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In [7], we focus on the behavior of a range of cohomological invariants for infinite groups. In
this paper, we look at various directions, often with not much connections between each other, in
which our results from [7] can be applied.

The applications shown in this paper have been divided into two parts—Part 1 (Secs. 2 and 3)
and Part 2 (Secs. 4-8). The applications shown in Part 1 have to do with devising some useful
generation properties of the derived unbounded category and the stable module category of large
classes of infinite groups. In Part 2, we find applications of our invariants in some general ques-
tions related to the cohomology and representation theoretic properties of infinite groups.
Although there are no apparent connections between the sections in Part 2, the applicability of
these invariants and related properties is the unifying theme.

We start with some background on the cohomological invariants that we will be dealing with
and recalling some of the results involving them that we will be applying throughout this paper.

1. Background on cohomological invariants

Most of the invariants that we deal with are either defined over group algebras or for groups over
commutative rings:
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Definition 1.1. Let R be a ring. Denote by spli(R) and silp(R) the supremum over the projective
dimension of injective R-modules and the supremum over the injective dimension of projective
R-modules respectively (these invariants were first introduced in [18]).

The finitistic dimension of R, denoted fin. dim(R), is defined to be the supremum over the
projective dimension of all R-modules that have finite projective dimension.

When R = AT, where I is a group and A is a commutative ring, k(AT") is defined to the
supremum over the projective dimension of those AI'-modules that have finite projective dimen-
sion when restricted to finite subgroups of I'.

Definition 1.2. Let R be a ring. An R-module M is said to admit complete resolutions (over R)
iff some high enough syzygy of it occurs as a kernel in a double infinite totally acyclic complex
of R-projectives (similarly, M is said to admit weak complete resolutions over R iff some high
enough syzygy of it occurs as a kernel in a doubly infinite acyclic complex of R-projectives) (see
Remark 1.3 for a clarification of the term “totally acyclic”); we call M a Gorenstein projective R-
module iff M occurs as a kernel in a doubly infinite totally acyclic complex of R-projectives.

The Gorenstein projective dimension of M over R, denoted Gpdy(M), is the minimal length
of a resolution of Gorenstein projective R-modules admitted by M.

When R = AT, for some commutative ring A and some group I', Geda(T') := Gpd,(4). We
say a group I' admits complete resolutions over A iff the trivial AT'-module A admits complete
resolutions.

Remark 1.3. (See Remark 1.7 of [7]) Following standard terminology from homological algebra,
note that the phrase “totally acyclic complex” of R-modules, for any ring R, refers to an acylic
complex of R-projectives, P,, such that Homg(P,, Q) is acylic for any R-projective Q.

Also, it is easy to note that for any ring R, an R-module M admitting complete resolutions is
equivalent to Gpd,(M) < oo.

The last invariant that we need to introduce is defined as the projective dimension of a par-
ticular module:

Definition 1.4. For any commutative ring A and any group I, denote by B(I', A) the module of
those functions I' — A that are only allowed to take finitely many values in A. The AI'-module
structure on B(I',A) is given the following way: for any f € B(I',A), (y, -f)(7) :==f(y;'y), for
all y,y, € I.

Following [4], we define an AT’-module M to be a Benson’s cofibrant if M®4B(I',A) is a pro-
jective AI'-module.

We first define groups of type @ as those groups will play a crucial role in our treatment.

Definition 1.5. (made over Z in [36]) For any commutative ring A, a group I is said to be of
type @ over A if, for any AI'-module M, the following two statements are equivalent.

(a) proj. dimar M < oo.
(b)  proj. dimsg M < oo, for all finite G <T.

We denote the class of all groups of type ® over A by F 4. When A=7, we
write & 4 1= F 4 7.

Examples of groups of type @ over all commutative rings of finite global dimension are groups
of finite virtual cohomological dimension, groups acting on trees with finite stabilizers. (see [28]
or [34] for more examples).

Another important class of groups comes from Kropholler’s hierarchy:
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Definition 1.6. ([24]) Let Z be a class of groups. Define a hierarchy of groups in the following
way: HyZ := %, and for any successor ordinal (like an integer) o, a group I' € H, % iff there
exists a finite dimensional contractible CW-complex on which I" acts by permuting the cells with
all the cell stabilizers in H, . If o is a limit ordinal, H,Z := Ug, HgZ. A group is said to be
in HZ iff it is in H,Z for some ordinal o. Also, for any ordinal o, Ho, & := Up, HgZ'.

The class L% is defined to be the class of all groups I' such that every finitely generated sub-
group of I is in Z".

Throughout this article, # denotes the class of all finite groups.

Part of the following conjecture, which appears in this form in [7], was originally made over
A =7 in [36], and one of the crucial conjectured equivalent statements comes from Conjecture
43.1 of [11].

Conjecture 1.7. (Conjecture 2.5 of [7]) For any group I' and any commutative ring A of finite glo-
bal dimension, the following are equivalent.

(a) T is of type ® over A.

(b) silp(ATN) < 0.

()  spli(Al') < 0.

(d) proj. dimsr B(T', A) < oc.

(e)  Gedy(IN) < 0.

(f) fin. dim(AT") < 0.

(g k(AT) < .

When A = 7, we can add the condition

(h) I € HiF, where F is the class of all finite groups.

Before stating one of the main results that we proved in [7], we collect below a few useful facts
about the invariants introduced so far.

Theorem 1.8.

(a)  For any ring R, we always have fin. dim(R) < silp(R) (follows from the proof of Theorem C
of [12]).

(b)  Gedz(T') =0 iff T is finite iff spli(ZI') =1 (Corollary 2.3 of [16] and the main result
of [13])

(c)  For any commutative ring A, Geda(T) < Gedy (), for any group T.
When R = AT, for some group I' and for some commutative ring A with finite global dimen-
sion t, we have the results (d) — (g):

(d) silp(AT), spli(T") < Geda(T) + ¢ (Corollary 1.6 of [16]).

(e)  The following are equivalent (Theorem 1.7 of [16]):
(i) Geda(T) < 0.
(i)  spli(AT") = silp(AT') < oo.
(iii)  Gpd,r(M) < oo, for all AT-modules M.

(f)  If A is Noetherian, then spli(AT") = silp(AT") (Theorem 4.4 of [15]).

(g) T isof type @ over A iff k(AT') < oo (Lemma 4.1 of [7]).

The following is one of our main results from [7].

Theorem 1.9. (Theorem 3.1 of [7]) Let I’ € LHF 4 o with A being a commutative ring of global
dimension t. Then,

proj. dimur B(I', A) = Gedy ()

and
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proj. dimsr B(I', A) < fin. dim(AT") = silp(AI") = spli(AT") = k(AT") < proj. dimusr B(I',A) + ¢

In addition to Conjecture 1.7, there is the following conjecture regarding the coincidence of
two important classes of modules which will come handy for us in Sec. 3.

Notation 1.10. For any ring R, denote by GProj(R) the class of Gorenstein projective R-modules,
and for any group ring AT, denote by CoF(AI") the class of all Benson’s cofibrant AT'-modules.

Conjecture 1.11. ([8], made over 7 in [14], Conjecture 3.2 of [7]) For any group I' and any com-
mutative ring A of finite global dimension, GProj(AI') = CoF(AT).

Using more or less the same methods as [14], we were able to prove the following result in
relation to Conjecture 1.11:

Theorem 1.12. (see Theorem 3.4 of [7], originally from [8]) Let A be a commutative ring of finite
global dimension and let I' € LHF y 4. Then,

(a) Any AT-module admits a complete resolution iff it admits a weak complete resolution.
(b)  GProj(AT") = CoF(AT).

The way Conjecture 1.11 is related to the invariants introduced earlier is through a generation
property in the module category explored in [9]. We will not be using this notion of generation
in this paper, but we briefly introduce it nonetheless to end this section so that the above-men-
tioned connection is clear.

Definition 1.13. (Definition 3.5 of [9]) Let R be a ring. Let 4 be a class of R-modules. An R-
module M is generated in zero steps from .7 iff it is in 7 and in n steps iff there is an exact
sequence 0 — M, — M; — M — 0, where M; is generated from Z in a; steps, and a; + a, <
n — 1. The class of all R-modules generated in finitely many steps from .7 is denoted (7).

In the language of Definition 1.13 and in light of Conjecture 1.11, one can expect that, for any
group I' and any commutative ring A of finite global dimension, (GProj(AT")) = (CoF(AT")). A
special case would be when either of (GProj(AI')) and (CoF(ATI')) is the whole module category.
In this regard, we were able to show the following:

Theorem 1.14. (follows from Proposition 3.5 of [8]) Let A be a commutative ring of finite global
dimension. Let I be a group such that Geda(I') = proj. dimar B(I', A) (this is stated as a separate
conjecture in Conjecture 1.17 of [7] and proved for the case proj. dimur B(I',A) < oo (Theorem
1.18 of [7]) and for I' € LHZ g 4 (by Theorem 1.9)). Then, the following are equivalent.

(a) (CoF(AI')) = Mod(AT).
(b)  (GProj(AI')) = Mod(AT).

Notation 1.15. For any ring R, we denote by Mod(R) the standard abelian category of R-modules.
This notation is used in Theorem 1.14 above and also later.

Part 1. Applications in derived and stable categories

Derived and stable module categories are two of the very frequently arising triangulated catego-
ries in representation theory. In [6], we studied various generation properties of a range of
derived categories of modules over groups in Kropholler’s hierarchy (Definition 1.6); so, our han-
dling of derived categories here in Sec. 2 can be considered as providing more information about
these derived categories (see Question 2.12).
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Stable module categories are usually studied for finite groups, so we make clear in Sec. 3 what
definitions we are using for infinite groups. Upon close reading of the applications in Part 1, one
can see that the properties of cohomological invariants (or in the case of the stable module cate-
gories, of a result (Theorem 1.12) closely related to the cohomological invariants) that are being
used are only being applied at one or two key steps.

2. Injective generation of derived categories

A very important conjecture in the area of finite dimensional algebras is the finitistic dimension
conjecture which goes as follows:

Conjecture 2.1. Let R be a finite dimensional algebra over a field. Then, fin. dim(R) < cc.

Recently, Rickard [32] showed that proving Conjecture 2.1 for a given R can be connected to
a generation property of the unbounded derived category of cochain complexes of R-modules.
Throughout this section, whenever we will write “complexes,” we will mean “cochain complexes.”
Before we can recall Rickard’s result, we need to introduce the following definition.

Definition 2.2. Let 7 be a triangulated category admitting arbitrary coproducts. For any class of
objects % in 7, denote by (%) the smallest triangulated subcategory of J containing % and
closed under arbitrary coproducts. In other words, (%) denotes the smallest localizing subcat-
egory of J containing %.

Notation 2.3. For any ring R, denote by D(Mod-R) and D°(Mod-R), respectively, the derived
unbounded category and the derived bounded category of complexes of R-modules. Denote also by
Proj(R) and Inj(R) the class of R-projectives and R-injectives respectively. When we will consider
these classes as classes of complexes in a derived category, it will be understood that we are consid-
ering the modules as complexes concentrated in degree zero.

In the language of Definition 2.2, what Rickard proved was the following:

Theorem 2.4. (Theorem 4.3 of [32]) Let R be a finite dimensional algebra over a field.
Then, D(Mod-R) = (Inj(R)) = fin. dim(R) < oo.

It is noted by Rickard in [32] that we do not know of a finite dimensional algebra R over a
field for which D(Mod-R) = (Inj(R)). In general, checking generation properties for derived
unbounded categories of modules over a given algebra can be easier to handle than computing
the finitistic dimension of that algebra—this direction in research can be traced back to some
groundbreaking work by Happel [20] in the eighties. So, in the statement of Theorem 2.4, if the
injective generation property and the finiteness of the finitistic dimension were actually equivalent
instead of one implying the other, that would be much more convenient:

Question 2.5. Let R be a finite dimensional algebra over a field.  Then,
is D(Mod-R) = (Inj(R)) <= fin. dim(R) < oco?

Noting that for group rings, the finitistic dimension appears as one of the invariants in
Conjecture 1.7 and Theorem 1.9, it is an interesting question to ask whether any of the implica-
tions in Question 2.5 holds for group rings. Before proving our main original result in this
regard, we need the following basic lemma whose proof we will omit.

Lemma 2.6. (Lemma 4.2 of [6], Proposition 2.1.f of [32]) Let R be a ring and let T be a triangu-
lated subcategory of D(Mod-R) or D’(Mod-R). Then, any complex, X., of the form 0 — Xy —
Xy — ..— X, — 0isin 7 if each X;, when considered as a complex concentrated in degree zero,
isin 7.
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Proposition 2.7. Let R be a ring and let 7 = D’(Mod-R) or D(Mod-R). For any class of objects
U in T, denote by Ay (U) the smallest triangulated subcategory of I containing U .
Then,

(a) silp(R) < 0o = A7 (Proj(R)) C Az (Inj(R)).
(b)  spli(R) < 0o = Az (Inj(R)) C A (Proj(R)).

Therefore, silp(R), spli(R) < oo = Az (Inj(R)) = A7 (Proj(R)).

Proof. We prove (a). The proof for (b) is similar.

If silp(R) < oo, every projective module, as a chain complex concentrated in degree zero, is
quasi-isomorphic to a bounded complex of injectives. So, by Lemma 2.6, Proj(R) C A (Inj(R)),
and therefore Az (Proj(R)) C Az (Inj(R)). O

Remark 2.8. Note that if R does not have finite injective dimension over itself, i.e. if it is not of
finite self-injective dimension, then A (Inj(R)) # A7 (Proj(R)), where 7 = D’(Mod-R),
because R cannot be quasi-isomorphic to a bounded complex of injectives.

The following lemma shows us that the finiteness of the silp-invariant can be quite strong and
useful for handling generation of the unbounded derived category in relation to Question 2.5.

Lemma 2.9. Let R be a ring such that silp(R) < co. Then,

(a) D(Mod — R) = (Inj(R)).
(b) fin. dim(R) < oc.

Proof.

(a) It follows from Proposition 2.7.a., that (Proj(R)) C (Inj(R)). It is standard fact that
(Proj(R)) = D(Mod-R) (see Proposition 2.2 of [32]), so we are done.

(b)  This follows directly from Lemma 1.8. O

Note that if (f) = (b) in Conjecture 1.7, then by Lemma 2.9, fin. dim(Al') < co =
D(Mod-AT") = (Inj(ATI')), for any group I' and any commutative ring A of finite global dimen-
sion. However, we can get the same result for groups in LHZ 4 4:

Proposition 2.10. Let I' € LHF 4 4, with A of finite global dimension. Then, fin. dim(AI') <
00 = D(Mod-AT') = (Inj(AT)).

Proof. This follows directly from Theorem 1.9 which gives us that if fin. dim(AI') < oo, then
silp(AT") = fin. dim(AT') < oo, and Lemma 2.9.a. O

Since Proposition 2.10 forces generation results in the derived unbounded category with just
the finiteness of an invariant as the hypothesis, it is relevant to state the following interesting gen-
eration property admitted by derived unbounded categories of modules over groups in
Kropholler’s hierarchy.

Theorem 2.11. (Theorem 4.5.a of [6]) Let I € H,7, for some integer n and let A be a commuta-
tive ring. Then, D(Mod-AT") = (I(T', %)), where I(I',#) is the class of all modules induced up
from finite subgroups of I'.
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We end this section with the following couple of questions that can be easily seen to be related
to Conjecture 1.7, Proposition 2.10 and all the results discussed in this section including
Theorem 2.11.

Question 2.12. (a) If T is an HF -group satisfying D(Mod-AT") = (Inj(AT")), for some commuta-
tive ring A, then is I € H1.# ? The answer is unlikely to be in the affirmative for any A, but in
light of Conjecture 1.7, we can expect this to be the case when A = 7.

(b) It follows from Lemma 2.9 and Theorem 2.11 that if I is an H,Z -group, then
(I(I', 7)) = (Inj(AT")) = D(Mod-AI'), where A is of finite global dimension. Now, does
(I(T, 7)) = (Inj(AT)), for all A of finite global dimension, imply that T € H\F?

Also, can we find a group T such that for some A, (I(I,%))= (Inj-A') but
(I(I', 7)), (Inj(AI")) # D(Mod-AT")? It follows from Theorem 2.11 that such a I' cannot be in
H,Z for any integer n; whether it can still be in H,F for some higher ordinal o is unclear.

3. Generating stable module categories of infinite groups

It is well-known that for a finite group G and a field k, the class of finitely generated kG-modules
forms a triangulated subcategory of St.Mod(kG), usually denoted st.mod(kG).

Since we will be dealing with stable module categories of not necessarily finite groups in this
section, we briefly recall the definition that we will be using. Throughout this section, we fix a
commutative ring A of finite global dimension and a group I" of type ® over A because the stable
module category constructed in [28] applies to this class of groups.

Definition 3.1. (Section 3 of [28]) Write Mod(ATI") for the quotient category of Mod(AI") whose
objects are the same as that of Mod(AT") and for morphisms between M and N for any M,N €
Mod(AT), take

Homyod (AT) (M, N) := Homyeq(ar) (M, N)/P Homyoq(ary (M, N)

where PHomyoq(ar)(M, N) is the class of all morphisms f : M — N such that f is the compos-
ition of two morphisms g : M — P and h : P — N for some projective AI'-module P.

Now, the stable module category of AT'-modules, denoted Stab(AT"), is defined as having the
same objects as Mod(AT), and for any M, N € Stab(ATI'),

Homgp(ar) (M, N) := 11_m> Homyoq (A)(Q"(M), Q"(N)).

n

Stab(AT') is a triangulated category with the inverse syzygy functor Q' as the suspen-
sion functor.

Remark 3.2. Note that although in [28], Mazza and Symonds require A to be Noetherian in
addition to having finite global dimension, we do not need the Noetherian condition. That is
because in [28], the Noetherian condition is only used to conclude that silp(AT") < oo for I' €
F ¢,4» and we know this holds without the Noetherian condition (by Theorem 1.8.g. and
Theorem 1.9).

For the rest of this section, we make the extra assumption that I is an LH.Z -group.

Remark 3.3. Note that, in Conjecture 1.7, groups that are of type @ over the integers are conjec-
tured to be in H;Z (note that H1# C LHZ); H,Z -groups are of type @ over any commutative
ring of finite global dimension (this follows from Proposition 2.5 of [28]). We do not need to
assume that I' is in H;%; we can just make the weaker assumption that I' € LH# because the
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only reason this assumption is useful is that we want to use Theorem 3.9. The only groups
that are known to be outside LHZ do not admit complete resolutions over any commutative
ring of finite global dimension. Groups admitting complete resolutions over any given com-
mutative ring of finite global dimension is important to us for getting the Q' functor. So,
keeping the extra LH.Z -assumption in mind, we can just state that I' is an LHZ -group
admitting complete resolutions over A. Such groups are of type @ over A (see Proposition
4.15), so the Mazza-Symonds stable module category construction still works. Note that if a
group is of type ® over A, it admits complete resolutions over A (see Remark 4.11), but the
reverse is not known to be true for all groups (it is true for groups in LHZ 4 ) and also it
is not known if type @ groups over any given commutative ring of finite global dimension is
necessarily in LHZ .

In light of Remark 3.3, let I' be an LHZ -group that admits complete resolutions over a
commutative ring A of finite global dimension, and consider the class of all AI'-modules of
type FP, (ie. those modules that admit a projective resolution by finitely generated projec-
tives), denoted FP(AI"). Then, we look at the smallest triangulated subcategory of Stab(AT)
containing FP(AI"), denoted stab(AI'), and prove a generation property admitted by it. Stable
module categories of infinite groups with some additional finiteness properties on the modules
were partially considered in [5], however we are not using the definitions of the stable category
used in [5].

Note that the objects in stab(AI") can be given an easy characterization:

Lemma 3.4. Let .# be the class of all AT'-modules M which are eventually of type FP, in the
module category, i.e. there exists a non-negative integer n such that Q" (M) is of type FP.,. Then,

(a) In Stab(AT'), 4 is a triangulated subcategory of Stab(AI'). Note that when we consider M
as a class of modules in Stab(AD'), .4 contains all modules that are stably isomorphic to

modules which are eventually of type FP., in the module category.
(b)  As triangulated subcategories of Stab(AI'), .# = stab(AT).

Proof. (a) Consider .# as a class of modules in Stab(AT). Since Q! is the suspension functor of
Stab(AT'), we need to show that M € .# forces Q (M) € ./ and that for any short exact
sequence 0 — M; — M, — Mz — 0 where two of the three modules are in .#, the third one is
in A as well.

Let M € .#. We have that Q"(M) € ./, for some n, then for N = Q™ '(M), Q"™ (N) € ..

Let 0 — M; — M, — M; — 0 be a short exact sequence where 2 of M;, M,, M; are eventually
of type FP. So, in the module category, two of M;, M, and M; admit projective resolutions that
are eventually of finite type, and therefore the third module does as well.

(b) Any module M of type FP,, is in .# as Q°(M) is isomorphic to M in Stab(AT).
Therefore, the smallest triangulated subcategory of Stab(AT') containing all modules that are of
type FP,, in the module category is contained in .#, i.e. stab(AT") C ..

Now, take a module M € .#. Then, for some non-negative n, Q"(M) € stab(AI'). Since
stab(AT") is a triangulated subcategory of Stab(AT'), by repeated applications of the suspension
functor Q', we get that Q°(M) € stab(AT"). Thus, M € stab(AT') as M is isomorphic to Q°(M)
in the stable category. O

Before going forward, we need to define two classes of modules—completely finitary modules
and polybasic modules. However, since we need to invoke complete Ext-groups to define these
classes, we start with the definition of complete Ext-groups.
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Definition 3.5. ([4]) Let R be a ring. For any two R-modules M and N, denote by Hom (M, N)
the quotient of Homg(M,N) by the additive subgroup consisting of M — N homomorphisms
which factor through an R-projective.

Now, define complete cohomology in the following way:

Exto(M, N) = lim Hom z(Q" (M), Q'(N))

1

Definition 3.6. (defined over A = Z in Definition 2.1 of [19]) Let I" be a group. An AI'-module

M is called completely finitary if the functors E;‘EZI—(M, ?) commute with all filtered colimit sys-
tems of coefficient modules.

Definition 3.7. (made over Z in Definition 2.6 of [19]) Let I" be a group. An AI'-module is said
to be basic if it is of the form U ®, AI" where G is a finite subgroup of I" and U is a completely
finitary, Benson’s cofibrant AG-module. An AI'-module M is called polybasic if there is a filtra-
tion 0 = My C M; C .. C M,, = M where each M;/M;_; is a basic AI'-module.

Remark 3.8. In the notations of Definition 3.6, if M is an FP,, module, i.e. if there is a projective
resolution of M with finitely generated projectives, then by the characterization of FP,, modules
in terms of Ext-functors, we have that the functors Ext} (M, ?) commute with filtered colimits of
coefficient modules, and by Result 4.1 of [24], it follows that M is completely finitary.

The following result will be crucial for us.

Theorem 3.9. (done over Z in Proposition 2.13 of [19]) Let I' € LH%. Take M to be an AT'-mod-
ule that is both completely finitary and Benson’s cofibrant. Then M is isomorphic to the summand
of a polybasic module and a projective module.

It is easy to note that the class of polybasics, as defined in Definition 3.7, allows us to just deal
with basic modules and capture all polybasics by triangles in the the stable category:

Lemma 3.10. Let I" be a group that admits complete resolutions over A. Then, any triangulated
subcategory of Stab(AT") containing all basic AT'-modules contains all polybasic AT -modules.

Definition 3.11. Let 7 be a triangulated category. A thick subcategory of .7 is defined to be a
full triangulated subcategory of 7, %, such that given M,N € &, with M®N € %, then
M,Ne 4.

For any class of objects % in .7 and any object M € 7, we say M is properly generated by %
in 7 if M is in the smallest thick subcategory of 7 containing %.

Remark 3.12. We have seen generation in triangulated categories using localizing in Sec. 2.
Generation using thick subcategories is also a very useful concept (one can consult [33] to see
more about the theory surrounding this) in general—to be clear, in this concept, one can say a
class of objects % in a triangulated subcategory J “generates” .7 iff the smallest thick subcat-
egory of J containing % is all of 7.

So, the definition of “proper” generation that we provide in Definition 3.11 is not
very unnatural.

Take an LHZ -group that admits complete resolutions over commutative ring A of finite glo-
bal dimension (such a group is in % 4 4 by Proposition 4.15). Note that if we take any FP,, mod-
ule M, some high enough syzygy of it, say Q"(M), is Gorenstein projective (=Benson’s cofibrant
in this case, see Theorem 1.12), and also of type FP. Recall that FP,, modules are completely
finitary by Remark 3.8. Now, by Theorem 3.9, Lemma 3.10 and Definition 3.11, Q"(M) is in the
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smallest thick subcategory of Stab(AI') containing the basics (note that projectives are isomorphic
to zero in the stable category). Like we saw in the proof of Lemma 3.4.b., it is straightforward to
note that whenever Q"(M) is in a triangulated subcategory 7 C Stab(AT'), then, by repeated
application of the suspension functor Q ', Q°(M) (which is isomorphic to M in Stab(AT)) is in
7. Thus, we have the following result.

Theorem 3.13. Let I' be an LHZ -group that admits complete resolutions over a commutative ring
A of finite global dimension, and let % be the class of all basic AI'-modules. Then, in the language
of Definition 3.11, every object in stab(AT) is properly generated by & in Stab(AT).

Part 2. Applications in cohomology and representation theory

In Part 2, we look at some representation theoretic applications. In Sec. 4, we explore the proper-
ties admitted by groups in Ikenaga’s classes (see Definition 4.3), which is a close analogue of the
main hierarchy of groups (Kropholler’s hierarchy—Definition 1.6) from where we get most of
our groups. To study how closely Ikenaga’s classes admit similar properties as groups in
Kropholler’s hierarchy, after proving some of our results, we draw up a list of conjectured rela-
tions (Conjecture 4.16) and show how those conjectures interact with each other (Proposition
2.7). This is helpful because until now, such comparative study of Ikenaga’s and Kropholler’s
classes had not been carried out in such detail.

Earlier, in Sec. 2, we dealt with the finitistic dimension of group rings. Since, over integral
group rings, it is conjectured (see Conjecture 4.13) that groups whose integral group rings have
finite finitistic dimension have finite dimensional models for their classifying space of proper
actions (see Definition 4.12), it is a natural question to ask for similar algebraic properties of
groups implying the same conclusion. In this regard, we use a result by Liick [26] and apply a
result from [7] on cohomological invariants to get a new result (Proposition 5.5). In Secs. 6 and
7, we deal with very general questions on projectivity of modules and on groups with periodic
cohomology respectively. Although there is no apparent connection between them, it is interest-
ing to see how at key moments, one can invoke properties of cohomological invariants and
related questions to extend the scope of some existing results from the literature. Finally, in Sec.
8, we look at some groups that are known to lie beyond Kropholler’s hierarchy with the class of
finite groups as the base class. We investigate whether one can prove these results for the case
where the base class is the much larger class of type @ groups (See Definition 1.5). It is worth
noting that although one should expect H% 47 = H# (as Conjecture 1.7 claims that
H\F = 7 4 7), for any arbitrary commutative ring A of finite global dimension in place of 7Z,
we do not have the same expectation. We do not however know of a concrete example of a group
in HF y A\\HZ or LHZ 4 \\LH%, for some commutative A of finite global dimension.

4. lkenaga’s hierarchy

About 10years before Peter Kropholler introduced his hierarchy of groups, Bruce Ikenaga used
similar geometric ideas to inroduce his classes of groups which we define below. We need to pro-
vide the definition of a new invariant for a group, called the generalized cohomological dimen-
sion, first.

Definition 4.1. (made over Z in [21]) For any commutative ring A and any group I', define the
generalized cohomological dimension of I" with respect to A, denoted c¢ds(T"), to be sup{n €
Z>o : Exti (M, F) # 0, for some A-free M and some AI'-free F}.

The following are some useful facts regarding the generalized cohomological dimension:
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Theorem 4.2. (Theorem 1.12 and Remark 1.13 of [7]) If A is a commutative ring of finite global
dimension and Gedya(T') < oo, then cda(T') = Geda(T'). Moreover, if A is Noetherian, then
always Geda(T) = cdy(T).

Ikenaga’s classes of groups were defined in the following way.

Definition 4.3. (based on Sec. 5, [21]) Let 2 be a class of groups. Define Cy(2) := %, and a
group I' € C,(Z) iff there exists an acyclic simplicial complex X on which I" acts by permuting
the simplices such that I'; € C,_1(Z), for each simplex ¢ € X, where I'; denotes the stabilizer
of o, and sup,es{dim(c) + cdz(I')} < oo, where X is a set of representatives of X modulo the
I'-action.

Cuo(2) == Cu(®)

n>0

For groups in C.(%), the following was proved in [21].

Theorem 4.4. Groups in C,(F ) have finite generalized cohomological dimension over 7, and they
admit weak complete resolutions over 7.

Although it was not noted in [21], groups in Cx (%) actually admit complete resolutions,
which we can show using the following result.

Lemma 4.5. (done over Z in Lemma 2.2 of [30], same proof works here) If I' admits weak com-
plete resolutions over a commutative ring A and silp(Al') < oo, then T admits complete resolutions
over A.

Corollary 4.6. C(F)-groups admit complete resolutions over any commutative ring A.

Proof. Let T € Coo(#). Then by Theorem 4.4, cd7(I') < co. Note that cd7(I") = Gedyz(T') by
Theorem 4.2. So by Theorem 1.8, silp(ZT") < co. So, by Lemma 4.5 and Theorem 4.4, I" admits
complete resolutions over Z. The result translates to all commutative rings due to Theorem 1.8.c.
and Remark 1.3. O

One can form Ikenaga’s classes of groups starting with the class of all groups of type ® as the
base class. Whether or not we get any groups that we do not get when we start with the class of
all finite groups as the base class is part of a conjecture (See Conjecture 4.13) that we make later.

Remark 4.7. Since both the definitions of Ikenaga’s classes and Kropholler’s hierarchy involve a
kind of iteration on the definition of a level to get to the next level, it is natural to wonder
whether one can do something similar with type @ groups by iterating Definition 1.5. It turns
out we can’t as we explain below.

Let’s fix an A of finite global dimension, and call type ® groups type ®'. For all n > 1, define
a group I to be of type @” if, for any AI'-module M, M is of finite projective dimension as an
AT-module iff it is of finite projective dimension over all type ®"~! subgroups.

If I' is type ®", and M is of finite projective dimension over finite subgroups, then M is of
finite projective dimension over type @ subgroups, and by the iterative definition above, it is of
finite projective dimension over type ®* groups, and going on like this, it is of finite projective
dimension over type ®"~! groups, from which it follows from the iterative definition above again,
that proj. dimar M < oco. Thus, I is of type ®.
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Remark 4.8. By the main result of [22], it is now known that for every integer n, H, % is a
strictly bigger class than H,# . No such result is known for Ikenaga’s classes and that is why we
feature this as a conjecture in Conjecture 4.16.

The following are some handy connections between the classes of groups we have introduced.

Lemma 4.9.
(@) Cu(7F):={T € H,Z : spli(ZT") < o0}; C\(F) = H1.F. (Corollary 2.6 of [30])
(b)  Cu(F) C F g,a, for any A of finite global dimension.

Proof. Take A to be any commutative ring of finite global dimension. The only part of Lemma
4.9 that is new is the claim that Coo(F) C F g 4. Let I € Coo(F). So, by Corollary 4.6, I' admits
complete resolutions over A, and therefore Ged,(I') < oo.

Since Co(#) C HZ by Lemma 4.9.a., it follows from Theorem 1.9 that k(AI') < co. By
Theorem 1.8.g., it now follows that I is of type ® over A. O

It is noteworthy that the operator L is quite powerful in that when applied to classes of groups
like Coo(F ), 7 4,4 (for any A of finite global dimension) and H, ., it gives a strictly larger class
of groups:

Proposition 4.10. For any commutative ring A of finite global dimension, LH\F # H\F;
LCoo(F) # Coo(F); LF pn # F 4

Proof. Take I to be a free abelian group of infinite rank. Then any finitely generated subgroup of
it, say a free abelian groups of finite rank n, acts on an n-dimensional CW-complex with R" as
the underlying space, and therefore I' € LH;# and by Lemma 4.9.a,, is in LC,(#) and LF ¢ 4.
I' does not admit complete resolutions over A, so it is not in H;#,Coo(F ) or F ¢ 4. O

It follows from Theorem 1.8.g. and Theorem 1.9 that for type @ groups all of our invariants
are finite and well-behaved (see Remark 4.11 below).

Remark 4.11. Note that it follows from Theorem 1.8.g., Theorem 1.9, Theorem 4.2 and Remark
1.3 that if I' € # ¢ 4 with A of finite global dimension, then I' admits complete resolutions over
A and all the invariants—cd4(I"), Geda(I), proj. dimar B(I', A),  silp(AT), spli(AD),
fin. dim(AT"), k(ATI')—are finite. We are recording this here because we will be making repeated
use of this in the proof of Proposition 4.17.

We will be making repeated use of Remark 4.11 in proving the connections between the vari-
ous conjectures in Proposition 4.9.

Before stating our conjectures, we need to state a close restatement of Conjecture 1.7, with the
difference being that we include a statement on the classifying space of proper actions. We need
to define the classifying space of proper actions of a group first.

Definition 4.12. For any group I', EI" denotes a CW-complex on which I' acts cellularly with
finite stabilizers such that for any finite subgroup G of T, the fixed point subcomplex ET'“ is con-
tractible. (it is known that for any group, such a complex exists)

Conjecture 4.13. Let A be a commutative ring of finite global dimension. For any group I', the fol-
lowing are equivalent.

(@) T is of type © over A
(b)  Gedu(T) < 0.
() spli(AT') < oo.
(d) silp(AT) < oo.
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(e) fin. dim(AT") < occ.
(f) k(AT) < oc.

When A = 7, we can add the following statement:
(g) T admits a finite dimensional model for ET.

We deal with classifying spaces later in Proposition 4.17 and then in Sec. 5.

Remark 4.14. Conjecture 4.13 looks very similar to Conjecture 1.7, except (g) of Conjecture 1.7 is
the statement that I' € H;#, but here (g) of Conjecture 4.13 is the statement that I admits a
finite dimensional model for EI". Although it is clear that if I" satisfies the latter it is definitely in
H, 7 (see Sec. 4 of [29]), whether the converse holds is still open to conjecture (see Conjecture
43.1 of [11]).

It seems a sensible question to ask whether one could place all groups with complete resolu-
tions within a known hierarchical class. The following result sheds some light in that direction.

Proposition 4.15. Let A be a commutative ring of finite global dimension. Then, any
LHZ 4, a-group that admits complete resolutions over A is in F 4 4.

Proof. Let I be a group in LHZ 4 4 that admits complete resolutions over A. Then, Ged(I') <
oo by Theorem 1.9, and therefore by Theorem 1.9, k(AT") is finite. So, by Theorem 1.8.g.,
I'e #44. O

Whether or not Proposition 4.15 can in any way be stated with the base class # instead of
F 4,4, i.e. whether we can say that any H.% -group with complete resolutions has to be in a par-
ticular level of Kropholler’s hierarchy, is an interesting question and it forms one of our conjec-
tured statements below. In Conjecture 4.16 below, most of the statements are expectations based
on evidence of a lack of examples to indicate otherwise. 4.16.b., for example, is a standard ques-
tion to ask once all the different hierarchical classes have been defined in any hierarchy in gen-
eral. The same logic applies to asking 4.16.c/d/f. For the following conjecture, we denote by
CR(Z) the class of all groups that admit complete resolutions over the integers.

Conjecture 4.16. The following statements are true.

(@) HZNCR(Z)=H,Z.

b) C(F)=GC(7)=

© Cu(7)=HZ.

) Cu(F) =7y,

() Cu(F)=AT:cdy(I) < oo}
O Fy=HF

@) Coo(Fy) = Cua(F).

C
(hy HZ4y=HZ.
. P2 P2
In the following result, whenever we say p;=-ps;, or p; <= p;, for some statements
P1, P2, P3> We mean p; = p3, Or resp. p; <= ps3, if p, is assumed to be true.

Proposition 4.17. The following implications are true involving the statements of Conjecture 4.16.

(a) 4.16.a. <= 4.16.b. < 4.16.c.

4.16.f
(b) 4.16.c. < 4.16.d.
(c) 4.16.e. = 4.16.d.

4.16.e.
(d)  4.16.c. = 4.16f. and, 4.16.f. = 4.16.c.
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() 4.16.d. 2" 4.16.f. and, 4.16.f. = 4.16.d.

()  4.16.f. = 4.16.h. If a slightly stronger version of 4.16.h., namely H,# = H,F 5 where o is
the first infinite ordinal, is assumed to be true, then 4.16.g. holds.

(g) If, in Conjecture 4.13, when A = 7, 4.13.b./c./d./Je. = 4.13.g., then 4.16.a.-4.16.h. are true.

Proof. (a) Note that by Theorem 1.8.e., Theorem 1.8.f. and Remark 1.3, spli(ZI') < oo <=T €
CR(Z). So, 4.16.a. <= 4.16.c. by Lemma 4.9.a. 4.16.b. <= 4.16.c. also follows from the fact that
Ci(#) = H;Z by Lemma 4.9.a.

(b) This is obvious.

(c) We know from Lemma 4.9.b. that C,o(7) C F4. Now, if '€ 7y, cd7(I') < oo by
Remark 4.11, and by 4.16.e., I' € C(F).

(d) To show that 4.16.c. = 4.16.f. if we assume 4.16.e., note that H;# C %4 by Lemma 4.9
and if '€ 97(15, then ¢d7(I') < co again by Remark 4.11, and therefore by 4.16.., I €
Coo(F) = H1.F (the last equality is from the hypothesis 4.16.c.).

If 4. 16f is true, then Coo(#) C F 4 (by Lemma 4.9) = H;# (by 4.16.f.). We already know
courtesy of Lemma 4.9 that H1.# = C,(¥) C C (7).

(e) To show that 4.16.d. = 4.16.f. if we assume 4.16.a., note that if I' € # 4, then I € CR(Z)
by Remark 4.11, and since 4.16.d. gives us that I' € C,.(#), we get from 4.16.a. and Lemma
49.a. that I' € H\.#. Again, H|.# C # , follows from Lemma 4.9.b.

4.16.f. = 4.16.d. is easy to see as H|# = C;(% ) by Lemma 4.9.a.

(f) 4.16.f. = 4.16.h. is obvious as F 4 = H;.# implies H¥ y = H(H,7 ) = HZ . From the
proof of Lemma 4.9.a., as provided in [30], it follows that Coo(Z 4) = H,F ¢ (the proof in [30]
is for # as the base class but it translates to the case where F 4 is the base class). Therefore,
H,# = H,Z 4 implies C,,7 = C,7 .

(g) It follows from Theorem 1.8.a., Theorem 1.8.d. and Theorem 1.8.f. that we can streamline
our hypothesis to 4.13.e. = 4.13.g. (we denote this statement by (x)). We assume (x) is true.

(%) = 4.16.c. : Now, if I' € Coo(F), then fin. dim(ZI") < oo by Lemma 4.9 and Remark 4.11,
so there is a finite dimensional model for EI, so clearly I' € H;.# (see Remark 4.14). Thus
4.16.c. holds, and so 4.16.a-c. hold as well by part (a) of this proposition.

(¥) = 4.16.d. : If ' € 7, fin. dim(ZT") < co by Remark 4.11, and since (x) holds, there is a
finite dimensional model for EI', therefore I' € H|# = Ci(F) C Coo(F). So, 4.16.d. holds as
we already know that C..(#) C %, by Lemma 4.9.b.

(%) = 4.16.e. : If I' be a group such that ¢d7(I') < oo, then by Theorem 4.2, Theorem 1.8.d.
and Theorem 1.8.a., fin. dim(ZI') < oo, and therefore there is a finite dimensional model for
ET, so I' € H1.# = C;(¥). Again note that we already know that groups in Ikenaga’s classes
have finite generalized cohomological dimension over the integers (Theorem 4.4).

(¥) = 4.16.f. : We already know that H1.# C %, by Lemma 4.9.b. Now let I' € . Then,
by Remark 4.11, fin. dim(ZT) < co and by (%), there exists a finite dimensional model for ET’
and therefore I' € H; ..

Thus, (x) implies 4.16.g. and 4.16.h. as well by part (f) of this proposition. O

5. A small result on classifying spaces

As we saw in Proposition 4.17.g., the finiteness of almost any cohomological invariant for I'
implying the existence of a finite dimensional model for EI" is quite strong. In this section, we
show using a key result from [26] that some of the classes of groups that we have dealt with
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admit finite dimensional models for their classifying space of proper actions if an additional con-
dition is satisfied. To introduce this additional condition, we need the following definition.

Definition 5.1. For a finite group G, define the length of G, denoted I(G), as the supremum over
n such that there is a nested sequence Hy C H; C .. C H,, where each H; is a subgroup of G.

Definition 5.2. For any integer d, a group I is said to be of type b(d) if for every ZI'-module M
that is projective over finite subgroups, proj. dimzrM < d. I' is said to be of type B(d) if, for
every finite G < T, Wr(G) := Nr(G)/G is of type b(d).

It is easy to note that groups of type @ over the integers are of type b(d) for some d > 0:
Lemma 5.3. Let I € # y (:= F 4 7, see Definition 1.5). Then, T is of type b(k(ZT)).

Proof. It follows from Remark 4.11 that k(ZT') < co. If M is projective over finite subgroups of
I', then by the definition of k(ZI"), proj. dimzrM < k(ZI). O

The following is the key result from [26] that we will be using in this section.

Theorem 5.4. (Theorem 1.10 of [26]) Let I' be a group of type B(d) for some finite d > 0 and let
there be a finite bound on the length of all finite subgroups of I'. Then, I admits a finite dimen-
sional model for ET .

Using Theorem 5.4, we can prove the following result.

Proposition 5.5. Let I' € LHF N %y such that there is a bound on the length of all finite sub-
groups of I'. Then, there exists a finite dimensional model for ET.

Proof. From Theorem 5.4, it follows that we will be done if we show that I is of type B(d) for
some d > 0. From Remark 4.11, it follows that Gedy (I') < oo.

For any finite subgroup G < T, Wr(G) is in LHZ (this follows from the fact that HZ is
Weyl group closed—see Proposition 7.1 of [25]). So, it follows from Theorem 1.9 that
k(ZWr(G)) < Gedz(Wr(G)) +1 < Gedz(T') + 1 (the last inequality is by Proposition 2.5 of
[16]). Thus, Wr(G) is of type b(Gedz(T') 4+ 1). So we have shown that T is of type B(Gedz(T") +
1), and we are done. O

It is interesting to note that we can replace the hypothesis I' € LH# N % 4 in the statement of
Proposition 5.5 by I' € Coo (F).

Corollary 5.6. Let I' be in Coo(F) with a bound on the length of its finite subgroups. Then, there
is a finite dimensional model for ET .
Proof. This follows directly from Proposition 5.5 using Lemma 4.9. O

The hypothesis of Corollary 5.6 is weaker than that of Proposition 5.5, but we state Corollary
5.6 separately because it is an interesting question as to what the connection is between groups in
Ikenaga’s hierarchy and groups admitting finite dimensional models for their classifying space of
proper actions.

6. Two general questions on projectivity

It is well-known that for a finite group G, a ZG-module M is projective iff M is Z-free and of
finite projective dimension as a ZG-module. In [23], the following question was asked:

Question 6.1. (Question A of [23]) Fix 7 to be the base ring. Is it only for finite groups G that a
7.G-module is projective iff it is Z-free and of finite projective dimension as a 7Z.G-module?
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In making some progress on Question 6.1, the following theorem was proved in [23].

Theorem 6.2. (Theorem 2.4 of [23]) Let I" be a group such that every Z-free ZI-module of finite
projective dimension is projective. If I' € HZ, then T is finite.

One can prove the statement of Theorem 6.2 replacing “I' € H#” with “I' € LHZ 4™

Theorem 6.3. Let I' be a group such that every Z-free 7T -module of finite projective dimension is
projective. If I' € LHF 4, then I is finite.

Proof. 1t is straightforward to see (also by Proposition 2.3 of [23]) that fin. dim(ZI") is either 0
or 1 as the global dimension of Z is 1. Since we are assuming that I' € LHZ 4, fin. dim(ZI") =0
is an absurdity because if fin. dim(ZI') =0, then by Theorem 1.9, Gedz(I') =0 and by
Theorem 1.8.b., I" is finite, but for finite I', by Theorem 1.8.b., spli(ZI') = 1 and by Theorem
1.9, fin. dim(ZTI") = 1, and so we have a contradiction.

Now, if fin. dim(ZI") = 1, then by Theorem 1.9, spli(ZI") = 1, and again by Theorem 1.8.b.,
I is finite. O

The second question on projectivity that [23] tackles deals with stably flat modules as defined
in Definition 6.4. Stably flat modules arise in the study of complete cohomology for infinite
groups. This is again a concept that we have not dealt with elsewhere, so we provide a defin-
ition below:

Definition 6.4. Let A be a commutative ring and let I" be a group. An AI'-module N is called
stably flat iff E}?‘[ZF(M, N) = 0 for all AI'-modules M of type FP,..

The following was proved in [23]:

Theorem 6.5. (Theorem 3.4 of [23]) Let I' € LH#. Then, any stably flat 7.I'-module M that is
also a Benson’s cofibrant is projective.

We can prove the statement of Theorem 6.5 replacing 7 with a coherent commutative ring A
of finite global dimension and the condition “I' € LH#” with “I' € LHZ ¢ 4.” To do this proof,
we need two results about stably flats that come from Alcock. Alcock [2] considered the question
of whether, for some class of infinite groups and with certain conditions on the base ring, one
can provide a complete characterization of stably flat modules in terms of projective dimension
and proved the following:

Theorem 6.6. (Theorem A of [2]) Let A be a coherent commutative ring (i.e. every finitely gener-
ated ideal is finitely presented as a module) with finite global dimension and let I’ € H|.%. Then,
for any AT'-module N, the following are equivalent.

(a) N is stably flat as an AI'-module.
(b)  proj. dimsarN < oo.

We have seen before that H\.# C %4 4. We can now prove the statement of Theorem 6.6
replacing the condition I' € H;# with I' € 4 4:

Theorem 6.7. Let A be a coherent commutative ring of finite global dimension and let I € F 4 4.
Then, for any AT'-module N, the following are equivalent:

(a) N is stably flat as an AI'-module.
(b)  proj. dimar N < oo.
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Proof. (b) = (a). This is obvious as if proj. dimyr N < oo, then E{‘[ZF(M, N) =0 for all M of
type FP,, because complete cohomology vanishes on modules with finite projective dimension.
(a) = (b). If N is stably flat as an AT-module, then by Corollary 3.4 of [2], N is stably flat as an AG-
module for all finite G < I', and by Theorem A’ of [2] (or even just by Theorem 6.6), proj. dimyg N <
oo for all finite G < T, and therefore proj. dimar N < oo as I is of type ® over A. O

Theorem 6.8. Let A be a coherent commutative ring of finite global dimension and let
I' € LHZ ¢ 4. For any Al'-module M, if M is stably flat as an Al'-module and also a Benson’s
cofibrant, then it is projective.

Proof. First, we deal with the case when I' € H 4 4. We proceed by transfinite induction on the
smallest ordinal « such that I' € H,# ¢ 4. If =0, then by Theorem 6.7, proj. dimar M < co.
So, by Proposition 5.4 of [4], M is projective. Now, as our induction hypothesis, assume that the
statement of the theorem holds for all I' € Hp.7 ¢ 4 for all ordinals f < o. If, now, I' € H,.Z 4, 4,
then I' acts on a finite dimensional contractible CW-complex with stabilizers in H.,% ¢ 4, and
by tensoring the augmented cellular complex with M, we get a finite length resolution of M with
modules that are direct sums of modules of the form Indr/(Resg, (M)) for some I'" € Hey T 4 4
(Here Ind and Res denote the induction and restriction functors respectively). As an AT"-module,
Res[ M is stably flat by Corollary 3.4 of [2] and also Benson’s cofibrant as cofibrants remain cofi-
brant upon restriction to subgroups (see Remark 6.9 below), and so by our induction hypothesis,
it is projective as an AI”’-module and Indf, (Resy.(M)) is projective as an AT'-module. Therefore,
M has finite projective dimension as an AI'-module. Again by Proposition 5.4 of [4], M is pro-
jective. This ends our proof for the case where I' € HZ 4 4.

Now, let I' € LHF 4 4. We can assume that I" is uncountable because if it is countable then
since every countable group admits an action on a tree with finitely generated vertex and edge
stabilizers (see Lemma 2.5 of [22]), it follows that I' € H# 4 4. Assume, as an induction hypoth-
esis, that the theorem has been proved for all groups with cardinality strictly smaller than I'. We
can express I' as an ascending union of subgroups {I';: /1 € A} where each I'; is of strictly
smaller cardinality than I'. By the induction hypothesis, M is projective over each I'; (note that
again, to go down to subgroups here, we are using Corollary 3.4 of [2] and the fact that cofi-
brants remain cofibrants when restricted to subgroups), and so by Lemma 5.6 of [4],
proj. dimyrM < 1. And again, this means M is Gorenstein projective with finite projective
dimension, so it must be projective. O

Remark 6.9. (See Lemma 4.8 of [8]) For any group I' and any commutative ring A, take an
ATl'-module M such that M ®,4 B(I',A) is projective as an AI'-module. This implies that
Res. (M @, B(T',A)) is projective as an AI”'-module for any subgroup I" of I'. B(I",A) is a dir-
ect summand of Resl, (B(I', A))—this is proved in [27] for A = 7Z and it follows over any com-
mutative ring A because B(I',A) = B(I',Z) ®7 A (see the proof of Lemma 3.4 of [4]). So,
Resl. M ®, B(I",A) is a summand of Resp. M ®4 Res[.B(I', A) = Res[.(M ®4 B(I',A)) which is
projective. Therefore, Resk M is cofibrant as an AI”-module.

Our proof of Theorem 6.8 here is quite independent of the way Theorem 6.5 is proved
in [23].

7. Periodic cohomology and complete resolutions

We have seen before how for a group the property of admitting complete resolutions is quite
helpful in dealing with many questions. A good indicator of whether a group admits (weak)
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complete resolutions or not, is checking whether it has periodic cohomology after a finite number
of steps (Proposition 3.1 of [35]). Since we didn’t work much with periodic cohomology else-
where, we provide its definition here.

Definition 7.1. (see [30, 35]) A group I is said to have periodic cohomology of period q after k
steps iff the functors H'(T',?) and H'*4(T, ?) are naturally equivalent for all i > k.
The following important conjecture was made for groups with periodic cohomology in [35].

Conjecture 7.2. (Conjecture A of [35]) A group I' has periodic cohomology after some steps iff I
admits a finite-dimensional free I'-CW-complex, homotopy equivalent to a sphere.

Talelli settled Conjecture 7.2 for H# -groups in Corollary 3.5 of [35]. Almost the same proof
works for LHZ 4-groups.

Theorem 7.3. If I' € LHZ 4, Conjecture 7.2 holds true for I

Proof. We assume that I" has periodic cohomology of period g after k steps. By Proposition 3.1
of [35], I' admits a weak complete resolution, and since I' € LH% 4, this implies that I' admits
complete resolutions by Theorem 1.12, and therefore by Theorem 1.8.e. and Remark 1.3,
silp(ZI') < oo. So, by Theorem 3.2 and Corollary 3.3 of [35], the periodicity isomorphisms are
induced by the cup product in H%(G, 7), and as noted in [35], Adem and Smith [1] proved that
Conjecture 7.2 holds when this happens. O

8. Groups outside Kropholler’s hierarchy with type ® groups as the base class

It was shown in [24] that Thompson’s group F := (xg, X1, X2, .. :xk_lx,,xk = Xp+1,k < n) is not in
LHZ . Using basically the same argument, we can say that F is not in LHZ 4, as we show here.

First, we quote the following theorem from [24] which is one of the main results of
that paper.

Theorem 8.1. (Theorem A of [24]) Let 2 be a class of groups and let A be a commutative ring.
Take an LHZ -group T" and an AT'-module M. Assume that Ext}-(M,?) commutes with direct lim-
its for infinitely many non-negative n. Then, the following statements are equivalent.

(@) proj. dimar M < oo.
(b)  proj. dimyr M < oo, for all I’ < T such that T" € 4.

Corollary 8.2. Thompson’s group F is not in LHZ 4.

Proof. Note that for any group I' and any commutative ring A, an AT'-module M is of type FP,
iff the functors Ext}-(M,?) commute with direct limits. Now take Z = %4 and A =7 in the
statement of Theorem 8.1, and let M be of type FP.,. Then, if I' € LHZ 4, then proj. dimzrM <
oo iff proj. dimy M < oo for all type ® subgroups I < T, which in turn can happen iff
proj. dimzc M < oo for all finite subgroups G < I (this last bit follows from the definition of
type @ groups).

It follows from Corollary 5.4 of [10] that F is of type FP,, i.e. the trivial module Z is of type
FP,, as a ZF-module, and it follows from Corollary 1.5 of [10] that F is torsion-free. So, the only
finite subgroup of F is the trivial subgroup. It therefore follows from the preceding paragraph
that if F € LHZ 4, then proj. dimzr Z < oo, ie. F has finite cohomological dimension over Z,
which is not possible as F contains a free abelian group of infinite rank which has infinite coho-
mological dimension. O
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For a long time, since F was the most well-known group outside LH%, the most common
way to show a group was not in H# or LHZ was to show that it had a subgroup isomorphic to
F. In [3], the authors introduce a different set of methods that give examples of groups outside
Kropholler’s hierarchy. We quote below one of the main theorems of [3].

Theorem 8.3. (part of Theorem 1.1 of [3]) There exists an infinite finitely generated group Q which
cannot act on any finite dimensional CW-complex without a global fixed point. For any countable
group C, Q can be chosen so that Q is simple, has Kazhdan’s property (T) and contains an iso-
morphic copy of C.

It is natural to ask if the groups constructed in proving Theorem 8.3 in [3] are in HZ 4.

Remark 8.4. It has been noted in [3], and it is also easy to see, that if Q is a group satisfying the
statement of Theorem 8.3, then Q € HZ, for any class %, iff Q € Z. Taking & = # 4, we get
that if Q € HZ 4, then Q is of type ®. But if in the statement of Theorem 8.3, we take C to be
the free abelian group of rank Ry, then Q cannot admit complete resolutions as C does not admit
complete resolutions, and therefore Q cannot be of type @ as groups of type @ admit complete
resolutions (see Remark 4.11). It is noteworthy that to reach this conclusion, we are having to
choose a convenient countable group for C.

Another known concrete example of a group outside HZ is the first Grigorchuk group
(Theorem 4.11 of [17]). A major ingredient in the proof of Theorem 4.11 of [17] is the following
result of Petrosyan [31].

Theorem 8.5. (Theorem 3.2 of [31]) Take A to be a commutative ring, and let I' be a discrete
group with no A-torsion such that it has jump cohomology of height k over A, which means that
for any subgroup I't <T, cda(I'1) < oo implies cda(I'1) < k. If I' € HZ, then cda(I') < k. So, an
HZ -group T can have jump cohomology of height k over Q if and only if cdp(T") < k.

It is easy to see that the statement of Theorem 8.5 holds with H# replaced by HF 4 4, for
any commutative ring A of finite global dimension.

Corollary 8.6. Let A be a commutative ring and let I' be a discrete group with no A-torsion.
Assume that there exists a non-negative integer k such that for any subgroup T'y < T, cds(T')) <
oo implies cd,(I'1) < k. Now, if I € HF g 4, then cda(I') < k.

Proof. Theorem 8.5 is proved in [31] by first proving it for the base case, i.e. when I' is finite,
and then proving it by transfinite induction on the level of I' in H%. We reproduce that proof
for our case.

For our base case of type @ groups, note that if I is of type @, then cd,(G) = 0 for all finite
G <T since G needs to be A-torsion-free as per the hypothesis of Theorem 8.5. Thus, cda(I') <
oo by definition of type @ groups.

Now, we make the following induction hypothesis: for some fixed ordinal «, cda(I") < k for
any H.,7 4 a-subgroup I'" of I' (note that from the hypothesis of Corollary 8.6, it follows that
cda(I'") < oo iff cda(I") < k). Let I be an H,Z 4 5-subgroup of I'. Then, I acts on a finite
dimensional contractible CW-complex X with stabilizers in H.,# 4 4. By our induction hypoth-
esis, all these stabilizers have cohomological dimension at most k over A. If the dimension of X is
n, then using Lemma 3.3 of [31], we get that cds(I"") < k+ n. Again from the hypothesis of
Corollary 8.6 as noted in parentheses above, it now follows that cd4 (I') < k.

We have thus proved that any HZ 4 4-subgroup of I' has cohomological dimension at most k
over A. So, if I' € HF 4 4, then cda(T") < k. 0

Corollary 8.7. The first Grigorchuk group is not in HF y (.
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Proof. 1t is shown in Theorem 4.11 of [17] that the first Grigorchuk group has jump rational
cohomology of height 1 and has infinite cohomological dimension over the rationals, so by
Corollary 8.6, it is not in HZ 4 . ]
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