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We show that the action of spacetime vector fields on the variational bicomplex
of general relativity has a homotopy momentum map that extends the map from
vector fields to conserved currents given by Noether’'s 1st theorem to a morphism of

L. -algebras.

1 Introduction
1.1 Motivation

The diffeomorphism symmetry of general relativity, a mathematical implementation of
the Einstein equivalence principle, is one of its defining features. In contrast to the
internal symmetry of gauge theories, diffeomorphisms are external symmetries since
they act not only on the fields (i.e., Lorentzian metrics) but also on spacetime. The initial
value problem, which yields the hamiltonian formulation of the field dynamics, and
the presymplectic structure on the space of fields, which yields the Poisson bracket
of observables, both depend on the choice of a codimension 1 submanifold as initial
time-slice. But such a submanifold is not invariant under diffeomorphisms. In physics
terminology: it breaks the symmetry. The consequence is that the basic ingredients of
quantization, the Hamiltonian and the Poisson bracket, are not compatible with the

diffeomorphism symmetry. This issue lies at the heart of some of the fundamental open
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The Homotopy Momentum Map of General Relativity 8213

problems in general relativity and has captivated the interest of many authors since the
1960s.

One of its mathematical symptoms is that the action of the group of diffeo-
morphisms and the action of the Lie algebra of vector fields are not Hamiltonian.
More precisely, Noether's 1st theorem, which associates with a symmetry a conserved
momentum does not define a homomorphism of Lie algebras. (The Noether momenta are
the components of the Einstein tensor integrated over the codimension 1 submanifold.)
Worse, the space of Noether momenta is not even closed under the Poisson bracket.

In an earlier paper, we could show that there is a natural diffeological groupoid
describing the choices of initial submanifolds, which exhibits the Poisson brackets as
the bracket of its Lie algebroid [3]. Next, we have developed a notion of hamiltonian
Lie algebroids, which generalizes the notion of hamiltonian Lie algebra action to the
setting of Lie algebroids [5]. We have conjectured that the Noether charges of general
relativity are the components of the momentum section of a Hamiltonian Lie algebroid,
which would give a conceptual explanation of some of the intriguing features of the
constraint functions. Finally, in [4], we have interpreted the momenta as elements of
a generalized Lie-Rinehart algebra, which is connected to the BV-BFV approach to
boundary conditions in classical field theories.

In this paper, we sidestep the choice of initial submanifolds altogether by
using higher algebraic structures. We show that the map from vector fields to their
Noether currents is part of a homotopy momentum map in the sense of multisymplectic

geometry.

1.2 Content and main results

In Section 2, we study the premultisymplectic form w = EL + §y of a Lagrangian field
theory (LFT), where EL is the Euler-Lagrange form and y a boundary form. We prove
in Proposition 2.4 that the obstruction of a premultisymplectic vector field X to be
hamiltonian lies in bidegree (0,n — 1) of the variational bicomplex, where n is the
dimension of the spacetime manifold. This shows that the L -algebra of Hamiltonian
forms can be interpreted as generalized current algebra. We introduce the notion
of manifest diffeomorphism symmetry (Definition 2.12) and observe that every such
symmetry has a Hamiltonian momentum map that is given explicitly in terms of the
lagrangian and the boundary form (Proposition 2.15).

In Section 3, we consider the case of general relativity. Generalizing the concept

of tensor fields, we introduce the notion of covariant and contravariant families of
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8214 C. Blohmann

forms in the variational bicomplex (Definition 3.3). We then show that the product
of families, the contraction of indices, the raising and lowering of indices, etc. have
properties that are analogous to tensor fields. In Section 3.5, we introduce the notion
of covariant derivative of families of forms. In Propositions 3.13 and 3.14, we derive
divergence formulas that show that horizontally exact forms can be expressed as the
contraction of families of forms with the covariant derivative.

Section 4 contains the main results. In Theorem 4.1, we prove that the Lepage
form L + y, which is the primitive of the premultisymplectic form w, is invariant under
the action of spacetime vector fields. This implies that the action has a homotopy

momentum map, which is described explicitly in Theorem 4.2.

1.3 Relation to previous work

The study of multisymplectic forms in classical field theory goes back to at least the
1970s. Best known is perhaps the highly influential, but never finished GiMmsy project
(named by the initials of the collaborators involved, with the main protagonists Gotay
and Marsden capitalized). Their goal was “to explore some of the connections between
initial value constraints and gauge transformations” in classical field theories with
constraints, such as general relativity [13, p. 1]. Towards this end, they introduced
the notion of multimomentum maps [13, p. 46] (see also [8, Sec. 4.2]). Given the action
p g —> XM) of a Lie algebra on a manifold M with a closed (n + 1)-form w, a
multimomentum map was defined as a smooth map M — g*® A" ! T*M or, equivalently,
alinear map f : g — Q"1 (M), such that df(a) = ~lpa

Missing from this definition was a requirement of compatibility with the Lie

yo foralla e g.

bracket of g, analogous to hamiltonian momentum maps in symplectic geometry. It
seems natural to require f to be g-equivariant. Alternatively, the Hamiltonian forms
in Q" !(M) can be equipped with a “Poisson bracket” and f required to commute
with the brackets. However, both conditions turn out to be too strong and rarely
satisfied. Moreover, the “Poisson bracket” does not satisfy the Jacobi identity, so
that it is not immediately clear for what kind of algebraic structure f should be
a homomorphism.

This lack of compatibility of algebraic structures leads to issues in the study
of the constraints of classical field theories with diffeomorphism symmetries, of which
general relativity is the theory “par excellence” [13, Interlude I, p. 52]. The constraint
functions of general relativity are given by the values of the multimomentum map

integrated over the Cauchy surface. The resulting map is called the energy-momentum
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map [12, Sec. 7B]. While the energy-momentum map shows that the constraint functions
arise from the multimomentum map, it does not explain the relation between the Lie
brackets of the symmetry algebra of vector fields and the Poisson brackets of the
constraints. (For the history of this often studied but elusive problem, see Sec. 4 of
[3].) From the viewpoint of homotopical algebra, this was to be expected: Lie brackets
that satisfy the Jacobi identity up to exact terms and maps that preserve the brackets
up to exact terms are generally not compatible with homotopies of the underlying
complexes. Instead, we have to use the homotopy algebraic structure, that is, the
minimal extension of Lie algebras to differential complexes that is stable under quasi-
isomorphisms. For a better behaved theory of multimomentum maps, we are thus led to
L. -algebras.

In [16, Thm. 5.2], it was shown that the bracket on Hamiltonian forms in Q"1 (M)
has a natural extension to an L_,-algebra structure on a graded subspace of the de
Rham complex, with the 1-bracket given by the de Rham differential.(In [2], it was
shown that the bracket of integrated local functions on the jet bundle has extensions
to alternative L. -algebra structures on cohomological resolutions. However, these
L. -structures were not given by an explicit construction, depended on choices, and did
not suggest a stronger notion of multimomentum maps.) It was realized in [7, Def./Prop.
5.1] that this is the natural setting for the generalization of Hamiltonian momentum
maps to the multisymplectic setting, defined as morphisms p© : g — L, (M,w) of
L -algebras. The u, component of every homotopy momentum map is a multimomen-
tum map [7, Sec. 12.1]. For the obstructions to lifting a multimomentum map to a
homotopy momentum map, see [7, Sec. 9.2].

In local lagrangian field theories, a multimomentum map is given by Noether's
theorem [6, Sec. 4.1]. Finding a homotopy momentum map, however, is a much more
difficult problem, even more so in general relativity, where the Hilbert-Einstein
lagrangian is non-polynomial in the fields and of 2nd jet order. The situation simplifies
greatly if the multi(pre)symplectic form has a primitive, ® = dA, and if the action
leaves A invariant. Then a homotopy momentum map can be defined by inserting the
fundamental vector fields in A [7, Sec. 8.1]. If we want to check whether this applies to
a classical field theory, we have to identify the correct A as well as the correct action of
the diffeomorphism group. Many authors use for A the boundary 1-form, so that w is the
universal current in the sense of [20] and assume that the action is vertical (e.g., [6]). We
will show that instead we have to take the sum of the Lagrangian and the boundary
1-form for A and the diagonal action (12) on fields and spacetime by vertical and

horizontal vector fields.
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8216 C. Blohmann
1.4 Conventions

The spacetime manifold M is assumed to be smooth, finite-dimensional, and 2nd
countable. The infinite jet manifold J*F of a smooth fibre bundle F — M is viewed
as pro-manifold, so that its de Rham complex, that is, the variational bicomplex, is an
ind-differential complex. For the computations and proofs in this paper, however, this
will not play much of a role. The same goes for the diffeological structure on the space
of fields F = I'(M, F), of which we will only use the fact that the diffeological tangent
bundle is given by the space of sections of the vertical tangent bundle TF = I'(M, VF).
For the grading and differentials of the variational bicomplex, we use the notation of
[10]: a form in QP9(J*°F) has vertical degree p and horizontal degree g. The vertical
differential is denoted by § and the horizontal differential by d. Otherwise, we follow [1],
with specific references given in the text. We use the summation convention throughout

the paper, so that all repeated indices are being summed over.

Remark 1.1. Instead of “momentum map”, many authors use the term “moment map”,
which derives from a mistranslation of the French term “moment” as in “moment

cinétique” (angular momentum) or “application moment” [17].

1.5 Brief review of homotopy momentum maps

For the reader’s convenience, we give a brief review of the main notions of multisym-
plectic geometry used in this paper. This is also necessary to fix the notation, the choice
of gradings, and the signs.

Let M be a manifold with a closed (n + 1)-form w. A pair (X, «) consisting of a
vector field X € X(M) and a form « € Q" 1 (M) is called Hamiltonian if

xw = —da.

A vector field or a form is called Hamiltonian if it is part of a Hamiltonian pair. We
denote the space of hamiltonian vector fields by &} ., (M) and the space of Hamiltonian
forms by Qﬁ;ﬁl(M).

For the pair (M, w) we can construct an L -algebra L (M, ) defined as follows

[16, Thm. 5.2]. The Z-graded vector space is

Qi ;i=0

LM ,0);=3Q" @) ;1-n<i<0

0 ; otherwise.
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The brackets [ : /\kLoo(M, w) — L, (M, w) are defined by
I (ay) = doy
for dega; <0, by
1
Lo Ao ANa) = —(—1)§k(k+1)LXk Sl L @

= —(—l)kLXILXZ el @,
fork > 1 and dega; = ... = degay = 0 where (X;, ;) are Hamiltonian pairs, and by zero

in all other cases. With this degree convention, the degree of [, is 2 — k.

Definition 1.2 (Def./Prop. 5.1 in [7]). Let M be a manifold with a closed (n + 1)-form w.
Let p: g > X (M) be a homomorphism of Lie algebras. A homotopy momentum map of

the action p is a homomorphism of L_ -algebras
nw:g— L (M, w),
such that

Lp(a)a) =—d 1231 (a)

forall a € g.

We recall that a morphism u : L' — L of L__-algebras is given by a family of linear
maps uy, : AL — L, k > 1 of degree 1 — k, subject to relations that are best expressed
either in terms of the L -operad or in the language of formal pointed manifolds. If
the domain L' = g is a Lie algebra, as is the case for a homotopy momentum map, the
conditions for u to be a morphism simplify greatly. They are best expressed in terms
of the boundary operator § : A®g — A*"lg of the Chevalley-Eilenberg complex for Lie
homology,

Sla; N...nay) = Z (—1)i+j[ai,aj]/\a1/\...&i...aj/\.../\ak.

1<i<j<k

A collection of linear maps uy : kg — L. (M, w) is a homotopy momentum map if and
only if [7, Prop. 3.8]

1
sk(k+1
dug(@; A ... Aag) + g 8@ A ... Aay) = (—1) 2D, o,

pla) " o
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8218 C. Blohmann

for all 1 < k < n, where we set p := 0 and Mpyq o= 0. This relation can be interpreted
homotopically as follows. Shifting the degree of g by 1 and shifting the degree of the de
Rham complex by n — 1, the right-hand side can be expressed in terms of the degree 0
map

v:S@gll) — QWM)In + 1]

V(@ A Aa) = (D ) @

where we have used that S(g[1])_; = A¥g. The maps iy have degree —1. The condition

for u to be a morphism of L -algebras can be written succinctly as [7, Sec. 6.2]
dpg + g8 =, (1)

that is, a homotopy momentum map u is a null-homotopy of the map of cochain
complexes v.

In degree k = 1 the condition (1) reads du,(a;) = —t,(, @, that is, (p(a;), i, (a;))
is a Hamiltonian pair. With this relation, v can be expressed in terms of the L -brackets

as
v(a; Ao Aa) == (p@) Ao A pg(ay)).
For k = 2, Equation (1) is spelled out as
L(r1(ay) A py(ag)) = py(lay, asl) — dug(ay Aay), (2)

which shows that the failure of x; to be a homomorphism of Lie algebras is a d-exact

term. For kK = 3, we obtain

I3(11(ay) Ay (@g) A 1y (@g)) = pp(lay, agl A ag +lay, asl A ay +lag, a] A ag)

- dﬂs(al N az A a3).

Proposition 1.3 (Sec. 8.1 in [7]). Let w = dA for some A € Q"*(M). If A is invariant under
the action p : g — X'(M), that is,

Loa*=0
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for all a € g, then it has a homotopy momentum map u : g — L, (M, ») given by

nray Aoonay) = Loay) lp(ak))\'

Notation. For shorter notation, we will write the k-bracket also as
Loy Ao Aog) = Loy, ... o)

={ay, ..., a )
Analogously, we will write the momentum map as

[Lk(al /\/\ak) E/,Lk(al,...,ak).

In this notation, Equation (2) is written as

{uy(ay), ni(az)l = g ([al,az]) —dpy(ay, ay). 3)

2 Multisymplectic Geometry of Lagrangian Field Theories

The space of fields of a field theory is the set of sections F = I'(M, F) of a fibre bundle
over a manifold M, naturally equipped with the functional diffeology. The Lagrangian
isamap L : F — Q"'(M), where n is the dimension of M. We will assume that
the lagrangian is local, that is, a differential operator, so that L(¢) = (j®°¢)*L, where
L € QO (J™F) is the Lagrangian form and j®¢ : M — J*°F is the infinite jet prolongation
of the field ¢ : M — F.

If M is compact, we can define the action S : 7 — R by S(p) = fo,(go). Many
interesting and important Lorentzian spacetimes are not compact, however, so that the
action is generally not well defined. Therefore, we have to formulate the action principle,
the derivation of the field equations, the notion of symmetries, etc. in a cohomological
form within the variational bicomplex [10, 20].

In Section 2.1, we state the action principle in its cohomological form, essen-
tially replacing integration by taking cohomology classes with respect to the spacetime
differential d. By the cohomological version of partial integration, the variation of the
lagrangian can be written as §L = EL — dy, where EL is the Euler-Lagrange form and
the y the boundary form [20]. EL can be viewed as the differential operator of the field
equations, so that it governs the dynamics of the field theory. The integration of §y over
a codimension 1 submanifold of spacetime yields a presymplectic form on the space of
fields, so that it describes the Poisson brackets of the field observables.

For the multisymplectic approach, we will consider o = EL + §y, which is

an exact (n + 1)-form of degree (n + 1). Its primitive is the Lepage form L + y. In
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8220 C. Blohmann

Proposition 2.4, we show that the bidegree (0, n — 1)-component of a Hamiltonian form
is a conserved current in the sense of [20]. The L -algebra associated with » as in [16]
can therefore be viewed as a higher version of the current algebra.

If M is closed, so that the action S : 7 — R is defined, a symmetry of the LFT
is an automorphism & of F that leaves the action invariant, ®*S = S. Infinitesimally,
a vector field E on F is a symmetry if £-S = 0. This is the case if and only if EEf, is
d-exact, which we take as the general definition of a symmetry. For a local Lagrangian,
we have to require that the vector field E, too, is local. In Section 2.3, we observe that
a vector field on the diffeological space F is local if and only if it descends to a vector
field on J°°F, which is the infinite prolongation of an evolutionary “vector field”. Such
vector fields are strictly vertical in the sense that their inner derivative commutes with
the horizontal differential. The strictly horizontal vector fields whose inner derivative
commutes with the vertical differential are the lifts of the spacetime vector fields by the
Cartan connection.

In Definition 2.12, we introduce the notion of manifest diffeomorphism symme-
try, which is an action p : X (M) — X (J°°F) of the Lie algebra of spacetime vector fields
on the infinite jet bundle, such that p(v) = §, + ¥ is the sum of a strictly vertical vector
field &, and the Cartan lift of v that leaves the Lepage form invariant, £, (L + y) = 0.
We point out in Proposition 2.15 that such a symmetry has a homotopy momentum map
given by inserting the fundamental vector fields of the action into the Lepage form,

which is a special case of the well-known Proposition 1.3.

2.1 The cohomological action principle

A variety of ingredients can play a constitutive role in the mathematical study of
classical field theories. For the purpose of this paper, the following minimal definition

will suffice.

Definition 2.1. A local LFT consists of a manifold M of dimension n, called the
spacetime, a fibre bundle F — M, called the configuration bundle, and a form

L € QO"(J°°F) in the variational bicomplex, called the Lagrangian.

Let o € QP9(J*F), where p denotes the vertical and g the horizontal degree. The
vertical differential will be denoted by §, the horizontal differential by d. The form « is

represented by a form on a finite dimensional jet manifold J¥F, which is given by a map
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The Homotopy Momentum Map of General Relativity 8221

@ : JKF — APt4T*JkF. In this way, « gives rise to a k-th order differential operator

D, : F — (M, APTIT*J*F)

(pl—)&ojk(p,

where j*¢ : M — JXF is the k-th jet prolongation of ¢. In this notation, the integrand of
the action can be written as L(g) = D; (p).
The target of the differential operator D, is not a vector space, so it does

”

not make sense to consider the equation “D,(¢) = 0", even though this is how the
corresponding PDE is often written. And even if F — M is a vector bundle so that
APHaT* JKF . F is a vector bundle, the right-hand side cannot be required to be the zero
section, as this would imply that ¢ is the zero section of F — M. Instead, we have to use
that there is a zero form 0 € QP4(JXF) in every bidegree. The PDE can then be written
more carefully as D, (¢) = Dy(p). If this equation holds, we will say that « vanishes at

peF.

Definition 2.2. A form o € QP9(J°°F) is said to be d-exact at ¢ € F if there is a form
B € QP971(J*®F) such that « — dB vanishes at g.

Definition 2.3. A field ¢ € F is said to satisfy the cohomological action principle if 5L

is d-exact at ¢.

If a form « is of top horizontal degree g = n, then there is a unique representative
Pa of its d-cohomology class, which has the following property: the form « is d-exact
at ¢ if and only if Pa vanishes at ¢. The map P : QP"(J*F) — QP"(J*F) is the
cohomological version of partial integration and straightforward to compute. It is called
the interior Euler operator. Forms in the image of P are called “source” for p = 1 and
“functional” for p > 1 [18], [1, Def. 2.5 and Ch. 3].

The map E := P§ : QP(J®F) — QPTL(J®F) is called the Euler operator. The
source form EL € Q! (J®F) is called the Euler-Lagrange form. Since the interior Euler
operator does not change the d-cohomology class, EL = PSL and SL are in the same

d-cohomology class, that is,
EL — SL =dy,

for some y € Q1" 1(J®F). The form y is called a boundary form.
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8222 C. Blohmann

From the properties of source forms it follows that a field satisfies the

cohomological action principle if and only if it satisfies the Euler-Lagrange equation

DEL((P) = Do(‘P)'
In physics terminology, such a field is called on shell.

2.2 Premultisymplectic structure and current L,-algebra

Let y be a boundary form. The form
A=L+y (4)

of total degree n will be called the Lepage form.(For the terminology, see [15] or
[1, p. 199]. Deligne and Freed call A the “total Lagrangian” [10, p. 161].)Let the total
differential of J°°F be denoted by d = § + d. The total differential of the Lepage form is

w:=dA

= EL + dy,

which is the premultisymplectic structure we are interested in.

On J*°F, we have the splitting of vector fields into a vertical and horizontal
component, which leads to the bigrading on the de Rham complex. Moreover, we
have the acyclicity theorem of the variational bicomplex. This leads to the following

description of Hamiltonian vector fields.

Proposition 2.4. Let X be a vector field on J®F with vertical component X. Then X is

Hamiltonian with respect to the premultisymplectic form w = EL + §y if and only if

(i) Lxw=0and
(ii) (3 EL = dj for some j € Q01 (J®F).

In the proof, we will use the following lemma [9, Thm. 11.1.6].

Lemma 2.5. Let 8 € Q"(J°F) be a d-closed form and

B=By+...+ B,
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The Homotopy Momentum Map of General Relativity 8223

its decomposition into summands of bidegree deg 8, = (k,n — k). Then 8 is d-exact if

and only if g, is d-exact.

Proof. A form a € Q" !(J*®F) can be decomposed as
a=a0+...+(xn71,

into components of bidegree dego; = (k,n — 1 — k). The total differential decomposes as

do = dag + oy +day) + ...+ Bay,_y +da,_;) + 8,1,

into summands of homogeneous bidegree, where the 1st summand has bidegree (0, n)
and the last (n,0). Assume that 8 = d«. This condition must hold in each bidegree
individually. In particular, we have g, = do,.

Conversely, assume that f, = da, for some oy € QO""1(J*F). The total

differential of 8 decomposes as

df = (86 +dBy) + ...+ (0Bp_1 +dBy) + 3B,

into summands of homogeneous bidegree, where the 1st summand has bidegree (1,n)
and the last (n + 1,0). By assumption d8 = 0, which has to hold in each bidegree

separately,

0 =88, + dB,

0=148, +dp,

0=48,_,+dB,

0=248,.
From the 1st equation, we get

O = (S,BO + dﬂl = (Sdao + dlBl

= d(—8ay + By).
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8224 C. Blohmann

It follows from the acyclicity theorem for the variational bicomplex [18, Thm. 4.6] that
—8ay + B; = da; for some o € QIm=2(J®F). The bidegree (2,n — 1) component of df = 0

can now be written as

0=238B; +dBy, =80y + day) +dp,

As before, it follows from the acyclicity theorem that 8, = 8«; + do, for some
a, € Q2M=3(J®F). By induction, we obtain forms «,...,a, ; such that do = B for

|
=0y +...+a, 1.

Proof of Proposition 2.4 Let X' be the vertical and X! the horizontal component of X.

Assume that iyw = —da. The left-hand side decomposes as
txw = (txL + tx1)(EL + 8y)
=31 EL + (LX”EL + LXJ_8'}/) + tx18Y,

into summands of bidegree (0, n), (1,n—1), and (2, n — 2). We conclude that the bidegree
(0,n) component of the Hamiltonian condition is (yi1 EL = —da,, which is condition (ii)
for «y = —j. Since w is closed, we have Lyw = diyw = 0 that is condition (i).

Conversely, assume that (i) and (ii) hold. This means that —8 = (yw is d-closed

and that gy = da, where ay = —j. It now follows from Lemma 2.5 that iy = —8 = —de.

A form j € Q071 (J®F) is also called a current. A current is called conserved
if it is d-closed on shell, that is, if dj vanishes at every solution of the Euler-Lagrange
equation. Proposition 2.4 shows that the degree (0,n — 1) component of a Hamiltonian
form is a conserved current. In this sense, L, ,(J°°F, w) can be viewed as higher current

algebrany .  bracket of Hamiltonian forms « 1/-- -, & is given by

o, poph = =D 0 + o) (g + ) EL+8y)

1<i<j<k

+ DL DT g Gl ) (g EL)
1<i<k

+ 2 DT G G ) (g 8Y) = (SD (g L)L
1<i<k

— (D gy 0y,
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where X, ..., X, are the Hamiltonian vector fields. The 2-bracket is given by
{a, B} = (tyr + 1y (txr + tx1)(EL +8y)
= tyLtxt 8y + (tyitxt — txityL)EL
+ (tyitxt — txity)8Y + ixitxI EL

+ tyitxi8y,

where (X, «) and (Y, 8) are Hamiltonian pairs.

2.3 Noether symmetries

The diffeological tangent space of F is given by the space of sections of the vertical

tangent bundle, TF = TI'(M,VF), so that a vector field on F is given by a map
E:I'(M,F) =F - TF =T'(M, VF). This map is called local if it is a differential operator,
that is, if there is a commutative diagram

Exidy

T(M,F) x M —— T'(M, VF) x M

l]' k J{J’O

JkF 0 VF

where VF = ker(TF — TM) is the vertical vector bundle. The map &, is often called an

evolutionary “vector field”.

Remark 2.6. We put quotes around evolutionary “vector field” because it cannot be
naturally viewed as an actual vector field unless the configuration bundle F — M is
equipped with a flat connection. Readers who are used to this traditional (but abusive)

terminology (e.g., Def. 1.15 in [1]) are kindly asked to ignore the quotes.

The map £, can be prolonged to a vector field £ on J*F, which is the unique
vector field such that

Exidas

(M, F) x M —— T(M, VF) x M

lj“ J{Tj“ (7)

J*F % TJ*®F

commutes. If such a commutative diagram exists, we will say that & € X' (J°F) lifts to the
vector field E € X(F). The following proposition is a purely algebraic characterization

of such vector fields.
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Proposition 2.7. A vector field § € X(J*F) lifts to a vector field on F if and only if
[[‘5’_—, d] = 0.

Proof. The proof follows from a straightforward computation in jet coordinates. W

The kernel of Q°(J*F) defines an integrable distribution on TJ*F, called
the Cartan distribution, which can be interpreted as a flat Ehresmann connection on
TJ*®°F — M. The horizontal lift of a vector field v € X'(M) is denoted by v € X (J°°F).
Since the connection is flat, the map X (M) — X (J*®F), v — ¥ is a homomorphism of Lie

algebras. The following is a purely algebraic characterization of such lifts.

Proposition 2.8. A vector field & on J°°F is the horizontal lift of a vector field on M by

the Cartan connection if and only if [i¢, 8] = 0.

Proof. The proof follows from a straightforward computation in jet coordinates. W

The last two propositions can be understood geometrically as follows. Assume
for the sake of argument that F is a finite dimensional manifold. The de Rham complex
of Q(F x M) has a bigrading with vertical differential § in the direction of F and
horizontal differential in the direction of M. A vector field & on F x M is the lift of a
vector field on F if and only [, d]l = 0 and a lift of a vector field on M if and only if
[tg, 8] = 0. Propositions 2.7 and 2.8 show that this characterization is valid also in the
variational bicomplex. In order to emphasize this geometric interpretation, we will use

for the purpose of this paper the following terminology.

Definition 2.9. A vector field & on J*F will be called strictly vertical if [.;, d] = 0 and
strictly horizontal if [, 5] = 0.

The Lie derivatives of a strictly vertical vector field & and of a strictly horizontal

vector field ¥ are given by

Eg = [[5'8] , E‘} = [L"}: d]

Definition 2.10. A strictly vertical vector field & such that £;L = dp for some
B € QU"~1(J*F) will be called a Noether symmetry of the LFT.

Remark 2.11. Vector fields on the infinite jet bundle are sometimes called “generalized

vector fields” and symmetries given by such vector fields “generalized symmetries”
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(e.g., in [10]). However, an analysis of Noether’'s historic paper shows that this is
Noether’'s original notion of symmetry, which was only to be rediscovered later
[14, Sec. 7.1].

Recall that a form j € Q071 (J*®F) is also called a current. If there is a strictly

vertical vector field & such that
dj = léEL,

then j is called a Noether current and (£,j) a Noether pair [10, Def. 2.97]. Noether
currents are conserved. Noether’'s 1st theorem states that if £ is a Noether symmetry,
then

J=B- ley
is a Noether current. The proof is a half-line calculation,
dj =dp —diy = 10L + 1zdy = | EL,

which highlights the advantage of working in the variational bicomplex.

2.4 Manifest diffeomorphism symmetries

In [10, p. 169], a manifest symmetry was defined to be a vector field X € X' (J*F) such
that

(i) X = & + v is the sum of a strictly vertical vector field £ and a strictly
horizontal vector field v;
(ii) LepL+y)=0.

This suggests the following terminology.
Definition 2.12. Let (M, F,L) be a LFT with boundary form y. An action

0 X (M) — X(J®F)
Vi— p(v) =&, + 7.

by manifest symmetries will be called a manifest diffeomorphism symmetry.

Remark 2.13. The Cartan lift v + ¥ of vector fields on M is a homomorphism of Lie
algebras. Since strictly vertical and strictly horizontal vector fields commute, it follows

that the map v — £, is a homomorphism of Lie algebras, too.
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Remark 2.14. If F — M is a natural bundle, that is, diffeomorphisms between
open subsets of M lift functorially to diffeomorphisms between local sections, then it
follows from [11] that we have an action of vector fields on J*°F. The diffeomorphism

symmetries of LFTs often arise in this way.

Proposition 2.15. Let (M, F,L) be an LFT with boundary form y. Then every manifest

diffeomorphism symmetry p : X (M) — X (J°°F) has a homotopy momentum map
@i X(M) — L (J®F,EL + 8y)

given by

M (Ve Vi) 2= gy Loy (L )

Proof. This is a special case of Proposition 1.3. |

The homotopy momentum map of a single vector field is split into a bidegree

(0,n — 1) and a bidegree (1,n — 2) summand as
(V) = (g, + 1)L +y) = (L + 1, ¥) + ¥
= _jv + LoV,
where

Jy=—t,L =tz y (9)
is the Noether current of £,. In general, the map u;, splitsintoa (0,n—k) and a (1,n—k—1)
component given by the two lines of the right-hand side of the equation

k .
Up(Vy, oo, V) = — Z(—l)k_l(tf,1 sl ol My (A =k (g )L
i=1

+ (g, - 5,V

For example, we have

Wo(V, W) = (ofy, — tidy + toti D) + oty y
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Using Equation (6), we can write the l,-bracket of the momenta as
(W), gy (W)} =t e 8y + (e, — Lot )EL
+ (gle, = tole, )8V + Lyt EL (10)

+ 13t 0Y,
where the three lines of the right-hand side are of bidegrees (0,n — 1), (1,n — 2), and
(2,n—3). The right-hand side of Equation (3) is expressed in terms of the Noether current

as
(v, wl) —duy (v, w) = —j[v,w] + dpdy — tady + ot L)
Rl 8(odw — tady + total) — digty,y

+ 0y .

Remark 2.16. If we integrate p,(a) over a closed codimension 1 submanifold ¥ C M,
we see from Equation (8) that we obtain, up to a sign, the usual Noether charge
Jx #1(v) = — [ j,- This is no longer true for the brackets. The integral [; i 8y of the
first summand on the right-hand side of Equation (10) is the usual bracket of charges.
The integral of the 2nd summand, however, is an additional contribution, which is not
present in the multimomentum map of [6, Sec. 4.1]. The integrals of all other terms on

the right hand side of Equation (10) vanish for degree reasons.

Example 2.17 (Classical mechanics). In classical mechanics spacetime is time M = R
and the configuration bundle is trivial, F = R x Q — R, so that F = C*(R, Q) is the
space of smooth paths in Q. Let us consider the Lagrangian of a particle of mass 1 in a

potential V,

L= (34'q - v(g)dt.

Here, t, qi, qi, 'qi, ... are coordinates on the infinite jet bundle, given by
. dx’
21200
X) = —
400 %) dt lt=0

for a path x : R — Q. Using the relations déq' = —8¢* A dt, dq¢' = G'dt, and d¢* = §idt, we
find that 6L = EL — dy with

EL = —(&j" + g—;/i)Sqi A dt

y =q'8q".
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For the presymplectic form w, we obtain
VA . .
N 1 SR i i i
W= (q + aqi)Sq Adt+8q" ANéq',

which is a form on J?(R x Q). The Cartan lift of the infinitesimal generator of time
translation, that is, of the coordinate vector field 9, = % e X(R) is
3, = 3+qii+qii+...
at  Tag ' ag

The time translation x(z) — x(t —t) of paths descends to the strictly vertical vector field

The fundamental vector field of the diagonal action of time translation on J®F is

therefore given by

() =&, + 0 _ (11)
t 9 t 9t

This equation looks like a tautology, but the vector field % on the right-hand side is
not horizontal and must not be identified with the vector field in the time direction.
Moreover, p is not C°°(M)-linear.

Equation (11) implies that £, ,,,(L+y) = 0, so that time translation is a manifest

symmetry. The corresponding momentum map is given by
M1(3t) = —fat,
since for degree reasons the term ¢; y vanishes. The Noether momentum
Jo =L —tg,y =386 + V@
is the energy.

3 The Variational Bicomplex of Lorentzian Metrics

We turn to general relativity. Here, the fields are Lorentzian metrics on the spacetime
manifold M. Vector fields on M act on metrics by the Lie derivative. This action is local,
so that it descends to the infinite jet bundle, inducing an action on the variational

bicomplex. In order to study this action, we introduce in Definition 3.3 the concept
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of covariant and contravariant families of forms in the variational bicomplex, which
generalizes the concept of tensor fields. In Section 3.5, we generalize the notion of
covariant derivative to such families of forms. In Section 3.6, we derive divergence
formulas that express the horizontal differential of a form in terms of the covariant
derivative and the metric volume form. While the computations are similar to those
with tensor fields, there are also differences. For example, the metric volume form is

invariant (Lemma 3.11), rather than transforming as a density.

3.1 The action of spacetime vector fields

Assume that M is a manifold of finite dimension n. The configuration bundle of general
relativity is the bundle of fibre-wise Lorentzian metrics on the tangent spaces of the
spacetime manifold M, which we denote by Lor — M. We use the “east coast” sign
convention in which the signature of the metric is (—1,1,...,1). The diffeological space

of lorentzian metrics on M will be denoted by Lor.

Remark 3.1. In many papers on LFTs and the variational bicomplex one of the
following simplifying assumptions about the configuration bundle F — M is made:
F is a vector bundle; the fibres of F are connected; the space of sections F = I'(I4, F) is
non-empty; the jet evaluations j* : F x M — J*F are surjective. All these assumptions

generally fail for the bundle of Lorentzian metrics.

The configuration bundle is natural, which means that local diffeomorphisms
on M lift functorially to the sheaf of sections. In particular, we have a left action
of the diffeomorphism group Diff(M) on the space of fields Lor by pushforward.

Infinitesimally, we have a left action of the Lie algebra of vector fields,

E: X(M) — X(Lor)
vi— (8, :n+— —L,n),
where the symmetric 2-form —£,n represents a tangent vector in T, Lor. This action is

local, so that it descends to an action of X' (M) on J*Lor by strictly vertical vector fields,

£: XM) — X(J*®Lor)

Vi £,
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Together with the Cartan lift of the vector field in X' (M), we obtain a homomorphism of

Lie algebras

p: X(M) — X(J*Lor)
(12)
Vi p(v) =&, + V.

Our ultimate goal is to show that p is a manifest symmetry of general relativity for a

natural choice of boundary form. In this section, we will gather the necessary tools.

3.2 Jet coordinates

Let (x!,...,x™) be a system of local spacetime coordinates on an open subset U C M.
The coordinate vector fields will be denoted by 9, = %, the coordinate 1-forms by dx?.
A Lorentzian metric n € Lor is written in local coordinates as n = %nabdxa A dxP, where
Nab = ty,la,N € C°(M) are the matrix components of the metric. (Recall that we use the
Einstein summation convention throughout the paper.)

The local coordinates on M induce local jet coordinates given by

9ab,c i :J®Lor — R
akn
00 ab
Jx 9xC1 ... 9xCk Ix’

Since the partial derivatives commute, 9ab,cy-cx is invariant under permutations of
the indices cy,...,c;. To avoid overcounting in summation formulas, it is convenient
to use the multi-index notation of multi-variable analysis: a multi-index is a tuple
C = (Cy,...,C,) of natural numbers C; > 0. The number |C| = C; + ... + C,, is called
the length of the index. The concatenation of a multi-index with a single index is given
by

Cd=(Cy,...,Cq+1,...,Cp).
The jet coordinate function labelled by a multi-index is given by

311y,
(8x1)C1 -+ (3x™)Cn Ix

gab,C(j;on) =

The collection of functions {X“,gablc} for1 <a <b < nand C € N} is a system of local

coordinates on J*°Lor.
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Remark 3.2. In the physics literature, the same notation is usually used for both the
jet coordinates and their evaluation on a field, which can be confusing. For example, if
M is non-compact, every n-form is exact, in particular the integrand L(»n) of the action.
So for the step “discarding exact terms” during the derivation of the Euler-Lagrange

equation to be meaningful, we must view the integrand as an element L € Q%" (J*®Lor),

that is, as an expression of the jet coordinates like g,;, . and not of the derivatives %chb

of a particular metric 7.

The variational bicomplex is generated as bigraded algebra by the coordinate
functions, the vertical coordinate 1-forms 89ap,c In degree (1,0), and the horizontal

coordinate 1-forms dx? in degree (0, 1). A (p, g@)-form is given in local coordinates by

ay,by,.. yap:bp,cl, ,CquCp e e
0= e, e 89arby,c0 N N OGapby,c, N AXT AL A dXT,

where the coefficients are functions on J*Lor. The other differentials of the jet

coordinates are given by [1, p. 18]
8x% =0

dgab,C = Yab,ce dx®.

It follows that the differentials of the coordinate 1-forms are given by ddx® = 0,
889apc =0, 8dx* =0, and

d8‘gab'c = _agablce N dXe.

Dually, the C*°(J*°Lor)-module of vertical vector fields is spanned by the

coordinate vector fields 893?, which satisfy

__¢a ¢b oC
(] 8ga/b/lc/ = Sa/abrac/

99ab,c

(o dx®=0.

99ab,c

The module of horizontal vector fields, called the Cartan distribution, is spanned by the

vector fields

a 3Xa Z gbcDa '
|D|=0 99be,p
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which satisfy

LéaggbC,D =0

a _ ¢d
13,ax" =4, .

The Cartan distribution can be viewed as an Ehresmann connection on the
bundle J*Lor — M. The horizontal lift of a vector field v = v“(x)% on M to J*Lor

is given by
V= Va(X)éa.

The vertical and horizontal differentials of a function f € C*(J*Lor) are given by
[1, pp. 18-19]

00
b
(Sf: Z a—fSQab,C

‘C|:0 g(lb,C

df = (3,f)dx*.

The horizontal differential of a form w € QP9(J*°Lor) is given in local coordinates by

do = (~1)PTU(L; ) A dx®. (13)

A vector field is strictly horizontal if and only if it is the horizontal lift ¥ of a
vector field v on M by the Cartan connection. A vector field & is strictly vertical if and
only if it is the infinite prolongation of an evolutionary “vector field”, that is, of a map
& : J®Lor — VLor of bundles over Lor, where VLor C TLor is the vertical tangent

bundle. In local coordinates, it is of the form

o 1 d
C|Z=O coab agab,C

where the &, are functions on J®Lor and where 9, = (3;)°! - - (3,,)°" is the multi-index
notation for the iterated application of the horizontal lifts of the coordinate vector
fields.
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3.3 Action of spacetime vector fields on infinite jets

The action of a vector field v € X' (M) on a Lorentzian metric n € Lor by the negative Lie

derivative, n — —L, 7, is given in local coordinates by

dng, = OVE v b
C a a
_aXC + 9x% Na'b + _3Xb T]ab/)dX dx’.

Ngpdx®dx? — — (V

We can view this as transformation of the coordinate functions

—(v° ove o = (15)
Gab — V'9ab,c T 9x@ 9ap t 9xb 9av' ) = Eap

which are the components of the evolutionary “vector field” Sabﬁ- Its infinite prolon-

gation is the strictly vertical vector field

i 3
£,= D (Ockqp) :
ICI=0 8gab,C

which defines the action (12) of vector fields on the infinite jet bundle.

3.4 Covariant and contravariant families of forms

The Lie derivative of a coordinate function with respect to a strictly horizontal vector

field is given by

Lv?'gab,C = Lvef)e dgab,C

)
= V'Yab,ce:

In particular, we have

‘Céegab =UYab,e

Note that this is the Lie derivative of a single function g,;, € C*°(J°*°Lor) and must not be
confused with the Lie derivative of a metric 2-form on M. The formula (15) for the 0-jet

component £, of £, can now be written as

v? v
[’Evgab = —L39ap — 5xa Gab — 9xb Yab'-
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This can be expressed in terms of the diagonal action p as

v vt
L,n9ab = _Wga’b - 879“1’" (16)

Since § commutes with both £, and L;, it commutes with £, . This implies that

v avt’
EP(V)Sgab = _nga’b %P — 094 (17)
Using g*°g,, = 82, we get
BVa a'b 8V b
£p(V)g 8 a/g + 9x b/g (18)

These calculations suggest the following definition.

Definition 3.3. A family of forms ij;ff.’f;g € QU>Lor), 1 < ay,...,b, < n is called

covariant in ay,...,a, and contravariantin b,, ..., b, if

p a. q b:
bi-bg _ ovi bl"'bq V7% byblbg
‘Cp(v)Xal ‘ap — 2 8Xal a1-~a;--~ap + zl Bxbg Xalwap .
1=

A form y € Q(J°°Lor) is called invariant if L,wx =0.

Definition 3.3 generalizes the notion of covariant and contravariant tensors to
families of forms in Q2(J*°Lor). In this terminology, Equations 1618 show that the indices
of g, and 8g,, are covariant, while those of g*” and §g?° are contravariant. Covariant

and contravariant families behave in many ways as tensors.
Lemma 3.4. Let x, be a covariant and ¥? a contravariant family of forms. Then the

family x, A ¥’ is covariant in @ and contravariant in b.

Proof. This follows immediately from the fact that £, is a degree 0 derivation of the
algebra Q(J*Lor). |

Lemma 3.5. Let x2 be a family of forms that is covariant in @ and contravariant in b,

then the contracted form x2 (summation over a) is invariant.
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The last two lemmas generalize in an obvious way to families with several
indices. An immediate consequence of Lemmas 3.4 and 3.5 is that we can raise and lower
indices with the metric coordinate functions in the usual way: if x, is covariant, then

/ . . . . n .
x% = g** x, is contravariant. If x¢ is contravariant, then x, = g, x% is covariant.

Lemma 3.6. If the family x;, € Q(J°Lor) is covariant, then the family 50 Xb is covariant

in a and b.

Proof. Let 4, =5 x;, We have
LowyVab = Le 55, xp)

= (1, Le, + 15, L0 + 4p.0.0) X

v
= [5a£P(V)Xb - 9x4 (Léa/ Xb)
vt v
 9xb Vap = 9xa Vab:

which shows that v, is covariant in @ and b. |

Lemma 3.7. If the family x, € Q2(J*Lor) is covariant, then the family 8, is covariant.

Proof. We have
LywdXa = 8Ly Xa

v
= (S(— 9xa Xa/)

e
= " xa e

which shows that x, is covariant. |

The last lemma generalizes in an obvious way to families of forms with covariant
and contravariant indices. The analogous statement for the horizontal differential

works only for invariant forms.

Lemma 3.8. If x € Q(J°°Lor) is invariant, then dy is invariant.

Proof. The differential d commutes with £, so that £,,dx = dL,,x = 0. |
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Lemma 3.9. If the form x € Q(J*Lor) is invariant, then the family Eéax is covariant.

Proof. We have

Low) Ly, 10 = Le,15(Ly, X)
= (L5, Le, + L5, Lo+ Lig50)x

a

v
= £5a£$v+‘7x - x4 (Eéa/X)
ve
= —87(1:{9&,)( )
which shows that L;, x is a covariant family. |

Lemma 3.9 holds only for an invariant form x. If x; is a covariant family, then
Eéa Xp is not covariant. In order to obtain a covariant family by differentiation, we have
to generalize the concept of covariant derivative to families of forms in the variational

bicomplex.

3.5 Covariant derivative of families of forms

In the cohomological approach to general relativity, we have to interpret the connection
coefficients, the covariant derivative, the curvature, the volume form, etc. as expressions
in the variational bicomplex. The connection coefficients of the Levi-Civita connection
have to be viewed as functions on J*Lor that are given in local coordinates by the

expression

IE = 39“%Gapc + Gacy — Ive,d)- (19)

The covariant derivative has to be defined in the variational bicomplex as follows. For
a family of forms xal q that is covariant in the lower indices and contravariant in the

upper indices, we deflne

by bq_ o bq 1by bt bq
Vchll - Z -a; ap+zrcb’ '

Using this definition, we can check by the usual calculation that the connection coeffi-

cients (19) of the Levi-Civita connection is the unique family of functions symmetric in
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The Homotopy Momentum Map of General Relativity 8239

b and c, such that V,g,, = 0. The Riemann curvature tensor is given by Riem_, ¢ x,; =

(Vo Vy — Vp V) xo which has now to be viewed as a family of functions on J*Lor.

Lemma 3.10. Let x; be a covariant family of vertical forms. Then the family V_y, is

covariant in a and b.

Proof. We have to compute the Lie derivative of V,x;, = £ x;, — I'gpx with respect to
p(v) =&, + V. For the 1st summand, we get

Low)(Ls, xp) = L5, Le, 5 Xp) + Ly 5,1 Xp

av?
= Kéa (—_Xb/) + L[f/,éa]dxb

axb
92yt vt al
- s ) = s d
ax%9xb 0 T oxb (Lo, %) 9x@ 0y XD
8Vb/ ava/ 2.,C
s ) = (L ) — —
axb (Lo, X)) 9x9 (Lo xb) 9x29xb X¢

For the 2nd summand, we must compute the Lie derivative of the connection coeffi-

cients. For this, we need the following formula:

ESVgabyC = ‘Cévﬁécgab
=L; Le,Gap
v vt
=L, (ﬁ‘;gab + oxa Jab + Wgab/)
=Ly, 01 T LoL5,)9ap
92v? v 32v? vt
- Bxcaxag“/b - 9xe 8ga/b,C - BXCE)ngab/ - aXb gab’,(;
v vt v
= —LoGabe — Ha9abe axb Jab.c = Gy Yabe
ana, anb/
" axcaxedeb T gxegxpIab”

With this relation, we can compute the action of vector fields on the connection

coefficients, which yields

’

ove o ov? 8vb,Fc 32ve
axc ab gxa @b gybab o gyagyb’

E,o(v) ng =
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8240 C. Blohmann
Putting everything together, we obtain
L) Vaxp) = Lo La, %0 = LpwmTap) Xe = TapLpw) Xe)

v vt
= a7(Va/)(b) + W(Va)(b/),

where the terms containing the 2nd-order derivatives of v% cancel. This finishes the

proof. |

3.6 Divergence formulas

In the variational bicomplex, the metric volume form is the (0, n)-form on J>*°Lor defined

as

vol, = \/—detg dx' A... A dx". (20)

We recall that we have adopted the “east coast” sign convention for Lorentz metrics with
1 negative and n — 1 positive signs, so that det g is negative. The partial derivative of the

square root of the determinant with respect to the 0-jet coordinates is given by

9 J—detg = 1%/~ detg.

8gab

The partial derivatives with respect to x* and all higher jet coordinates g, ; vanish. It

follows that the vertical and the horizontal differentials are given by

8§/ —detg = %g“ngab\/— detg
d—detg = %g“bgab,c\/— detg dx°.

For the vertical differential of the volume form, we obtain

dvoly = %g“%gabvolg. (21)

Although volg is not a volume form on J*°Lor, every (0, n)-form t can be written

as

f vol

J—detg g’

r=fdx' A Adx" =
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for a unique function f € C*°(J°*°Lor). Therefore, we can define the divergence of a vector
field X € X(J°°Lor) by the relation

LXvolg = (dle)volg.
For a strictly horizontal vector field ¥, we have

Lyvoly = (Lyy/—detg) dx' AL Adx™+/—detg Lo(dx' A... Adx™)
ave ave
= (%gabgab,ch + @)VCIQ = (Fchc + @)volg (22)

= (Vava)volg.
We conclude that
divy = vV, v

While this looks like the usual expression, we point out that the divergence div ¥ is now

a function on J1Lor.

Lemma 3.11. The metric volume form is invariant.

Proof. For the Lie derivative of the volume form with respect to the vertical vector

field, we obtain

£§Vvolg = tgchvolg
v vt
b
=—1g° (‘Cf/gab + Txa Jab + mgab’)VOIg
C

ov'
b
= —(Vc%ga gab,c + ﬁ)volg

—[:(;.Volg,

where in the last step, we have used Equation (22). We conclude that Ep(v)volg = 0 for
all v e X(M). |

Remark 3.12. Lemma 3.11 can be stated by saying that &, + ¥ is divergence free.
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8242 C. Blohmann

From the formula for the divergence of a vector field, we deduce
(Vov*vol, = d(v“téavolg).
This formula generalizes to higher vertical forms, as we will show next.
Proposition 3.13. Let x¢ be a family of (p, 0)-forms on J*Lor. Then,

Vx4 A vol, = (=DPd(x* A ty volg). (23)

Proof. Consider the (p,n — 1)-form
X = (—1)pxa A [éavolg,
where the x? are (p, 0)-forms. The horizontal differential of x is given by

dx = (=DP* (L, x) A dx°
= (=D"'Ly (x* Ay, volg) A dx°
= (Eécxa) A (—1)”_1(L3avolg) AdxC 4+ x% A (—1)”_1(£éctéavolg) A dx®
= (L3, x4 Avoly + x® A (=1)" (i, L5 voly) A dx°
= (Eéaxa) Avolg + X% A (—1)"_115a(l"gcvolg) A dx®
= (L3, X%+ Tpax®) A vol

= (VoxH A volg,
where we have used Equation (13), the Leibniz rule, the relation
-1
(t5,v0lg) A dx® = (-1)" 62v01g,
and Equation (22). [ ]

For later use, we generalize the formula (23) further to families of (p, 1)-forms.
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Proposition 3.14. Let x%? be a family of (p, 1)-forms on J®Lor such that x® = —xbe,

Then,

b 1 b
Vax® A LébVOIg = (=DPd(5x* A LéaLébVOIg). (24)

Proof. Consider the (p,n — 2)-form
X = %(—l)pxab A téatébvolg.
We have the relation
(téatébvolg) Adx® = Léu[(tébvolg) A dx®] — (—1)”_1(13bvolg) A (téadxc)
= [Léa(—nn—lagvolg] — (—1)"—1(L3bvolg)5g
= (_1)n—1(5g[éa — SZcéb)Vdg-

ba

Moreover, since X“b = —x"%, we have

Vaxab — Eﬁaxab + ngxdb + Fsdxad
= Egaxab + ngxdb.
Using these relations, we can compute the horizontal differential of x as

dx = 3(~DP2(L; x) A dxC
= %(»Cécxab) A (—1)”_2(téutébvolg) A dx°
+ %Xab A (—l)n_zﬁéc(téatébvolg) A dx°
= %(ﬁgcxab +x%Tg) A (—1)"72(L5atébvolg) A dx°©

= %(C@Cxab +x%1d) A (=1)(8pt5, — Saty,)volg

(Eéaxab + xanga) A t5,volg

_ ab .
=(Vax“) A ‘abVOIg'

which finishes the proof. u
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8244 C. Blohmann
4 The Homotopy Momentum Map of General Relativity

We now have all the tools needed for the multisymplectic interpretation of the dif-
feomorphism symmetry of general relativity. We start by recalling the Euler-Lagrange
and the standard boundary form. Then we show in Theorem 4.1 that the Lepage form
is invariant under the diagonal action of vector fields. In other words, the action of
vector fields is a manifest diffeomorphism symmetry of general relativity in the sense
of Definition 2.12. It follows from Proposition 2.15 that the symmetry has a homotopy
momentum map, which is given explicitly in Theorem 4.2.

4.1 Euler-Lagrange and boundary form

The lagrangian form of the Hilbert-Einstein action is
L=R volg, (25)

where R is the scalar curvature, which has to be interpreted within the variational
bicomplex as a function on J*Lor as follows: the Riemann curvature tensor is given
in local coordinates in terms of the connection coefficients (19) by
: d A d A rd d d

Riemg,.~ = 9pl'ge — 9,175, + l—‘cewreb - 1—‘zcrea'
This is the usual formula [19, Eq. (3.4.4)] with the partial coordinate derivatives replaced
by the Cartan lifts 9, and 9,. The Ricci curvature is given by the contraction Ricg, :=
Riem,,,° and the scalar curvature by the trace of the Ricci curvature R = g*’Ric,,.

The vertical differential of the scalar curvature R = gabRicalJ is given by
8( abR- _ s abxp: ab e
g“"Ricy,) = 6g° Ricy, + g“ oRicy,.
The 1st term can be written as
(SgabRiCab = —RiCabg'gab.

The 2nd term is given by [19, Eq. (E.1.15)]

gab5RiCab = Vaya,
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The Homotopy Momentum Map of General Relativity 8245

where
_ _bc
Ya=9 (vc8gab - Va8-gbc)’
and where the covariant derivative is to be understood as
b
Vaya — ga (‘Céayb — ng)/c),

as explained in Section 3.5. The vertical differential of the volume form was computed

in Equation (21). Putting everything together, we get
8L = —(Ric® — 1Rg*)sg,;, A volg + V%, Avol,.
The 1st term is the Euler-Lagrange form
b

EL = —G*8gp, A volg,

where
Gab — Ric(lb _ %Rg(lb

is the Einstein tensor. The Einstein tensor is divergence-free, that is,

b b b b
VoG? = L5 G* +Tg.G” + g, G*

=0.
Using Equation (23), the 2nd term can be written as a d-exact term
(Ve A vol, = —dy,

where

a
y=y“A LéaVOI
’ (26)
= gadgbc(vc(sgab — V289pe) A LédVOIg

is the boundary form.
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8246 C. Blohmann
4.2 Invariance of the Lepage form

Theorem 4.1. The Lepage form L + y given by the sum of the Hilbert-Einstein
Lagrangian (25) and the boundary form (26) is invariant under the action (12) of
spacetime vector fields. In other words, the action is a manifest diffeomorphism

symmetry in the sense of Definition 2.12.

Proof. The invariance must hold independently in every bidegree, so that we need to

prove the two equations
Es +AL O Egv_,’_‘})/ =0.
We start by proving the invariance of L. We have

Le L =1 8L =1 (EL—dy)
&v &y §v 27)
= g, EL + duig .

We will compute both summands separately. First we use (15) to compute

b
tg, 89 qp = (chab ct 5 ga b+ 2 5 gab’)
~(VGap,c + 3, (vV°Gep) = VGep,a + 3, (V°Gac) = VGac,p)
—(83, v + 33, Ve — Veg“Geap + Ieba — Jab,c))
—(95,vp + 95, vq — Ve2T'gp)

= —(Vovp + Vpvy),
where we have used (19). With this formula, we obtain

e, EL = G* (V, v, + Vv )vol,
= 2(V,(G*vy)) vol, (28)

=d(2 G“bvbtéavolg),
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where in the last step, we have used the divergence formula (23). For the 2nd term, we
compute

le,V = [‘gvgadgbc(vc‘sgab = Vadgp)l A LédVOIg
= g“dgbc[—VC(VaVb + V) + Vo (Vv + Vo)l Lédvolg
= g*gbIV, V v, — V.V, v, — 2V, .V, v + V, (Vv + V)] ty,volg

— [VC(VdVC _ VCVd) _ 29adgbc(vcva — VavC)Vb] Lédvolg (29)

[V, (Ve — vovd) — 2Ricdy,] 15,V0lg
= —2Ric%v, 13, voly + [V, (VPve — vavb)] 3, voly

= —2Ric%v, t5,voly — d(%(V“Vb — vby) téatébvolg),

where in the last step, we have used the divergence formula (24). Inserting (28) and (29)
into the right-hand side of (27), we obtain

Ly L= 2d(G“beLéavolg — 2Ric%v, t5,v0lg)
= —d(Rv voly)

= —L;L,

which finishes the proof of the invariance of L.
It remains to prove the invariance of y. The strategy of the proof is to show that

all indices appearing in
y = g“dgbc(vc59ab — V8950) A zédvolg

are covariant or contravariant in the sense of Definition 3.3, so that their contraction is
invariant by Lemma 3.5.

We have shown in Lemma 3.11 that the volume form is invariant. It follows from
Lemma 3.6 that the index d of tédvolg is covariant. We have shown in Equation (18)
that the indices of g?? and g?¢ are contravariant. In Equation (17), we have seen that
the indices of 8g,, are covariant. It follows from Lemma 3.10 that the indices of the
covariant derivatives V, and V, are covariant. Lemma 3.4 shows that the wedge product
is contravariant in all upper and covariant in all lower indices. With Lemma 3.5, we

conclude that y is invariant. |
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8248 C. Blohmann

Theorem 4.2. The action of spacetime vector fields on the infinite jet bundle of

Lorentz metrics defined in (12) has a homotopy momentum map

w: X(M) — L, (J>Lor, EL + §y),

given by
g : ARX (M) — L (J®Lor, EL + §y)
Me(Vy, oo, V) = Loy Lp(Vk)(L + ).
Proof. The proof follows from Theorem 4.1 and Proposition 1.3. |
The Noether current, which was given in (9) by the general formula j, = —;L —

te, ¥, can be computed with (29) to
Jj, = 2G%v, A ty,voly + d(%(V“vb — vbve) téatébvolg). (30)

The k = 1 component of the homotopy momentum map, which was given in (8) by the

general formula p,; (v) = —j, + ¢y, is
1y (v) = —2G%v, A 15, volg — d(3(vevP — vbv?) 13,4, v0lg)

+ 9GP (V. .8G0p — VubGpe)VE A 3,43, volg.

Remark 4.3. The Noether current of a symmetry is determined only up to a d-closed
form. Usually, the 2nd summand of (30) is dropped, so that the Noether current is
C*®(M)-linear in v and can be interpreted as the energy-momentum tensor G% . Here,

we must take (30) as Noether current so that u is a homomorphism of L -algebras.
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