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a b s t r a c t 

The feedback-related negativity (FRN) is a well-established electrophysiological correlate of feedback-processing. 

However, there is still an ongoing debate whether the FRN is driven by negative or positive reward prediction 

errors (RPE), valence of feedback, or mere surprise. Our study disentangles independent contributions of valence, 

surprise, and RPE on the feedback-related neuronal signal including the FRN and P3 components using the statisti- 

cal power of a sample of N = 992 healthy individuals. The participants performed a modified time-estimation task, 

while EEG from 64 scalp electrodes was recorded. Our results show that valence coding is present during the FRN 

with larger amplitudes for negative feedback. The FRN is further modulated by surprise in a valence-dependent 

way being more positive-going for surprising positive outcomes. The P3 was strongly driven by both global and 

local surprise, with larger amplitudes for unexpected feedback and local deviants. Behavioral adaptations after 

feedback and FRN just show small associations. Results support the theory of the FRN as a representation of a 

signed RPE. Additionally, our data indicates that surprising positive feedback enhances the EEG response in the 

time window of the P3. These results corroborate previous findings linking the P3 to the evaluation of PEs in 

decision making and learning tasks. 
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. Introduction 

In general, feedback is important for learning and adaptive, goal-

irected behavior. When feedback informs about an action outcome,

 feedback-locked sequence of EEG-components consisting of a fronto-

entrally distributed feedback-related negativity (FRN; Miltner et al.,

997 ), the frontocentral P3a, and a parietal P3b can be observed

 Ullsperger et al., 2014b ). The reinforcement learning (RL) theory of

olroyd and Coles (2002) states that the amplitude of the FRN corre-

ates with the reward prediction error (RPE). Indeed, it is proposed by

everal researchers that the FRN encodes an RPE ( Chase et al., 2011 ;

ohen and Ranganath, 2007 ; Holroyd and Coles, 2002 ; Holroyd and

rigolson, 2007 ; Nieuwenhuis et al., 2004 ; Sambrook and Goslin, 2015 ;

llsperger et al., 2014a ), having a stronger deflection when outcome ex-

ectation is violated ( Chase et al., 2011 ; Holroyd and Krigolson, 2007 ;

alsh and Anderson, 2012 ). More negative RPEs are suggested to be as-
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ociated with a stronger posterior mesial frontal cortex (pMFC) response

 Jocham et al., 2009 ) and a larger FRN. 

According to the RL-theory, unexpected negative outcomes should

licit larger FRNs than expected negative outcomes ( San Martín, 2012 ).

umerous studies have indicated that the FRN amplitude scales with a

signed ” RPE: In the case of a worse-than-expected outcome (negative

PE), a strong FRN is elicited, whereas a smaller and weaker FRN is ob-

erved after better-than-expected outcomes (positive RPE; Fischer and

llsperger, 2013 ; Hajcak et al., 2007 ; Holroyd and Coles, 2002 ;

alsh and Anderson, 2012 ). Expectations are generated by experience

nd incorporate global values (frequent/infrequent) but can dynami-

ally adjust to recent events, such as local surprise generated by trial

icro-structures ( Holroyd and Coles, 2002 ). 

Beyond the RL-account, there are alternative approaches suggesting

he FRN corresponds to an unsigned RPE signal which is sensitive to un-

ikely and therefore salient events indicating surprise (independent of

he direction of the expectedness violation, Alexander and Brown, 2011 ;
@ovgu.de (H. Kirschner), adrian.fischer@fu-berlin.de (A.G. Fischer), 
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onkers and van Boxtel, 2005 ; Ferdinand et al., 2012 ; Hauser et al.,

014 ; Talmi et al., 2013 ; Walentowska et al., 2019 ; Yeung et al., 2005 ).

n contrast, some studies show a dependence of the FRN amplitude

n valence and postulate that the magnitude of probability is repre-

ented later in more parietal components like the P3b ( Kamarajan et al.,

009 ; Sato et al., 2005 ; Toyomaki and Murohashi, 2005 ; Yeung and

anfey, 2004 ). Since the P3 complex is increased upon low probability

vents ( Johnson, 1986 ), FRN and P3 correlate with the common factor

urprise and therefore, it is possible that the FRN could be overlapped

y the P3 ( Walsh and Anderson, 2012 ). Recently, it has been proposed

hat the FRN effect of being larger for negative as compared to positive

eedback is actually driven by a positive deflection following positive

utcomes (RewP; Baker and Holroyd, 2011 ; Foti and Weinberg, 2018 ;

olroyd et al., 2008 ; Krigolson, 2018 ; Proudfit, 2015 ). Unexpected out-

omes are supposed to elicit the ERP component N200, while trials with

nexpected rewards elicit a feedback-related positivity (RewP) and, in

onsequence, the RewP overshadows the effect of the N200. However,

iven that the positive (RewP) and negative (FRN) deflections overlap in

ime, it remains unclear which of them captures systematic changes in

eward processing best ( Gheza et al., 2018 ). Some authors, in fact, seem

o suggest that FRN and RewP represent the same EEG phenomenon, just

ith opposite sign ( Krigolson, 2018 ; Proudfit, 2015 ). In this context, we

ould like to emphasize that the interpretation of results depends on the

efinition and quantification of the FRN. While some authors quantify

he FRN as the loss-minus-win difference wave or the N2-like compo-

ent following feedback, others suggest a difference between feedback

ondition-specific components to loss and gain ( Cavanagh et al., 2019 ).

n the present study, we are interested in factors that independently in-

uence feedback-related EEG dynamics in the latency range of the FRN

and P300). Therefore, we applied a single-trial regression approach in-

tead of using an ERP quantification method to avoid interpretation is-

ues arising from different approaches. We merely refer to the FRN and

3a/b to guide the reader in terms of latency and topography during

hich variables of interest modulate the stereotypical ERP sequence af-

er visual feedback ( Ullsperger et al., 2014b ). 

Concerning learning from feedback, larger behavioral adjustments

ere found after participants received negative compared to posi-

ive feedback, which was also reflected in the amplitude of the FRN

 Holroyd and Krigolson, 2007 ). In the same study, the interaction of ex-

ectedness and valence of feedback was associated with the extent of

ehavioral adaptation. 

Whereas the FRN is suggested to reflect an early evaluation process

nvolving the calculation of a prediction error, the P3 has been proposed

o translate this information into attentional and working memory pro-

esses, and to initiate behavioral adaptation ( Donchin and Coles, 1998 ;

olich, 2007 ; Verleger, 1997 ; Verleger et al., 1994 ). The P3 complex

onsists of two positive ERP deflections, P3a and P3b, which are elicited

y potentially action-related stimuli ( Ullsperger et al., 2014b ). The early

rontocentral P3a seems to reflect fast orienting and stimulus-driven at-

ention mechanisms ( Kirschner et al., 2021 ; Ullsperger et al., 2014b ),

hereas the more sustained parietal P3b has been proposed to be asso-

iated with surprise ( Donchin and Coles, 1998 ; Mars et al., 2008 ) and

ction value updating ( Ullsperger, 2017 ; Ullsperger et al., 2014b ). It is

ypically found that unexpectedness or negative valence of the feedback

ive rise to a larger P3b than expected or positive feedback ( de Bruijn

t al., 2004 ; Fischer and Ullsperger, 2013 ; Walentowska et al., 2016 ).

evertheless, some sources report no valence effects ( Yeung and San-

ey, 2004 ) or even reverse findings concerning valence ( Hajcak et al.,

007 ; Severo et al., 2018 ). 

Since there is inconsistent evidence about the influence of valence

nd expectedness ( San Martín, 2012 ) and their interaction on the neural

esponse to outcome processing, we approached this question differently

rom former studies, many of which used difference waves ( Glazer and

usslock, 2021 ; Hajcak et al., 2007 ; Holroyd et al., 2008 ; Holroyd and

oles, 2002 ; Holroyd and Krigolson, 2007 ; Talmi et al., 2013 ; van Box-

el, 2004 ; Walsh and Anderson, 2012 ). In the present study, we aimed
2 
t giving a holistic perspective on feedback processing. As noted above,

revious work has hinted that both surprise and valence contribute to

eedback related EEG dynamics, but the precise nature of their inter-

ction remains elusive. Here, we leveraged single trial regression and

he power of a large sample to parse out the contributions of these

actors on the EEG signal. While we have previously used instrumen-

al learning tasks ( Burnside et al., 2019 ; Fischer and Ullsperger, 2013 ;

irschner et al., 2021 ), we exclude this learning aspect here. Moreover,

hen we use the term “FRN ” in the context of the present work, we

ean modulations of the EEG signal in a latency range of 200 to 300 ms

ver frontocentral regions, and do not refer to any particular ERP quan-

ification. 

Our goal was to differentiate changes of the FRN amplitude and the

3 complex as a function of valence and expectedness within a large

ample. We therefore systematically manipulated valence and expected-

ess of the outcome to investigate the influence on the neuronal signal

ith the help of a single-trial regression approach. Feedback valence

as either positive or negative. Outcome expectedness was conceptu-

lized as global surprise. Here, the level of task difficulty was manipu-

ated between blocks by increasing the expectancy of positive feedback

r increasing the expectancy of negative feedback without the subjects’

nowledge. Additionally, we investigated local surprise by examining

he influence of the recent trial history on the feedback-locked neu-

onal signal. If the FRN reflects mere surprise, a response to salience

n the form of an unsigned RPE, the component should be insensitive

o valence. Therefore, a component within the timeframe of the FRN

hould show no main effect of valence and no interaction of expected-

ess and valence, but a strong main effect of unsigned RPE size involving

utcome probability ( Sambrook and Goslin, 2015 ). In consequence, the

RN should be equally large for worse-than-expected and better-than-

xpected outcomes ( Walentowska et al., 2019 ). Contrarily, if the FRN

ncodes signed RPEs, we would expect a valence x expectedness interac-

ion, where the FRN for unexpected events differs between worse-than-

xpected and better-than-expected events. A sole main effect of valence

ould mean that the FRN represents the outcome itself and does not

ncode any RPE. Two non-interacting main effects of valence and ex-

ectedness would indicate two independent processes influencing the

euronal signal in the FRN latency range. Hypotheses are visualized in

ig. 1 C. Concerning the P3 complex, we expect a clear effect of expect-

dness: unexpected outcomes should induce a larger P3b than expected

utcomes. 

To elaborate on the topic of behavioral adaptations following feed-

ack, we used an advanced measure of change in response time between

wo consecutive trials, which reflects improvement or deterioration in

ask performance from one trial to the next. Since previous research

as found that the type and expectedness of feedback could affect the

xtent of adaptation and that this adaptation has correlates in the neu-

onal signal ( Holroyd and Krigolson, 2007 ), we considered the influence

f the change in response time on the neuronal signal as a function of

he valence and expectedness of the feedback. Specifically, we expected

arger adaptations after negative feedback. Exploratorily, this adapta-

ion could be affected by outcome expectancies, whereby unexpected

egative feedback should be accompanied by larger and expected neg-

tive feedback by smaller behavioral adjustments. 

. Methods 

.1. Participants 

1000 young, healthy participants were recruited at the Radboud Uni-

ersity of Nijmegen, Netherlands (388 datasets; 03/2011–06/2011) and

t the Max Planck Institute for Human Cognitive and Brain Sciences in

eipzig, Germany (all remaining; 05/2012–03/2016). Screened via in-

erview, exclusion criteria were: any present or past psychiatric or neu-

ological disorders, regular use of medication, drug abuse, alcohol intake

t day of study. 8 subjects had to be excluded due to recording failures or
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Fig. 1. Illustration of the task design and 

theoretical hypotheses on task factors on 

the FRN signal . ( Ai ) Timeline of a single trial. 

Each trial starts with a cue represented by a 

fixation cross. From cue onset on, participants 

are instructed to estimate one second and to 

indicate the end of the estimated time interval 

by button press. The time window for a cor- 

rect response is adaptive and differs between 

conditions (control, easy, difficult). A reaction 

feedback interval (RFI) of 600 ms follows the 

response. Participants then receive either posi- 

tive or negative feedback in the form of a green 

smiley for correct response and a red frowny 

for incorrect response, which is displayed for 

350 ms. This is followed by a variable feedback 

cue interval (FCI) of 750–1250 ms before the 

next trial starts. ( Aii ) Target interval distribu- 

tions for the different task states (easy and dif- 

ficult). ( B ) Experimental conditions and their 

respective correspondences to a reward predic- 

tion error (RPE) as a function of the valence of 

the feedback. ( C ) Illustration of theoretical hy- 

potheses for FRN signals. Left: FRN reflects va- 

lence. FRN is larger (e.g., more negative) on all 

negative outcomes. When comparing positive 

vs. negative feedback, this should be reflected 

in frontocentral negativity as depicted in the 

respective topography plot. Middle: If the FRN 

is reflecting mere surprise, the FRN should be 

larger for unexpected feedback (positive out- 

comes in the difficult task state and negative 

outcomes in the easy task state). Right: The 

FRN reflects “valenced surprise ” (e.g., predic- 

tion errors). Larger FRN in negative outcomes 

(reflected in a frontocentral negativity), more 

so when they are less expected than when they 

are common. 
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oor data quality (see 2.3 for details). The sample consists of 493 female

nd 499 male subjects between 18 - 40 years ( M = 24.22; SD = 4.03). The

ajority of the participants were right-handed ( N = 914), 44 were left-

anded, and 33 ambidextrous or retrained (1 not reported). The study

as approved by the Institutional Review Board/Ethics Committee of

he Radboud University of Nijmegen (ECG04032011) and the University

f Leipzig (285-09-141209) and written informed consent was obtained

rom all participants after briefing prior to study enrolment. The study

as conducted in accordance with the Declaration of Helsinki. 

.2. Experimental paradigm 

We used a modified version of a time estimation task, where the par-

icipants had to estimate the duration of one second by keystroke with

 fixation cross as onset time point ( Gruendler et al., 2011 ; Holroyd and

rigolson, 2007 , see Fig. 1 Ai). Positive Feedback for a correct response

i.e. responding in a time window of 1000 ms ± 100 ms initially) was
3 
iven in form of a green smiley, negative feedback for an incorrect re-

ponse was visualized with a red frowny. Within the experiment, every

ubject underwent three conditions, where the time window (TW) for

orrect responses was adapted differently such that negative feedback

as more likely than positive feedback ( “difficult ”), negative and pos-

tive feedback were equally likely ( “control ”), and negative feedback

as less likely than positive feedback ( “easy ”), respectively. Within the

ontrol condition, the TW for positive feedback increased by 10 ms on

rror trials and decreased by 10 ms on correct trials symmetrically. In

he easy condition, the window size increased by 12 ms on error tri-

ls and decreased by 4 ms on correct trials. In the difficult condition,

daptation reversed compared to the easy condition, so that the TW nar-

owed faster on correct responses ( − 12 ms) than it grew after incorrect

esponses ( + 4 ms; see Fig. 1 Aii). Participants always started with the

ontrol condition, where a TW for positive feedback was initialized at

000 ms ± 100 ms (positive feedback was given when the response fell

etween 900 and 1100 ms). They then continued with either the easy
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t  
r the difficult condition and went through each condition once, coun-

erbalanced over participants. The time window to start with in the first

rial of a new block was equal to the time window resulting from the last

rial of the preceding block. The control condition only served to inter-

ept initial adaptation processes and to define the initial time window

nd was therefore not equivalent to the other conditions, which is why

t was excluded from analysis. The task consists of 450 trials in total, 50

rials in the control condition, 200 trials each in the difficult and easy

onditions. The inter-trial interval (feedback-cue interval, FCI) varied

etween 750 ms and 1250 ms. Fig. 1 B shows the conceptual mapping

f the task blocks (easy/difficult) to the associated size of the RPE and

he valence of the outcome. 

.3. EEG acquisition and processing 

Electroencephalic signals were continuously recorded at 500 Hz sam-

ling rate with BrainAmp MR plus amplifiers (Brain Products) from 64

g/AgCl sintered electrodes, which were mounted in an elastic cap ac-

ording to the extended 10–20 system with impedances kept below 5k Ω.

he ground electrode was placed at the sternum. Electrodes to capture

orizontal and vertical eye movements were mounted next to both eyes

nd above and below the left eye. The signal was online referenced to A1

left mastoid). The recorded data was high (0.5 Hz) - and low (30 Hz)

pass filtered, re-referenced to common average, and epoched from -

00 ms to 1500 ms locked to feedback onset. Artifactual epochs were

utomatically rejected based on signal outliers. Epochs that deviate over

 SD from the mean probability distribution of the EEG signal were ex-

luded ( Delorme et al., 2007 ). We specified that a minimum of 10 trials

ut no more than 10% of the trials ( N = max. 45) should be rejected.

herefore, the initial threshold of 5 SD was adaptively increased or de-

reased with a step size of 0.1 SD. This resulted in an average rejection

f 20 epochs across all participants (range N = 10–44). Epochs were

hen demeaned and submitted to adaptive mixture independent compo-

ent analysis (AMICA, Palmer et al., 2012 ). Independent components

ncluding artifactual signals (i.e. eye blinks) were rejected with the help

f sample-based ratings of two EEG-experienced researchers in combi-

ation with a correlation-based approach (inspired by the Corrmap ap-

roach; Viola et al., 2009 ). A baseline of − 350 ms until 0 ms prior to

eedback onset was used. The data was then analyzed with multiple ro-

ust single-trial regression analyses (see Fischer and Ullsperger, 2013 for

etails). EEG datasets for which ICA did not converge or too less trials for

pecific regressors existed were excluded (8 subjects), resulting in a fi-

al sample of 992 participants. For EEG and behavioral analysis, EEGLab

3.5 toolbox ( Delorme and Makeig, 2004 ) and customized code written

n MATLAB R2019b version 9.7.0.1190202 (MathWorks) was used. 

.4. Data analysis 

.4.1. Behavioral analyses 

Data for building behavioral regressors were either directly derived

rom the behavioral data or, in some cases, calculated from combina-

ions of other behavioral variables. Valence (Val) represents the quali-

ative direction of the feedback, either positive ( = 0) or negative ( = 1).

he regressor expectedness (Exp) is a dichotomous variable, where un-

xpected events ( = 0) indicate trials with negative feedback during the

asy condition and trials with positive feedback during the difficult con-

ition. Expected events ( = 1) are coded vice versa (positive feedback in

asy condition; negative feedback in difficult condition). Reaction time

RT) reflects the absolute reaction time from fixation cross onset until

utton press. The following variables reflect local surprise: the number

f trials since the last negative or positive event (TrialsSinceNeg/Pos) in-

icates how long ago the last event of the same valence occurred. The

onger it has been, the bigger the local surprise. For these two variables,

orresponding trials are cumulated separately for negative and positive

vents. In addition, if participants build up an internal representation
4 
f the target time, another form of local surprise can be conceptual-

zed as the absolute difference between 1000 ms (the target time) and

rial-based reaction time. This variable is represented by the parametric

egressor reaction time deviation (RT_dev; unsigned). The closer the par-

icipant is to 1000 ms and still receives negative feedback, the bigger the

ocal surprise. Reaction time change (RT_change) was calculated ( Eq. (1) )

y subtracting the absolute reaction time difference of the following trial

rom the absolute reaction time difference of the current trial and there-

ore, represents a measure of performance adaptation. The results of

his calculation (see Eq. (1) ) could either take on positive values, which

epresent performance improvement (i.e. coming closer to 1000 ms), or

egative values, which represent performance deterioration (increasing

istance to 1000 ms): 

𝑇 _ 𝑐ℎ𝑎𝑛𝑔𝑒 = 

|||
(
𝑅 𝑇 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑙 − 1000 𝑚𝑠 

)|− |(𝑅 𝑇 𝑓𝑜𝑙 𝑙 𝑜𝑤𝑖𝑛𝑔 𝑡𝑟𝑖𝑎𝑙 − 1000 𝑚𝑠 
)|||
(1) 

As noise regressors without interest, logarithm of the trial number in

he current block (BlockTr) and inter-trial interval (FCI) were included

n all regression models. The parameters BlockTr, FCI, RT, RT_dev, Tri-

lsSinceNeg/Pos, and RT_change were z-standardised. 

We calculated a robust multiple regression with behavioral adjust-

ent (absolute difference between two consecutive trials in ms) as the

utcome. Valence, expectedness, their interaction, as well as BlockTr

nd FCI served as predictors: 

𝑒ℎ𝑎𝑣𝑖𝑜𝑟𝑎𝑙 𝑎𝑑 𝑗 𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝛽0 + 𝛽1 × 𝑉 𝑎𝑙 + 𝛽2 × 𝐸𝑥𝑝 + 𝛽3 × 𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 

+ 𝛽4 × 𝐹 𝐶𝐼 + 𝛽5 × 𝑉 𝑎𝑙 × 𝐸𝑥𝑝 + 𝜀 (2) 

.4.2. Grand averages 

We calculated grand average ERPs at two electrodes for crossed

onditions (negative feedback-expected; negative feedback-unexpected;

ositive feedback-expected; positive feedback-unexpected) by averaging

cross all subjects. The site of maximal FRN activity is, according to the

iterature ( Williams et al., 2020 ), electrode FCz and the site of maximal

3b activity is, according to the literature ( Intriligator and Polich, 1994 ;

olich, 2007 ), electrode Pz. Therefore, we chose FCz and Pz to visualize

he neuronal signal depending on feedback. 

.4.3. Single-trial EEG analyses 

We furthermore employed several multiple robust regressions,

ithin (1st level) and across subjects (2nd level; Fischer et al., 2016 ;

ischer and Ullsperger, 2013 ). General linear models (GLM) were built

o regress single-trial EEG activity at each electrode and time point

gainst behavioral parameters. The regressions were performed on 59

lectrodes in a time window from − 200 ms to 1000 ms, feedback-locked.

he output of these analyses was in the form of regression coefficients

evealing the time course and scalp topographies of the relationship be-

ween each predictor and neuronal activity. Standardized beta-values

an be tested via two-tailed one-sample t-tests, which were done sepa-

ately at each data point in a whole-brain approach across subjects. To

ccount for multiple comparisons, p-values within one model were cor-

ected using false discovery rate (FDR). Trials of the control condition

ere excluded from regression analyses. 

Within the first GLM (1a), we were interested in the influences of

alence of feedback, expectedness, and the interaction of both on the

euronal signal: 

 GLM 1a ) ∶ 𝐸 𝐸 𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑒 = 𝛽0 + 𝛽1 × 𝑉 𝑎𝑙 + 𝛽2 × 𝐸𝑥𝑝 + 𝛽3 

×𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 + 𝛽4 × 𝐹 𝐶𝐼 + 𝛽5 × 𝑉 𝑎𝑙 

×𝐸𝑥𝑝 + 𝜀 (3) 

To further disentangle the results revealed in the first GLM, we split

he data in expected and unexpected trials within a subordinate GLM
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1b). This enables us to have a more detailed look on the effect of va-

ence comparing negative- and positive-feedback-trials for expected and

nexpected trials separately: 

 GLM 1b ) ∶ 𝐸 𝐸 𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑒 = 𝛽0 + 𝛽1 × 𝑉 𝑎𝑙 + 𝛽2 × 𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 

+ 𝛽3 × 𝐹 𝐶𝐼 + 𝜀 (4) 

ran separately for expected and unexpected outcomes) 

By building a second main GLM and splitting the data in positive-

nd negative-feedback trials, it was possible to resolve the interaction

etween valence and expectedness and to further investigate the dif-

erential effects of expectedness or global surprise, respectively. Addi-

ionally, we included further variables, which give information on local

urprise, like TrialsSinceNeg/Pos and RT_dev: 

 GLM 2 ) ∶ 𝐸 𝐸 𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑒 = 𝛽0 + 𝛽1 × 𝐸𝑥𝑝 + 𝛽2 × 𝑅𝑇 + 𝛽3 

×𝑇 𝑟𝑖𝑎𝑙𝑠𝑆𝑖𝑛𝑐𝑒𝑁𝑒𝑔∕ 𝑃 𝑜𝑠 + 𝛽4 ×𝑅𝑇 _ 𝑑𝑒𝑣 

+ 𝛽5 × 𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 + 𝛽6 × 𝐹 𝐶𝐼 + 𝜀 (5) 

ran separately for trials with negative and positive feedback) 

In the last GLM 3, we were interested in the neuronal signal changes

ue to performance adaptation. Therefore, we created main GLM 3a in-

luding the regressor RT_change, which reflects performance improve-

ent or deterioration between the current and the consecutive trial.

he interaction of feedback valence and RT_change served as a pre-

ictor as well ( Eq. (6) ). In a subordinate GLM 3b, we disentangled

his interaction by running separate regressions for trials with nega-

ive and positive feedback ( Eq. (7) ). Because the participants tend to

djust their RT more after negative feedback, we calculated another

ubordinate GLM 3c for negative-feedback trials to examine the inter-

ction between expectedness and behavioral adaptation exploratorily

 Eq. (8) ). 

 GLM 3a ) ∶ 𝐸 𝐸 𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑒 = 𝛽0 + 𝛽1 × 𝑉 𝑎𝑙 + 𝛽2 × 𝑅𝑇 _ 𝑐ℎ𝑎𝑛𝑔𝑒 

+ 𝛽3 × 𝐸𝑥𝑝 + 𝛽4 × 𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 + 𝛽5 × 𝐹 𝐶𝐼 

+ 𝛽6 × 𝑉 𝑎𝑙 × 𝑅𝑇 _ 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝜀 (6) 

 GLM 3b ) ∶ 𝐸 𝐸 𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑒 = 𝛽0 + 𝛽1 × 𝑅𝑇 _ 𝑐ℎ𝑎𝑛𝑔𝑒 

+ 𝛽2 × 𝐸𝑥𝑝 + 𝛽3 × 𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 + 𝛽4 

×𝐹 𝐶𝐼 + 𝜀 (7) 

ran separately for trials with negative and positive feedback) 

 GLM 3c ) ∶ 𝐸 𝐸 𝐺 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑 𝑒 = 𝛽0 + 𝛽1 × 𝑅𝑇 _ 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝛽2 × 𝐸𝑥𝑝 

+ 𝛽3 × 𝐵𝑙𝑜𝑐𝑘𝑇 𝑟 + 𝛽4 × 𝐹 𝐶𝐼 + 𝛽5 

×𝐸𝑥𝑝 × 𝑅𝑇 _ 𝑐ℎ𝑎𝑛𝑔𝑒 + 𝜀 (8) 

ran for trials with negative feedback) 

We were particularly interested in beta-value peaks approximately

n the latency ranges (FRN: 200–300 ms; P3a/P3b: 300–600 ms; P3a

sually earlier) and topographic locations (FRN/P3a: frontocentral;

3b: centroparietal) of FRN, P3a and P3b as reported in the litera-

ure ( Polich, 2007 ; Sambrook and Goslin, 2015 ; San Martín, 2012 ;

llsperger et al., 2014b ), because these are components that typically

ccur following feedback. Thus, for post-hoc t-tests after regression anal-

sis, we derived latencies of local beta-value peaks of the predictors in

RN- or P3-time windows based on visual inspection and comparing

ith the respective ERP. Individual beta-value peak time points (not all

hown in Fig. 4 ) were extended by including beta-values in a time win-

ow of ± 20 ms around the peak and using the average of them. The

ndicated electrodes usually include the electrode with the strongest ef-

ect, otherwise they represent strong local effects. 
5 
. Results 

.1. Behavioral results 

Overall, the participants performed well in the task, the mean re-

ction time across all conditions was 1032.10 ms ± 218.21 ms (see

ig. 2 A). Manipulation of difficulty by different task states was success-

ul: within the easy condition, participants received positive feedback in

0.27% (SD easy = 3.98%) of the trials, while in the difficult condition,

nly 29.62% (SD difficult = 2.50%; M control = 41.70%; SD control = 8.18%)

f the trials were followed by positive feedback (see Fig. 2 B). 

In Fig. 2 D, the absolute frequencies of averaged reaction

ime changes after negative/positive feedback (Di) and after ex-

ected/unexpected feedback (Dii) overall participants can be seen.

ehavioral adjustments after negative feedback are bigger (M neg =
30.39 ms; M pos = 145.06 ms; t (1982) = − 42, p < 0.001, d = 1.89)

nd within-subject more widely distributed (SD neg = 180.20 ms; SD pos =
20.68 ms; t (1982) = − 37, p < 0.001, d = 1.68) than after positive feed-

ack. Adjustments differ slightly with bigger adjustments and wider dis-

ributions within-subject for unexpected events (M unexp = 197.52 ms;

 exp = 180.53 ms; t (1982) = − 8, p < 0.001, d = 0.36; SD unexp =
63.85 ms; SD exp = 152.02 ms; t (1982) = − 7, p < 0.001, d = 0.29).

hese results indicate that feedback valence and expectedness differ-

ntially affect subsequent behavior. To parse behavioral adjustments at

ner levels of detail, we analyzed behavioral adjustments using mul-

iple robust regression (see Fig. 2 C). Predictors included expectedness

expected vs. unexpected feedback), valence (positive vs. negative feed-

ack), and the interaction between these factors. In addition, we in-

luded FCI and trial number as regressors of no interest. The results

onfirmed a main effect of expectedness (mean t = 0.10, t (991) = 2.62,

 < 0.05 (bonf cor), d = 0.08, 95% CI [0.02, 0.17]) and valence (mean

 = 3.89, t (990) = 74.18, p < 0.001 (bonf cor), d = 2.36, 95% CI [3.79,

.00]; Fig. 2 Ci). Critically, the interaction between expectedness and va-

ence showed that behavioral adaptations after negative feedback were

arger, when negative feedback was less expected (mean t = − 1.17,

 (990) = − 18.65, p < 0.001 (bonf cor), d = − 0.59, 95% CI [ − 1.29,

 1.05]; Fig. 2 Cii). This may suggest, that participants adjust their be-

avior more after negative feedback during broader target windows. In

ontrast, they adjusted their behavior after negative feedback less, when

he target window was narrow (i.e., during the difficult task state). In

ther words, surprise had a reinforcing effect on behavioral adjustments

hen feedback was negative. We took this as motivation for further

nalyses trying to disentangle the differential influences of valence and

xpectedness on behavior and EEG correlates. As the absolute change in

T between two consecutive trials does not allow direct evaluation of

he adaptivity of the behavioral adjustment, we calculated the variable

T_change as a measure of performance adaptation for subsequent anal-

ses investigating the association between feedback-related behavioral

daptions and EEG activity. 

.2. Electrophysiological results 

.2.1. Event-related potentials 

To gain a first impression of the EEG-data and to see, whether or

ot our paradigm evokes the expected ERP results, we show the av-

raged ERP waves for the crossed conditions, expected/negative, un-

xpected/negative, expected/positive, and unexpected/positive for two

lectrodes, FCz and Pz (see Fig. 3 ). At FCz ( Fig. 3 Ai), the amplitude dur-

ng the time window of the FRN seems to be more pronounced when par-

icipants received negative (yellow and red) rather than positive feed-

ack. When rewards were less expected (green line), the FRN signal was

ore positive than in the other condition (expected rewards, blue line),

hereas the FRN on negative trials was similar for expected (yellow)

nd unexpected (red) feedback. The amplitude during the time window

f the P3b component seems larger for unexpected events (green and

ed) than for expected events (blue and yellow). Visually comparing un-
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Fig. 2. Frequencies of reaction times and behavioral adjustments and influencing factors . ( A ) Frequencies of response times (in ms) of all trials across all 

participants. ( B ) shows the percentage of positive feedback received for both conditions across all participants. The dark orange box represents the easy condition 

and light orange the difficult condition. ( Ci ) Multiple robust regression with behavioral adjustment from current to the consecutive trial (change in reaction times in 

ms) as outcome. Valence, expectedness, and their interaction significantly predict behavioral adjustment. To correct for multiple comparisons Bonferroni correction 

was used. ( Cii ) Unexpected negative feedback elicits the largest behavioral adjustment. ( Di ) Frequencies of absolute behavioral adjustment from current to the 

consecutive trial (change in reaction times in ms) after negative (red color bars) and positive feedback (blue color bars). ( Dii ) Frequencies of behavioral adjustment 

(change in reaction time in ms) after unexpected (red) and expected (blue) feedback. 
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xpected negative (red) and unexpected positive feedback (green) in the

ime window of the P3 complex, P3 amplitude seems to be affected by

alence as well, as negative feedback increases the amplitude. 

The EEG data in the time window of the P3 complex looks slightly

ifferent at electrode Pz ( Fig. 3 Bi) compared to FCz. The waveforms

tart do differ at around 200 ms after feedback onset. Unexpected pos-

tive feedback (green) seems to be associated with the most positive

ignal from 220 ms on. Nevertheless, the grand average ERP approach

oes not allow a temporally and spatially accurate determination of in-

ependent contributions to the neuronal signal: to investigate when and

here which factors influence the neuronal signal and how they inter-

ct, it is essential to use other methods. The beta-value courses of the

ain predictors ( Fig. 3 Aii; Bii) are described in the context of the re-

ression analysis (see 3.2.2). 

The visual inspection of the grand average EEG activity supported

ur initial hypotheses concerning the influence of expectedness, valence,

nd their interaction on the feedback-locked EEG signal. For rigorous
6 
tatistical testing and in order to disentangle this modulation of the sig-

al temporally and spatially, and in dependence of possible confounding

actors, we applied a multiple robust single-trial regressions approach

 Fischer et al., 2016 ; Fischer and Ullsperger, 2013 ). 

.2.2. Modulation of EEG signal by valence and expectedness of feedback 

GLM 1a examined the effects of feedback valence, expectedness , and

heir interaction on neuronal EEG activity ( Fig. 3 Aii, Bii and Fig. 4

ow 1–3). From approximately 130 ms until 300 ms, there was a sus-

ained negative effect of the valence regressor, that spanned over fron-

ocentral electrode sites ( Fig. 3 Aii; Fig. 4 , row 1, shown from 200 ms

nwards). Thus, EEG amplitudes were more negative following nega-

ive feedback (most pronounced at FCz, peak @ 250 ms, b = − 2.63,

 (991) = − 48.10, p = 1.81 ×10 − 261 , d = − 1.52, 99% CI [ − 2.74 − 2.53], crit

 = 0.035), which indicates that valence coding is present in the typical

atency range and topography of the FRN. Furthermore, there is another

alence-specific but more parietal negative effect starting at 260 ms un-
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Fig. 3. Grand average feedback-locked ERPs of the crossed conditions and beta-value courses of the main regressors in GLM 1a . ( Ai ) The averaged feedback- 

locked ERPs across participants at electrode FCz. The table in (Bi) shows the task design including the matrix of different task stages. Different colors represent the 

crossed conditions: expected negative feedback (yellow); unexpected negative (red); expected positive feedback (blue); unexpected positive feedback (green). Shades 

represent SEM (very small and therefore barely visible). Regression weight topographies of the regressors valence, expectedness, and their interaction are shown at 

250 ms after feedback. ( Aii ) The course of the beta-values from GLM1a of the regressors valence, expectedness, and their interaction at FCz are shown below. ( Bi ) 

The averaged feedback-locked ERPs across participants at electrode Pz. Regression weight topographies of the regressors valence, expectedness, and their interaction 

averaged across latencies from 350 to 500 ms after feedback are shown. Regression weights in the topoplots are fdr (false discovery rate)-corrected and nonsignificant 

electrodes are masked in white. ( Bii ) The course of the beta-values from GLM1a of the regressors valence, expectedness, and their interaction at Pz are shown below. 
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il 340 ms ( Fig. 3 Bii; Fig. 4 row 1). This negative covariation was fol-

owed by a frontocentral positive covariation between 320 and 480 ms

most pronounced at FCz, peak @ 380 ms, b = 3.35, t (991) = 46.44,

 = 6.47 ×10 − 251 , d = 1.48, 99% CI [3.21 3.49], crit p = 0.035; see Fig. 4 ,

ow 1). Topography and latency suggest that it is a major contributor to

he P3a. 

Within GLM 1a, we also tested the influence of expectedness on

he EEG signal. This regressor shows a sustained and spatially broader

ronto-centro-parietal effect on the P2/P3 complex between 240 and

30 ms (most pronounced at Cz, peak @ 350 ms, b = − 3.26,

 (991) = − 60.32, p < 0.0001, d = − 1.92, 99% CI [ − 3.37, − 3.15],

rit p : 0.0001; see Fig. 4 , row 2). The signal is more positive for

nexpected compared to expected outcomes. However, the effect of

xpectedness prior to 240 ms seems to be less pronounced and

ore frontally distributed (Cz, smaller peak @ 190 ms, b = − 0.91,

 (991) = − 34.42, p = 1.93 ×10 − 171 , d = − 1.09, 99% CI [ − 0.96, − 0.86],

rit p = 0.0001). Taken together, the FRN amplitude is influenced by

alence, but is less affected by expectedness (between 200 and 300 ms;

ean val = − 0.21 ± 0.004 vs. m exp = − 0.03 ± 0.003; t (991) = − 41.46,

 = 1.14 ×10 − 218 , d = 1.82). Valence and expectedness (i.e. global sur-

rise, resp.) seem to influence the P2/P3 complex. Whereas the valence

ffect appears to be frontocentral, violation of expectedness shows a

roader effect from frontocentral to parietal areas. 

Additionally, we were interested in whether and how both regres-

ors interact with each other as an interaction would be predicted for an

PE signal. Derived from the course of beta-values, from approximately

30 ms on, the valence x expectedness regressor covaried positively with

he neuronal activity (FCz, peak @ 280 ms, b = 1.81, t (991) = 17.10,

 = 1.28 ×10 − 57 , d = 0.54, 99% CI [1.60, 2.01], crit p = 0.032; see Fig. 4 ,

ow 3). By visual inspection, this broad frontocentral positive covaria-
7 
ion extends to parietal areas over time. To summarize, the interaction

f valence and expectedness shows a strong significant effect during the

RN latency range for both the early FRN-peak and for the later part

f the FRN on fronto-centro-parietal electrodes. This underlines that the

RN encodes an RPE signal. To disentangle the interaction between va-

ence and expectedness, we conducted separate regression models by

plitting the data in expected and unexpected trials (GLM 1b). 

In GLM 1b, we found a negative covariation of valence with the neu-

onal signal from 160 ms to 310 ms in both, unexpected (FCz, peak @

60 ms, b = − 3.55, t (991) = − 41.95, p = 6.64 ×10 − 222 , d = − 1.33, 99%

I [ − 3.72, − 3.39], crit p = 0.036; see Fig. 4 , row 5) and expected tri-

ls (FCz, peak @ 240 ms, b = − 2.41, t (991) = − 37.89, p = 6.14 ×10 − 195 ,

 = − 1.20, 99% CI [ − 2.53, − 2.28], crit p = 0.033; see Fig. 4 , row 4). Com-

aring the regression weights at their respective peaks, the valence effect

uring the time window of the FRN is more pronounced in unexpected

rials ( m unexp = − 3.55 ± 0.08 vs. m exp = − 2.41 ± 0.06; t (991) = − 11.49,

 = 8.63 ×10 − 29 , d = 0.5). To formally test for spatiotemporal differ-

nces of valence coding between expected and unexpected feedback in

he FRN time window, we extracted averaged b-values at FCz and Pz and

t the latencies 200 ms ( ± 20 ms) and 260 ms ( ± 20 ms) from the va-

ence regressor of the respective GLM 1b. These data were then analyzed

n a three-way ANOVA with the factors latency, location, and expected-

ess. Results show a significant three-way interaction of expectedness

 location x latency ( F (1991) = 122.39, p < 0.001, ƞ2 = 0.11) indi-

ating that for expected events, valence is coded earlier (200 ms) and

ore frontally (FCz), whereas for unexpected events, valence is pro-

essed later (260 ms) and with parietal involvement (Pz). 

Afterwards, until approximately 450 ms, the signal covaries posi-

ively with valence in both, unexpected (FCz, peak @ 380 ms, b = 3.57,

 (991) = 30.53, p = 8.39 ×10 − 145 , d = 0.97, 99% CI [3.34, 3.80], crit
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Fig. 4. Multiple single-trial robust regression results for feedback-locked epochs . Feedback-locked regression weight (beta) topographies in 20 ms time steps 

spanning from 200 ms to 400 ms are shown. The corresponding GLM and predictors are listed on the left. Blue colors are associated with negative covariations, red 

colors with positive covariations. Interpretation of the polarity depends on the coding of the predictor (see methods Section 2.4.1 ). Scaling can be seen on the right 

and differs between regressors. For corrections of multiple comparisons, false discovery rate (FDR) was used. Nonsignificant data points are masked in white. 
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 = 0.036; see Fig. 4 , row 5) and expected trials (FCz, peak @ 380 ms,

 = 3.27, t (991) = 41.67, p = 4.33 ×10 − 220 , d = 1.32, 99% CI [3.11, 3.42],

rit p = 0.033; see Fig. 4 , row 4). Comparing the regression weights at

heir peak at 380 ms, the effect is more pronounced in unexpected trials

ompared to expected trials ( m unexp = 3.57 ± 0.12 vs. m exp = 3.27 ± 0.08;

 (991) = 2.40, p = 0.02, d = 0.10). This result illustrates the involvement
8 
f surprise: if the event is unexpected, the positive-going valence effect

n the P3b is stronger. 

Taken together results from GLM 1b, aiming to disentangle the in-

eraction of valence and expectedness of feedback, we found an effect

f valence on the neuronal signal during the time windows of the FRN

nd the P3 for expected and unexpected events. In both, the time win-
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ow of the FRN and the P3, the effect of feedback valence was more

ronounced in unexpected events. 

To directly compare the neuronal activity of expected and unexpected

vents in dependence of valence, we conducted GLM 2 on positive- and

egative feedback trials separately. As can be seen in Fig. 4 , row 6, there

as an influence of expectedness for positive-feedback trials at frontal

nd frontocentral electrodes starting before the FRN (90 ms; FCz, peak

 160 ms, b = − 0.56, t (991) = − 11.75, p = 6.10 ×10 − 30 , d = − 0.37, 99%

I [ − 0.65, − 0.47], crit p = 0.029; see Fig. 4 , row 6) and spanning the

ntire FRN latency range. For negative-feedback trials, there is a small

egative covariation of expectedness with the neuronal signal at frontal

nd frontocentral electrodes starting early around 160 ms (FCz, peak @

00 ms, b = − 0.86, t (991) = − 16.09, p = 6.47 ×10 − 52 , d = − 0.51, 99%

I [ − 0.96, − 0.75], crit p = 0.027; see Fig. 4 , row 9). In contrast to the

xpectedness effect in positive-feedback trials, in negative-feedback tri-

ls there seems to be a weaker frontocentral effect in the second half

f FRN latency ranges between 240 ms and 280 ms. In other words, for

egative outcomes, the FRN is nearly unmodulated by expectedness. In

ontrast, for positive outcomes, the positive-going shift of the waveform

s significantly pronounced when the outcome is unexpected. A stronger

odulation on trials with positive feedback also applies to the later ERP

omponents. During the time window of the P3, results show a signif-

cant negative covariation at central and centroparietal electrodes for

he regressor expectedness for trials with positive feedback (Cz, peak @

30 ms, b = − 2.49, t (991) = − 34.73, p = 1.51 ×10 − 173 , d = − 1.10, 99% CI

 − 2.63, − 2.35], crit p = 0.029; see Fig. 4 , row 6), but also for trials with

egative feedback (FCz, peak @ 360 ms, b = − 2.06, t (991) = − 22.04,

 = 6.11 ×10 − 88 , d = − 0.70, 99% CI [ − 2.25, − 1.88], crit p = 0.027; see

ig. 4 , row 9). 

.2.3. Modulation of EEG signal by local surprise 

Next, we investigated neural coding of local surprise, that was re-

ected in two regressors within GLM 2, the number of preceding trials

ince the last negative or positive trial appeared and reaction time deviation

rom the target time of 1000 ms. The results indicate that the longer

t has been since the current feedback was last seen (i.e., the bigger

he local surprise), the more positive the P3b. On frontal electrodes,

he first predictor covaried positively with the neuronal signal in both

ositive- (Fz, @ 220 ms, b = 0.62, t (991) = 23.13, p = 5.57 ×10 − 95 ,

 = 0.73, 99% CI [0.56, 0.67], crit p = 0.031; see Fig. 4 , row 7)

nd negative-feedback trials (Fz, @ 220 ms, b = 0.82, t (991) = 30.43,

 = 3.81 ×10 − 144 , d = 0.97, 99% CI [0.77, 0.88], crit p = 0.033; see Fig. 4 ,

ow 10). This effect is stronger in negative-feedback trials between 200

nd 240 ms ( m pos = 0.62 ± 0.03 vs. m neg = 0.82 ± 0.03; t (991) = − 5.71,

 = 1.46 ×10 − 8 , d = 0.25). From 280 ms on, this predictor covaried pos-

tively with the neuronal signal in both positive- (FCz, peak @ 340 ms,

 = 2.07, t (991) = 43.49, p = 5.48 ×10 − 232 , d = 1.38, 99% CI [1.97, 2.16],

rit p = 0.031; see Fig. 4 , row 7) and negative-feedback trials (FCz, peak

 360 ms, b = 1.96, t (991) = 42.52, p = 1.19 ×10 − 225 , d = 1.35, 99% CI

1.87, 2.05], crit p = 0.033; see Fig. 4 , row 10). 

For the predictor reaction time deviation from the target time of

000 ms, there is a negative covariation within the time frame of P3

nly in negative trials (FCz, peak @ 370 ms, b = − 0.67, t (991) = − 24.60,

 = 1.19 ×10 − 104 , d = − 0.78, 99% CI [ − 0.72, − 0.62], crit p = 0.023; see

ig. 4 , row 11). If the participant was close to 1 s, but negative feedback

ollowed, subjective surprise might be enhanced and in consequence, P3

s more positive. This does not apply for the positive prediction error,

onsidering only a small parietal to occipital activation can be found in

ositive-feedback trials between 240 and 340 ms (see Fig. 4 , row 8). In

onclusion, the present data (GLM 2) indicate that the P3 complex is

riven by global and local surprise. 

In GLM 2, we found that expectedness of feedback has only a small

ffect on the neuronal signal during the time window of the FRN. Mean-

hile, global surprise during the P3 time window influences the neu-

onal signal in positive-feedback and negative-feedback trials. Further-
9 
ore, we found evidence for a positive covariation of local surprise and

he P3. 

.2.4. Adaptation 

We were interested in how the EEG signal, and especially, the FRN

s associated with behavioral adaptations after making a false response.

herefore, we implemented another behavioral predictor in GLM 3, re-

ction time change ( RT_change ). It represents feedback adaptation in the

onsecutive trial, while positive values imply improvement (i.e. getting

loser to 1 s) and negative values decline (further away from 1 s) in

erformance. Furthermore, we included the interaction of valence and

daptation, because we assume a stronger influence of adaptation after

egative-feedback trials. Surprisingly, we only see a very small associa-

ion between RT_change and the neuronal activity from 130 ms on (CPz,

eak @ 220 ms, b = − 0.04, t (991) = − 3.39, p = 0.001, d = − 0.11, 99%

I [ − 0.06, − 0.02], crit p = 0.047; see Fig. 4 , row 12). However, there is

 negative covariation between RT_change at centroparietal electrodes

CPz, peak @ 320 ms, b = − 0.17, t (991) = − 12.61, p = 6.36 ×10 − 34 ,

 = − 0.40, 99% CI [ − 0.19, − 0.14], crit p = 0.047; see Fig. 4 , row 12)

nd the interaction of feedback valence x RT_change at frontal electrodes

ith the neuronal signal around 350 ms after feedback (FCz, peak @

70 ms, b = − 0.22, t (991) = − 7.58, p = 7.80 ×10 − 14 , d = − 0.24, 99%

I [ − 0.28, − 0.17], crit p = 0.008; see Fig. 4 , row 13). These counter-

ntuitive findings imply that an improvement in the consecutive trial is

ssociated with a smaller P3a amplitude. To disentangle the effects of

he significant interaction between valence and behavioral adaptation,

e split the data into negative- and positive-feedback-trials and used

T_change as a regressor of interest (GLM 3b). Within positive-feedback

rials, RT_change does not seem to have a systematic influence on neu-

onal signals contributing to the FRN or P3 complex (see Fig. 4 , row 14).

or negative trials, there is a small negative covariation of RT_change

ith the neuronal signal at parietal electrodes in the time frame of the

arly FRN (Pz, @ 200 ms, b = − 0.15, t (991) = − 10.88, p = 4.18 ×10 − 26 ,

 = − 0.35, 99% CI [ − 0.18, − 0.13], crit p = 0.011; see Fig. 4 , row 15).

dditionally, results show a negative covariation of RT_change with the

euronal signal in the time window of the P3 for negative-feedback tri-

ls (FC2, peak @ 360 ms, b = − 0.21, t (991) = − 13.00, p = 8.59 ×10 − 36 ,

 = − 0.41, 99% CI [ − 0.24, − 0.18], crit p = 0.011; see Fig. 4 , row 15). Be-

ause participants adjusted their behavior depending on the expectancy

f negative feedback, we investigated the influence of the interaction

f expectedness and RT_change after negative feedback on the neuronal

ignal in GLM 3c. Indeed, a frontoparietal negative covariation between

40 ms and 280 ms occurs in negative-feedback trials (FCz, peak @

60 ms, b = − 0.19, t (991) = − 4.99, p = 7.14 ×10 − 7 , d = − 0.16, 99% CI

 − 0.27, − 0.12], crit p = 0.0004; see Fig. 4 , row 16). 

. Discussion 

.1. Factors influencing the early feedback-related neuronal signal 

The current study found, based on a large sample of 992 participants,

hat valence and expectedness influence the neuronal signal and behav-

oral adjustments after feedback. Fig. 5 summarizes the contributions

f feedback-related performance monitoring components to feedback-

ocked EEG dynamics in a schematic sketch. As can be seen, the effect

f valence starts early around 180 ms at frontoparietal areas. Another

egative covariation joins in from 260 ms on at centroparietal elec-

rodes. This second, more parietal valence-specific effect was already

eported in other studies ( Gentsch et al., 2009 ; Ullsperger et al., 2014a )

nd appeared independently from frontocentral parts ( Gentsch et al.,

009 ). Since the classification of the signal is still unclear, future re-

earch should address the origin of this phenomenon. With respect to

lobal surprise or expectedness, we see a weaker frontal effect starting

t an early latency even before 180 ms (see Fig. 5 ). The interaction of

alence and surprise evokes a broad and sustained frontocentral effect

rom 230 ms on and it extends to parietal areas over time. 
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Fig. 5. Schematic representation of influencing factors and their manifestation in the neuronal signal and ERPs after feedback . ERP = event-related potential; 

FC = frontocentral; CP = centroparietal. 
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Negative feedback was associated with a sustained negativity in the

RN latency range. In the same time window, we found a negative co-

ariation of the feedback-locked EEG activity for the expectedness re-

ressor. These findings go in line with previous research ( Holroyd and

rigolson, 2007 ) and support the RL-account in a way, that the FRN is

ot only driven by mere surprise. Moreover, we found an interaction of

xpectedness and valence affecting the EEG signal in the latency range

f the FRN. This result supports the RL theory that the FRN is affected by

 signed RPE signal. The FRN modulation by expectedness was stronger

fter positive feedback than after negative feedback. Hence, one could

lso interpret the present findings in the context of a RewP. Since this

alence-specific effect occurs only in interaction with expectedness, this

nterpretation does not seem straight forward to us. In other words, EEG

ynamics in the time range of the FRN are more modulated by out-

ome expectancy after positive compared to negative feedback. RPEs

re therefore stronger represented and have a larger “dynamic range ”

uring positive events than during negative events. In this case, the RPE

ppears to be driven by surprise. In contrast, when the RPE is driven

y valence, we found a stronger, later, and more parietal modulation

f the FRN by valence for unexpected events than for expected events.

his finding rather supports recent evidence suggesting that the FRN

eflects some combination of reward- and salience-prediction error en-

oding ( Glazer and Nusslock, 2021 ). In line with that, new studies state

hat the signal in the latency range of the FRN reflects independent pro-

essing of both better-than-expected and worse-than-expected outcomes

 Bernat et al., 2015 , 2008 ; Foti et al., 2015 ; Hoy et al., 2021 ). The FRN is

roposed to reflect the neural response to a negative RPE (losses) asso-

iated with theta band oscillatory perturbations ( Cavanagh et al., 2012 ,

010 ; Cavanagh and Frank, 2014 ; Cavanagh and Shackman, 2015 ),

hereas the RewP is proposed to reflect the neural response to a posi-

ive RPE (wins) associated with delta band activities ( Cavanagh, 2015 ).

nfortunately, in the present study, there are some limitations that re-

trict the interpretation of the RPE, particularly the differentiation into

ositive and negative RPEs. Due to the task design, the probability and

alence of the feedback are intertwined. 

.2. Factors influencing the later feedback-related neuronal signal 

Results for the neuronal signal at later latencies show also an influ-

nce of expectedness and valence. Regarding surprise, there is a sus-

ained centroparietal effect from around 300 ms on (see Fig. 5 ). From
10 
40 ms after feedback, a valence-specific frontoparietal positive covari-

tion appears and finds its peak at 380 ms. 

Concerning the P3 complex, the influence of global surprise could

e replicated ( de Bruijn et al., 2004 ; Fischer and Ullsperger, 2013 ;

ars et al., 2008 ): we showed a dependence of the neuronal sig-

al during the time window of the P3b at centroparietal areas on

xpectedness. Valence elicited a frontoparietal effect from 340 ms

n. This P3a-pattern could therefore represent a stimulus-driven at-

ention mechanism. Furthermore, the P3 complex was most positive

or unexpected positive-feedback outcomes. This finding is consistent

ith the results of Hajcak et al. (2007) and Severo et al. (2018) .

alentowska et al. (2019) had similar findings: the P3b amplitude was

arger for positive than negative feedback in unexpected events. Because

urprising positive events can be very helpful in increasing the perfor-

ance, this phenomenon could be interpreted as a goal-relevant action-

alue-updating of this specific feedback. Additionally, we addressed

urprise on a more trial-by-trial basis and examined the impact of a lo-

ally surprising event. In line with previous evidence ( Mars et al., 2008 ;

ieuwenhuis et al., 2005 ; Squires et al., 1976 ), results show a depen-

ence of the P3 complex to local surprise in a way, that the P3 is more

ositive when local deviants appear. 

.3. Link between FRN and behavioral adaptation 

Concerning behavioral adaptation, an association between the size

f the FRN and the amount of behavioral adjustment in the following

rial in combination with feedback valence was assumed: after negative

eedback, a stronger effect on the neuronal signal in the time window

f the FRN is expected to be associated with a bigger change in reaction

ime than after positive feedback. In a more exploratory way, we created

 measure for behavioral adaptation that also depicts performance im-

rovement and decline. Results show only a small association between

daptation after feedback and the neuronal signal during the time win-

ow of the FRN both overall trials and for trials with negative feed-

ack, mostly at parietal electrodes. Previous research was able to link

he FRN to behavioral adaptations depending on feedback valence and

xpectedness ( Arbel et al., 2013 ; Cavanagh, 2015 ; Holroyd and Krigol-

on, 2007 ). One reason why we could not reproduce these findings is

he nature of the feedback used in the present task. The feedback con-

ained information about the correctness of the response but did not

ell the participants in which direction to adjust their behavior in or-

er to improve their performance in the upcoming trial. At the same
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e  
ime, our measure of behavioral adaptation did contain directional in-

ormation about whether one is getting closer or further away from the

orrect response, and thus did not correspond to the information con-

ent of the feedback itself. In order to use feedback profitably, the in-

ormation content is crucial. It has already been shown that this also

ffects the neuronal signal ( Cockburn and Holroyd, 2018 ). Future exper-

ments should therefore work with differentially informative feedback

nd corresponding outcome measures to more specifically capture the

elationship between the feedback-processing neuronal signals and be-

avioral consequences. The unspecific association between behavioral

daptations and feedback-related EEG activity in our task might reflect

articipants’ attempt to adjust their behavior in an exploratory manner

ollowing negative feedback. The dependence of behavioral adaptation

n both feedback valence and expectedness might suggest that partici-

ants infer that it is adaptive to adjust their behavior more after unex-

ected negative feedback. In this task-state, the target time window is

ider, hence larger adjustments are more likely to improve behavior.

ecause participants are not told whether their time estimation was too

ast or too slow, they are forced to randomly adjust their behavior after

egative feedback and try to memorize their time estimation after pos-

tive feedback. This process could be reflected in the sustained parietal

ositive response seen after positive feedback. For the present study,

owever, this assumption has to remain a tentative explanation. 

In line with the findings mentioned above (4.1), adaptive behav-

or and learning after feedback can have different functions depending

n the type of RPE: an unsigned PE may enhance selective attention

ased on known task rules ( Danielmeier et al., 2015 , 2011 ; King et al.,

010 ), while a signed PE determines the direction of reinforcement

earning, that is, to repeat or avoid an action ( Ullsperger et al., 2014b ).

rbel et al. (2013) showed that the FRN elicited by negative feedback

as not correlated with long-term learning outcomes, whereas positive-

eedback-associated FRN was correlated with the learning outcomes. In

ontrast, Cavanagh (2015) hypothesized a differentiation in hierarchi-

ally distinct types of prediction error, where delta band activity linked

o a rewarding event motivates immediate behaviors, while theta band

ctivity linked to punishing events initiates long-term behavioral ad-

ustments ( Cavanagh and Shackman, 2015 ). In the present study, we

emonstrate a small effect of the interaction of consecutive behavioral

daptation with outcome expectedness on the neuronal signal between

40 and 280 ms for trials with negative feedback. This may provide

vidence for the connection between negative RPE and behavioral ad-

ustments. Nevertheless, the FRN varies due to different feedback char-

cteristics and the amount of feedback information ( Cockburn and Hol-

oyd, 2018 ) and is therefore highly task dependent. This could be one

eason for inconsistencies in existing evidence. Studies finding inter-

ndividual differences ( van Noordt and Segalowitz, 2012 ) or studies

elated to mental disorders ( Endrass et al., 2013 ; Keren et al., 2018 ;

ebb et al., 2017 ) also show that the FRN does not reflect a monolithic

lock with only one unique functional interpretation. Rather, the task,

ontext, etc., must be considered to characterize the factors that con-

ribute to the FRN. These contributions and their representations may

ary independently ( Stewardson and Sambrook, 2021 ), leading to vari-

tions in ERPs. This can even lead to latency shifts in the individual

ffects, making it difficult to unambiguously assign FRN and P3. There-

ore, the task should always be considered when interpreting different

ndings concerning the FRN and adaptive behavior. 

.4. Link between P3 and behavioral adaptation 

Since the feedback-related P3 had been associated with behavioral

daptation ( Fischer and Ullsperger, 2013 ; Jepma et al., 2018 , 2016 ), the

3 amplitude could be expected to correlate positively with changes in

ehavioral performance after feedback. Surprisingly, there was a con-

rarian association between behavioral adaptation and the neuronal sig-

al in the P3 time frame at frontoparietal areas (see Fig. 5 ): the neuronal

ignal appears less positive when behavioral adaptation to the next trial
11 
s greater, i.e. that performance has improved. Nassar et al. (2019) and

irschner et al. (2021) predicted adjustments in behavior based on

he amplitude of the P3, but as a function of the source of surprise.

f the surprise was uninformative, the P3 negatively predicted learn-

ng. As mentioned earlier, the feedback in the present study was un-

nformative in a way that it was not directional. Thus, it can be

oncluded that the counterintuitive association between P3 and behav-

oral adjustment in the present study may reflect the negative predic-

ion from above ( Kirschner et al., 2021 ; Nassar et al., 2019 ). Addition-

lly, Cavanagh (2015) found an association between the P3 complex

nd behavioral adaptation: delta band phase dynamics observed in the

3 appear to be involved in strategic behavioral adjustments like the

egree of response time speeding. Interpretation of the authors sug-

ests that the processes underlying FRN and P3 reflect hierarchically

ifferent levels of prediction errors, reward and state prediction errors,

espectively. Whereas reward prediction errors give information to a

odel-free learner on a trial-and-error basis, state prediction errors in-

orm model-based systems by more complex forward predictions. If the

3 is modulated by state prediction errors and therefore depends on an

gents’ decision-making policy, a richer learning environment may be

eeded to reveal the relationship between behavioral adaptation and the

euronal signal during the corresponding time frame (like Chase et al.,

011 ). 

Taken together, the investigated ERP deflections are not only due

o single influencing factors, but are complex representations composed

f several influencing components. As Fig. 5 clearly shows, even within

RN latency ranges there are temporally and spatially distinguishable

ffects that are difficult to characterize using an ERP averaging ap-

roach. Also, previous methodological considerations ( Glazer et al.,

018 ; Williams et al., 2020 ) indicate the difficulty to isolate the FRN

nd confounds arising from component overlap. Therefore, they un-

erline the importance of teasing apart the stages of feedback pro-

essing to integrate individual reward-related ERPs in a more holistic

iew and to capture the broader temporal dynamics ( Foti and Wein-

erg, 2018 ; Glazer et al., 2018 ). There are already some attempts to do

o ( Gheza et al., 2018 ; Sambrook and Goslin, 2016 ). Moreover, time-

requency analysis could help future research identify and differentiate

ognitive processes underlying different types of RPE and their roles in

ehavioral adjustments to improve performance. 

.5. Limitations 

Methodological limitations include that feedback-related EEG dy-

amics may have been modulated by offset-related visual ERPs after

50 ms past feedback, but it is unlikely to affect our results with respect

o the regressors of interest. Additionally, previous findings have shown

n influence of valence effects on the amplitude of the FRN depending

n the perceptual salience of the feedback stimuli ( Liu et al., 2014 ). In

he present study, we cannot rule out this effect because feedback color

as not counterbalanced across participants. 

. Conclusion 

In the present study, we disentangled the functional relevance of in-

ependent contributions to electrophysiological correlates of feedback

rocessing in a big sample of N = 992 participants by using a novel

pproach in EEG analysis and a time estimation paradigm. While we

ave previously used instrumental learning tasks ( Burnside et al., 2019 ;

ischer and Ullsperger, 2013 ; Kirschner et al., 2021 ), we were able to

eplicate typical feedback-related components with the present task de-

pite it involves less opportunities to adapt behavior. The results of

he present study support the view that the FRN is driven by a signed

PE and furthermore influenced by global surprise. Depending on what

rives the RPE most –expected value or obtained outcome–, different

odulations of the FRN are possible. Whereas the FRN was less influ-

nced by global and local surprise, unexpected events elicited a larger
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3b. An association between behavioral adjustments and the P3 might

ndicate a representation of different RPE levels and types within the

omponents involved in feedback processing. With the help of a big

ample size and a regression approach that allows the simultaneous in-

estigation of multiple independent variables, we obtain information

n the temporal and spatial variance of the contributing effects on the

euronal signal. 
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