distribution of the number of molecules in the scaffolds and a list of

all scaffolds. In addition, an extended boxplot for all sidegroup clusters as well as a depiction
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of all identified sidegroups is provided. A series of –H, –S–CH3 and –Se–CH3 exchanges

on different molecules further illustrates the favorable impact of the latter two groups on

gas-phase reorganization energies, while a detailed discussion of the underlying factors is

provided for one example.
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Figure 3: Top: Boxplot showing the distributions of relative reorganization energies ∆λ of
34 sidegroups, see text. They are sorted by their median ∆λmed,sidegroup which is marked
by a solid red line. Blue boxes extend from lower to upper quartiles of the data, while the
vertical lines (whiskers) delineate the most extreme points. Gray-dashed vertical lines serve
as separators to distinguish sidegroups that generally improve (i.e. lower) the reorganization
energy (∆λmed,sidegroup < −25,meV, to the left in the plot) and sidegroups that generally
worsen (i.e. increase) the reorganization energy (∆λmed,sidegroup > 25,meV, to the right in
the plot). Due to space constraints, the labels for the different sidegroups use (=O/S) to
denote branches, similar as is done in canonical smiles strings.66 Bottom: Identified 12 most
favorable sidegroups appearing on the left hand side of the boxplot.
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Figure 4: Charge-transfer parameter tuning by sidegroup exchange for the series of molecules
contained in the “optimized” testset S1 (blue data points) and the control testset S2 (red
data points), which was deliberately made worse. Shown are changes in a) λ, b) |Hab| and c)
Marcus type hopping rate kMarcus when going from a reference molecule to a new molecule
(see text).
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