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Abstract

Process understanding and modeling is at the core of scientific reasoning. Principled parametric
and mechanistic modeling dominated science and engineering until the recent emergence of
machine learning (ML). Despite great success in many areas, ML algorithms in the Earth and
climate sciences, and more broadly in physical sciences, are not explicitly designed to be
physically-consistent and may, therefore, violate the most basic laws of physics. In this work,
motivated by the field of algorithmic fairness, we reconcile data-driven ML with physics modeling
by illustrating a nonparametric and nonlinear physics-aware regression method. By incorporating a
dependence-based regularizer, the method leads to models that are consistent with domain
knowledge, as reflected by either simulations from physical models or ancillary data. The idea can
conversely encourage independence of model predictions with other variables that are known to be
uncertain either in their representation or magnitude. The method is computationally efficient and
comes with a closed-form analytic solution. Through a consistency-vs-accuracy path diagram, one
can assess the consistency between data-driven models and physical models. We demonstrate in
three examples on simulations and measurement data in Earth and climate studies that the
proposed ML framework allows us to trade-off physical consistency and accuracy.

1. Introduction

Physicists and environmental scientists attempt to
model systems in a principled way through analytic
descriptions that encode scientific understanding
and domain expertise of the underlying processes.
Conservation laws, physical principles or phenomen-
ological behaviors are generally formalized using
mechanistic models and differential equations. Such
classical approaches in physics have been, and remain
to be, the dominant framework for modeling com-
plex natural Earth and climate phenomena. With the
availability of large datasets collected with different
remote sensing instruments and, generally, cheap

© 2022 The Author(s). Published by IOP Publishing Ltd

and widely distributed in-situ data collections, the
physical modeling paradigm is being complemented,
sometimes challenged (and in many cases replaced)
by the statistical, machine learning (ML) paradigm,
which offers a prior-agnostic approach that does not
make direct use of existing scientific knowledge [ 1-3].

Machine learning models can fit observations
very well, but predictions may be physically incon-
sistent or even implausible. For example, ML mod-
els can commit large extrapolation errors, and their
predictions can violate fundamental laws like mass
or energy conservation [4, 5]. This has been perhaps
the most important criticism to ML algorithms, and
arelevant reason why, historically, physical modelling
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and ML have often been treated as two different fields
under very different scientific paradigms (theory-
driven versus data-driven). Likewise, there is an ongo-
ing debate around the limitations of traditional meth-
odological frameworks: both about their scientific
insight and discovery limits in general [1, 2] and in
the geosciences and hydrology in particular [6, 7].
Recently, however, integration of domain knowledge
and achievement of physical consistency by teach-
ing ML models about the governing physical rules
of the Earth system has been proposed as a prin-
cipled way to provide strong theoretical constraints
on top of the observational ones [4, 8, 9]. The synergy
between the two approaches has been gaining atten-
tion, with recent approaches including redesigning
model’s architecture, augmenting the training dataset
with simulations, and including physical constraints
in the cost function to be optimized [4, 6, 7, 9-15].

The integration of physics in ML models may
lead to improved performance and generalization
but, more importantly, to improved consistency and
credibility of such models. This hybrid approach has
an interesting regularization interpretation: the inclu-
sion of domain knowledge in the ML model reduces
the parameter space to search upon by discarding
implausible models. Therefore, physics-aware ML
models combat overfitting better, typically become
simpler (sparser), and require less training data to
achieve similar performance [7, 8, 15, 16]. Physics-
aware ML thus leads to enhanced computational
efficiency, and constitutes a stepping stone towards
the goal of achieving more interpretable ML models
[8, 17-20].

Among the many ML models available, kernel
methods [21] have shown excellent theoretical prop-
erties and practical performance in Earth obser-
vation [22] data problems. Kernel methods have
been primarily used for classification and regres-
sion problems, but also for data clustering, anom-
aly detection and dimensionality reduction [23]. Ker-
nel methods generalize linear methods easily while
still relying on linear algebra operations. The idea
is to implicitly map the data into a reproducing
kernel Hilbert space (RKHS) [24] where nonlinear-
ities are taken into account, and solve the prob-
lem in this new space rather than in the original
data space. The solution then typically becomes ana-
lytic and only involves simple linear algebra oper-
ations on a kernel (similarity) matrix that contains
all pairwise similarities between the training data
samples.

Our main goal here is to reconcile data-driven
models with physics modeling by incorporating
physical knowledge in the ML models. More spe-
cifically, we propose a nonparametric physics-aware
regression method that is based on kernel the-
ory and enables us to understand the role of the
physics component from information-theoretic
and regularization perspectives. Including prior
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knowledge in ML has traditionally been associated
with the concept of regularization [20, 25, 26]. Regu-
larizers are typically designed to enforce some desir-
able features on the model predictions, like smooth-
ness using the ¢;-norm on model weights, or dir-
ectly on the model parameters, like sparsity using
an ¢;-norm. Recently, other regularizers have been
proposed to minimize the sum of all violations of
a known physical law [6]. We adopt an alternative
regularization approach based on statistical depend-
ence. This approach was introduced for enforcing
fairness in model predictions [27], which states that
the model predictions should be as statistically inde-
pendent of predefined sensitive variables as possible.
Our hypothesis is that encoding algorithmic fairness
and consistency with domain knowledge through
regularization play similar roles [28].

Following this idea, our approach achieves
(physical) consistency by encouraging the model’s
predictions to be dependent on variables that encode
physical knowledge or independent from biased
information, similarly to the way that fair algorithms
ensure that the model’s predictions are independent
of sensitive or protected variables: income predictions
should be arguably independent of gender and race,
and in a conceptually similar way, estimates of the
forced response in (simulated) global mean temper-
ature should be independent of variations in internal
variability in that respective climate change scenario.
Therefore, our overarching goal can be defined as:

Learn y = f(x) such that ||y — y||3 is minimized, and

reinforce y L£s or y.Ls,

that is, learn a function f that fits well a target vari-
able y from an input variable x, and at the same time,
either make the predictions § dependent with the
ancillary variables s or statistically independent of
them, depending on the problem and application.
In this paper, for f we use a nonparametric regres-
sion function and for measuring independence the
norm of the cross-covariance operator, both based
on kernel methods [23].

Inspired by the fair kernel learning method [27]
used in the context of algorithmic fairness, we
propose physics-aware kernel learning (PKL). PKL
includes a dependence-based regularizer to a given
objective function that, depending on the applica-
tion, may enforce model predictions to resemble a
physical model output, a set of simulated data, or
additional/supplementary observations (see details in
Proposed physics-aware nonparameteric regression
section). PKL can be trained not only to increase
dependence with underlying knowledge but, alternat-
ively, can also be used to ensure predictions are inde-
pendent of biased/irrelevant information that can
arise e.g. from observational errors or anomalous
data variability not related to the physical process of
interest.
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We propose to use the Hilbert-Schmidt inde-
pendence criterion (HSIC) [29] to measure the
dependence between the predictions and physical
variables. HSIC excels in capturing all higher order
moments of dependence between random variables,
is easy to compute and manipulate, and has appeal-
ing theoretical properties of convergence to the true
dependence measure [29]. The PKL method leads to
a closed-form analytic solution. We will show that the
PKL method tackles the problem of physical consist-
ency and model-data agreement in a straightforward
manner. The performance of PKL will be illustrated
in several examples in Earth and climate sciences. For
example, PKL allows us to assess the degree of realism
of models in biophysical parameter retrievals, or to
detect the effect of external forcing in the climate sys-
tem while aiming for independence to the exact rep-
resentation and magnitude of key modes of internal
variability. We anticipate that the PKL approach will
be of great utility and flexibility for nonparametric
data analysis in applied research in general, and in
Earth and climate sciences in particular.

2. Data collection and pre-processing

2.1. Oceanic chlorophyll data

We used the SeaBAM dataset [30, 31], which gath-
ers 919 in-situ measurements of chlorophyll concen-
tration around the United States and Europe. The
dataset contains in situ pigments and remote sens-
ing reflectance measurements (Rrs, [sr~!]) at a set of
given wavelengths (412, 443, 490, 510 and 555 nm)
that are present in the SeaWiFS ocean color satel-
lite sensor. The chlorophyll concentration values are
between 0.019 and 32.79 mg m~>. Although SeaBAM
data originate from various researchers, the variab-
ility in the radiometric data is limited. At high Chla
concentrations CC (mgm~?), the dispersion of radi-
ance ratios increases, mostly because of the presence
of more optically complex (Case II) waters, that is
low values of the ratio of pigment concentration to
scattering coefficient. At lowest concentrations the
highest R(490)/R(555) ratios are slightly lower than
the theoretical limit for clear natural waters. More
information about the data can be obtained from
SEABAM, and an extensive analysis in [31]. In addi-
tion to the observational data, we used several mod-
els to guide PKL. Morell and CalCOFI 2-band lin-
ear are described by s = 10%F41% while OC2/0OC4
models follow s = ag + 10 +®r+ar’+air’ The ratio
% depends on the physical model used [31]: the
Morell model uses £ = log(R(443) /R(555)), the Cal-
COFI and OC2 models use k = log(R(490)/R(555)),
while the OC4 model uses k =log(max{R(443),
R(490),R(510)}/R(555)). The goal here is to predict
the concentrations from reflectance measurements
while being consistent with these parametric models
that encapsulate some domain knowledge.
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2.2. Hyperspectral and vegetation in situ data

We collected hyperspectral data from the CHRIS
sensor as well as in situ measurements of chlorophyll
content (Chla), leaf area index (LAI) and fractional
vegetation cover (fCOVER) [32]. LAI is a dimen-
sionless quantity that characterizes plant canopies. It
is defined as the one-sided green leaf area per unit
ground surface area in broadleaf canopies. {COVER
corresponds to the fraction of ground covered by
green vegetation, and in practice it quantifies the spa-
tial extent of the vegetation. It is indeed independent
from the illumination direction and sensitive to the
vegetation amount and derived from the LAI plus a
number of structural parameters of the canopy. The
data were obtained during the SPARC-2003 (SPec-
tra bARrax Campaign) and SPARC-2004 campaigns
in Barrax, Spain. The region consists of approxim-
ately 65% dry land and 35% irrigated land. Green
LAI was derived from canopy measurements made
with a LiCor LAI-2000 digital analyzer. Each ele-
mentary sampling unit (ESU) was assigned to a
LAI value, which was obtained by the average of 24
measures (8 data readings X 3 replications) [33].
fCOVER was estimated from ground measurements
using hemispherical photographs taken with a digital
camera with a fish-eye lens. The final f{COVER estim-
ate for each ESU was calculated as the average of
twelve measurements. In total, nine crop types (gar-
lic, alfalfa, onion, sunflower, corn, potato, sugar
beet, vineyard and wheat) were sampled, with field-
measured values of LAI that vary between 0.4 and
6.3, Chla between 2 and 55 pugcm~—2 and fCOVER
between 0 and 1. Additionally, 30 random bare soil
spectra with a biophysical (Chla, LAI, f{COVER) value
of zero were added to broaden the dataset to non-
vegetated samples. Concurrently, we used CHRIS
images Mode 1 (62 spectral bands, 34 m spatial res-
olution at nadir). The images were geometrically and
atmospherically corrected. A total of n=136 data
points in a 62-dimensional space were thus used to fit
a PKL model. The goal here was to estimate LAI while
being consistent with f{COVER, and estimate chloro-
phyll content while being consistent to LAL

2.3. Internal variability and forced variability data
The US CLIVAR Working Group on large ensembles
(LEs) contains a data archive of initial-condition
LEs conducted with different climate models run
within their CMIP5 setup. From the seven climate
models available, we selected three different ones:
CanESM2 for training, CSIRO-Mk3-6-0 for valida-
tion, and CESM1-CAMS5 for testing. We emphasize
that different train/validation/test splits are possible
(and should be tested in real-world applications), but
here we only show an illustration which is why we
present this setup and given that results are robust
for alternative choices. Model simulations for all
three contained the period between 1950 and 2100
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with historical and RCP 8.5 forcing conditions and
incorporated more than 30 different ensemble mem-
bers [34]. All model runs were defined with a spatial
regridded world map of 5° x 5° resolution (in total
d=2592 grid points). The aggregated ensemble of
each model, and all the grid points, defined the pre-
dictors matrix. We split it into a training, validation
and test sets. We selected the spatially explicit simu-
lated monthly near-surface air temperature (TAS) as
our variable of interest (i.e. predictors). The ENSO
internal variability is captured by the Nino3.4 index,
and is taken from the climate variability diagnostics
package for LEs developed by NCAR’s Climate Ana-
lysis section [35]. Our goal is to predict the forced cli-
mate response from a single ensemble member, and
the ‘true’ forced response was extracted as the average
across the full ensemble, which is a standard proced-
ure in the field. The predictors and metrics used were
taken as the DJF seasonal average and standardized to
zero mean and unit standard deviation.

3. Proposed physics-aware
nonparameteric regression

We are given a set of inputs, x; € X, and the cor-
responding targets, y; € ), for i = 1,...,n. Further-
more, we define s; € S the set of variables to which
we want to emphasize the (in)dependence. These will
be referred to as the ancillary variables. We take x; to
be ani.i.d. sample from an X'-valued random variable
x, and similarly for s. For simplicity, we will assume
that the inputs are vectorial, i.e. x; € R¥!,s; € R7¥!
and that the targets are scalars, i.e. y; € R, but the
exposition can be trivially extended to non-Euclidean
or structured domains which admit positive definite
kernel functions. We let X € R"*“ denote the matrix
of n observed inputs corresponding to d explanatory
covariates, S € R"*1 denotes the matrix of n obser-
vations of q ancillary variables, y € R"*! denotes the
vector of observed targets, which we could assume are
distorted with biases or noise, and ¥ is the prediction.

Fitting a consistent-regularized model f. € H for
some hypothesis class H reduces to optimizing a reg-
ularized empirical risk functional [27, 36]:

fo=argamin{ 3 V(x)i) +A0)

feH
+u1<f(x>,s>},

where V is the loss function, €2 acts as an overfitting/
complexity penalty on f, and I measures the statistical
(in)dependence between the model f and the ancil-
lary variables, the latter depending on the sign that
accompanies I. The two regularization parameters
A €1]0,00) and p € (—00,400) control smoothness
and consistency of the solution, respectively. Note
that the sign of p forces dependence or independ-
ence. By setting p =0, the solution of the standard
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kernel ridge regression model is obtained. This does
not mean that the solution is inconsistent but one
can find a more consistent model, and thus conflict-
ing less with ancillary information, by changing p. As
1t # 0 implies a trade-off between different objectives,
selecting an optimal value is subject on the applica-
tion [37]. On another note, one should be aware that
the problem could be ill-conditioned for high negat-
ive values of p.

For the consistency penalization term, I, we
adopted the HSIC [29] between the predicted
response f= [f(x1),...,f(x,4)] and the ancillary vari-
able s =[s,...,s,]. The HSIC measures independ-
ence between random variables f and s. Given the
dataset D with n samples drawn from the joint dis-
tribution P(f,s), an empirical estimator of HSIC is
defined as [29]:

— 1
HSICy(f,s) = — Tr(KHLH),

where K and L are the kernel matrices computed
on observations {f(x;)}"_, and {s;}?_; using kernel
functions k and I, respectively, and H=1— %]l]l—r
has the role of centering the data in the feature space.
For a broad family of kernels k and /, the population
HSIC equals 0 if and only if the two involved vari-
ables are statistically independent [29]. With appro-
priate choices of kernels k and [ for the input data X
and the ancillary variable(s) S, respectively, the HSIC
regularizer captures all types of statistical dependence
between f and the ancillary variable s.

In this work we use the HSIC regularization
in combination with kernel ridge regression as the
model function class, which leads to a closed-form
(analytic) solution. This regularization can be incor-
porated in other ML models, like neural networks and
Gaussian processes. More information on the kernel
physics-aware kernel regression (PKL) solution used
in this work, and connections to other ML models
can be found in the appendices. An illustration of
the PKL method for a toy example can also be found
in the supplementary material S1 (available online at
stacks.iop.org/ERL/17/054034/mmedia).

4. Results and discussion

We describe three cases to illustrate the capabilit-
ies of PKL to encode physical knowledge about the
system under consideration and to assess consist-
ency between physical knowledge and the data. The
PKL solutions are summarized in the form of an
easy to understand consistency-vs-accuracy path dia-
gram, ie. HSIC-vs-RMSE path, that describes the
relationship between the degree of consistency with
physical knowledge and the accuracy of the regres-
sion model. This relationship is described as a func-
tion of the amount of dependence-based regular-
ization that is captured by a hyperparameter pu,
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Figure 1. Consistency-vs-accuracy (HSIC-vs-RMSE) paths when including information from parametric models (Morell,
CalCOFI 2-band linear, OC2, and OC4) via a dependence-based regularizer in the PKL method. The black square corresponds to
1= 0 while all the other points on the path correspond to increasing consistency for p <0.

which varies between —oo (dependence) and +oo
(independence). By observing how the path diagram
changes upon encouraging (or alternatively reducing)
dependence, one obtains an indication of how phys-
ical variables and model predictions are connec-
ted. This analysis allows us to assess the agreement
between model predictions and a set of physical vari-
ables by comparing their corresponding path dia-
grams. Considering that HSIC takes values between
zero and infinity, the corresponding HSIC () values
are then scaled by the HSIC (u =0) value to allow
comparison across multiple consistency-vs-accuracy
paths: the normalized HSIC is equal to 1 when =0,
and corresponds to the standard kernel regression
solution. In what follows we will use x for the input,
y for the target and s for the ancillary variables (see
proposed physics-aware nonparameteric regression
section).

4.1. Consistency with models for biophysical
parameter estimation
A classical problem in remote sensing and geosciences
involves estimation of biophysical parameters of
interest from remote sensing (satellite) observa-
tions. We are given multidimensional measurements
xe R4, acquired from a satellite sensor at d differ-
ent wavelengths, from which we want to estimate a
parameter of interest y € R. This can be done using
satellite and in-situ measurement pairs (x,y). Tradi-
tionally, the community has designed a great many
empirical, parametric models for estimation. We aim
to use the PKL method to solve the fitting problem
and, more importantly, to assess the most appro-
priate parametric model to rely on by studying the
consistency-vs-accuracy path diagrams.

We first illustrate the performance of the PKL
model for the estimation of in-situ chlorophyll

5

concentration from multispectral reflectance images.
The two measurements are subject to high levels of
uncertainty, owing both to the difficulties in ground-
truth data acquisition, and the noise inherent in
satellite-obtained data. Moreover, there is commonly
a time mismatch between the acquired image and the
recorded in-situ measurements, which is critical, for
instance, for coastal water monitoring. We use the
SeaBAM dataset [30, 31] (see details in Data section),
and apply PKL to model ocean chlorophyll concen-
tration y from radiances x := [R()\,),...,R(\;)] € R?
at a set of given wavelengths, );, while encouraging
consistency with four standard parametric models
(Morell, CalCOFI 2-band linear, OC2 and OC4)
[31] in a set of four different experiments, one for
each model as the ancillary variable s. Results are
shown in figure 1. PKL solves the fitting problem with
improved accuracy, i.e. a lower error (RMSE) can be
achieved compared to standard kernel ridge regres-
sion (= 0), and allows to quantify the quality of the
different parametric models considered through their
respective consistency-vs-accuracy paths. Encour-
aging consistency with more recent models, such
as OC2 and OC4, leads to a lower PKL prediction
error (lower RMSE) compared to older models, such
as Morell and CalCOFI, meaning that they fit the
data better (i.e. the consistency between the data
and the model is higher). When increasing depend-
ence with each parametric model, the HSIC regu-
larizer begins to dominate the training cost function
and similarity of the target variable with the ancil-
lary variable is reinforced. This happens until a cer-
tain turning point in p where too much dependency
leads to an increased error. In summary, this simple
example shows how PKL may benefit the estimation
of Earth system parameters such as the in-situ chloro-
phyll concentration from remote sensing by enforcing
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Figure 2. Consistency between a predicted variable and ancillary in situ measurements. Prediction of LAI with fCOVER as the
ancillary variable (left), and prediction of Chla with LAI as the ancillary variable (right) for different values of 1 indicated in the
colorbar. In both cases, lower prediction RMSE can be obtained by encouraging consistency.

consistency with well-known parametric models that
encapsulate domain knowledge.

4.2. Consistency with ancillary in situ data

Very often one does not have access to a paramet-
ric model as in the previous example, but to a set
of ancillary observational data that the predictions
should be consistent with. This is a standard case
in remote sensing where some variables are coupled,
e.g. greenness and chlorophyll content of the veget-
ation. We illustrate the use of the PKL in two cases:
(1) to estimate leaf area index (y := LAI) while being
consistent with the fraction of green vegetation cover
(s := fCOVER), and (2) to predict chlorophyll-a con-
centration (y := Chla), while being consistent with
the leaf area index (s:= LAI). We use data from
a terrestrial campaign where hyperspectral images
and the aforementioned biophysical parameters were
measured (see Data section for details). Figure 2
shows the joint evolution of HSIC and RMSE. The
color intensity along the paths represents the increas-
ing (decreasing) value of the consistency hyperpara-
meter p as it goes from reducing consistency with the
ancillary variable (positive) to increasing consistency
(negative). Optimal solutions, i.e. predictions with
lower RMSE and higher HSIC to the ancillary vari-
able, are obtained for negative values of i, meaning
that increasing the consistency between the variables
(LAI-fCOVER and Chla-LAI) also helps in reducing
the RMSE of the prediction. Similarly to the example
of parametric models, higher consistency allows for
higher accuracy (lower error) up to certain values
starting from which a trade-off appears between con-
sistency and accuracy. This example illustrated that,
while many accurate solutions are possible when
retrieving biophysical parameters with ML, one can
achieve an optimal solution that is both accurate and
ensures consistent results across variables.

4.3. Learning patterns of forced warming under
uncertain climate variability

Separating forced and internal variability is a key chal-
lenge in climate science [34, 38, 39], and in particular
in the context of detection and attribution (D&A) of
externally forced climate change [40, 41]. D&A typic-
ally uses fingerprints that encapsulate the structure of
forced warming from model simulations into a spa-
tial or spatiotemporal pattern [40—42]. Observations
and climate model control simulations are then pro-
jected onto those fingerprints to assess whether a sig-
nal, such as multidecadal temperature trends at the
global or continental scale, exceed internal climate
variations [42].

In recent research, forced climate signals have
been extracted from observations via signal-to-noise
optimized fingerprints from climate models obtained
through statistical learning [39, 43-45], thus build-
ing on ideas from traditional D&A. Statistical learn-
ing algorithms in this context aim to minimize the
influence of internal variability and model disagree-
ment to extract a forced signal [46]. However, pat-
terns of internal variability (such as El Nifio Southern
Oscillation, ENSO) may nonetheless project onto the
fingerprint, for example, if the fingerprint is derived
from a given model (or a given set of models) but
then applied to an unseen test model (or observa-
tions) with a potentially different representation of
key modes of internal variability, such as ENSO. This
phenomenon may lead to an inaccurate extraction
of forced signals from models or observations, and
could lead to over- or under-confidence in D&A state-
ments if models systematically under- or overestimate
the magnitude of internal variability [44, 47]. Hence,
robustness in fingerprint extraction with respect to
model structural differences, or potential systematic
biases in the models’ representation of internal vari-
ability or of forced patterns, is an important issue
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Figure 3. Scatter plot between prediction § and the Nifio3.4 ancillary variable s (capturing the ENSO3.4 region variability) for the
standard regression (a) and the physics-aware regression (b). We give both the Pearson’s correlation coefficient between the
prediction § and s, and the achieved independence with HSIC between § and s. The (c) plot shows the path diagram. When
reducing dependence on the ENSO variability, there is a trade-off between consistency and accuracy.

that still remains a key uncertainty. This issue is
related to distributional robustness in statistics [48]
and transfer learning in ML [49]. For example, cli-
mate models simulate sea surface temperature pat-
terns and warming that are broadly consistent with
observations on a global scale [50], and also cap-
ture key modes of internal variability such as ENSO
[51]. However, models differ (1) in the time scales of
irregular ENSO fluctuations, (2) in the characteristic
patterns of ENSO-related climate variability, and (3)
in how ENSO variability is projected to evolve in a
warming climate [51]. Moreover, differences across
models in the forced warming and variability in mul-
tidecadal trends are particularly pronounced in the
equatorial Pacific [50, 52]. While historical model
simulations show generally warming sea surface tem-
peratures in the equatorial Pacific (e.g. ENSO3.4
region: [—170° E, —120° E] and [—5° N, 5° N]), obser-
vations show only very modest warming in this region
over multi-decadal time scales [52]. It is currently
unclear whether this discrepancy is due to an unusual
realization of the observed climate (i.e. internal vari-
ability), or whether the models show systematic biases
in the forced response compared to observations [50].

Here, we illustrate the idea of estimating the
forced climate response from individual ensemble
members (similar to e.g. [44, 46]) but in a way
that takes into account the ENSO-related variabil-
ity by reducing consistency to the ENSO3.4 region
variability expressed by the Nino3.4 index. Reducing
consistency in this context thus implies that ENSO-
related variability does not project onto the finger-
print (i.e. the prediction of the forced response should
be independent of the ENSO3.4 region variability),
and hence our goal is to attain improved robustness
in the context of uncertainties related to variability in
the equatorial Pacific.

For this purpose, we employ the multi-model
large ensemble archive [34] and the climate variab-
ility diagnostics package [35] (more details in Data
section). Winter (December—January—February, DJF)
seasonal average values of the forced response in each
climate model are calculated as the ensemble average
of multiple model runs that differ from each other
by a small perturbation. By taking the average of the
ensemble, the small oscillations between models that
are attributed to internal variability are smoothed
out and the end product reflects the forced climate
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response in the absence of variability [35]. These val-
ues constitute the target variable y of our prediction.
The statistical model is based on DJF anomalies in
individual ensemble members as predictor variables
x. We run the PKL with Nifio3.4 as the ancillary vari-
able s that we want the prediction to be independent
to (i.e. PKL is run with positive increasing values of
the consistency hyperparameter, 1 >0). For illustra-
tion, we employ a different climate model for training
(CanESM2), validation (CSIRO-Mk3-6-0) and test-
ing (CESM1-CAMS5).

Results are presented in figure 3. Without redu-
cing consistency (x4 =0), the prediction § and
Nifio3.4 are fairly correlated (Pearson’s correlation
p=—0.72) and dependent from the prediction for
the unseen test model (figure 3(a)). This implies that
ENSO-related uncertainties or potential systematic
biases may alias into the prediction of the forced
response for an unseen model or in observations.
However, if Nifio3.4 is taken as the ancillary variable
and upon reducing consistency, >0, the predic-
tion becomes more decorrelated (p(7,s) = 0.03) and
independent (HSIC (j,s) = 0.0005) of the variabil-
ity introduced by ENSO3.4 (figure 3(b)). The results
imply that our forced response estimate would be
more robust to ENSO-related uncertainties with an
appropriate magnitude of p across different climate
models or between models and observations. An illus-
tration of the effect the independence constraint has
for the prediction can be seen in the supplementary
material S2.

In summary, we have illustrated that estimating
a climate signal (such as the forced response) from
climate variables can be learnt in a way that is ‘con-
sistent’ to certain known model structural uncertain-
ties such as the representation of internal variability
and warming in the equatorial Pacific that determine
ENSO-related variability in the climate system.

5. Conclusions

Machine learning models have been traditionally
considered black box models where interpretability
of the decisions is hidden behind a complex archi-
tecture. ML models do not necessarily carry phys-
ical meaning, even if generally accurate, and hence
they can produce non-physical or even nonsensical
predictions. A robust trustworthy model should be
in accordance with the known and agreed rules of
the physical world. This dichotomy between how
humans encode knowledge mathematically in mech-
anistic models and how ML models encode know-
ledge through their expression learnt from data has
been the reason for longstanding debates in the last
century: data-driven versus model-driven science.

In the last decade, performing accurate predic-
tions has replaced process understanding in many
applied areas of science and engineering. In these
areas it is believed that data is the only needed
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regularizer of the model class. The problem, how-
ever, comes in cases of data-limited regimes, model
misspecification, or omitted-variable bias. In all these
cases, the ML model is an incomplete and often
simplistic representation of reality, and generally
attributes the effect of the missing variables to the
estimated effects of the included variables. Besides,
one can achieve similarly accurate results with com-
pletely different models; that is the issue of equifinal-
ity or non-identifiability. In recent years, many efforts
have been conducted to develop ML algorithms that
are more transparent, accountable, interpretable and
consistent with first principles. However, develop-
ing hybrid ML models that include expert/domain
knowledge (in the form of physics rules, paramet-
rization and constraints) have been only marginally
treated in the recent literature, for example, using
deep neural networks, kernel methods and Gaussian
processes [4, 6, 9—15]. The field is interesting in broad
terms and generally applicable to all domains where
data and models coexist.

We proposed a general methodology based on
kernels to combine two types of knowledge pri-
ors: smoothness of the function class and consist-
ency of the predicted target with ancillary variables,
with particular focus on Earth and climate sciences.
Motivated from the algorithmic fairness literature,
we introduced a physics-aware kernel-based model
that exploits ancillary information or outputs from
mechanistic models to regularize pure data-driven
ML based on scientific knowledge. The PKL regres-
sion model includes a regularizer that measures the
dependence of the learned function with physical
variables, ancillary data or model simulations. The
selection of a kernel-based regularizer based on HSIC
leads to a simple and analytic solution where a
probabilistic model interpretation is also amenable.
HSIC ensures fast (exponential) convergence rates
of the population measure to the population quant-
ity as the sample size grows. PKL generalizes both
linear and nonlinear kernel-based regression mod-
els, it is easy to implement and inherits all proper-
ties of the kernel methods treatment. For instance,
recent advances in kernel and Gaussian processes
modeling could be included in our predictive func-
tion, e.g. sparse formulations for improved computa-
tional scalability, deep models for improved express-
ive functions, or machines to learn ordinary/partial
differential equations and control [10, 11, 15, 53].
Likewise, the HSIC regularizer could be used in other
ML models like neural networks. See appendices for
more details on the derivation of PKL, a GP prob-
abilistic interpretation of the HSIC regularizer and
the use in standard feedforward neural networks. The
present work focuses on kernel methods for their sim-
plicity, since solutions are analytically available. Nev-
ertheless, adding a physics-aware regularizer in the
form of HSIC can be included in the loss function of
other types of ML methods. The PKL model is fully
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functional, and being implemented as an open-source
software tool,it allows to reuse current and upcoming
kernel models and tools.

We anticipate that the PKL will constitute a con-
venient, useful and flexible tool for nonparametric
data analysis in applied research where data, pro-
cess understanding, principled models, and simula-
tions are generally available. This is the general case
in Earth sciences, but also for climate science stud-
ies where statistical learning is often adversely affected
by uncertainties in regional variability characteristics,
disagreement between models and structural uncer-
tainty, and systematic biases.

Data availability statement

The data that support the findings of this study will be
openly available following an embargo at the follow-
ing URL/DOI [54]: https://github.com/TPL-UV/PKL.
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Appendix
Consistency regularization framework
The PKL functional for the function class f used in

this work, is defined as:

feH

“ A
fo=argmin{ 3 V(tx)i) + 211,

+uH/SI\Ck,1(f(X)»S)}»

where we adopted the reproducing RKHS H; as the
hypothesis class. Given that the selected consistency
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penalty term, HSIC, only depends on the unknown
function f through its evaluations at the training
inputs {x;}, direct application of the Representer’s
theorem [55] tells us that the optimal solution can
be written as a linear combination of kernel function
evaluations f= Y aik(-,x;). Hence, we obtain the
so-called dual problem:

A
min {||Ka —vyl3+ “a'Ka + MZaTHLHKa},
a€eR" n n

which can now be solved for a directly. In the
case of the squared L, norm for V:= ||f(x) —y]|3,
the above dual problem has an analytic solution
[27]:

)\ —1
a= <K+ s g ““ZHLHK) .
n n

The dependence estimator is sensitive to the hyper-
parameters of the kernel functions k and I. To avoid
variations in HSIC exclusively due to changes in
these parameter values, some form of normaliza-
tion is needed. Nevertheless, one cannot normal-
ize both kernels arbitrarily since the optimization
problem would become nonlinear with a and would
not admit a closed-form solution anymore. As the
parameters from K are adjusted to the data during
the optimization process, one could partially nor-
malize the cross-covariance on L. We introduce a
modification inspired by the normalized version
of HSIC called NOCCO [56]. This modification
simply replaces HLH with HLH(HLH + nel) ™,
where ¢ is a regularization parameter used
in the same way as [56]. The solution then
becomes:

-1
_ A I -1
a= K+ -1+ SHLH(HLH +nel) K| .
non

In all our experiments, we used the squared exponen-
tial (SE) kernel for both k and ], that is e.g. k(a,b) =
exp(—||la—b]|?/(20?)), which captures sample sim-
ilarity well in most of the problems, and only one
hyperparameter o needs to be tuned. For the stand-
ard kernel ridge regression (KRR) we implemented
a standard cross-validation scheme to determine the
ridge regression parameters, o and ), setting the
squared error loss as the metric to minimize. For the
ancillary variable we set the SE hyperparameter to the
average Euclidean distance between all points, which
is a commonly used heuristic in the kernel meth-
ods literature [23, 57]. A much larger sigma would
make HSIC approximate a linear dependence estim-
ate, while a much smaller legnthscale o would make
HSIC insensitive to dependence [29].
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A probabilistic treatment: the Gaussian
process approach

Using HSIC in a kernel-based regression frame-
work can be actually seen as a modified Gaussian
process prior. From a Gaussian Process (GP) per-
spective, the prior covariance corresponds to a
posterior covariance for meta-observations encour-
aging that the predictive function f remains con-
stant as the ancillary variables vary. Let us assume
that the loss corresponds to the negative condi-
tional log-likelihood in some probabilistic model,
ie. that V(f(x;),y:) = —logp (yi|f(x;)), which is
true for a wide class of loss functions. We write
V(y,f) = —=>""  logp(yilf(xi)) to denote the res-
caled conditional negative log-likelihood. Consider
now using explicit feature mapping x; — ¢(x;) and
denoting the feature matrix by ®, we have f= ®3
and recast optimization as:

1
min {)\V(y, %6) +,8T,3+5ﬂT<I>THLH¢>B},
ER™
where 3 play the same role as « in the PKL,
and we defined 6 = pu/An for convenience. The
two regularization terms correspond, up to an
additive constant, to a mnegative log-prior of

-1
,@NN(O, (I+6<I>THLH<I') ), which in turn

gives a prior on the evaluations:
T leT
f~N<O,<I><I+6<I> HLH<I>) ® >

By directly applying the Woodbury-Morrison for-
mula, the covariance matrix in this prior becomes
(K~!+0HLH) !, compared to K in the standard GP
case. Thus, adding an HSIC regularizer corresponds
to modifying the prior on function evaluations f. The
posterior mode in a Bayesian model using a modified
GP prior becomes:

f~GP (0,k(-,) — kg (KHLH + 6~'T) " 'HLHk.) .

where kx. = [k(-,x1),---,k(-,x,)] T, for any training
set {x;}! ;. Treating the learning problem in the
GP framework actually allows to derive uncertainty
estimates and hyperparameter tuning using marginal
likelihood maximization.

Neural network training with the
physics-dependence loss

Neural networks can also benefit from the new
loss including the dependence term. Including
the HSIC term in standard backpropagation leads
to simple updating rules for training neural net-
works. Let us denote a feedforward neural network
function y = F(X;W), parameterized by a set of
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weights W. The backpropagation algorithm uses
gradient descent to adjust model weights iterat-
ively W[t] <~ W[t—1]+nV]y, where J=le| is
the loss (cost, energy) function that depends on
training error e=y—y and 1>0 is the learning
rate. Including the physics-dependence loss in a
neural network training is straightforward, and only
involves replacing the output error e =y —y with
e’ =y — (M + uSST)y, which intuitively trades the
training error for physics consistency. The stand-
ard backpropagation algorithm can be applied to the
new error function, J{, := ||e’||?. Alternatively one
could use other training algorithms like Adam or
automatic differentiation if the interest is to learn
the dependence measure parameters end-to-end.
The algorithm allows us to train large scale prob-
lems while encoding physical consistency concepts
easily.
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