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a b s t r a c t 

Representational Similarity Analysis (RSA) has emerged as a popular method for relating representational spaces 

from human brain activity, behavioral data, and computational models. RSA is based on the comparison of rep- 

resentational (dis-)similarity matrices (RDMs or RSMs), which characterize the pairwise (dis-)similarities of all 

conditions across all features (e.g. fMRI voxels or units of a model). However, classical RSA treats each feature 

as equally important. This ‘equal weights’ assumption contrasts with the flexibility of multivariate decoding, 

which reweights individual features for predicting a target variable. As a consequence, classical RSA may lead 

researchers to underestimate the correspondence between a model and a brain region and, in case of model 

comparison, may lead them to select an inferior model. The aim of this work is twofold: First, we sought to 

broadly test feature-reweighted RSA (FR-RSA) applied to computational models and reveal the extent to which 

reweighting model features improves RSM correspondence and affects model selection. Previous work suggested 

that reweighting can improve model selection in RSA but it has remained unclear to what extent these results 

generalize across datasets and data modalities. To draw more general conclusions, we utilized a range of publicly 

available datasets and three popular deep neural networks (DNNs). Second, we propose voxel-reweighted RSA, 

a novel use case of FR-RSA that reweights fMRI voxels, mirroring the rationale of multivariate decoding of opti- 

mally combining voxel activity patterns. We found that reweighting individual model units markedly improved 

the fit between model RSMs and target RSMs derived from several fMRI and behavioral datasets and affected 

model selection, highlighting the importance of considering FR-RSA. For voxel-reweighted RSA, improvements 

in RSM correspondence were even more pronounced, demonstrating the utility of this novel approach. We ad- 

ditionally show that classical noise ceilings can be exceeded when FR-RSA is applied and propose an updated 

approach for their computation. Taken together, our results broadly validate the use of FR-RSA for improving 

the fit between computational models, brain, and behavioral data, allowing us to better adjudicate between com- 

peting computational models. Further, our results suggest that FR-RSA applied to brain measurement channels 

could become an important new method to assess the correspondence between representational spaces. 
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. Introduction 

A core aim of cognitive neuroscience is to reveal the nature of our

eural representations and determine their role in shaping cognition

nd overt behavior. Central to this aim are comparisons of represen-

ations measured in brain activity data (e.g. fMRI, MEG) with rep-

esentations derived from computational models or behavior. A pow-

rful framework for such comparisons is offered through representa-

ional similarity analysis (RSA). RSA abstracts away from the mea-

urement level (e.g. voxels, sensors) to the level of representational

dis-)similarities, allowing for direct comparisons across measurement

odalities, species, models, and behavior ( Kriegeskorte, Mur, and Ban-

ettini, 2008 ; Kriegeskorte, and Kievit, 2013 ). By characterizing rep-

esentations as (dis-)similarities of activity patterns, RSA has become
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 central tool for multivariate pattern analysis, complementing multi-

ariate decoding ( Haynes and Rees, 2006 ; Hebart and Baker, 2018 ) and

ther methods operating at the level of multivariate activity patterns

 Haxby et al., 2014 ; Diedrichsen et al., 2018 ). RSA is not only useful for

dentifying the presence of a representational correspondence between

odalities; it also provides a simple yet effective approach for compar-

ng computational models with behavioral and neuroimaging data. 

At the heart of RSA lies the computation of representational (dis-

similarity matrices (RDMs or RSMs), which characterize the (dis-

similarity of all pairs of conditions (e.g. visual stimuli) across all fea-

ures (e.g. measurement channels, units of a computational model).

hile in recent years a lot of focus has been placed on improving the

eliability of RDMs ( Walther et al., 2016 ; Charest et al., 2018 ) and iden-

ifying the most appropriate dissimilarity measure ( Walther et al., 2016 ;
bart). 
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Fig. 1. Parallel between multivariate decoding and feature-reweighted RSA (FR-RSA). (a) Multivariate decoding in fMRI can be described as a linear reweighting 

of features (e.g. voxels) to optimize the linear readout of a binary target variable (e.g. stimulus category). Voxel weights reflect their importance for the final 

classification objective. (b) In classical RSA, no reweighting is applied, which assumes that all voxels are equally important. Relative to multivariate decoding, this 

underestimates the linear information contained in multivoxel activation patterns. (c) FR-RSA utilizes linear feature-reweighting in order to best reflect pairwise 

(dis-)similarity relative to a target RDM or RSM, thereby improving the use of multivariate information present in the data. 
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amirez et al., 2020 ; Bobadilla-Suarez et al., 2020 ), much less em-

hasis has been placed on the contribution of individual features in

he computation of representational (dis-)similarities. In fact, most RSA

pproaches assume that each feature is of equal importance and will

hus contribute equally to the final (dis-)similarity estimate. This ‘equal

eights’ assumption is at odds with the idea that for a given comparison

f RSMs, some features may carry more information than others. This

as several important consequences. First, for computational models,

lassical RSA may underestimate the correspondence between the model

nd a given brain region, even though the model may already contain

he relevant representational space for capturing the brain response.

his may lead not only to suboptimal model performance, but may

lso affect different models to different degrees, which in case of model

omparisons may lead to the selection of an inferior model ( Khaligh-

azavi and Kriegeskorte, 2014 ; Peterson et al., 2016 ; Jozwik et al., 2017 ;

torrs et al., 2021 ). Second, for brain data, classical RSA may overem-

hasize the importance of individual brain measurement channels, treat-

ng noisy channels (e.g. voxels) as equally important as channels that

arry signal. This contrasts with the intuition used in multivariate lin-

ar decoding, where each voxel’s importance is reweighted according

o the contribution to the final classification task ( Fig. 1 a). Surprisingly,

eweighting of individual brain measurement channels is not routinely

pplied to the measurement of representational similarities. This sug-

ests large untapped potential for improving the representational corre-

pondence between computational models, brain activity, and behavior

 Fig. 1 b,c). 

The aim of the present study is twofold. First, for the reweight-

ng of computational model units, we seek to broadly validate the de-

ree to which feature-reweighted RSA (FR-RSA) can act as a general-

urpose method to relate representational spaces of models to those

f brain and behavior. To achieve this aim, we systematically apply

R-RSA to representations from deep neural networks (DNN) on the

ne hand and relate them to diverse publicly available neuroimaging

nd behavioral datasets on the other hand. Second, for the reweight-

ng of brain measurement channels, we demonstrate the broad applica-

ility of FR-RSA applied to fMRI data —voxel-reweighted RSA —for im-

roving the correspondence between representational similarities de-

ived from the brain and from models or behavior. Previewing our re-

ults, we find that reweighting units of a DNN reliably improves the fit

etween model, brain, and behavioral RSMs and indeed affects which

NN is selected as the best model of brain activity ( Storrs et al., 2021 ).

his generalizes the utility of FR-RSA to a broad set of neural network

odels, brain imaging methods, behavior, and stimuli. Further, when

eweighting is applied to fMRI voxels, our results demonstrate consis-
2 
ent and pronounced improvements of RSM correspondence. This sug-

ests that feature reweighting applied at the level of brain measure-

ents may act as a general-purpose method for improving the repre-

entational correspondence between brains, models, and behavior. To

acilitate future use of this method, we provide a toolbox to run FR-RSA

n Python (https://github.com/ViCCo-Group/frrsa), with recommenda-

ions regarding implementational choices. 

. Methods 

.1. Datasets and computational models 

We sought to evaluate the general applicability of feature-

eweighted RSA (FR-RSA), both when (1) reweighting individual units

f a computational model, as has been done previously with similar ap-

roaches (e.g. Peterson et al., 2016 ; Jozwik et al., 2017 ; Storrs et al.,

021 ) and (2) when reweighting measurement channels of brain data,

n approach which to our knowledge has not been carried out before.

o this end, we used datasets from several published studies in which

articipants had been exposed to a range of object images ( Mur et al.,

013 ; Cichy et al., 2016 , 2014 ; Bankson et al., 2018 ; Cichy et al., 2019 ).

he datasets are centered around four sets of natural object images and

eflect a combination of functional MRI data, magnetoencephalography

ata, and behavioral similarity judgments. In addition, for the object im-

ges, we extracted neural network activations as computational models.

ogether, this makes these datasets well suited for evaluating FR-RSA

cross a wide range of possible analyses. One of the published studies

 Bankson et al., 2018 ) used a twin set of 84 natural object images, which

ere tested in separate sets of participants and which we thus treated

s two separate datasets. Another image set ( Kriegeskorte et al., 2008b ;

ur et al., 2013 ; Cichy et al., 2014 ) consisted of 92 images of human

nd non-human faces and bodies, as well as natural and artificial ob-

ects. Finally, another image set ( Cichy et al., 2016 , 2019 ) consisted of

18 natural images. All datasets used in this work were part of studies

ith approval by their respective local ethics committee. Details regard-

ng which kinds of data were available for which image set, as well as

he task carried out by participants, can be found in Table 1 . 

.1.1. fMRI data 

For the fMRI data associated with two of the image sets (92 and 118),

e used voxel-wise beta estimates for each object. These were provided

ith the publicly available datasets and had been estimated by applying

 general linear model to the preprocessed data. The original studies

sed a Siemens 3T Trio scanner with a 32-channels head coil and, for
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Table 1 

Overview over the datasets used in this study. For each image set, data from several measurement modalities were available. For fMRI, we focused on data 

from early visual cortex (EVC) and higher visual cortex (HVC). The number of participants, n, for every measurement modality is stated in parentheses. Note 

that not all available datasets from these image sets were used in all analyses, given the exceedingly large number of possible comparisons. 

Image set Types of images Experimental task MEG (n) fMRI ROI (n) MEG type (channels) Behavior (n) References 

84 (Set 1) natural images 

cropped and placed 

on gray background 

oddball detection - - - single 

arrangement 

similarity (n 

= 16) 

Bankson et al. (2018) 

84 (Set 2) natural images 

cropped and placed 

on gray background 

oddball detection - - - single 

arrangement 

similarity (n 

= 16) 

Bankson et al. (2018) 

92 human and 

non-human faces 

and bodies as well as 

natural and artificial 

objects cropped and 

placed on gray 

background 

MEG: button press 

when paperclip 

shown fMRI: button 

press when null trial 

Yes (16) Early visual 

cortex (n = 15) 

Higher visual 

cortex (n = 15) 

204 planar 

gradiometer, 102 

magnetometers 

multiple 

arrangement 

similarity 

(n = 16) 

Mur et al. (2013) 

Cichy et al. (2014) 

118 diverse natural 

images, on natural 

background 

MEG: button press 

and eyeblink when 

paperclip shown 

fMRI: button press 

when null trial 

Yes (15) Early visual 

cortex (n = 15) 

Higher visual 

cortex (n = 15) 

204 planar 

gradiometer, 102 

magnetometers 

multiple 

arrangement 

similarity 

(n = 20) 

Cichy et al. (2016) 

Cichy et al. (2019) 
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f  
he 92 image set, acquired 192 volumes for each participant (gradient-

cho EPI sequence: TR = 2000 ms, TE = 31 ms, flip angle = 80°, FOV

ead = 192 mm, FOV phase = 100%, ascending acquisition, gap = 10%,

esolution = 2 mm isotropic, slices = 25) or, for the 118 image set, 648

olumes for each participant (gradient-echo EPI sequence: TR = 750 ms,

E = 30 ms, flip angle = 61°, FOV read = 192 mm, FOV phase = 100%,

scending acquisition, slice gap = 20%, resolution = 3 mm 

3 , slices = 33)

for further methodological details, see Cichy et al., 2014 ; 2016 ). For

implicity, we focused on early visual cortex (EVC) and higher visual

ortex (HVC) as regions of interest. Since data were provided in MNI

pace only, EVC and HVC were defined using anatomical criteria, based

n a projection of the Glasser atlas to MNI space ( Glasser et al., 2016 ).

or EVC, we used a mask of areas V1, V2, and V3. For HVC, we used a

ask consisting of areas V8 (VO1), PIT, VVC, FFC, VMV1–3, PHA1–3,

F, and TE2p. For each participant and area, a conservative preselection

f voxels was conducted by selecting only the most strongly activated

50 voxels (post-hoc analyses including all voxels showed qualitatively

imilar yet overall slightly weaker results, results not shown). 

.1.2. MEG data 

While human MEG data were available for all image sets, due to the

xtensive number of possible comparisons, we focused on MEG data for

mage sets 92 and 118. Both MEG datasets had been acquired with 306

hannels at a sampling rate of 1000 Hz. Data were filtered between 0.03

nd 330 Hz and were baseline corrected (for methodological details, see

ichy et al., 2014 ; 2016 ). For image set 92, MEG signals were extracted

or each trial for 100 ms before and 1200 ms after stimulus presentation,

esulting in 1301 samples in total. Across all measurement channels, this

ielded a data matrix of size 306 × 92 for every time point and partic-

pant. For the image set 118, MEG signals were extracted for 100 ms

efore and 1000 ms after stimulus presentation, resulting in 1101 sam-

les in total. This yielded a data matrix of size 306 × 118 for every time

oint and participant. 

.1.3. Behavioral data 

The behavioral data of all image sets included in this study were

ampled using either the single ( Hout et al., 2013 ) or multiple object

rrangement method ( Kriegeskorte & Mur, 2012 ). In those tasks, partic-

pants are required to arrange objects in a circular arena according to the

erceived dissimilarity between images by dragging-and-dropping them

o different locations within the arena. Dissimilar images are positioned

urther away from each other, while similar images are positioned closer
3 
o each other. Importantly for later analyses, this method directly pro-

uces fully-sampled RDMs, rather than yielding feature vectors that are

hen converted into RDMs. The single arrangement method was used

or both image sets with 84 images, while the multiple arrangement

ethod was used for image sets 92 and 118. Further details regarding

he specifics of behavioral data acquisition can be found in the original

tudies ( Mur et al., 2013 ; Bankson et al., 2018 ; Cichy et al., 2019 ). 

.1.4. Layer activations from chosen deep neural networks 

We chose three popular DNN architectures for our investigation:

lexNet ( Krizhevsky et al., 2012 ), VGG-16 ( Simonyan and Zisser-

an, 2015 ), and ResNet-50 ( He et al., 2016 ). We used versions of

he DNNs that had been pre-trained on the 1000 object classes used

n the ImageNet Large-Scale Visual Recognition Competition (ILSVRC,

ussakovsky et al., 2015 ), implemented in the Matlab toolbox MatCon-

Net ( Vedaldi and Lenc, 2015 ). 

For each DNN, we extracted activity patterns for each image for a

ubset of DNN layers. For AlexNet, we selected all five pooling lay-

rs and the first two fully-connected layers, resulting in seven layers

n total. From early to late layers, these layers had 290,400, 186,624,

4,896, 64,896, 43,264, 4096, and 4096 units, respectively. Similarly,

or VGG-16, all five pooling layers and the first two fully connected lay-

rs were chosen. From early to late layers, VGG-16 ′ s layers had 802,816,

01,408, 200,704, 100,352, 25,088, 4096, and 4096 units, respectively.

or ResNet-50, layers conv1 (802,816 units), res2b (802,816 units),

es3b (401,408 units), res3d (401,408 units), res4c (200,704 units),

es4f (200,704 units), and res5c (100,352 units) were chosen as roughly

orresponding to the chosen layers in AlexNet and VGG-16 in terms of

etwork depth. Subsequently, we will refer to these layers as layers 1 to

. For each layer, we concatenated all units of all feature maps into one

ong vector. This yielded one activity pattern per stimulus per layer. No

imensionality reduction was conducted for any DNN layer. 

.1.5. Constructing classical representational similarity matrices 

For the MEG and behavioral data we used the RDMs as provided by

he original studies and transformed them into RSMs. For the MEG data,

riginal RDMs consisted of pairwise linear support vector machine clas-

ification accuracies, where higher accuracies are supposed to reflect

etter linear separability and thus greater dissimilarity ( Cichy et al.,

014 ; 2016 ). For the DNN and fMRI activity patterns, when constructing

ull RSMs, we computed similarities as the Pearson’s correlation coeffi-
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Fig. 2. Comparison of classical and feature-reweighted RSA (FR-RSA). (a) In classical RSA, the predicting RSM is computed across all features before it is related to 

the target RSM. (b) In FR-RSA, for the predicting RSM, one RSM for each feature is computed. Each feature’s RSM receives its own 𝛽 weight to optimally predict the 

target RSM using regularized linear regression. All reweighted feature RSMs are then combined and related to the target RSM. 
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ients. Behavioral RDMs were chosen as the final result from the object

rrangement task (see "Behavioral data") and transformed into RSMs. 

.2. Reweighting features of a given modality to predict similarities in 

nother modality 

.2.1. Overview over the algorithm 

The key differences between classical RSA and FR-RSA are illustrated

n Fig. 2 . In classical RSA, individual cells in one RSM reflect the over-

ll similarity of two activity patterns for conditions x and y (e.g. DNN

ayer activations for two object images). The resulting RSM, henceforth

alled the “predicting RSM ”, is then related to another RSM, henceforth

alled the “target RSM ”. In contrast, the rationale of feature-reweighted

SA is that individual RSM cells are treated as a linear combination

f univariate, feature-specific similarities. The resulting predicting RSM

an thus be conceptualized as a linear combination of feature-specific

SMs ( Fig. 2 b). The aim of FR-RSA is then to learn weights that allow

he optimal combination of these feature-specific predicting RSMs in a

ay that maximizes their correspondence with the target RSM (note that

he same reasoning holds for RDMs). In our implementation, this is real-

zed using L2-regularized multiple linear regression in a cross-validation

ramework. 

.2.2. Rationale of the statistical model 

More specifically, in classical RSA with Pearson correlation as the

imilarity measure, an RSM cell is quantified by: 

 𝑥𝑦 = 

cov 𝑥𝑦 
𝑆 𝑥 𝑆 𝑦 

ith x and y referring to the current pair of objects and s x and s y referring

o the standard deviation of the respective object’s activity pattern. Since

he covariance reflects the centered dot product and the correlation co-

fficient the scaled covariance, it is possible to alternatively z-transform

ach object pattern, which then reduces the correlation coefficient to

he product of the object pairs’ feature values, summed across all fea-

ures i , with a constant scaling factor p in the denominator denoting the
4 
umber of features: 

∑
𝑥 𝑖 𝑦 𝑖 

𝑝 

In feature-reweighted RSA, this formula simply translates to: 

∑
𝛽𝑖 𝑥 𝑖 𝑦 𝑖 

𝑝 

For a given feature i , across all object pairs, the same 𝛽 weight is

earned. This is equivalent to learning a linear combination of weighted

nivariate feature-specific RSMs, as illustrated in Fig. 2 b. Thus, to ac-

urately combine these features and easily fit feature-specific weights,

ach pattern is z-transformed when using Pearson correlation as the sim-

larity measure. Note that the constant p can be ignored as it affects the

caling of all 𝛽 weights equally. 

Therefore, the predicting RSM in FR-RSA is a linear combination of

eature-specific RSMs, in which each feature-specific RSM receives its

wn 𝛽 weight. Identifying this weight can be formulated as a multiple

egression problem, in which each feature-specific RSM acts as an in-

ividual predictor, each with its own unique weight. For this multiple

egression model, each feature-specific RSM is flattened so that only its

nique upper (or lower) triangular part is used, since each RSM is sym-

etric along its diagonal. 

There are two potential issues with this multiple regression model.

irst, it can contain a very large number of predictors, which is given

y the number of features making up the predicting RSM. Second, given

ossible redundancy across features, these predictors may exhibit high

ovariance (e.g. feature-specific RSMs for a number of neighboring vox-

ls). To counteract possible collinearity resulting from these issues, we

dded a regularization term to the objective function. Since we did not

im at selecting specific features but rather to leverage the complete

ange of information present in the data, we opted for an L2 regular-

zation, that is, ridge regression ( Hoerl and Kennard, 1970 ), which also

ffers a closed-form solution. For that purpose we used fractional ridge

egression ( Rokem and Kay, 2020 ), since it allows automatic evaluation

f the entire range of possible hyperparameters. 



P. Kaniuth and M.N. Hebart NeuroImage 257 (2022) 119294 

 

r  

e  

e  

a

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w  

u  

y  

m  

t  

P

2

 

t  

v  

h  

i  

b  

a

 

r  

r  

f  

p  

f  

d  

i  

y  

f  

a  

M  

a  

i  

b  

i  

m  

P  

S  

𝛽  

a  

a  

i  

a

2

2

 

t  

r  

a  

f  

t  

w  

m  

0

2

 

c  

n  

a  

i  

a  

p

2

 

s  

v  

F  

R  

e  

f  

b  

d  

p  

t  

a  

m  

r

 

t  

r  

g  

l  

o  

p  

c

Finally, to avoid overfitting, we cross-validated the multiple linear

idge regression model and also conducted a nested cross-validation to

stablish the best regularization parameter for each cross-validation it-

ration. The next paragraph provides a step-by-step run-through of the

lgorithm. 

.2.3. The full sequence of feature-reweighted RSA 

1 Data from two measurement modalities (e.g. activity patterns from

a specific DNN’s layer and fMRI voxel activities from a pre-defined

ROI) are selected. One of the modalities is declared the predicting

dataset for which feature-reweighted RSMs are computed. The other

modality is the target dataset for which the full RSM is explained

by the predicting dataset. In matrix form, the predicting dataset is

provided as a p × k matrix, while the target dataset reflects a full

k × k RSM, with p referring to the number of measurement channels

and k to the number of conditions (see Diedrichsen and Kriegesko-

rte, 2017 ). 

2 Activity patterns for all conditions (e.g. images) of the predicting

dataset are z-transformed (exploratory results when leaving out this

step can be found in Supplemental Figure S1). 

3 Data are split randomly into five folds for the outer cross-validation.

Importantly, data are split along the condition axis, so that the outer

training and test set contain non-overlapping sets of condition pairs

(different from Peterson et al., 2016 , but similar to Jozwik et al.,

2017 ). Other cross-validation schemes are possible but we confirmed

with post-hoc analyses that 5-fold cross-validation reflects a good

trade-off between speed and accuracy. 

4 For a given outer cross-validation iteration, the outer training set is

again split repeatedly into five folds, yielding an inner training and

inner test set for the inner cross-validation. 

5 With the inner cross-validation, the best hyperparameter for ridge

regression is estimated. For ridge regression we used fractional ridge

regression ( Rokem and Kay, 2020 ). Hence, the hyperparameter to

be optimized is the fraction between ordinary least squares and L2-

regularized regression coefficients. 

6 Once the best hyperparameter for the current outer cross-validation

iteration has been established, ridge regression is estimated on the

outer training set. 

7 The fitted statistical model returns reweighted similarities for the

predicting RSM on the test set. Predicted values that are out of range

(e.g. predicted correlation coefficients smaller than − 1 or larger than

1) are clipped to the nearest permissible value. 

8 Finally, predictions are correlated with the respective similarities of

the target RSM using Pearson’s r to evaluate their fit. 

Note that in our implementation, the outer 5-fold cross-validation

as repeated ten times and the inner 5-fold cross-validation five times,

sing different random splits in each iteration. Hence, for a single anal-

sis, 50 outer ridge regression models were fitted. For each of these

odels, Pearson’s r between the reweighted predicted and the respec-

ive target similarities was derived, so that all 50 Fisher’s z -transformed

earson’s r s were averaged across outer cross-validation folds. 

.2.4. Reweighting analyses conducted in this study 

The reweighting analyses we carried out can roughly be divided into

wo kinds: (1) feature-reweighted RSA applied to DNNs, where acti-

ations are reweighted to predict individual participant’s fMRI or be-

avioral RSMs, and (2) voxel-reweighted RSA, where individual partic-

pant’s fMRI activity patterns are reweighted to predict group-averaged

ehavioral RSMs, DNN RSMs, or group-averaged MEG RSMs (that is,

pplying reweighting to MEG-fMRI fusion, see Cichy et al., 2014 ). 

Thus, for every reweighting analysis conducted, each participant

eceived one overall score that indicates the correlation between the

eweighted predicting RSM and the target RSM. These scores were used

or further statistical analyses (similar to Storrs et al., 2021 ) and com-

ared to classical RSA. Analyses reweighting DNN units were conducted
5 
or all image sets, whereas analyses reweighting fMRI voxels were con-

ucted only for the image sets with 92 and 118 images. Analyses involv-

ng fMRI were conducted separately for both EVC and HVC ROIs. Anal-

ses involving MEG were conducted separately for every time point. For

urther statistical analyses and graphical presentation of the results, we

veraged every ten samples for results pertaining to MEG data, yielding

EG results for 130 and 110 samples, respectively. Across image sets

nd use cases, on the group level, this resulted in a total of 736 compar-

sons of classical and feature-reweighted RSA, reflecting different com-

inations of a predicting and target RSM. Due to the large number of

ndividual results, we only discuss a selection of them in detail in the

ain text. For a full overview of all results please refer to the figures.

lease note that, in contrast to some prior work (e.g. Jozwik et al., 2017 ;

torrs et al., 2021 ) we did not impose a non-negativity constraint on the

weights for the main set of analyses (see Supplemental Figure S2 for

 subset of analyses with non-negativity constraint). All result files and

nalysis scripts pertaining to this study are available via an OSF repos-

tory ( https://osf.io/8weum/ ). The toolbox to run FR-RSA in Python is

vailable via GitHub ( https://github.com/ViCCo-Group/frrsa ). 

.3. Statistical analyses 

.3.1. Assessing the strength of RSM correspondence 

To determine the statistical significance of the correlation between

wo RSMs at the group-level, we conducted one-sided Wilcoxon signed-

ank tests, comparing participants’ rank-transformed correlation values

gainst zero ( Nili et al., 2014 ). Similarly, to test whether RSMs derived

rom two different computational models are related, to varying degrees,

o an RSM derived from either human brain activity or human behavior,

e performed two-sided Wilcoxon signed-rank tests. We corrected for

ultiple comparisons by controlling the expected false discovery rate at

.05 ( Benjamini and Hochberg, 1995 ). 

.3.2. Estimating noise ceilings 

Noise ceilings provide an estimate of the best performance any model

an achieve given the noise in the data. As is common in RSA, the upper

oise ceiling is estimated as the mean correlation between the group-

verage RSM and each participant-specific RSM. The lower noise ceiling

s estimated as the mean correlation between the group-average RSM

nd each participant-specific RSM while iteratively excluding a given

articipant from the group-average ( Nili et al., 2014 ). 

.3.3. Estimating reweighted noise ceilings 

When conducting feature-reweighted RSA, geometrically speaking,

uccessful reweighting will move the model’s RSM closer to each indi-

idual participant’s RSM (or vice versa when reweighting voxels) (see

ig. 3 ). However, at the same time, the position of the group-average

SM relative to the individual participant’s RSMs, which is used for the

stimation of the noise ceiling, remains unchanged. As a consequence,

or feature-reweighted RSA, classical noise ceilings underestimate the

est possible performance any model can achieve since they themselves

o not take reweighting into account. This can lead to results that ap-

ear to approach or even exceed the noise ceiling while in actual fact

his comparison is no longer valid. As a remedy, we propose to also

pply reweighting to noise ceilings to get an estimate of the best perfor-

ance any model can achieve given the noise in the data and given that

eweighting has been applied. 

To obtain valid noise ceiling estimates in the context of fea-

ure reweighting, for the reweighted upper noise ceiling, we applied

eweighting to each participant-specific RSM to optimally predict the

roup-average RSM and averaged the resulting correlations. For the

ower noise ceiling, we reweighted each participant-specific RSM to

ptimally predict the group-average RSM from which the current

articipant-specific RSM was left out, again averaging the resulting RSM

orrelations. 

https://osf.io/8weum/
https://github.com/ViCCo-Group/frrsa
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Fig. 3. Geometrical reasoning for reweighted noise ceiling. In classical RSA, noise ceilings are calculated based on individual participant’s RSMs (gray circles) and 

their respective group average (red circle), to get an estimate of the best performance a given model RSM (yellow star) could achieve. (a) When a given model’s 

units are reweighted, the model iteratively moves closer to each participant’s fMRI RSM. Here, the reweighted model may be closer to each participant than the 

group-average is (small panel). (b) Similarly, when reweighting is applied to individual participant’s fMRI voxels, their RSMs move closer towards the model RSM. 

That way, they can then be closer to the model than the non-reweighted ones are to their mean (small panel). However, when calculating noise ceilings based on 

the non-reweighted participant RSMs and their respective group average, reweighting is not taken into account. (c) Therefore, in either case, noise ceilings should 

be calculated based on individual participant’s RSMs that have been reweighted to best predict the group-average RSM. 
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.3.4. Statistical significance of model relative to noise ceiling 

Each correlation between RSMs was tested regarding whether it was

ignificantly below any of the lower noise ceilings, using uncorrected

ne-sided Wilcoxon signed-rank tests. Not controlling the false discovery

ate works against finding a non-significant difference and is therefore

 more conservative procedure ( Storrs et al., 2021 ). 

Note that when a behavioral RSM is the target variable, then es-

imating reweighted noise ceilings is not possible, given that feature-

eweighting cannot be applied without the presence of features (see

Behavioral data"). In this case, reweighted noise ceilings are omitted. 

. Results 

.1. Feature-reweighting on simulated data 

Prior to conducting feature-reweighted RSA (FR-RSA) on empirical

ata, we carried out a simulation in which we tested the degree to which

R-RSA is able to (1) improve the correspondence between a model RSM

nd a target RSM and (2) identify the superior model from a set of com-

eting models. While for empirical data it is not possible to know in

dvance which is the truly superior model, a simulation can provide a

roof of concept for testing whether FR-RSA is able to recover the orig-

nal ground truth best model and thus improve model selection. To this

nd, we defined a ground truth representational space G with a prede-

ned covariance structure ( Fig. 4 ). Next, we created a target RSM that

as based on features with the same covariance as G , plus multivariate

aussian noise on these features. Finally, we created two models which

e designed in a way that Model 1 was the superior model, while Model

 was the inferior model. Model 1 was based on noisy features with the

ame covariance as G , akin to the creation of the target RSM. However,

e added irrelevant features based on pure noise. In contrast, Model 2

as based only partially on the ground truth representational space G

ut without the addition of irrelevant features. Therefore, Model 1 con-

ained the complete relevant subspace defined by G but the final rep-

esentational space was obscured by the addition of irrelevant features,

hile for Model 2, even its original representational space without the

ddition of noise would only show a decent correspondence with the

arget RSM, making it an inferior model as compared to Model 1. We

hen repeated this simulation 100 times. 

Having created two competing models and a target RSM, we next

onducted classical RSA and FR-RSA on both models, for all 100 sim-

lation iterations. The results of the simulation scheme are presented
6 
n Fig. 4 . Before reweighting, overall performance of both models was

oor, with a better fit of Model 2 than Model 1, demonstrating that,

n this simulation scheme, classical RSA favored the inferior model. FR-

SA, on the other hand, yielded a strong increase in the RSM correspon-

ence between Model 1 and the target, while the increase was much

eaker for Model 2. Please note that a small increase in performance is

lso expected for the inferior model, since it was designed to exhibit a

artial correspondence with ground truth. Overall, this simulation high-

ights both important aspects of FR-RSA: First, feature reweighting can

mprove the correspondence between model and target RSMs. Second,

R-RSA is able to recover the ground truth model. 

.2. Reweighting units of computational models 

.2.1. Reweighting model units consistently improves correspondence 

etween two RSMs 

Our first aim was to evaluate whether FR-RSA reliably increases the

orrespondence between two RSMs. To this end, we applied FR-RSA to

even different layers of three different DNNs to predict RSMs of be-

avior, higher visual cortex (HVC) or early visual cortex (EVC), as mea-

ured with fMRI in several publicly available datasets (see Methods for

etails). Fig. 5 shows the results of comparing classical RSA with FR-

SA across all 168 combinations of analyses. Irrespective of the kind

f image set, we found that FR-RSA robustly increased the fit between

wo RSMs as compared to classical RSA. A chi-squared test revealed that

 significantly larger proportion of RSM comparisons showed improve-

ents (144) than comparisons that were worse (24) after reweighting

NN units ( x 2 (1, N = 168) = 85.71, p < 0.001). Altogether, in 119

ases (70.83%) the fit between two RSMs was significantly increased

hen feature reweighting was applied to units of DNN layers. In 8 cases

4.76%) FR-RSA performed significantly worse than classical RSA, while

n 41 cases (24.41%) the difference to classical RSA was not significant.

reaking this down into different types of analyses, for the prediction

f behavioral RSMs, FR-RSA significantly outperformed classical RSA

n 59 cases, with 5 cases that showed significantly worse performance

f FR-RSA and 20 cases with a non-significant difference between both

ethods. Similarly, for the prediction of fMRI RSMs, FR-RSA signifi-

antly outperformed classical RSA in 60 cases, performed significantly

orse in 3 cases, and showed non-significant differences in 21 cases.

ogether, these results demonstrate that FR-RSA robustly improves the

orrespondence between DNNs, brain activity, and behavior. 
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Fig. 4. A simulation of the effect of FR-RSA with a known ground truth representational space. (a) Simulation scheme. We designed a ground truth representational 

space, G , based on which we generated two models. Model 1 was designed to be the superior model, which contained the ground truth representational space but 

was obscured by the addition of a set of non-informative features. Model 2 was designed to be the inferior model by only partially matching ground truth, without 

the addition of non-informative features. For model evaluation, we then compared both models to a simulated target RSM, which was derived from our ground 

truth matrix. (b) Results of the simulation across simulation iterations. For classical RSA, overall performance was poor, with the inferior Model 2 exhibiting a 

higher representational correspondence than the superior Model 1. FR-RSA led to a strong improvement in model performance for Model 1, with a much weaker 

improvement for Model 2, highlighting the potential of FR-RSA to improve representational correspondence while recovering the ground truth representational 

space. 

Fig. 5. Comparison of classical RSA with feature-reweighted RSA when 

reweighting DNN units. For most comparisons, feature-reweighted RSA reveals 

a stronger RSM correspondence than classical RSA (147 stronger, 21 weaker). 

Of all 168 comparisons, FR-RSA significantly outperformed classical RSA in 120 

cases, often leading to strong increases in the fit between two RSMs. 
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.2.2. Reweighting model units influences model selection 

Having demonstrated the reliable performance of FR-RSA, we next

ought to evaluate whether applying FR-RSA also leads to changes in

he model selection process: Does the same model produce the best fit to

rain or behavioral data, regardless of whether classical RSA or FR-RSA

s used, or can FR-RSA lead to qualitative changes in the results, leading

o different models that are chosen as optimal ( Storrs et al., 2021 )? To

his end, we assessed the relative predictive performance of three com-

on DNN architectures (AlexNet, VGG-16, ResNet-50) for each of seven

ayers, when relating their classical and reweighted RSMs to target RSMs

erived from either, behavior, HVC, or EVC. These results are shown in

ig. 6 . In the following we will highlight a subset of all findings. 
7 
Let us first focus on the DNN layers’ scores for the image set 118

nd EVC target RSM (see Fig. 6 , bottom right panel). Before reweight-

ng, AlexNet and VGG-16 were correlated significantly with the target

SM across most layers, while ResNet-50 showed fewer significant ef-

ects (range of correlations across all layers: AlexNet: 0.024 to 0.191,

 = 0.079, all layers significant; VGG-16: − 0.034 to 0.087, M = 0.047,

ayers 2–6 significant; ResNet-50: − 0.14 to 0.063, M = − 0.011, layers

, 6, 7 significant; all p < 0.035, FDR corrected). AlexNet and VGG-

6 also performed significantly better than ResNet-50 for layers 1–6

nd 2–5, respectively, while ResNet-50 outperformed AlexNet and VGG-

6 only for layer 7 and layers 1 and 7, respectively (all p < 0.009,

DR corrected). This picture changed strongly after reweighting DNN

nits of each layer. ResNet-50 ′ s performance improved strongly (range

f correlations: 0.003 to 0.27, M = 0.209; layers 2–7 significant; p <

.001, FDR corrected) and no longer showed a significant difference

rom reweighted AlexNet’s or VGG-16 ′ s performance for layers 1–3 and

or layers 1 and 4, respectively. ResNet-50 in fact outperformed AlexNet

or layers 4–7 and VGG-16 for layers 2–3 and 5–7, respectively (all p <

.008, FDR corrected). Based on these results, which show that ResNet-

0 is the superior model across multiple layers for EVC, it becomes evi-

ent that feature-reweighted RSA does, indeed, affect model selection. 

The general pattern that FR-RSA selects another model than classi-

al RSA as the best model can be observed when shifting the focus from

ne specific dataset to all panels in Fig. 6 . Before feature-reweighting,

GG-16 is very often the best performing model for layer 5 (range of

orrelations: 0.07 to 0.357; M = 0.19). For 7/8 combinations of image

et and target RSM, VGG-16 performed significantly better than both

lexNet and ResNet-50 in layer 5 (all p < 0.004, FDR corrected). After

eature-reweighting, though, ResNet-50 was the superior model (range

f correlations: 0.104 to 0.426; M = 0.263), being significantly better

han AlexNet and VGG-16 in 4/8 and 7/8 cases for layer 5 (all p <

.006, FDR corrected). Note that, for the remaining cases, ResNet-50

as never significantly worse than AlexNet or VGG-16. A similar trend

an be observed for layer 6 when comparing non-reweighted AlexNet to

eweighted VGG-16. These results support the notion that model selec-

ion is affected by applying feature-reweighted RSA irrespective of the

xact combination of image set and target RSM. 

Taken together, there is indeed strong evidence that model selection

s influenced by applying feature-reweighted RSA to DNN units. These

esults highlight the importance of considering alternatives to classical
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Fig. 6. Detailed comparison of classical and feature-reweighted RSA applied to DNN units. Each panel shows the predictive performance of three DNNs (blue–

AlexNet, orange–VGG-16, green–ResNet-50) with classical and feature-reweighted RSA (light and dark hues, respectively), for a target RSM of a given image set 

as indicated above each panel. Target RSMs were derived from either behavior, early (EVC) or higher visual cortex (HVC). In each panel, the dashed gray and the 

dotted black line indicate the lower classical and lower reweighted noise ceiling, respectively. In many cases, feature reweighting leads to an increased fit between 

RSMs, as can be seen by the dark bars being generally higher than their light counterparts. In addition, feature reweighting affected model selection, as indicated by 

the changes in the relative heights of the different model bars for dark and light hues. Note that in cases where behavioral RSMs are the target RSMs, the calculation 

of reweighted noise ceilings was not possible (see main text). Error bars indicate 95% confidence intervals computed using bootstrapping. Most fits are significantly 

different from zero. 

8 
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Fig. 7. Comparison of classical RSA with feature-reweighted RSA when 

reweighting fMRI voxels. For most comparisons, feature-reweighted RSA re- 

veals a stronger RSM correspondence than classical RSA when applied to voxels 

(367 vs. 201). FR-RSA significantly outperformed classical RSA in 239 cases, 

often leading to very strong increases in the fit between two RSMs. 
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SA for comparing competing models and suggest the general utility of

R-RSA for adjudicating amongst them. 

.3. Voxel-reweighted RSA–Reweighting individual voxels improves 

rediction of model RSMs, MEG data, and behavior 

The second major aim of this study was to explore a novel use

ase of feature-reweighting: rather than reweighting individual units

f a computational model, we tested the degree to which reweighting

rain measurements can improve the ability to predict a computational

odel’s RSM. This approach parallels multivariate decoding, which also

eweights individual measurement channels (e.g. voxels) to maximize

he fit with a target variable. To this end, we applied FR-RSA to fMRI

ata from higher and early visual cortex to predict RSMs either from be-

avior, DNN layers, or MEG time points (MEG-fMRI fusion). The results

f all 568 comparisons between classical RSA and voxel-reweighted RSA

re shown in Fig. 7 . FR-RSA applied to voxels overwhelmingly increased

he correspondence between various predicting and target RSMs. A chi-

quared test revealed that a significantly larger proportion of RSM com-

arisons showed improvements (370) than comparisons that were worse

198) after reweighting fMRI voxels ( x 2 (1, N = 568) = 52.09, p < 0.001).

verall, in 235 cases (41.37%) the fit between two RSMs increased sig-

ificantly, in 66 (11.62%) cases FR-RSA performed significantly worse

han classical RSA, and in 267 (47.01%) cases the difference to classical

SA was not significant. Again, breaking this down into different types

f analyses, for the prediction of behavioral RSMs, FR-RSA significantly

utperformed classical RSA in all 4 cases. Similarly, for the prediction

f DNN RSMs, FR-RSA significantly outperformed classical RSA in 80

ases, never performed significantly worse, and showed non-significant

ifferences in 4 cases. Finally, when predicting MEG RSMs, FR-RSA sig-

ificantly outperformed classical RSA in 151 cases, performed signifi-

antly worse in 66 cases, and showed non-significant differences in 263

ases. Please note that a large number of the MEG comparisons include

EG samples during which likely no information was present at all. Yet,

e chose all time points for a conservative estimate. 

Focusing on individual results, Fig. 8 shows how well reweighted

MRI voxels from two different ROIs explain behavioral RSMs with clas-

ical and FR-RSA. While EVC voxels already predicted behavioral RSMs

ignificantly already before reweighting ( r = 0.054 and r = 0.053 for
9 
mage set 92 and 118, respectively), these correlations were increased

ignificantly after reweighting ( r = 0.117 and r = 0.098; p < 0.001 FDR

orrected for all correlations, p < 0.05 uncorrected for the differences).

he improvement in RSM correlations was even stronger for HVC: the

SM correspondence before reweighting ( r = 0.209 and r = 0.165) was

gain significantly improved after reweighting took place ( r = 0.414

nd r = 0.333; p < 0.001 FDR corrected for all correlations, p < 0.001

ncorrected for the differences). 

Fig. 9 shows the relative correspondence of the three DNN archi-

ectures for each of seven layers, when relating their RSMs to either

lassical or reweighted voxel RSMs derived from either HVC or EVC.

verall, reweighting individual voxels led to even stronger improve-

ents in RSM correspondence than reweighting DNN units, at times ap-

roaching the reweighted lower noise ceiling. In all four panels in Fig. 9 ,

ll of the 84 RSM correlations for classical RSA are significantly below

he classical lower noise ceiling ( p < 0.04, uncorrected). However, for

oxel-reweighted RSA, there were seven cases in which a DNN layer’s

SM and brain RSM correlated to an extent that was not significantly

ifferent from the reweighted lower noise ceiling. These results demon-

trate that voxel-reweighted RSA can strongly improve the fit between

SMs. 

.4. Reweighting amplifies existing and reveals new peaks when applied to 

EG-fMRI fusion 

To test whether results generalize beyond the prediction of DNN

ayer and behavioral RSMs, we conducted MEG-fMRI fusion with clas-

ical and feature-reweighted RSA for two datasets for which fMRI and

EG data were available ( Fig. 10 ). For each participant separately, we

eweighted fMRI voxels at each time point of MEG data, to best predict

EG similarity. For most time points, classical and FR-RSA each yielded

 representational similarity significantly larger than zero, as indicated

y the purple and red horizontal lines in Fig. 10 , respectively. Further,

or many time points, there were significant differences between classi-

al and FR-RSA (uncorrected), as indicated by the black horizontal line

n Fig. 10 . Overall, FR-RSA revealed peaks which would not have been

etected using classical RSA, and it also markedly increased existing

eaks. 

.5. The effect of reweighted noise ceilings on the interpretation of 

eweighted RSM correspondences 

As argued earlier, for feature-reweighted RSA, classical noise ceilings

nderestimate the best possible performance any model can achieve, in-

alidating inferences based on classical noise ceilings (see “Estimating

eweighted noise ceilings ”). Traditionally, models numerically exceed-

ng the lower noise ceiling are often interpreted as fully explaining the

ata at hand ( Khaligh-Razavi et al., 2014 ). To identify whether we find

ases where reweighting noise ceilings would change this interpreta-

ion of results, we inspected all 736 combinations of analyses, counted

he number of cases that numerically exceeded the classical lower noise

eiling, and compared this with the number of cases that numerically

xceeded the reweighted lower noise ceiling. Note that of all 736 combi-

ations, only those 168 entered this analysis for which reweighted noise

eilings could be computed. Indeed, a total of 21 reweighting analyses

12.5%) exceeded the classical lower noise ceiling, while no reweighting

nalysis exceeded the reweighted lower noise ceiling, a significant dif-

erence as revealed by a chi-squared test ( x 2 (1, N = 21) = 21, p < 0.001).

herefore, following this tradition would lead to an inflated number of

esults that are reported as fully capturing the data. However, while five

nalyses even numerically exceeded the classical upper noise ceiling, it is

lso important to note that none of these results were significant. Thus,

hile we did not find empirical evidence for results significantly above

he classical upper noise ceiling, reweighted noise ceilings are required

o prevent biased assessment of a model’s performance. 
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Fig. 8. Voxel-reweighted RSA improves the prediction of behavioral similarity from EVC and HVC. Results across both image sets (92, 118) and regions of interest 

(EVC, HVC) yield consistent increases in representational similarity when applying voxel-reweighted RSA. The dashed gray line indicates the lower classical noise 

ceiling. The computation of a reweighted noise ceiling was not possible (see main text). Error bars indicate 95% confidence intervals computed using bootstrapping. 

Fig. 9. Detailed comparison of classical and voxel-reweighted RSA. Reweighting of individual fMRI voxels leads to strong and consistent increases in the fit between 

RSMs. Each panel shows how well the RSMs of three DNNs (purple–AlexNet, red–VGG-16, yellow–ResNet-50) can be explained with classical and feature-reweighted 

RSA (light and dark hues, respectively), when applied to either higher (HVC) or early visual cortex (EVC) RSM of a given image set as indicated above each panel. In 

each panel, the dashed gray and the dotted black line indicate the lower classical and lower reweighted noise ceiling, respectively. Error bars indicate 95% confidence 

intervals computed using bootstrapping. Most fits are significantly different from zero. 
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.6. Does feature reweighting lead to positively biased results? 

The analyses presented so far demonstrate that feature-reweighted

SA often increases RSM correspondence and influences model selec-

ion. However, it is also necessary to assess whether feature-reweighting

eads to positively biased results, meaning above-chance representa-

ional similarities despite the absence of any association between repre-

entational spaces. 
10 
To this end, we carried out a randomization procedure by permut-

ng the condition labels of the target RSM while leaving intact the order

f the labels of the predicting RSM. In this case, feature-reweighting

hould, on average, not lead to an improved RSM correspondence. For

 given randomization iteration, we applied the same shuffling to the

SMs of all participants, computed the representational similarity us-

ng Pearson’s correlation, and averaged the resulting correlation coef-

cients, leading to one group mean correlation coefficient for a given
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Fig. 10. Voxel-reweighted RSA applied to MEG-fMRI fusion. MEG-fMRI fusion can be improved consistently by applying voxel-reweighted RSA, amplifying existing 

peaks and yielding new ones. Each panel reflects a combination of one image set and brain region, with MEG-fMRI fusion for classical (purple) and feature-reweighed 

(red) RSA. Purple and red dots indicate time points for which classical and voxel-reweighted RSA yield RSM correlations significantly bigger than zero, respectively. 

Black dots indicate time points with significant differences between classical and voxel-reweighted RSA (all uncorrected). Shaded areas indicate 95% confidence 

intervals computed using bootstrapping. 
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ermutation. We then repeated this procedure 100 times to generate

 distribution of group mean representational similarities for a given

ombination of predicting and target RSM. This randomization proce-

ure was conducted for four separate such combinations. In all cases,

he RSM correspondence yielded a distribution centered around zero

range of means: − 0.0003 to 0.0017, see Supplemental Figure S3 for a

epiction of empirical null distributions). Together, this showcases that

R-RSA does not lead to positively biased representational similarities. 

. Discussion 

RSA is widely used to assess the correspondence between brains, be-

avior, and models and select amongst several candidates the model

hat best explains a given representational space ( Kriegeskorte et al.,

008a ; Kriegeskorte and Kievit, 2013 ). In this work, we evaluated a

owerful extension of classical RSA called feature-reweighted RSA (FR-

SA) in which individual features of a predicting RSM are reweighted

o maximize the fit with a target RSM. Using fMRI, MEG, and behav-

oral data from multiple neuroscientific studies as well as several DNNs

s computational models, we broadly validated the general applicabil-

ty of this approach. Further, we present an important novel use case

f FR-RSA by applying feature reweighting to brain measurement chan-

els; compared to classical RSA, voxel-reweighted RSA leverages more

f the multivariate information content present in human brain (dis-

similarity data, thus nicely complementing existing multivariate de-

oding techniques. Altogether, we find strong and robust increases in

he fit between RSMs. Changes in the model selection process were also

ften observed when applying feature-reweighting as opposed to clas-
11 
ical RSA. Based on these results, we suggest that FR-RSA applied to

rain measurement channels could become an important new method

o assess the match between representational spaces. 

.1. Past developments of reweighted RSA approaches–Similarities and 

ifferences 

Classical RSA as introduced by Kriegeskorte et al. (2008a) has been

tudied extensively as a research method. Below, we will briefly outline

ast developments leading up to our contribution, as well as similarities

nd differences to our approach. 

Khaligh-Razavi and Kriegeskorte (2014) were the first to propose

eweighting in the form of layer-reweighted RSA, where an entire layer

f a computational model (in this case a DNN) receives a single weight

o predict a target RDM. Peterson et al. (2016) were the first to use

eature-reweighted RSA (FR-RSA), by reweighting individual DNN units

f a fully-connected layer using ridge regression to predict behavioral

SMs. Jozwik et al. (2017) applied a similar approach to predict hu-

an object similarity judgments from entire feature maps of convolu-

ional DNN layers or individual units of fully-connected layers. Finally,

torrs et al. (2021) recently proposed a two-stage RSA approach applied

o RDMs of human inferior temporal cortex, first reweighting principal

omponents of DNN layers and then combining individual layers to-

ether with another reweighting step. When comparing multiple trained

NNs with each other, regarding how well they predict inferior tempo-

al cortex activity after reweighting, they found that performance dif-

erences between DNNs were strongly diminished. 
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While these studies each contributed important novel information

nd already highlighted the potential value of FR-RSA, our study (1)

roadly and systematically validates FR-RSA across numerous behav-

oral and neuroimaging datasets, thus confirming the value of FR-RSA

eyond individual previous studies, (2) provides a new use case of FR-

SA by applying reweighting to individual voxels, offering a powerful

ew method for assessing the fit of brain data with models and behav-

or, and (3) introduces feature-reweighted noise ceilings, providing a

ore suitable approach for evaluating the upper limit of the predictive

erformance of any model given the available data. 

While all previous FR-RSA approaches have in common the

eweighting of individual features, there are also important differences.

everal previous approaches ( Jozwik et al., 2016 ; Jozwik et al., 2017 ;

torrs et al., 2021 ) have limited themselves to non-negative weights

iven that true dissimilarities can only be positive, while our pro-

osed FR-RSA approach avoids this constraint. As a consequence, our

pproach not only stretches or squeezes individual features, but can

lso invert their values. If a researcher assumes that each feature of

he model in question should be regarded as a distinct property (like

olor or orientation) that corresponds to a separate similarity matrix,

eights should be non-negative to avoid illegal feature-specific (dis-

similarities. If, though, one regards features not as distinct proper-

ies, but merely as features, we believe that, given the potential infor-

ation contained in individual units, it makes sense to allow weights

o take on any value to possibly counteract contributions of other-

ise overrepresented features. However, given the previous use of the

on-negativity constraint, we repeated a subset of analyses with such

 constraint and found results to be similar (see Supplemental Fig-

re S2). Further, our approach additionally uses an L2 penalty simi-

ar to Peterson et al. (2016) and Jozwik et al. (2017) , but in contrast

o Jozwik et al. (2016) and Storrs et al. (2021) . This choice of reg-

larization, however, is reasonable given the expected collinearity of

eatures. While Storrs et al. (2021) countered multicollinearity with

rincipal components regression, our choice of ridge regression pro-

ides smoother shrinkage of regression parameters and may lead to

lightly improved prediction ( Hastie et al., 2009 ). Finally, during cross-

alidation, Peterson et al. (2016) left out individual object pair similari-

ies, while we and others (e.g. Jozwik et al., 2017 ) left out entire objects,

hus avoiding potential leakage effects given that object pair similari-

ies are not all independent. While Storrs et al. (2021) cross-validated

cross both participants and stimuli and used bootstrapping for esti-

ating statistical significance, our approach of cross-validating across

timuli alone leaves the option to carry out reweighting at the partici-

ant level, thus allowing classical statistical analyses for inferring that

he effect found in each participant is present in the population. Beyond

eing computationally more efficient, FR-RSA at the participant level

ffers an approach with well-known statistical properties for the gener-

lization to the population, which may be more challenging for double

ross-validation that mixes the sources of variance for objects and par-

icipants. 

.2. A novel approach for feature reweighting 

Further, different from all previous developments, we present a novel

pproach for feature reweighting, by applying it to brain activity pat-

erns: voxel-reweighted RSA. This application was motivated by classi-

al multivariate decoding. In multivariate decoding, individual voxels

eceive their own weights which reflect their importance in optimally

onducting a linear read-out of a binary (e.g. stimulus category) or a

ontinuous target variable (e.g. stimulus size). However, in the context

f RSA, where all voxels receive equal weights, this approach to our

nowledge has not been applied previously. Thus, relative to multivari-

te decoding, classical RSA may underestimate the linear information

ontent of multivariate measurements. By reweighting individual voxels

o optimally predict (dis-)similarity, feature-reweighted RSA can lever-

ge more of the rich multivariate information content of the data. 
12 
.3. Reweighted noise ceilings for reweighted RSA approaches 

The fit between a model and data is limited by the quality of the

odel and the noise in the data. Noise ceilings provide an estimate of

he best performance any model can achieve and thus allow us to tell

ow far off a given model is, given the noise in the data. However,

hen reweighting individual features, classical noise ceilings underes-

imate this upper performance threshold, since they themselves do not

ake reweighting into account. This can lead to a situation in which

eweighted RSMs may exceed the classical lower noise ceiling but not

he reweighted lower noise ceiling, thus leading to falsely interpreting

he reweighted RSM to explain the data at hand when only considering

lassical noise ceilings, a result we confirmed empirically. In the con-

ext of feature reweighting, we therefore suggest calculating reweighted

oise ceilings, which again provide a sensible performance corridor for

eweighted RSMs. Note that previous adaptations regarding the calcu-

ation of noise ceilings address different problems, such as how to cal-

ulate noise ceilings for a model that received weights when fitted to a

ingle group-average target RDM (or RSM) ( Storrs et al., 2020 ). 

.4. Use cases for feature-reweighted RSA 

While FR-RSA generally yielded strong improvements of the corre-

pondence between computational models and brain data and also af-

ected which model was selected among competing models, it may be

rgued that, while feature reweighting is computationally feasible, it

hould not be applied to model RSMs in general (see Storrs et al., 2021 ,

or a previous discussion of this topic). According to this line of reason-

ng, the representational similarity between a model and a given dataset

lready provides a good estimate of the explanatory power of this model,

nd reweighting the model’s features would be akin to testing the per-

ormance of a different model. To illustrate this line of reasoning, as-

ume for a moment that a model RSM is built not from computational

odels but originates from an experimental design with several factors.

or example, in an experiment, participants may have been presented

ith images of faces with different degrees of 3D rotation, which can be

uantified by the three parameters pitch, roll, and yaw. Each of the three

rientation directions would thus constitute a feature. A model RSM in

his experiment could simply quantify the similarity of face orientation

etween faces integrated across all features. When a researcher is inter-

sted primarily in the fit of such a static model, we would argue that

eweighting of individual model features should not be applied since it

ould change what hypothesis is tested. However, if each model fea-

ure is treated as a separate variable of interest, for which the contribu-

ion to a target RSM is unknown, then reweighting can improve the fit,

nd indeed, this approach is already commonly used in practice when

onducting RSA in a multiple regression framework (e.g. Jozwik et al.,

016 ; Groen et al., 2018 ; Hebart et al. 2018 ). 

Likewise, for computational models, when the model is treated as

 good approximation of all relevant aspects of a brain or behavioral

ataset, we would argue that reweighting should not be carried out.

or example, a learned DNN model can, among others, be character-

zed as a product of its architecture (e.g. number of layers and units per

ayer, transition functions, etc.), its learning objective (e.g. object clas-

ification), and the stimuli and object classes that had been used during

raining ( Kietzmann et al., 2019 ; Richards et al., 2019 ). When testing

he degree to which all of these aspects are already representative of

rain and behavioral datasets, applying reweighting may distort this as-

essment. However, it is well known that commonly used datasets for

raining DNNs do not reflect the categories most relevant to humans

 Hebart et al., 2019 ; Mehrer et al., 2021 ), and that the learning ob-

ective of ventral visual cortex is known to go beyond simple object

lassification ( Kravitz et al., 2013 ). Thus, successful feature reweight-

ng promises to yield a better match beyond the images a DNN had

een trained on and beyond its limited training objective, possibly bet-

er reflecting the explanatory power of a DNN architecture trained on
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bject images. Likewise, in principle, the reweighting can even be re-

ersed in the DNN weights between layers, yielding a better match to

he target RSM without affecting model performance. More generally,

hen interested merely in the information contained in a given com-

utational model, we would argue that FR-RSA can be applied more

iberally. Thus, whether FR-RSA should be applied to features of a com-

utational model depends entirely on what aspects of the computational

odel are supposed to be fixed and what aspects are allowed to vary.

rucially, researchers should be explicit about this choice in their stud-

es to avoid confusion and draw valid conclusions. 

When it comes to reweighting of measurement channels (e.g. voxel-

eweighted RSA), the applicability of this approach again depends on

he aims of the researcher and their assumption about the nature of

he representations studied. When interested in testing the existence of

epresentational similarity alone (i.e. “Does the model show any fit to

ctivity patterns in brain region X? ”), which is a very common goal for

SA, we argue that reweighting of measurement channels (e.g. voxel-

eweighted RSA) can be carried out more generally. Drawing the parallel

o multivariate decoding, voxel-reweighted RSA would allow weighting

ndividual voxels in a way that reflects a plausible lower bound of the

otential representations that can be read-out by downstream regions

 Kriegeskorte and Bandettini, 2007 ). Whether these representations are

ndeed used by other brain regions or behavior remains an empirical

uestion for both multivariate decoding and RSA ( Williams et al., 2007 ;

itchie et al., 2019 ). Given its increased statistical power, applying FR-

SA to measurement channels promises to advance our understanding

f representational content in a way similar to how multivariate de-

oding has leveraged information contained in measured brain activity

atterns. 

However, when using RSA for carrying out model comparisons (i.e.

Which model best explains activity patterns in brain region X? ”), there

re certain restrictions to the use of voxel reweighting. Assume for the

oment that we are dealing with the ventral visual cortex as a region of

nterest and that this region includes face-selective clusters (e.g. fusiform

ace area, FFA). Ventral visual cortex is known to represent objects in

 distributed fashion, while FFA responds more uniformly to images of

aces. When comparing a simpler model that tests for face selectivity

lone against a more complex model testing for object selectivity in-

luding faces, the simpler model may win over the more complex one

imply because feature reweighting may focus on face selective voxels

or the simpler model, which may be easier to fit than the more com-

lex model that is based on representations with more distributed voxel

ctivity patterns. Thus, for model comparisons, voxel-reweighted RSA

ould not be testing the degree to which an entire region is well-suited

or characterizing a model but may focus on selective parts of these

egions, which may even be different for each model. In such a case,

nding a subspace of the predicting RSM that best fits the target RSM

oes not imply that this subspace is (or should be) reflective of the en-

ire target. This may, of course, be a desirable side effect of FR-RSA,

nd, indeed, the feature weights could be inspected to test the degree

o which this is the case. However, if one would like to treat a region

s carrying a more-or-less homogeneously and widely-distributed rep-

esentation, then voxel-reweighted RSA may complicate model compar-

sons. 

Based on these considerations, if a researcher has the theoretical pos-

ibility to reweight either, model units or fMRI voxels, we argue that,

or model comparison, it is the model units that ought to be reweighted.

f model comparison is not of interest and the primary aim is assessing

hether a model and brain RSM show any correspondence, we argue

hat one may default to voxel reweighting. 

.5. Possible extensions of feature-reweighted RSA 

There are several ways to refine feature-reweighting in the context

f RSA. First, other penalization regimes could be applied. Instead of us-

ng an L2-penalty, one could either use an L1-penalty or a combination
13 
f L1- and L2-penalization (or pruning, see Tarigopula et al., 2021 ). We

pted for the L2-penalization since we did not want to select a subset

f features (as any penalization regime utilizing the L1-norm would do)

nd since an L1-penalization would incur a greater computational load.

econd, one could not only penalize the predictors’ variances but also

heir co variance so that all features that exhibit a high covariance with

ther features are penalized. This approach might, however, strongly in-

rease the computational load of the fitting procedure. A third possible

xtension of feature-reweighting would be to fit weights bidirection-

lly. That way, both RSMs would receive weights to optimally predict

he other RSM, possibly using a latent vector approach (e.g. canonical

orrelation analysis). Fourth, the fitting procedure could be repeated so

hat the residuals of the first fitting procedure are predicted by a linear

eighted combination of some other predicting RSM. Finally, a feature-

eweighting that automatically selects the best reweighting options from

hose just mentioned could be combined with reweighting entire layers

f a DNN (i.e. two-stage RSA, Storrs et al., 2021 ). The bottleneck for

mplementing such a procedure will be computational limits with re-

ards to CPU and RAM resources and the complexity of cross-validation

chemes for identifying hyperparameters and splitting data in indepen-

ent folds. 

.6. Considerations when using FR-RSA 

In addition to broadly validating feature-reweighting and exploring

 novel use case of it, we also provide an implementation of FR-RSA in

ython (https://github.com/ViCCo-Group/frrsa). In the following, we

ould like to provide important considerations when using FR-RSA and

ention possible drawbacks. 

The first aspect to consider is that FR-RSA utilizes cross-validation

o prevent overfitting and nested cross-validation to identify the opti-

al regularization parameter for ridge regression. Both outer and in-

er cross-validation require data to be split into independent training

nd test sets. Please note that the cross-validation was performed across

mages and not runs as is common in multivariate decoding. For the

uter cross-validation, by default, FR-RSA uses 5-fold cross-validation,

epeated ten times with different random splits. On a subset of the an-

lyzed data (i.e. for 36 different combinations of predicting RSM, tar-

et RSM, and image set), we assessed different fold sizes of the outer

ross-validation post-hoc and found results to be largely unaffected (see

upplemental Figure S4). We opted for 5-fold cross-validation because

t provides enough data for stable estimation of the statistical models in

he training set, while at the same time not consuming too many compu-

ational resources for actually fitting the models. This cross-validation

as repeated ten times to make sure that many different object pairs

ill at some point be part of training or test folds. For the inner cross-

alidation, 5-fold cross-validation is used and repeated five times with

ifferent random splits. We tested different numbers of repetition post-

oc and found that results were largely unaffected by how the inner

ross-validation was set up (see Supplemental Figure S5). We opted to

epeat the inner cross-validation five times as a good balance between

ow well the best hyperparameter for a given outer cross-validation is

stimated (more repetitions should lead to a better estimation) and com-

utational load. Note that increasing either the fold size or the number

f repetitions can have noticeable effects on the computation resources

eeded to run the algorithm. 

Further, a question researchers who want to deploy FR-RSA might

ave is what is the minimum number of conditions FR-RSA requires to

e used successfully and how FR-RSA performance scales with this num-

er. On a subset of the analyzed data (i.e. for 120 different combinations

f predicting RSM, target RSM, and image set), we repeatedly subsam-

led from all available conditions (in our case images) and assessed how

R-RSA performed in comparison to classical RSA. We found that, on av-

rage, FR-RSA almost always performed better than classical RSA, with

he performance of FR-RSA increasing with the number of drawn im-

ges (see Supplemental Figure S6). The results indicate that FR-RSA can
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e used successfully with a comparably small number of conditions but

enefits from more conditions. 

A drawback of FR-RSA, in comparison to classical RSA, is the higher

omputational load, specifically for models with a large number of fea-

ures, such as early layers of a DNN. For many different computational

roblem sizes without non-negativity constraint on the 𝛽 weights, we

easured how much time and RAM were needed to solve the problem

see Supplemental Figures S7 and S8). Note, however, that computa-

ional resources are much higher when imposing a non-negativity con-

traint and that the resources needed might also depend on the hardware

f the machine in question, the operating system that the machine uses,

nd other software-specific factors. 

. Conclusion 

Representational Similarity Analysis (RSA) has emerged as a popu-

ar tool for relating representational spaces of the brain, computational

odels, and behavior to each other ( Kriegeskorte et al., 2008a ). As such,

t can reveal which model best captures how the brain represents re-

ations between stimuli. Feature-reweighted RSA, the approach we in-

estigated here, not only consistently increases the fit between RSMs,

ut also affects which models are best at reproducing a given brain’s

epresentational geometry. Further, when applied not to model units

ut to brain measurement channels, voxel-reweighted RSA more fully

everages the information content present in representational spaces of

he brain and thus nicely complements classical multivariate decoding.

verall, FR-RSA is well suited to become a general-purpose method for

easuring the information content shared between representations in

omputational models, brain, and behavior, and may improve our abil-

ty as scientists to adjudicate between competing models. 
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