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We show that the action of spacetime vector fields on the variational bicomplex

of general relativity has a homotopy momentum map that extends the map from

vector fields to conserved currents given by Noether’s 1st theorem to a morphism of

L∞-algebras.

1 Introduction

1.1 Motivation

The diffeomorphism symmetry of general relativity, a mathematical implementation of

the Einstein equivalence principle, is one of its defining features. In contrast to the

internal symmetry of gauge theories, diffeomorphisms are external symmetries since

they act not only on the fields (i.e., Lorentzian metrics) but also on spacetime. The initial

value problem, which yields the hamiltonian formulation of the field dynamics, and

the presymplectic structure on the space of fields, which yields the Poisson bracket

of observables, both depend on the choice of a codimension 1 submanifold as initial

time-slice. But such a submanifold is not invariant under diffeomorphisms. In physics

terminology: it breaks the symmetry. The consequence is that the basic ingredients of

quantization, the Hamiltonian and the Poisson bracket, are not compatible with the

diffeomorphism symmetry. This issue lies at the heart of some of the fundamental open
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The Homotopy Momentum Map of General Relativity 8213

problems in general relativity and has captivated the interest of many authors since the

1960s.

One of its mathematical symptoms is that the action of the group of diffeo-

morphisms and the action of the Lie algebra of vector fields are not Hamiltonian.

More precisely, Noether’s 1st theorem, which associates with a symmetry a conserved

momentum does not define a homomorphism of Lie algebras. (The Noether momenta are

the components of the Einstein tensor integrated over the codimension 1 submanifold.)

Worse, the space of Noether momenta is not even closed under the Poisson bracket.

In an earlier paper, we could show that there is a natural diffeological groupoid

describing the choices of initial submanifolds, which exhibits the Poisson brackets as

the bracket of its Lie algebroid [3]. Next, we have developed a notion of hamiltonian

Lie algebroids, which generalizes the notion of hamiltonian Lie algebra action to the

setting of Lie algebroids [5]. We have conjectured that the Noether charges of general

relativity are the components of the momentum section of a Hamiltonian Lie algebroid,

which would give a conceptual explanation of some of the intriguing features of the

constraint functions. Finally, in [4], we have interpreted the momenta as elements of

a generalized Lie–Rinehart algebra, which is connected to the BV-BFV approach to

boundary conditions in classical field theories.

In this paper, we sidestep the choice of initial submanifolds altogether by

using higher algebraic structures. We show that the map from vector fields to their

Noether currents is part of a homotopy momentum map in the sense of multisymplectic

geometry.

1.2 Content and main results

In Section 2, we study the premultisymplectic form ω = EL + δγ of a Lagrangian field

theory (LFT), where EL is the Euler–Lagrange form and γ a boundary form. We prove

in Proposition 2.4 that the obstruction of a premultisymplectic vector field X to be

hamiltonian lies in bidegree (0, n − 1) of the variational bicomplex, where n is the

dimension of the spacetime manifold. This shows that the L∞-algebra of Hamiltonian

forms can be interpreted as generalized current algebra. We introduce the notion

of manifest diffeomorphism symmetry (Definition 2.12) and observe that every such

symmetry has a Hamiltonian momentum map that is given explicitly in terms of the

lagrangian and the boundary form (Proposition 2.15).

In Section 3, we consider the case of general relativity. Generalizing the concept

of tensor fields, we introduce the notion of covariant and contravariant families of
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8214 C. Blohmann

forms in the variational bicomplex (Definition 3.3). We then show that the product

of families, the contraction of indices, the raising and lowering of indices, etc. have

properties that are analogous to tensor fields. In Section 3.5, we introduce the notion

of covariant derivative of families of forms. In Propositions 3.13 and 3.14, we derive

divergence formulas that show that horizontally exact forms can be expressed as the

contraction of families of forms with the covariant derivative.

Section 4 contains the main results. In Theorem 4.1, we prove that the Lepage

form L + γ , which is the primitive of the premultisymplectic form ω, is invariant under

the action of spacetime vector fields. This implies that the action has a homotopy

momentum map, which is described explicitly in Theorem 4.2.

1.3 Relation to previous work

The study of multisymplectic forms in classical field theory goes back to at least the

1970s. Best known is perhaps the highly influential, but never finished GiMmsy project

(named by the initials of the collaborators involved, with the main protagonists Gotay

and Marsden capitalized). Their goal was “to explore some of the connections between

initial value constraints and gauge transformations” in classical field theories with

constraints, such as general relativity [13, p. 1]. Towards this end, they introduced

the notion of multimomentum maps [13, p. 46] (see also [8, Sec. 4.2]). Given the action

ρ : g → X (M) of a Lie algebra on a manifold M with a closed (n + 1)-form ω, a

multimomentum map was defined as a smooth map M → g∗ ⊗∧n−1T∗M or, equivalently,

a linear map f : g → �n−1(M), such that d f (a) = −ιρ(a)ω for all a ∈ g.

Missing from this definition was a requirement of compatibility with the Lie

bracket of g, analogous to hamiltonian momentum maps in symplectic geometry. It

seems natural to require f to be g-equivariant. Alternatively, the Hamiltonian forms

in �n−1(M) can be equipped with a “Poisson bracket” and f required to commute

with the brackets. However, both conditions turn out to be too strong and rarely

satisfied. Moreover, the “Poisson bracket” does not satisfy the Jacobi identity, so

that it is not immediately clear for what kind of algebraic structure f should be

a homomorphism.

This lack of compatibility of algebraic structures leads to issues in the study

of the constraints of classical field theories with diffeomorphism symmetries, of which

general relativity is the theory “par excellence” [13, Interlude I, p. 52]. The constraint

functions of general relativity are given by the values of the multimomentum map

integrated over the Cauchy surface. The resulting map is called the energy-momentum
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The Homotopy Momentum Map of General Relativity 8215

map [12, Sec. 7B]. While the energy-momentum map shows that the constraint functions

arise from the multimomentum map, it does not explain the relation between the Lie

brackets of the symmetry algebra of vector fields and the Poisson brackets of the

constraints. (For the history of this often studied but elusive problem, see Sec. 4 of

[3].) From the viewpoint of homotopical algebra, this was to be expected: Lie brackets

that satisfy the Jacobi identity up to exact terms and maps that preserve the brackets

up to exact terms are generally not compatible with homotopies of the underlying

complexes. Instead, we have to use the homotopy algebraic structure, that is, the

minimal extension of Lie algebras to differential complexes that is stable under quasi-

isomorphisms. For a better behaved theory of multimomentum maps, we are thus led to

L∞-algebras.

In [16, Thm. 5.2], it was shown that the bracket on Hamiltonian forms in �n−1(M)

has a natural extension to an L∞-algebra structure on a graded subspace of the de

Rham complex, with the 1-bracket given by the de Rham differential.(In [2], it was

shown that the bracket of integrated local functions on the jet bundle has extensions

to alternative L∞-algebra structures on cohomological resolutions. However, these

L∞-structures were not given by an explicit construction, depended on choices, and did

not suggest a stronger notion of multimomentum maps.) It was realized in [7, Def./Prop.

5.1] that this is the natural setting for the generalization of Hamiltonian momentum

maps to the multisymplectic setting, defined as morphisms μ : g → L∞(M, ω) of

L∞-algebras. The μ1 component of every homotopy momentum map is a multimomen-

tum map [7, Sec. 12.1]. For the obstructions to lifting a multimomentum map to a

homotopy momentum map, see [7, Sec. 9.2].

In local lagrangian field theories, a multimomentum map is given by Noether’s

theorem [6, Sec. 4.1]. Finding a homotopy momentum map, however, is a much more

difficult problem, even more so in general relativity, where the Hilbert–Einstein

lagrangian is non-polynomial in the fields and of 2nd jet order. The situation simplifies

greatly if the multi(pre)symplectic form has a primitive, ω = dλ, and if the action

leaves λ invariant. Then a homotopy momentum map can be defined by inserting the

fundamental vector fields in λ [7, Sec. 8.1]. If we want to check whether this applies to

a classical field theory, we have to identify the correct λ as well as the correct action of

the diffeomorphism group. Many authors use for λ the boundary 1-form, so that ω is the

universal current in the sense of [20] and assume that the action is vertical (e.g., [6]). We

will show that instead we have to take the sum of the Lagrangian and the boundary

1-form for λ and the diagonal action (12) on fields and spacetime by vertical and

horizontal vector fields.
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8216 C. Blohmann

1.4 Conventions

The spacetime manifold M is assumed to be smooth, finite-dimensional, and 2nd

countable. The infinite jet manifold J∞F of a smooth fibre bundle F → M is viewed

as pro-manifold, so that its de Rham complex, that is, the variational bicomplex, is an

ind-differential complex. For the computations and proofs in this paper, however, this

will not play much of a role. The same goes for the diffeological structure on the space

of fields F = 	(M, F), of which we will only use the fact that the diffeological tangent

bundle is given by the space of sections of the vertical tangent bundle TF = 	(M, VF).

For the grading and differentials of the variational bicomplex, we use the notation of

[10]: a form in �p,q(J∞F) has vertical degree p and horizontal degree q. The vertical

differential is denoted by δ and the horizontal differential by d. Otherwise, we follow [1],

with specific references given in the text. We use the summation convention throughout

the paper, so that all repeated indices are being summed over.

Remark 1.1. Instead of “momentum map”, many authors use the term “moment map”,

which derives from a mistranslation of the French term “moment” as in “moment

cinétique” (angular momentum) or “application moment” [17].

1.5 Brief review of homotopy momentum maps

For the reader’s convenience, we give a brief review of the main notions of multisym-

plectic geometry used in this paper. This is also necessary to fix the notation, the choice

of gradings, and the signs.

Let M be a manifold with a closed (n + 1)-form ω. A pair (X, α) consisting of a

vector field X ∈ X (M) and a form α ∈ �n−1(M) is called Hamiltonian if

ιXω = −dα .

A vector field or a form is called Hamiltonian if it is part of a Hamiltonian pair. We

denote the space of hamiltonian vector fields by Xham(M) and the space of Hamiltonian

forms by �n−1
ham(M).

For the pair (M, ω) we can construct an L∞-algebra L∞(M, ω) defined as follows

[16, Thm. 5.2]. The Z-graded vector space is

L∞(M, ω)i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�n−1
ham(M) ; i = 0

�n−1+i(M) ; 1 − n ≤ i < 0

0 ; otherwise.
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The Homotopy Momentum Map of General Relativity 8217

The brackets lk : ∧kL∞(M, ω) → L∞(M, ω) are defined by

l1(α1) = dα1

for deg α1 < 0, by

lk(α1 ∧ . . . ∧ αk) = −(−1)
1
2 k(k+1)

ιXk
· · · ιX2

ιX1
ω

= −(−1)kιX1
ιX2

· · · ιXk
ω ,

for k > 1 and deg α1 = . . . = deg αk = 0 where (Xi, αi) are Hamiltonian pairs, and by zero

in all other cases. With this degree convention, the degree of lk is 2 − k.

Definition 1.2 (Def./Prop. 5.1 in [7]). Let M be a manifold with a closed (n + 1)-form ω.

Let ρ : g → X (M) be a homomorphism of Lie algebras. A homotopy momentum map of

the action ρ is a homomorphism of L∞-algebras

μ : g −→ L∞(M, ω),

such that

ιρ(a)ω = −d μ1(a)

for all a ∈ g.

We recall that a morphism μ : L′ → L of L∞-algebras is given by a family of linear

maps μk : ∧kL′ → L, k ≥ 1 of degree 1 − k, subject to relations that are best expressed

either in terms of the L∞-operad or in the language of formal pointed manifolds. If

the domain L′ = g is a Lie algebra, as is the case for a homotopy momentum map, the

conditions for μ to be a morphism simplify greatly. They are best expressed in terms

of the boundary operator δ : ∧•g → ∧•−1g of the Chevalley–Eilenberg complex for Lie

homology,

δ(a1 ∧ . . . ∧ ak) =
∑

1≤i<j≤k

(−1)i+j[ai, aj] ∧ a1 ∧ . . . âi . . . âj ∧ . . . ∧ ak.

A collection of linear maps μk : ∧kg → L∞(M, ω) is a homotopy momentum map if and

only if [7, Prop. 3.8]

dμk(a1 ∧ . . . ∧ ak) + μk−1δ(a1 ∧ . . . ∧ ak) = (−1)
1
2 k(k+1)

ιρ(ak) · · · ιρ(a1)ω,
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8218 C. Blohmann

for all 1 ≤ k ≤ n, where we set μ0 := 0 and μn+1 := 0. This relation can be interpreted

homotopically as follows. Shifting the degree of g by 1 and shifting the degree of the de

Rham complex by n − 1, the right-hand side can be expressed in terms of the degree 0

map

ν : S(g[1]) −→ �(M)[n + 1]

ν(a1 ∧ · · · ∧ ak) := (−1)kιρ(a1) · · · ιρ(ak)ω,

where we have used that S(g[1])−k
∼= ∧kg. The maps μk have degree −1. The condition

for μ to be a morphism of L∞-algebras can be written succinctly as [7, Sec. 6.2]

dμk + μk−1δ = ν, (1)

that is, a homotopy momentum map μ is a null-homotopy of the map of cochain

complexes ν.

In degree k = 1 the condition (1) reads dμ1(a1) = −ιρ(a1)ω, that is,
(
ρ(a1), μ1(a1)

)
is a Hamiltonian pair. With this relation, ν can be expressed in terms of the L∞-brackets

as

ν(a1 ∧ . . . ∧ ak) = −lk
(
μ1(a1) ∧ . . . ∧ μ1(ak)

)
.

For k = 2, Equation (1) is spelled out as

l2
(
μ1(a1) ∧ μ1(a2)

) = μ1

(
[a1, a2]

) − dμ2(a1 ∧ a2), (2)

which shows that the failure of μ1 to be a homomorphism of Lie algebras is a d-exact

term. For k = 3, we obtain

l3
(
μ1(a1) ∧ μ1(a2) ∧ μ1(a3)

) = μ2([a1, a2] ∧ a3 + [a2, a3] ∧ a1 + [a3, a1] ∧ a2)

− dμ3(a1 ∧ a2 ∧ a3).

Proposition 1.3 (Sec. 8.1 in [7]). Let ω = dλ for some λ ∈ �n(M). If λ is invariant under

the action ρ : g → X (M), that is,

Lρ(a)λ = 0
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The Homotopy Momentum Map of General Relativity 8219

for all a ∈ g, then it has a homotopy momentum map μ : g → L∞(M, ω) given by

μk(a1 ∧ . . . ∧ ak) = ιρ(a1) · · · ιρ(ak)λ.

Notation. For shorter notation, we will write the k-bracket also as

lk(α1 ∧ . . . ∧ αk) ≡ lk(α1, . . . , αk)

≡ {α1, . . . , αk}.

Analogously, we will write the momentum map as

μk(a1 ∧ . . . ∧ ak) ≡ μk(a1, . . . , ak).

In this notation, Equation (2) is written as

{μ1(a1), μ1(a2)} = μ1

(
[a1, a2]

) − dμ2(a1, a2). (3)

2 Multisymplectic Geometry of Lagrangian Field Theories

The space of fields of a field theory is the set of sections F = 	(M, F) of a fibre bundle

over a manifold M, naturally equipped with the functional diffeology. The Lagrangian

is a map L̃ : F → �n(M), where n is the dimension of M. We will assume that

the lagrangian is local, that is, a differential operator, so that L̃(ϕ) = (j∞ϕ)∗L, where

L ∈ �0,n(J∞F) is the Lagrangian form and j∞ϕ : M → J∞F is the infinite jet prolongation

of the field ϕ : M → F.

If M is compact, we can define the action S : F → R by S(ϕ) = ∫
M L̃(ϕ). Many

interesting and important Lorentzian spacetimes are not compact, however, so that the

action is generally not well defined. Therefore, we have to formulate the action principle,

the derivation of the field equations, the notion of symmetries, etc. in a cohomological

form within the variational bicomplex [10, 20].

In Section 2.1, we state the action principle in its cohomological form, essen-

tially replacing integration by taking cohomology classes with respect to the spacetime

differential d. By the cohomological version of partial integration, the variation of the

lagrangian can be written as δL = EL − dγ , where EL is the Euler–Lagrange form and

the γ the boundary form [20]. EL can be viewed as the differential operator of the field

equations, so that it governs the dynamics of the field theory. The integration of δγ over

a codimension 1 submanifold of spacetime yields a presymplectic form on the space of

fields, so that it describes the Poisson brackets of the field observables.

For the multisymplectic approach, we will consider ω = EL + δγ , which is

an exact (n + 1)-form of degree (n + 1). Its primitive is the Lepage form L + γ . In

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/10/8212/6571511 by Adm
inistrative H

eadquarters - M
PS user on 17 M

ay 2023



8220 C. Blohmann

Proposition 2.4, we show that the bidegree (0, n − 1)-component of a Hamiltonian form

is a conserved current in the sense of [20]. The L∞-algebra associated with ω as in [16]

can therefore be viewed as a higher version of the current algebra.

If M is closed, so that the action S : F → R is defined, a symmetry of the LFT

is an automorphism 
 of F that leaves the action invariant, 
∗S = S. Infinitesimally,

a vector field � on F is a symmetry if L�S = 0. This is the case if and only if L�L̃ is

d-exact, which we take as the general definition of a symmetry. For a local Lagrangian,

we have to require that the vector field �, too, is local. In Section 2.3, we observe that

a vector field on the diffeological space F is local if and only if it descends to a vector

field on J∞F, which is the infinite prolongation of an evolutionary “vector field”. Such

vector fields are strictly vertical in the sense that their inner derivative commutes with

the horizontal differential. The strictly horizontal vector fields whose inner derivative

commutes with the vertical differential are the lifts of the spacetime vector fields by the

Cartan connection.

In Definition 2.12, we introduce the notion of manifest diffeomorphism symme-

try, which is an action ρ : X (M) → X (J∞F) of the Lie algebra of spacetime vector fields

on the infinite jet bundle, such that ρ(v) = ξv + v̂ is the sum of a strictly vertical vector

field ξv and the Cartan lift of v that leaves the Lepage form invariant, Lρ(v)(L + γ ) = 0.

We point out in Proposition 2.15 that such a symmetry has a homotopy momentum map

given by inserting the fundamental vector fields of the action into the Lepage form,

which is a special case of the well-known Proposition 1.3.

2.1 The cohomological action principle

A variety of ingredients can play a constitutive role in the mathematical study of

classical field theories. For the purpose of this paper, the following minimal definition

will suffice.

Definition 2.1. A local LFT consists of a manifold M of dimension n, called the

spacetime, a fibre bundle F → M, called the configuration bundle, and a form

L ∈ �0,n(J∞F) in the variational bicomplex, called the Lagrangian.

Let α ∈ �p,q(J∞F), where p denotes the vertical and q the horizontal degree. The

vertical differential will be denoted by δ, the horizontal differential by d. The form α is

represented by a form on a finite dimensional jet manifold JkF, which is given by a map
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The Homotopy Momentum Map of General Relativity 8221

α̃ : JkF → ∧p+qT∗JkF. In this way, α gives rise to a k-th order differential operator

Dα : F −→ 	(M, ∧p+qT∗JkF)

ϕ 
−→ α̃ ◦ jkϕ,

where jkϕ : M → JkF is the k-th jet prolongation of ϕ. In this notation, the integrand of

the action can be written as L̃(ϕ) = DL(ϕ).

The target of the differential operator Dα is not a vector space, so it does

not make sense to consider the equation “Dα(ϕ) = 0”, even though this is how the

corresponding PDE is often written. And even if F → M is a vector bundle so that

∧p+qT∗JkF → F is a vector bundle, the right-hand side cannot be required to be the zero

section, as this would imply that ϕ is the zero section of F → M. Instead, we have to use

that there is a zero form 0 ∈ �p,q(JkF) in every bidegree. The PDE can then be written

more carefully as Dα(ϕ) = D0(ϕ). If this equation holds, we will say that α vanishes at

ϕ ∈ F .

Definition 2.2. A form α ∈ �p,q(J∞F) is said to be d-exact at ϕ ∈ F if there is a form

β ∈ �p,q−1(J∞F) such that α − dβ vanishes at ϕ.

Definition 2.3. A field ϕ ∈ F is said to satisfy the cohomological action principle if δL

is d-exact at ϕ.

If a form α is of top horizontal degree q = n, then there is a unique representative

Pα of its d-cohomology class, which has the following property: the form α is d-exact

at ϕ if and only if Pα vanishes at ϕ. The map P : �p,n(J∞F) → �p,n(J∞F) is the

cohomological version of partial integration and straightforward to compute. It is called

the interior Euler operator. Forms in the image of P are called “source” for p = 1 and

“functional” for p > 1 [18], [1, Def. 2.5 and Ch. 3].

The map E := Pδ : �p,n(J∞F) → �p+1,n(J∞F) is called the Euler operator. The

source form EL ∈ �1,n(J∞F) is called the Euler–Lagrange form. Since the interior Euler

operator does not change the d-cohomology class, EL = PδL and δL are in the same

d-cohomology class, that is,

EL − δL = dγ ,

for some γ ∈ �1,n−1(J∞F). The form γ is called a boundary form.
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8222 C. Blohmann

From the properties of source forms it follows that a field satisfies the

cohomological action principle if and only if it satisfies the Euler–Lagrange equation

DEL(ϕ) = D0(ϕ).

In physics terminology, such a field is called on shell.

2.2 Premultisymplectic structure and current L∞-algebra

Let γ be a boundary form. The form

λ := L + γ (4)

of total degree n will be called the Lepage form.(For the terminology, see [15] or

[1, p. 199]. Deligne and Freed call λ the “total Lagrangian” [10, p. 161].)Let the total

differential of J∞F be denoted by d = δ + d. The total differential of the Lepage form is

ω := dλ

= EL + δγ ,
(5)

which is the premultisymplectic structure we are interested in.

On J∞F, we have the splitting of vector fields into a vertical and horizontal

component, which leads to the bigrading on the de Rham complex. Moreover, we

have the acyclicity theorem of the variational bicomplex. This leads to the following

description of Hamiltonian vector fields.

Proposition 2.4. Let X be a vector field on J∞F with vertical component X⊥. Then X is

Hamiltonian with respect to the premultisymplectic form ω = EL + δγ if and only if

(i) LXω = 0 and

(ii) ιX⊥EL = dj for some j ∈ �0,n−1(J∞F).

In the proof, we will use the following lemma [9, Thm. 11.1.6].

Lemma 2.5. Let β ∈ �n(J∞F) be a d-closed form and

β = β0 + . . . + βn
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The Homotopy Momentum Map of General Relativity 8223

its decomposition into summands of bidegree deg βk = (k, n − k). Then β is d-exact if

and only if β0 is d-exact.

Proof. A form α ∈ �n−1(J∞F) can be decomposed as

α = α0 + . . . + αn−1,

into components of bidegree deg αk = (k, n−1−k). The total differential decomposes as

dα = dα0 + (δα0 + dα1) + . . . + (δαn−2 + dαn−1) + δαn−1,

into summands of homogeneous bidegree, where the 1st summand has bidegree (0, n)

and the last (n, 0). Assume that β = dα. This condition must hold in each bidegree

individually. In particular, we have β0 = dα0.

Conversely, assume that β0 = dα0 for some α0 ∈ �0,n−1(J∞F). The total

differential of β decomposes as

dβ = (δβ0 + dβ1) + . . . + (δβn−1 + dβn) + δβn

into summands of homogeneous bidegree, where the 1st summand has bidegree (1, n)

and the last (n + 1, 0). By assumption dβ = 0, which has to hold in each bidegree

separately,

0 = δβ0 + dβ1

0 = δβ1 + dβ2

...

0 = δβn−1 + dβn

0 = δβn.

From the 1st equation, we get

0 = δβ0 + dβ1 = δdα0 + dβ1

= d(−δα0 + β1).
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8224 C. Blohmann

It follows from the acyclicity theorem for the variational bicomplex [18, Thm. 4.6] that

−δα0 + β1 = dα1 for some α1 ∈ �1,n−2(J∞F). The bidegree (2, n − 1) component of dβ = 0

can now be written as

0 = δβ1 + dβ2 = δ(δα0 + dα1) + dβ2

= d(−δα1 + β2).

As before, it follows from the acyclicity theorem that β2 = δα1 + dα2 for some

α2 ∈ �2,n−3(J∞F). By induction, we obtain forms α0, . . . , αn−1 such that dα = β for

α = α0 + . . . + αn−1.
�

Proof of Proposition 2.4 Let X⊥ be the vertical and X‖ the horizontal component of X.

Assume that ιXω = −dα. The left-hand side decomposes as

ιXω = (ιX⊥ + ιX‖)(EL + δγ )

= ιX⊥EL + (
ιX‖EL + ιX⊥δγ

) + ιX‖δγ ,

into summands of bidegree (0, n), (1, n−1), and (2, n−2). We conclude that the bidegree

(0, n) component of the Hamiltonian condition is ιX⊥EL = −dα0, which is condition (ii)

for α0 = −j. Since ω is closed, we have LXω = dιXω = 0 that is condition (i).

Conversely, assume that (i) and (ii) hold. This means that −β = ιXω is d-closed

and that β0 = dα0, where α0 = −j. It now follows from Lemma 2.5 that ιXω = −β = −dα.

A form j ∈ �0,n−1(J∞F) is also called a current. A current is called conserved

if it is d-closed on shell, that is, if dj vanishes at every solution of the Euler–Lagrange

equation. Proposition 2.4 shows that the degree (0, n − 1) component of a Hamiltonian

form is a conserved current. In this sense, L∞(J∞F, ω) can be viewed as higher current

algebra.
The k-bracket of Hamiltonian forms α1, . . . , αk is given by

{α1, . . . , αk} = −(−1)k(ιX⊥
1

+ ιX‖
1
) · · · (ιX⊥

k
+ ιX‖

k
)(EL + δγ )

=
∑

1≤i<j≤k

(−1)k−i−j(ιX‖
1
· · · ι̂X‖

i
· · · ι̂X‖

j
· · · ιX‖

k
)(ιX⊥

i
ιX⊥

j
δγ )

+
∑

1≤i≤k

(−1)i−1(ιX‖
1
· · · ι̂X‖

i
· · · ιX‖

k
)(ιX⊥

i
EL)

+
∑

1≤i≤k

(−1)i−1(ιX‖
1
· · · ι̂X‖

i
· · · ιX‖

k
)(ιX⊥

i
δγ ) − (−1)k(ιX‖

1
· · · ιX‖

k
)EL

− (−1)k(ιX‖
1
· · · ιX‖

k
)δγ ,
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The Homotopy Momentum Map of General Relativity 8225

where X1, . . . , Xk are the Hamiltonian vector fields. The 2-bracket is given by

{α, β} = (ιY⊥ + ιY‖)(ιX⊥ + ιX‖)(EL + δγ )

= ιY⊥ ιX⊥δγ + (ιY‖ ιX⊥ − ιX‖ ιY⊥)EL

+ (ιY‖ ιX⊥ − ιX‖ ιY⊥)δγ + ιX‖ ιX‖EL

+ ιY‖ ιX‖δγ ,

(6)

where (X, α) and (Y, β) are Hamiltonian pairs.

2.3 Noether symmetries

The diffeological tangent space of F is given by the space of sections of the vertical

tangent bundle, TF ∼= 	(M, VF), so that a vector field on F is given by a map

� : 	(M, F) = F → TF = 	(M, VF). This map is called local if it is a differential operator,

that is, if there is a commutative diagram

where VF = ker(TF → TM) is the vertical vector bundle. The map ξ0 is often called an

evolutionary “vector field”.

Remark 2.6. We put quotes around evolutionary “vector field” because it cannot be

naturally viewed as an actual vector field unless the configuration bundle F → M is

equipped with a flat connection. Readers who are used to this traditional (but abusive)

terminology (e.g., Def. 1.15 in [1]) are kindly asked to ignore the quotes.

The map ξ0 can be prolonged to a vector field ξ on J∞F, which is the unique

vector field such that

(7)

commutes. If such a commutative diagram exists, we will say that ξ ∈ X (J∞F) lifts to the

vector field � ∈ X (F). The following proposition is a purely algebraic characterization

of such vector fields.
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8226 C. Blohmann

Proposition 2.7. A vector field ξ ∈ X (J∞F) lifts to a vector field on F if and only if

[ιξ , d] = 0.

Proof. The proof follows from a straightforward computation in jet coordinates. �

The kernel of �1,0(J∞F) defines an integrable distribution on TJ∞F, called

the Cartan distribution, which can be interpreted as a flat Ehresmann connection on

TJ∞F → M. The horizontal lift of a vector field v ∈ X (M) is denoted by v̂ ∈ X (J∞F).

Since the connection is flat, the map X (M) → X (J∞F), v 
→ v̂ is a homomorphism of Lie

algebras. The following is a purely algebraic characterization of such lifts.

Proposition 2.8. A vector field ξ on J∞F is the horizontal lift of a vector field on M by

the Cartan connection if and only if [ιξ , δ] = 0.

Proof. The proof follows from a straightforward computation in jet coordinates. �

The last two propositions can be understood geometrically as follows. Assume

for the sake of argument that F is a finite dimensional manifold. The de Rham complex

of �(F × M) has a bigrading with vertical differential δ in the direction of F and

horizontal differential in the direction of M. A vector field ξ on F × M is the lift of a

vector field on F if and only [ιξ , d] = 0 and a lift of a vector field on M if and only if

[ιξ , δ] = 0. Propositions 2.7 and 2.8 show that this characterization is valid also in the

variational bicomplex. In order to emphasize this geometric interpretation, we will use

for the purpose of this paper the following terminology.

Definition 2.9. A vector field ξ on J∞F will be called strictly vertical if [ιξ , d] = 0 and

strictly horizontal if [ιξ , δ] = 0.

The Lie derivatives of a strictly vertical vector field ξ and of a strictly horizontal

vector field v̂ are given by

Lξ = [ιξ , δ] , Lv̂ = [ιv̂, d].

Definition 2.10. A strictly vertical vector field ξ such that Lξ L = dβ for some

β ∈ �0,n−1(J∞F) will be called a Noether symmetry of the LFT.

Remark 2.11. Vector fields on the infinite jet bundle are sometimes called “generalized

vector fields” and symmetries given by such vector fields “generalized symmetries”
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The Homotopy Momentum Map of General Relativity 8227

(e.g., in [10]). However, an analysis of Noether’s historic paper shows that this is

Noether’s original notion of symmetry, which was only to be rediscovered later

[14, Sec. 7.1].

Recall that a form j ∈ �0,n−1(J∞F) is also called a current. If there is a strictly

vertical vector field ξ such that

dj = ιξ EL,

then j is called a Noether current and (ξ , j) a Noether pair [10, Def. 2.97]. Noether

currents are conserved. Noether’s 1st theorem states that if ξ is a Noether symmetry,

then

j := β − ιξ γ

is a Noether current. The proof is a half-line calculation,

dj = dβ − dιξ γ = ιξ δL + ιξ dγ = ιξ EL,

which highlights the advantage of working in the variational bicomplex.

2.4 Manifest diffeomorphism symmetries

In [10, p. 169], a manifest symmetry was defined to be a vector field X ∈ X (J∞F) such

that

(i) X = ξ + v̂ is the sum of a strictly vertical vector field ξ and a strictly

horizontal vector field v̂;

(ii) Lξ+v̂(L + γ ) = 0.

This suggests the following terminology.

Definition 2.12. Let (M, F, L) be a LFT with boundary form γ . An action

ρ : X (M) −→ X (J∞F)

v 
−→ ρ(v) := ξv + v̂ .

by manifest symmetries will be called a manifest diffeomorphism symmetry.

Remark 2.13. The Cartan lift v 
→ v̂ of vector fields on M is a homomorphism of Lie

algebras. Since strictly vertical and strictly horizontal vector fields commute, it follows

that the map v 
→ ξv is a homomorphism of Lie algebras, too.
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8228 C. Blohmann

Remark 2.14. If F → M is a natural bundle, that is, diffeomorphisms between

open subsets of M lift functorially to diffeomorphisms between local sections, then it

follows from [11] that we have an action of vector fields on J∞F. The diffeomorphism

symmetries of LFTs often arise in this way.

Proposition 2.15. Let (M, F, L) be an LFT with boundary form γ . Then every manifest

diffeomorphism symmetry ρ : X (M) → X (J∞F) has a homotopy momentum map

μ : X (M) −→ L∞(J∞F, EL + δγ )

given by

μk(v1, . . . , vk) := ιρ(v1) · · · ιρ(vk)(L + γ ).

Proof. This is a special case of Proposition 1.3. �

The homotopy momentum map of a single vector field is split into a bidegree

(0, n − 1) and a bidegree (1, n − 2) summand as

μ1(v) = (ιξv
+ ιv̂)(L + γ ) = (ιv̂L + ιξv

γ ) + ιv̂γ

= −jv + ιv̂γ ,
(8)

where

jv = −ιv̂L − ιξv
γ (9)

is the Noether current of ξv. In general, the map μk splits into a (0, n−k) and a (1, n−k−1)

component given by the two lines of the right-hand side of the equation

μk(v1, . . . , vk) = −
k∑

i=1

(−1)k−i(ιv̂1
· · · ι̂v̂i

· · · ιv̂k
)jvi

+ (1 − k)(ιv̂1
· · · ιv̂k

)L

+ (ιv̂1
· · · ιv̂k

)γ .

For example, we have

μ2(v, w) = (ιv̂jw − ιŵjv + ιv̂ιŵL) + ιv̂ιŵγ
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The Homotopy Momentum Map of General Relativity 8229

Using Equation (6), we can write the l2-bracket of the momenta as

{μ1(v), μ1(w)} = ιξw
ιξv

δγ + (ιŵιξv
− ιv̂ιξw

)EL

+ (ιŵιξv
− ιv̂ιξw

)δγ + ιŵιv̂EL

+ ιŵιv̂δγ ,

(10)

where the three lines of the right-hand side are of bidegrees (0, n − 1), (1, n − 2), and

(2, n−3). The right-hand side of Equation (3) is expressed in terms of the Noether current

as

μ1([v, w]) − dμ2(v, w) = −j[v,w] + d(ιv̂jw − ιŵjv + ιv̂ιŵL)

+ ι
̂[v,w]

γ − δ(ιv̂jw − ιŵjv + ιv̂ιŵL) − dιv̂ιŵγ

+ ιŵιv̂δγ .

Remark 2.16. If we integrate μ1(a) over a closed codimension 1 submanifold � ⊂ M,

we see from Equation (8) that we obtain, up to a sign, the usual Noether charge∫
�

μ1(v) = − ∫
�

jv. This is no longer true for the brackets. The integral
∫
�

ιξw
ιξv

δγ of the

first summand on the right-hand side of Equation (10) is the usual bracket of charges.

The integral of the 2nd summand, however, is an additional contribution, which is not

present in the multimomentum map of [6, Sec. 4.1]. The integrals of all other terms on

the right hand side of Equation (10) vanish for degree reasons.

Example 2.17 (Classical mechanics). In classical mechanics spacetime is time M = R

and the configuration bundle is trivial, F = R × Q → R, so that F = C∞(R, Q) is the

space of smooth paths in Q. Let us consider the Lagrangian of a particle of mass 1 in a

potential V,

L = (1
2 q̇iq̇i − V(q)

)
dt.

Here, t, qi, q̇i, q̈i, . . . are coordinates on the infinite jet bundle, given by

q̇i(j∞0 x) = dxi

dt

∣∣∣
t=0

for a path x : R → Q. Using the relations dδqi = −δq̇i ∧ dt, dqi = q̇idt, and dq̇i = q̈idt, we

find that δL = EL − dγ with

EL = −
(
q̈i + ∂V

∂qi

)
δqi ∧ dt

γ = q̇iδqi.
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8230 C. Blohmann

For the presymplectic form ω, we obtain

ω = −
(
q̈i + ∂V

∂qi

)
δqi ∧ dt + δq̇i ∧ δqi,

which is a form on J2(R × Q). The Cartan lift of the infinitesimal generator of time

translation, that is, of the coordinate vector field ∂t ≡ ∂
∂t ∈ X (R) is

∂̂t = ∂

∂t
+ q̇i ∂

∂qi
+ q̈i ∂

∂q̇i
+ . . .

The time translation x(τ ) 
→ x(τ −t) of paths descends to the strictly vertical vector field

ξ∂t
= −q̇i ∂

∂qi
− q̈i ∂

∂q̇i
− . . .

The fundamental vector field of the diagonal action of time translation on J∞F is

therefore given by

ρ(∂t) = ξ∂t
+ ∂̂t = ∂

∂t
. (11)

This equation looks like a tautology, but the vector field ∂
∂t on the right-hand side is

not horizontal and must not be identified with the vector field in the time direction.

Moreover, ρ is not C∞(M)-linear.

Equation (11) implies that Lρ(∂t)
(L+γ ) = 0, so that time translation is a manifest

symmetry. The corresponding momentum map is given by

μ1(∂t) = −j∂t
,

since for degree reasons the term ι
∂̂t

γ vanishes. The Noether momentum

j∂t
= −ι

∂̂t
L − ιξ∂t

γ = 1
2 q̇iq̇i + V(q)

is the energy.

3 The Variational Bicomplex of Lorentzian Metrics

We turn to general relativity. Here, the fields are Lorentzian metrics on the spacetime

manifold M. Vector fields on M act on metrics by the Lie derivative. This action is local,

so that it descends to the infinite jet bundle, inducing an action on the variational

bicomplex. In order to study this action, we introduce in Definition 3.3 the concept
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The Homotopy Momentum Map of General Relativity 8231

of covariant and contravariant families of forms in the variational bicomplex, which

generalizes the concept of tensor fields. In Section 3.5, we generalize the notion of

covariant derivative to such families of forms. In Section 3.6, we derive divergence

formulas that express the horizontal differential of a form in terms of the covariant

derivative and the metric volume form. While the computations are similar to those

with tensor fields, there are also differences. For example, the metric volume form is

invariant (Lemma 3.11), rather than transforming as a density.

3.1 The action of spacetime vector fields

Assume that M is a manifold of finite dimension n. The configuration bundle of general

relativity is the bundle of fibre-wise Lorentzian metrics on the tangent spaces of the

spacetime manifold M, which we denote by Lor → M. We use the “east coast” sign

convention in which the signature of the metric is (−1, 1, . . . , 1). The diffeological space

of lorentzian metrics on M will be denoted by Lor.

Remark 3.1. In many papers on LFTs and the variational bicomplex one of the

following simplifying assumptions about the configuration bundle F → M is made:

F is a vector bundle; the fibres of F are connected; the space of sections F = 	(M, F) is

non-empty; the jet evaluations jk : F × M → JkF are surjective. All these assumptions

generally fail for the bundle of Lorentzian metrics.

The configuration bundle is natural, which means that local diffeomorphisms

on M lift functorially to the sheaf of sections. In particular, we have a left action

of the diffeomorphism group Diff(M) on the space of fields Lor by pushforward.

Infinitesimally, we have a left action of the Lie algebra of vector fields,

� : X (M) −→ X (Lor)

v 
−→ (�v : η 
→ −Lvη),

where the symmetric 2-form −Lvη represents a tangent vector in TηLor. This action is

local, so that it descends to an action of X (M) on J∞Lor by strictly vertical vector fields,

ξ : X (M) −→ X (J∞Lor)

v 
−→ ξv.
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8232 C. Blohmann

Together with the Cartan lift of the vector field in X (M), we obtain a homomorphism of

Lie algebras

ρ : X (M) −→ X (J∞Lor)

v 
−→ ρ(v) := ξv + v̂.
(12)

Our ultimate goal is to show that ρ is a manifest symmetry of general relativity for a

natural choice of boundary form. In this section, we will gather the necessary tools.

3.2 Jet coordinates

Let (x1, . . . , xn) be a system of local spacetime coordinates on an open subset U ⊂ M.

The coordinate vector fields will be denoted by ∂a = ∂
∂xa , the coordinate 1-forms by dxa.

A Lorentzian metric η ∈ Lor is written in local coordinates as η = 1
2ηabdxa ∧ dxb, where

ηab = ι∂b
ι∂a

η ∈ C∞(M) are the matrix components of the metric. (Recall that we use the

Einstein summation convention throughout the paper.)

The local coordinates on M induce local jet coordinates given by

gab,c1···ck
: J∞Lor −→ R

j∞x η 
−→ ∂kηab

∂xc1 · · · ∂xck

∣∣∣
x
.

Since the partial derivatives commute, gab,c1···ck
is invariant under permutations of

the indices c1, . . . , ck. To avoid overcounting in summation formulas, it is convenient

to use the multi-index notation of multi-variable analysis: a multi-index is a tuple

C = (C1, . . . , Cn) of natural numbers Ck ≥ 0. The number |C| = C1 + . . . + Cn is called

the length of the index. The concatenation of a multi-index with a single index is given

by

Cd = (C1, . . . , Cd + 1, . . . , Cn).

The jet coordinate function labelled by a multi-index is given by

gab,C(j∞x η) = ∂ |C|ηab

(∂x1)C1 · · · (∂xn)Cn

∣∣∣
x
.

The collection of functions {xa, gab,C} for 1 ≤ a ≤ b ≤ n and C ∈ N
n
0 is a system of local

coordinates on J∞Lor.
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The Homotopy Momentum Map of General Relativity 8233

Remark 3.2. In the physics literature, the same notation is usually used for both the

jet coordinates and their evaluation on a field, which can be confusing. For example, if

M is non-compact, every n-form is exact, in particular the integrand L(η) of the action.

So for the step “discarding exact terms” during the derivation of the Euler–Lagrange

equation to be meaningful, we must view the integrand as an element L ∈ �0,n(J∞Lor),

that is, as an expression of the jet coordinates like gab,c and not of the derivatives ∂ηab
∂xc

of a particular metric η.

The variational bicomplex is generated as bigraded algebra by the coordinate

functions, the vertical coordinate 1-forms δgab,C in degree (1, 0), and the horizontal

coordinate 1-forms dxa in degree (0, 1). A (p, q)-form is given in local coordinates by

ω = ω
a1,b1,...,ap,bp,C1,...,CqbyCp
e1,...,eq δga1b1,C1

∧ . . . ∧ δgapbp,Cp
∧ dxe1 ∧ . . . ∧ dxeq ,

where the coefficients are functions on J∞Lor. The other differentials of the jet

coordinates are given by [1, p. 18]

δxa = 0

dgab,C = gab,Ce dxe.

It follows that the differentials of the coordinate 1-forms are given by ddxa = 0,

δδgab,C = 0, δdxa = 0, and

dδgab,C = −δgab,Ce ∧ dxe.

Dually, the C∞(J∞Lor)-module of vertical vector fields is spanned by the

coordinate vector fields ∂
∂gab,C

, which satisfy

ι ∂
∂gab,C

δga′b′,C′ = δa
a′δb

b′δC
C′

ι ∂
∂gab,C

dxe = 0.

The module of horizontal vector fields, called the Cartan distribution, is spanned by the

vector fields

∂̂a = ∂

∂xa +
∞∑

|D|=0

gbc,Da
∂

∂gbc,D
,
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8234 C. Blohmann

which satisfy

ι
∂̂a

δgbc,D = 0

ι
∂̂a

dxa′ = δa′
a .

The Cartan distribution can be viewed as an Ehresmann connection on the

bundle J∞Lor → M. The horizontal lift of a vector field v = va(x) ∂
∂xa on M to J∞Lor

is given by

v̂ = va(x)∂̂a.

The vertical and horizontal differentials of a function f ∈ C∞(J∞Lor) are given by

[1, pp. 18–19]

δf =
∞∑

|C|=0

∂f

∂gab,C
δgab,C

df = (∂̂af )dxa.

The horizontal differential of a form ω ∈ �p,q(J∞Lor) is given in local coordinates by

dω = (−1)p+q(L
∂̂a

ω) ∧ dxa. (13)

A vector field is strictly horizontal if and only if it is the horizontal lift v̂ of a

vector field v on M by the Cartan connection. A vector field ξ is strictly vertical if and

only if it is the infinite prolongation of an evolutionary “vector field”, that is, of a map

ξ0 : J∞Lor → VLor of bundles over Lor, where VLor ⊂ TLor is the vertical tangent

bundle. In local coordinates, it is of the form

ξ =
∞∑

|C|=0

(∂̂Cξab)
∂

∂gab,C
, (14)

where the ξab are functions on J∞Lor and where ∂̂C = (∂̂1)C1 · · · (∂̂n)Cn is the multi-index

notation for the iterated application of the horizontal lifts of the coordinate vector

fields.
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The Homotopy Momentum Map of General Relativity 8235

3.3 Action of spacetime vector fields on infinite jets

The action of a vector field v ∈ X (M) on a Lorentzian metric η ∈ Lor by the negative Lie

derivative, η 
→ −Lvη, is given in local coordinates by

ηabdxadxb 
−→ −
(
vc ∂ηab

∂xc + ∂va′

∂xa ηa′b + ∂vb′

∂xb
ηab′

)
dxadxb.

We can view this as transformation of the coordinate functions

gab 
−→ −
(
vcgab,c + ∂va′

∂xa ga′b + ∂vb′

∂xb
gab′

)
=: ξab, (15)

which are the components of the evolutionary “vector field” ξab
∂

∂gab
. Its infinite prolon-

gation is the strictly vertical vector field

ξv =
∞∑

|C|=0

(∂̂Cξab)
∂

∂gab,C
,

which defines the action (12) of vector fields on the infinite jet bundle.

3.4 Covariant and contravariant families of forms

The Lie derivative of a coordinate function with respect to a strictly horizontal vector

field is given by

Lv̂gab,C = ιve∂̂e
dgab,C

= vegab,Ce.

In particular, we have

L
∂̂e

gab = gab,e.

Note that this is the Lie derivative of a single function gab ∈ C∞(J∞Lor) and must not be

confused with the Lie derivative of a metric 2-form on M. The formula (15) for the 0-jet

component ξab of ξv can now be written as

Lξv
gab = −Lv̂gab − ∂va′

∂xa ga′b − ∂vb′

∂xb
gab′ .
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8236 C. Blohmann

This can be expressed in terms of the diagonal action ρ as

Lρ(v)gab = −∂va′

∂xa ga′b − ∂vb′

∂xb
gab′ . (16)

Since δ commutes with both Lξv
and Lv̂, it commutes with Lρ(v). This implies that

Lρ(v)δgab = −∂va′

∂xa δga′b − ∂vb′

∂xb
δgab′ . (17)

Using gabgbc = δa
c , we get

Lρ(v)g
ab = ∂va

∂xa′ g
a′b + ∂vb

∂xb′ g
ab′

. (18)

These calculations suggest the following definition.

Definition 3.3. A family of forms χ
b1···bq
a1···ap ∈ �(J∞Lor), 1 ≤ a1, . . . , bq ≤ n is called

covariant in a1, . . . , ap and contravariant in b1, . . . , bq if

Lρ(v)χ
b1···bq
a1···ap = −

p∑
i=1

∂va′
i

∂xai
χ

b1···bq

a1···a′
i···ap

+
q∑

i=1

∂vbi

∂xb′
i
χ

b1···b′
i···bq

a1···ap .

A form χ ∈ �(J∞Lor) is called invariant if Lρ(v)χ = 0.

Definition 3.3 generalizes the notion of covariant and contravariant tensors to

families of forms in �(J∞Lor). In this terminology, Equations 1618 show that the indices

of gab and δgab are covariant, while those of gab and δgab are contravariant. Covariant

and contravariant families behave in many ways as tensors.

Lemma 3.4. Let χa be a covariant and ψb a contravariant family of forms. Then the

family χa ∧ ψb is covariant in a and contravariant in b.

Proof. This follows immediately from the fact that Lρ(v) is a degree 0 derivation of the

algebra �(J∞Lor). �

Lemma 3.5. Let χb
a be a family of forms that is covariant in a and contravariant in b,

then the contracted form χa
a (summation over a) is invariant.
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The Homotopy Momentum Map of General Relativity 8237

The last two lemmas generalize in an obvious way to families with several

indices. An immediate consequence of Lemmas 3.4 and 3.5 is that we can raise and lower

indices with the metric coordinate functions in the usual way: if χa is covariant, then

χa = gaa′
χa′ is contravariant. If χa is contravariant, then χa = gaa′χa′

is covariant.

Lemma 3.6. If the family χb ∈ �(J∞Lor) is covariant, then the family ι
∂̂a

χb is covariant

in a and b.

Proof. Let ψab = ι
∂̂a

χb We have

Lρ(v)ψab = Lξv+v̂(ι
∂̂a

χb)

= (
ι
∂̂a
Lξv

+ ι
∂̂a
Lv̂ + ι[v̂,∂̂a]

)
χb

= ι
∂̂a
Lρ(v)χb − ∂va′

∂xa (ι
∂̂a′ χb)

= −∂vb′

∂xb
ψab′ − ∂va′

∂xa ψa′b,

which shows that ψab is covariant in a and b. �

Lemma 3.7. If the family χa ∈ �(J∞Lor) is covariant, then the family δχb is covariant.

Proof. We have

Lρ(v)δχa = δLρ(v)χa

= δ
(
−∂va′

∂xa χa′
)

= −∂va′

∂xa δχa′ ,

which shows that χa is covariant. �

The last lemma generalizes in an obvious way to families of forms with covariant

and contravariant indices. The analogous statement for the horizontal differential

works only for invariant forms.

Lemma 3.8. If χ ∈ �(J∞Lor) is invariant, then dχ is invariant.

Proof. The differential d commutes with Lρ(v), so that Lρ(v)dχ = dLρ(v)χ = 0. �
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8238 C. Blohmann

Lemma 3.9. If the form χ ∈ �(J∞Lor) is invariant, then the family L
∂̂a

χ is covariant.

Proof. We have

Lρ(v)(L∂̂a
χ) = Lξv+v̂(L

∂̂a
χ)

= (
L

∂̂a
Lξv

+ L
∂̂a
Lv̂ + L[v̂,∂̂a]

)
χ

= L
∂̂a
Lξv+v̂χ − ∂va′

∂xa (L
∂̂a′ χ)

= −∂va′

∂xa (L
∂̂a′ χ),

which shows that L
∂̂a

χ is a covariant family. �

Lemma 3.9 holds only for an invariant form χ . If χb is a covariant family, then

L
∂̂a

χb is not covariant. In order to obtain a covariant family by differentiation, we have

to generalize the concept of covariant derivative to families of forms in the variational

bicomplex.

3.5 Covariant derivative of families of forms

In the cohomological approach to general relativity, we have to interpret the connection

coefficients, the covariant derivative, the curvature, the volume form, etc. as expressions

in the variational bicomplex. The connection coefficients of the Levi–Civita connection

have to be viewed as functions on J∞Lor that are given in local coordinates by the

expression

	a
bc = 1

2gad(gdb,c + gdc,b − gbc,d). (19)

The covariant derivative has to be defined in the variational bicomplex as follows. For

a family of forms χ
b1···bq
a1···ap that is covariant in the lower indices and contravariant in the

upper indices, we define

∇cχ
b1···bq
a1···ap = L

∂̂c
χ

b1···bq
a1···ap −

p∑
i=1

	
a′

i
cai

χ
b1···bq

a1···a′
i···ap

+
q∑

i=1

	
bi
cb′

i
χ

b1···b′
i···bq

a1···ap .

Using this definition, we can check by the usual calculation that the connection coeffi-

cients (19) of the Levi–Civita connection is the unique family of functions symmetric in
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The Homotopy Momentum Map of General Relativity 8239

b and c, such that ∇cgab = 0. The Riemann curvature tensor is given by Riemabc
d χd =

(∇a∇b − ∇b∇a)χc, which has now to be viewed as a family of functions on J∞Lor.

Lemma 3.10. Let χb be a covariant family of vertical forms. Then the family ∇aχb is

covariant in a and b.

Proof. We have to compute the Lie derivative of ∇aχb = L
∂̂a

χb − 	c
abχc with respect to

ρ(v) = ξv + v̂. For the 1st summand, we get

Lρ(v)(L∂̂a
χb) = L

∂̂a
(Lξv+v̂χb) + L[v̂,∂̂a]χb

= L
∂̂a

(
−∂vb′

∂xb
χb′

)
+ ι[v̂,∂̂a]dχb

= − ∂2vb′

∂xa∂xb
χb′ − ∂vb′

∂xb
(L

∂̂a
χb′) − ∂va′

∂xa ι
∂̂a′ dχb

= −∂vb′

∂xb
(L

∂̂a
χb′) − ∂va′

∂xa (L
∂̂a′ χb) − ∂2vc

∂xa∂xb
χc.

For the 2nd summand, we must compute the Lie derivative of the connection coeffi-

cients. For this, we need the following formula:

Lξv
gab,c = Lξv

L
∂̂c

gab

= L
∂̂c
Lξv

gab

= −L
∂̂c

(
Lv̂gab + ∂va′

∂xa ga′b + ∂vb′

∂xb
gab′

)

= −(L[∂̂c,v̂] + Lv̂L∂̂c
)gab

− ∂2va′

∂xc∂xa ga′b − ∂va′

∂xa δga′b,c − ∂2vb′

∂xc∂xb
gab′ − ∂vb′

∂xb
gab′,c

= −Lv̂gab,c − ∂va′

∂xa ga′b,c − ∂vb′

∂xb
gab′,c − ∂vc′

∂xc gab,c′

− ∂2va′

∂xc∂xa ga′b − ∂2vb′

∂xc∂xb
gab′ .

With this relation, we can compute the action of vector fields on the connection

coefficients, which yields

Lρ(v)	
c
ab = ∂vc

∂xc′ 	
c′
ab − ∂va′

∂xa 	c
a′b − ∂vb′

∂xb
	c

ab′ − ∂2vc

∂xa∂xb
.
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8240 C. Blohmann

Putting everything together, we obtain

Lρ(v)(∇aχb) = Lρ(v)L∂̂a
χb − (Lρ(v)	

c
ab)χc − 	c

ab(Lρ(v)χc)

= ∂va′

∂xa (∇a′χb) + ∂vb′

∂xa (∇aχb′),

where the terms containing the 2nd-order derivatives of va cancel. This finishes the

proof. �

3.6 Divergence formulas

In the variational bicomplex, the metric volume form is the (0, n)-form on J∞Lor defined

as

volg = √− det g dx1 ∧ . . . ∧ dxn. (20)

We recall that we have adopted the “east coast” sign convention for Lorentz metrics with

1 negative and n−1 positive signs, so that det g is negative. The partial derivative of the

square root of the determinant with respect to the 0-jet coordinates is given by

∂

∂gab

√− det g = 1
2gab

√− det g.

The partial derivatives with respect to xa and all higher jet coordinates gab,C vanish. It

follows that the vertical and the horizontal differentials are given by

δ
√− det g = 1

2gabδgab

√− det g

d
√− det g = 1

2gabgab,c

√− det g dxc.

For the vertical differential of the volume form, we obtain

δvolg = 1
2gabδgabvolg. (21)

Although volg is not a volume form on J∞Lor, every (0, n)-form τ can be written

as

τ = fdx1 ∧ . . . ∧ dxn = f√− det g
volg,
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The Homotopy Momentum Map of General Relativity 8241

for a unique function f ∈ C∞(J∞Lor). Therefore, we can define the divergence of a vector

field X ∈ X (J∞Lor) by the relation

LXvolg = (div X)volg.

For a strictly horizontal vector field v̂, we have

Lv̂volg = (Lv̂

√− det g) dx1 ∧ . . . ∧ dxn + √− det g Lv̂(dx1 ∧ . . . ∧ dxn)

=
(

1
2gabgab,cvc + ∂vc

∂xc

)
volg =

(
	a

acvc + ∂vc

∂xc

)
volg

= (∇ava)volg.

(22)

We conclude that

div v̂ = ∇ava.

While this looks like the usual expression, we point out that the divergence div v̂ is now

a function on J1Lor.

Lemma 3.11. The metric volume form is invariant.

Proof. For the Lie derivative of the volume form with respect to the vertical vector

field, we obtain

Lξv
volg = ιξv

δvolg

= −1
2gab

(
Lv̂gab + ∂va′

∂xa ga′b + ∂vb′

∂xb
gab′

)
volg

= −
(
vc 1

2gabgab,c + ∂vc

∂xc

)
volg

= −Lv̂volg,

where in the last step, we have used Equation (22). We conclude that Lρ(v)volg = 0 for

all v ∈ X (M). �

Remark 3.12. Lemma 3.11 can be stated by saying that ξv + v̂ is divergence free.
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8242 C. Blohmann

From the formula for the divergence of a vector field, we deduce

(∇ava)volg = d
(
vaι

∂̂a
volg).

This formula generalizes to higher vertical forms, as we will show next.

Proposition 3.13. Let χa be a family of (p, 0)-forms on J∞Lor. Then,

∇aχa ∧ volg = (−1)pd(χa ∧ ι
∂̂a

volg). (23)

Proof. Consider the (p, n − 1)-form

χ = (−1)pχa ∧ ι
∂̂a

volg,

where the χa are (p, 0)-forms. The horizontal differential of χ is given by

dχ = (−1)p+n−1(L
∂̂c

χ) ∧ dxc

= (−1)n−1L
∂̂c

(χa ∧ ι
∂̂a

volg) ∧ dxc

= (L
∂̂c

χa) ∧ (−1)n−1(ι
∂̂a

volg) ∧ dxc + χa ∧ (−1)n−1(L
∂̂c

ι
∂̂a

volg) ∧ dxc

= (L
∂̂a

χa) ∧ volg + χa ∧ (−1)n−1(ι
∂̂a
L

∂̂c
volg) ∧ dxc

= (L
∂̂a

χa) ∧ volg + χa ∧ (−1)n−1ι
∂̂a

(	b
bcvolg) ∧ dxc

= (L
∂̂a

χa + 	b
baχa) ∧ volg

= (∇aχa) ∧ volg,

where we have used Equation (13), the Leibniz rule, the relation

(ι
∂̂a

volg) ∧ dxc = (−1)n−1δc
avolg,

and Equation (22). �

For later use, we generalize the formula (23) further to families of (p, 1)-forms.
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The Homotopy Momentum Map of General Relativity 8243

Proposition 3.14. Let χab be a family of (p, 1)-forms on J∞Lor such that χab = −χba.

Then,

∇aχab ∧ ι
∂̂b

volg = (−1)pd(1
2χab ∧ ι

∂̂a
ι
∂̂b

volg). (24)

Proof. Consider the (p, n − 2)-form

χ = 1
2 (−1)pχab ∧ ι

∂̂a
ι
∂̂b

volg.

We have the relation

(ι
∂̂a

ι
∂̂b

volg) ∧ dxc = ι
∂̂a

[(ι
∂̂b

volg) ∧ dxc] − (−1)n−1(ι
∂̂b

volg) ∧ (ι
∂̂a

dxc)

= [ι
∂̂a

(−1)n−1δc
bvolg] − (−1)n−1(ι

∂̂b
volg)δc

a

= (−1)n−1(δc
bι

∂̂a
− δc

aι
∂̂b

) volg.

Moreover, since χab = −χba, we have

∇aχab = L
∂̂a

χab + 	a
adχdb + 	b

adχad

= L
∂̂a

χab + 	a
adχdb.

Using these relations, we can compute the horizontal differential of χ as

dχ = 1
2 (−1)p+n−2(L

∂̂c
χ) ∧ dxc

= 1
2 (L

∂̂c
χab) ∧ (−1)n−2(ι

∂̂a
ι
∂̂b

volg) ∧ dxc

+ 1
2χab ∧ (−1)n−2L

∂̂c
(ι

∂̂a
ι
∂̂b

volg) ∧ dxc

= 1
2 (L

∂̂c
χab + χab	d

dc) ∧ (−1)n−2(ι
∂̂a

ι
∂̂b

volg) ∧ dxc

= 1
2 (L

∂̂c
χab + χab	d

dc) ∧ (−1)(δc
bι

∂̂a
− δc

aι
∂̂b

)volg

= (L
∂̂a

χab + χab	d
da) ∧ ι

∂̂b
volg

= (∇aχab) ∧ ι
∂̂b

volg,

which finishes the proof. �
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8244 C. Blohmann

4 The Homotopy Momentum Map of General Relativity

We now have all the tools needed for the multisymplectic interpretation of the dif-

feomorphism symmetry of general relativity. We start by recalling the Euler–Lagrange

and the standard boundary form. Then we show in Theorem 4.1 that the Lepage form

is invariant under the diagonal action of vector fields. In other words, the action of

vector fields is a manifest diffeomorphism symmetry of general relativity in the sense

of Definition 2.12. It follows from Proposition 2.15 that the symmetry has a homotopy

momentum map, which is given explicitly in Theorem 4.2.

4.1 Euler–Lagrange and boundary form

The lagrangian form of the Hilbert–Einstein action is

L = R volg, (25)

where R is the scalar curvature, which has to be interpreted within the variational

bicomplex as a function on J∞Lor as follows: the Riemann curvature tensor is given

in local coordinates in terms of the connection coefficients (19) by

Riemabc
d = ∂̂b	d

ac − ∂̂a	d
bc + 	e

ac	
d
eb − 	e

bc	
d
ea.

This is the usual formula [19, Eq. (3.4.4)] with the partial coordinate derivatives replaced

by the Cartan lifts ∂̂a and ∂̂b. The Ricci curvature is given by the contraction Ricab :=
Riemaeb

e and the scalar curvature by the trace of the Ricci curvature R = gabRicab.

The vertical differential of the scalar curvature R = gabRicab is given by

δ(gabRicab) = δgabRicab + gabδRicab.

The 1st term can be written as

δgabRicab = −Ricabδgab.

The 2nd term is given by [19, Eq. (E.1.15)]

gabδRicab = ∇aγa,
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The Homotopy Momentum Map of General Relativity 8245

where

γa = gbc(∇cδgab − ∇aδgbc),

and where the covariant derivative is to be understood as

∇aγa = gab(L
∂̂a

γb − 	c
abγc),

as explained in Section 3.5. The vertical differential of the volume form was computed

in Equation (21). Putting everything together, we get

δL = −(
Ricab − 1

2Rgab)
δgab ∧ volg + ∇aγa ∧ volg.

The 1st term is the Euler–Lagrange form

EL = −Gabδgab ∧ volg,

where

Gab = Ricab − 1
2Rgab

is the Einstein tensor. The Einstein tensor is divergence-free, that is,

∇aGab = L
∂̂a

Gab + 	a
acGcb + 	b

acGac

= 0.

Using Equation (23), the 2nd term can be written as a d-exact term

(∇aγa) ∧ volg = −dγ ,

where

γ = γ a ∧ ι
∂̂a

volg

= gadgbc(∇cδgab − ∇aδgbc) ∧ ι
∂̂d

volg

(26)

is the boundary form.
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8246 C. Blohmann

4.2 Invariance of the Lepage form

Theorem 4.1. The Lepage form L + γ given by the sum of the Hilbert–Einstein

Lagrangian (25) and the boundary form (26) is invariant under the action (12) of

spacetime vector fields. In other words, the action is a manifest diffeomorphism

symmetry in the sense of Definition 2.12.

Proof. The invariance must hold independently in every bidegree, so that we need to

prove the two equations

Lξv+v̂L = 0 , Lξv+v̂γ = 0 .

We start by proving the invariance of L. We have

Lξv
L = ιξv

δL = ιξv
(EL − dγ )

= ιξv
EL + dιξv

γ .
(27)

We will compute both summands separately. First we use (15) to compute

ιξv
δgab = −

(
vcgab,c + ∂va′

∂xa ga′b + ∂vb′

∂xb
gab′

)

= −(
vcgab,c + ∂

∂̂a
(vcgcb) − vcgcb,a + ∂

∂̂b
(vcgac) − vcgac,b

)
= −(

∂
∂̂a

vb + ∂
∂̂b

va − vcgce(gca,b + gcb,a − gab,c)
)

= −(
∂
∂̂a

vb + ∂
∂̂b

va − vc2	c
ab

)
= −(∇avb + ∇bva),

where we have used (19). With this formula, we obtain

ιξv
EL = Gab(∇avb + ∇bva)volg

= 2
(∇a(Gabvb)

)
volg

= d
(
2Gabvbι

∂̂a
volg

)
,

(28)
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The Homotopy Momentum Map of General Relativity 8247

where in the last step, we have used the divergence formula (23). For the 2nd term, we

compute

ιξv
γ = [ιξv

gadgbc(∇cδgab − ∇aδgbc)] ∧ ι
∂̂d

volg

= gadgbc[−∇c(∇avb + ∇bva) + ∇a(∇bvc + ∇cvb)] ι
∂̂d

volg

= gadgbc[∇c∇avb − ∇c∇bva − 2∇c∇avb + ∇a(∇bvc + ∇cvb)] ι
∂̂d

volg

= [∇c(∇dvc − ∇cvd) − 2gadgbc(∇c∇a − ∇a∇c)vb] ι
∂̂d

volg

= [∇c(∇dvc − ∇cvd) − 2Ricbdvb] ι
∂̂d

volg

= −2Ricabva ι
∂̂b

volg + [∇a(∇bva − ∇avb)] ι
∂̂b

volg

= −2Ricabva ι
∂̂b

volg − d
(1

2 (∇avb − ∇bva) ι
∂̂a

ι
∂̂b

volg

)
,

(29)

where in the last step, we have used the divergence formula (24). Inserting (28) and (29)

into the right-hand side of (27), we obtain

Lξv
L = 2d

(
Gabvbι

∂̂a
volg − 2Ricabva ι

∂̂b
volg

)
= −d

(
Rvaι

∂̂a
volg

)
= −Lv̂L,

which finishes the proof of the invariance of L.

It remains to prove the invariance of γ . The strategy of the proof is to show that

all indices appearing in

γ = gadgbc(∇cδgab − ∇aδgbc) ∧ ι
∂̂d

volg

are covariant or contravariant in the sense of Definition 3.3, so that their contraction is

invariant by Lemma 3.5.

We have shown in Lemma 3.11 that the volume form is invariant. It follows from

Lemma 3.6 that the index d of ι
∂̂d

volg is covariant. We have shown in Equation (18)

that the indices of gad and gbc are contravariant. In Equation (17), we have seen that

the indices of δgbc are covariant. It follows from Lemma 3.10 that the indices of the

covariant derivatives ∇c and ∇a are covariant. Lemma 3.4 shows that the wedge product

is contravariant in all upper and covariant in all lower indices. With Lemma 3.5, we

conclude that γ is invariant. �
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Theorem 4.2. The action of spacetime vector fields on the infinite jet bundle of

Lorentz metrics defined in (12) has a homotopy momentum map

μ : X (M) −→ L∞(J∞Lor, EL + δγ ),

given by

μk : ∧kX (M) −→ L∞(J∞Lor, EL + δγ )

μk(v1, . . . , vk) := ιρ(v1) · · · ιρ(vk)(L + γ ).

Proof. The proof follows from Theorem 4.1 and Proposition 1.3. �

The Noether current, which was given in (9) by the general formula jv = −ιv̂L −
ιξv

γ , can be computed with (29) to

jv = 2Gabva ∧ ι
∂̂b

volg + d
(1

2 (∇avb − ∇bva) ι
∂̂a

ι
∂̂b

volg

)
. (30)

The k = 1 component of the homotopy momentum map, which was given in (8) by the

general formula μ1(v) = −jv + ιv̂γ , is

μ1(v) = −2Gabva ∧ ι
∂̂b

volg − d
(1

2 (∇avb − ∇bva) ι
∂̂a

ι
∂̂b

volg

)
+ gadgbc(∇cδgab − ∇aδgbc)v

e ∧ ι
∂̂d

ι
∂̂e

volg.

Remark 4.3. The Noether current of a symmetry is determined only up to a d-closed

form. Usually, the 2nd summand of (30) is dropped, so that the Noether current is

C∞(M)-linear in v and can be interpreted as the energy-momentum tensor Gab. Here,

we must take (30) as Noether current so that μ is a homomorphism of L∞-algebras.

Acknowledgments

This paper was branched out of a long and ongoing collaboration with Michele Schiavina and

Alan Weinstein [4] on the constraint problem of general relativity. They have contributed with

invaluable discussions and encouraged me to publish the homotopical approach separately. I

am indebted to Yaël Frégier, Chris Rogers, and Marco Zambon for teaching me about homotopy

momentum maps and for many illuminating discussions over the years. Finally, I would like to

thank Janina Bernardy and Leonard Hofmann for valuable feedback on various versions of this

paper.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/10/8212/6571511 by Adm
inistrative H

eadquarters - M
PS user on 17 M

ay 2023



The Homotopy Momentum Map of General Relativity 8249

References

[1] Anderson, I. M. “The variational bicomplex.” Unpublished manuscript. https://

ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf (accessed February 5, 2022),

1989.

[2] Barnich, G., R. Fulp, T. Lada, and J. Stasheff. “The sh Lie structure of Poisson brackets in

field theory.” Comm. Math. Phys. 191, no. 3 (1998): 585–601.

[3] Blohmann, C., M. C. B. Fernandes, and A. Weinstein. “Groupoid symmetry and constraints in

general relativity.” Commun. Contemp. Math. 15, no. 1 (2013): 25.

[4] Blohmann, C., M. Schiavina, and A. Weinstein. “A Lie–Rinehart algebra in general relativity.”

(Forthcoming) arxiv:2201.02883.

[5] Blohmann, C. and A. Weinstein. “Hamiltonian Lie algebroids.” Memoirs of the American

Mathematical Society: 88 (forthcoming) arxiv:1811.11109.

[6] Bridges, T. J., P. E. Hydon, and J. K. Lawson. “Multisymplectic structures and the variational

bicomplex.” Math. Proc. Cambridge Philos. Soc. 148, no. 1 (2010): 159–78.

[7] Callies, M., Y. Frégier, C. L. Rogers, and M. Zambon. “Homotopy moment maps.” Adv. Math.

303 (2016): 954–1043.

[8] Cariñena, J. F., M. Crampin, and L. A. Ibort. “On the multisymplectic formalism for first

order field theories.” Differential Geom. Appl. 1, no. 4 (1991): 345–74.

[9] Delgado, N. L. “Lagrangian field theories: ind/pro-approach and L-infinity algebra of local

observables.” PhD thesis, University of Bonn, 2018.

[10] Deligne, P. and D. S. Freed. “Classical Field Theory.” In Quantum Fields and Strings: A

Course for Mathematicians, Vol. 1 and 2 (Princeton, NJ, 1996/1997). 137–225. Providence,

RI: American Mathematical Society, 1999.

[11] Epstein, D. B. A. and W. P. Thurston. “Transformation groups and natural bundles.” Proc.

London Math. Soc. (3) 38, no. 2 (1979): 219–36.

[12] Gotay, M. J., J. Isenberg, and J. E. Marsden. “Momentum maps and classical relativistic

fields. Part II: canonical analysis of field theories.” (2004): preprint arXiv:math-ph/0411032.

[13] Gotay, M. J., J. Isenberg, J. E. Marsden, and R. Montgomery. “Momentum maps and classical

relativistic fields. Part I: covariant field theory.” (2004): preprint arXiv:physics/9801019.

[14] Kosmann-Schwarzbach, Y. The Noether Theorems: Invariance and Conservation Laws in

the Twentieth Century. Sources and Studies in the History of Mathematics and Physical

Sciences. New York: Springer, 2011. Translated, revised and augmented from the 2006 French

edition by Bertram E. Schwarzbach.

[15] Krupka, D. “Lepagean Forms in Higher Order Variational Theory.” In Proceedings of the

IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Vol. I (Torino,

1982), vol. 117. 197–238. Turin, Italy: Accademia delle Scienze di Torino, 1983.

[16] Rogers, C. L. “L∞-Algebras from multisymplectic geometry.” Lett. Math. Phys. 100, no. 1

(2012): 29–50.

[17] Souriau, J.-M. Structure des Systèmes Dynamiques: Maîtrises de Mathématiques. Paris:

Dunod, 1970.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/10/8212/6571511 by Adm
inistrative H

eadquarters - M
PS user on 17 M

ay 2023

https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf
https://ncatlab.org/nlab/files/AndersonVariationalBicomplex.pdf


8250 C. Blohmann

[18] Takens, F. “A global version of the inverse problem of the calculus of variations.”

J. Differential Geom. 14, no. 4 (1981): 543–62.

[19] Wald, R. M. General Relativity. Chicago, IL: University of Chicago Press, 1984.

[20] Zuckerman, G. J. “Action Principles and Global Geometry.” In Mathematical Aspects of String

Theory (San Diego, Calif., 1986), vol. 1. Adv. Ser. Math. Phys. 259–84. Singapore: World

Scientific Publishing, 1987.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/10/8212/6571511 by Adm
inistrative H

eadquarters - M
PS user on 17 M

ay 2023


	 The Homotopy Momentum Map of General Relativity
	1 Introduction
	2 Multisymplectic Geometry of Lagrangian Field Theories
	3 The Variational Bicomplex of Lorentzian Metrics
	4 The Homotopy Momentum Map of General Relativity


