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Abstract. We use numerical relativity simulations to explore the conditions for a canonical
scalar field φ minimally coupled to Einstein gravity to generate an extended phase of slow
contraction that robustly smooths the universe for a wide range of initial conditions and then
sets the conditions for a graceful exit stage. We show that to achieve robustness it suffices that
the potential V (φ) is negative andMPl|V,φ/V | & 5 during the smoothing phase. We also show
that, to exit slow contraction, the potential must have a minimum. Beyond the minimum,
we find no constraint on the uphill slope including the possibility of ending on a positive
potential plateau or a local minimum with Vmin > 0. Our study establishes ultralocality for
a wide range of potentials as a key both to robust smoothing and to graceful exit.
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1 Introduction

The striking simplicity of our large-scale universe remains a major puzzle for theoretical
cosmology [17]. Slow contraction – a primordial phase that connects to the hot expansion
stage through a cosmological bounce – has been proposed as a dynamical mechanism to
homogenize, isotropize and flatten (henceforth: smooth) the universe on super-Hubble scales
[5]. A key characteristic of slow contraction is the relationship between physical distances that
evolve as the Friedmann-Robertson-Walker (FRW) scale factor a, and those that evolve as the
Hubble radius |H−1|, which is the scale of causal connectedness. As the universe contracts,
a and |H−1| shrink at different rates, i.e.,

a ∝
∣∣H−1

∣∣1/ε , (1.1)

where ε = (3/2)(1 + p/ρ) is the equation of state of the homogeneous energy component that
dominates the total energy density and has pressure p and energy density ρ. For slow contrac-
tion where ε� 3, the distance between two objects decreases much more slowly than the rate
at which the Hubble radius shrinks. An important consequence is that features originating
on sub-Hubble scales, e.g., primordial quantum fluctuations with initial wavelengths much
smaller than the Hubble radius, end up being extended over scales exponentially larger than
the Hubble radius by the end of the smoothing process, as required to explain the observed
cosmic microwave background (CMB) fluctuations.
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In a series of recent studies, using the tools of mathematical and numerical relativity,
it has been demonstrated that slow contraction is a robust, rapid, and universal smoother
(for a review, see [8]). That is, slow contraction is achieved for a wide range of initial
conditions (robustness) including those that lie far outside the perturbative regime of flat
FRW spacetimes such as highly inhomogeneous, anisotropic and curved initial geometries.
Smoothness is typically achieved within O(1) e-folds of contraction of the Hubble radius
(rapidity). In addition and perhaps more surprisingly, the numerical exploration has revealed
that smoothing through slow contraction is universal [13]: each spacetime point both within
and outside any Hubble volume evolves independently towards the flat FRW state. This
happens because, in contracting relativistic spacetimes, gradients quickly become negligible
and do not contribute to the evolution (ultralocality). The smooth FRW state is reached by
each spacetime point because it is the only stable fixed point of the ultralocal system that has
a large basin of attraction [10]. Notably, smoothing is not restricted to spacetime points that
originate from the same Hubble volume. This is radically different from smoothing through
inflation [8].

Thus far, all numerical relativity studies of slow contraction involved a canonical scalar
field φ that is minimally-coupled to Einstein gravity and has a negative exponential potential,

V (φ) = −V0e
−φ/m, (1.2)

where V0 and m are positive constants and for these studies the potential was unbounded
below. The scalar field acts as a microphysical source for a macroscopic equation of state,

ε ≡ 3×
1
2φ
′2

1
2φ
′2 + V (φ)

� 3, (1.3)

that triggers slow contraction as defined in Eq. (1.1), where prime denotes differentiation
w.r.t. the FRW time coordinate τ .

In this paper, we lay the groundwork for model building. We extend earlier studies
[4, 9, 10, 13] and elaborate the general conditions for a potential to achieve robust smoothing
through slow contraction. Furthermore, we examine whether bounding the potential from
below affects the robustness of smoothing. Potentials with global minima are of interest
when constructing realistic scenarios since they connect straightforwardly to an end of the
smoothing slow contraction phase.

The paper is organized as follows. We start with briefly outlining the numerical scheme
and defining the procedure that we use to set the initial conditions in Sec. 2. We then
demonstrate in Sec. 3 that, to achieve robust smoothing, it suffices that the scalar field
potential V (φ) is negative and MPl|V,φ/V | & 5 during the smoothing phase. (Here and
throughout, MPl ≡ 1/

√
8πGN denotes the reduced Planck mass with GN being Newton’s

constant.) In Sec. 4, we show that, for the smoothing phase to end, the potential must
be bounded from below and have a global minimum. Notably, we show that, due to the
combination of robust and rapid smoothing and the rapidly growing Hubble anti-friction,
completion of the smoothing phase is independent of the uphill slope. Reaching the potential
minimum, the scalar field quickly climbs uphill because the large Hubble anti-friction keeps
increasing the field’s kinetic energy density, which can enable the field to reach a positive
potential energy plateau (or local minimum) that can terminate the slow contraction phase
and connect smoothly to the hot expansion phase. In Sec. 5, we conclude by pointing to
possible future directions of research.
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2 Numerical scheme and initial conditions

To study the effect of various scalar field potential shapes on the robustness and rapidity of
slow contraction, we numerically solve the full 3+1 dimensional Einstein-scalar field equations,

Rµν −
1

2
gµνR = ∇µφ∇νφ− gµν

(
1

2
∇λφ∇λφ+ V (φ)

)
, (2.1)

�φ = V,φ, (2.2)

where Rµν is the Ricci tensor, R = Rµ
µ is the Ricci scalar and � = ∇λ∇λ denotes the

covariant d’Alembertian. We use the same numerical scheme we employed for previous non-
perturbative analyses of slow contraction, as fully detailed in Ref. [13]. Hence, in the following,
we only walk through the essential aspects to keep the presentation self-contained. As de-
scribed below, our scheme is particularly well-suited to the situation of slow contraction since
it enables us to track the evolution for several hundreds of e-folds of contraction of the Hub-
ble radius without encountering instabilities or singular behavior for a wide range of initial
conditions including those that lie outside the perturbative regime of FRW spacetimes.

2.1 Numerical scheme

An appropriate numerical general relativity scheme involves a particular formulation of the
field equations combined with a special gauge choice that leads to a system of coupled,
non-linear partial differential equations (PDEs) that can then be solved using standard finite-
difference or spectral methods; see, e.g., [2]. For example, the orthonormal tetrad form of
the Einstein-scalar equations (2.1-2.2) that underlies our numerical scheme represents each
space-time point through a set of four 4-vectors (tetrads); for the complete set of evolution
and constraint equations, see Appendix A. The local 4-metric is flat (Minkowski) everywhere
such that the geometric variables, which we evolve by way of the field equations, reduce to
the sixteen tetrad vector components Eai and the eighteen Ricci rotation coefficients γabc.
The γabc define how the tetrad is deformed when moving from one point to another.

We specify the tetrad frame gauge by fixing six of the Ricci rotation coefficients such
that no non-physical rotations are introduced (Fermi-propagation) and the time-like tetrad
is normal to space-like hypersurfaces (hypersurface-orthogonality), i.e., our tetrad gauge is
chosen such that it defines both a particular frame and a particular foliation of spacetime
into space-like hypersurfaces. As a consequence of our frame gauge choice, the remaining
twelve Ricci rotation coefficients, which yield a complete set of geometric variables, represent
physical quantities: the six components of the symmetric extrinsic 3-curvature tensor Kab

and the six components of the symmetric part of the intrinsic (or spatial) 3-curvature tensor
Nab.

To turn the tetrad equations into PDEs that we then numerically solve, it is necessary
to re-express directional derivatives along tetrads as partial derivatives along coordinate di-
rections. To this end, we specify a particular coordinate gauge. Again, to avoid introducing
unphysical gauge effects and obtain the formulation that readily relates to observables, we fix
the shift vector such that the spatial coordinates are co-moving both with the tetrad frame
and the associated foliation. Finally, we fix the lapse by requiring that spatial hypersurfaces
of constant time are constant mean curvature (CMC) hypersurfaces. Here, the mean cur-
vature Θ−1 is given by the trace of the extrinsic curvature, Θ−1 ≡ 1

3Ka
a. Note that in the

homogeneous limit, the inverse mean curvature Θ coincides with the Hubble radius |H−1|.
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Our coordinate gauge choice is especially advantageous to simulate contracting space-
times for two reasons. First, by our CMC gauge choice, the mean curvature is homogeneous
and monotonic. We can therefore rescale the coordinate time t to track the inverse mean
curvature Θ,

et =
1

3
Θ, (2.3)

such that NΘ ≡ t0 − t measures the number of e-folds of contraction in Θ between t0 and
t. Note that, for slow contraction to explain the observed large-scale universe as well as the
primordial fluctuation spectrum as seen in the CMB, the flat FRW state must be reached by
t− tend = 60, where tend marks the end of slow contraction. This is because the perturbation
modes observed in the CMB must be generated on a flat FRW background over the course of
the last 60 e-folds of slow contraction [4].

In addition, reaching the putative curvature (or big bang) singularity takes infinite coor-
dinate time, i.e., with t running from zero to negative infinity, Θ→ 0 as t→ −∞, but for all
finite values of t dynamical variables remain finite. That means, we can achieve stable evo-
lution for arbitrary many e-folds of contraction independent of the actual bounce mechanism
that eventually connects to the hot expanding phase.

Second, we can rescale all dynamical variables by normalizing them with the mean
curvature Θ,

N → N ≡ N ×Θ−1, (2.4)
{Eai,Σab, nab, Ab, Sa} → {Ēai, Σ̄ab, n̄ab, Āb, S̄a} ≡ {Eai,Σab, nab, Ab, Sa}/Θ−1 , (2.5)

V → V̄ ≡ V/Θ−2, (2.6)

where Σab is the trace-free part of the extrinsic curvature Kab, nab and Ab are the sym-
metric and anti-symmetric part of the intrinsic curvature Nab, respectively, Sa is the scalar
field gradient and bar denotes normalization by the mean curvature Θ−1 on constant time
hypersurfaces (henceforth, Hubble-normalization). Using dimensionless Hubble-normalized
variables, we avoid numerical stiffness issues that we would expect given the exponentially
different rates at which physical scales and the mean curvature evolve and that would limit
the number of e-folds over which the code can run.

Furthermore, there exists a special set of Hubble-normalized variables, a combination of
the geometric and scalar field variables,

Ωs = 1
6 Σ̄abΣ̄ab, (2.7)

Ωk = −2
3Ēa

i
∂iĀ

a + ĀaĀa + 1
6 n̄

abn̄ab − 1
12(n̄cc)

2, (2.8)

Ωφ = 1
6W̄

2 + 1
6 S̄

aS̄a + 1
3 V̄ , (2.9)

which we use to track whether and how smoothing is achieved. Here, W̄ ≡ N−1∂tφ denotes
the Hubble-normalized scalar field velocity. The Ωi represent the fractional contribution of
component i (anisotropy, spatial curvature, scalar field) to the total energy density. Complete
smoothness, i.e., the flat FRW state, is reached when Ωφ = 1 and Ωs,Ωk = 0. Note that, in
the homogeneous limit, the Ωi coincide with the dimensionless Friedmann variables commonly
used in the cosmology literature.

2.2 Initial conditions

The numerical scheme must be supplemented by initial conditions that satisfy a set of con-
straint equations (A.9-A.13), i.e., the projection of the Einstein-scalar field equations on a spa-
tial hypersurface at some initial time t0. Since the field equations propagate these constraints,
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constraint satisfying initial data ensure energy and momentum conservation throughout the
evolution.

Our scheme enables us to study a wide range of initial conditions including those that lie
outside the perturbative regime of flat FRW spacetimes because, when specifying the initial
data, we utilize all the degrees of freedom left after ensuring constant satisfaction.

More precisely, as common in numerical relativity studies, we adapt the York method
[18] and define the spatial metric of the initial t0-hypersurface to be conformally-flat,

gij(t0, ~x) = ψ4(t0, ~x) δij , (2.10)

where ψ(t0, ~x) the conformal factor. Together with the mean curvature Θ−1
0 at t0 that we

freely specify, gij(t0) fixes the components of the spatial curvature tensor,

n̄ab(t0, ~x) = 0, (2.11)

Āb(t0, ~x) = −2ψ−1(t0, ~x) Ēb
i
(t0, ~x) ∂iψ(t0, ~x), (2.12)

as well as the tetrad vector components,

Ēa
i
(t0, ~x) = ψ−2(t0, ~x) Θ−1

0 δa
i. (2.13)

Note that picking a conformally-flat initial metric is not a true restriction on the initial data.
Rather, it is a practical device to ensure the constraints are satisfied. However, unlike con-
straint satisfaction, which is propagated by the Einstein-scalar equations, conformal flatness
is broken within only a few integration steps, as verified by our numerous simulations.

At the same time, the York method enables us to semi-analytically define the initial
scalar field distribution,

φ(t0, ~x) = fx cos(nxx+ hx) + fy cos(nyx+ hy) + φ0, (2.14)

its conformally-rescaled velocity,

Q(t0, ~x) = Θ0 (qx cos(mxx+ dx) + qy cos(myy + dy) +Q0) , (2.15)

as well as the divergence-free part of the conformally-rescaled anisotropy (or shear) tensor,

Z0
ab(t0, ~x) =

b2 + c2 cos y ξ κ1 + c1 cos y
ξ b1 + a1 cosx κ2 + a2 cosx

κ1 + c1 cos y κ2 + a2 cosx −b1 − b2 − a1 cosx− c2 cos y

 . (2.16)

Here, Q ≡ ψ6W̄ and Zab ≡ ψ6Σ̄ab are the conformally rescaled scalar field velocity and shear
tensor, respectively, specified through the parameters φ0, Q0, fx, fy, qx, qy, nx, ny,mx,my, hx,
hy, dx, dy, a1, a2, b1, b2, c1, c2, κ1, κ2 and ξ which we freely and independently set for each
simulation run. The sinusoidal form of the spatial variations reflects that the boundary
conditions are periodic, 0 ≤ x, y ≤ 2π, with 0 and 2π identified. Although we only show a
single mode for the shear and two modes for the field’s velocity, they can be replaced by a
sum of different fourier modes with different amplitudes, wavenumbers and phases.

The initial data is completed by numerically computing the conformal factor, ψ(t0, ~x),
and the rest of the shear tensor, Zab−Z0

ab, using the Hamiltonian and momentum constraints,
respectively.
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2.3 Numerical implementation

The numerical analysis presented in this paper extends the results of Refs. [4, 9, 10, 13]. To
evolve the hyperbolic-elliptic system of partial differential equations (A.1) - (A.8), we dis-
cretize the equations using second order accurate spatial derivatives and a three-step method
for time integration employing the Iterated Crank-Nicolson algorithm. At each sub-step, we
first solve the elliptic equation (A.8) through a multigrid V-cycle method and then update
the hyperbolic equations (A.1) - (A.7) to the next Iterated Crank-Nicolson sub-step. In the
simulations presented below, we use a grid of 1024 points with ∆x = 2π/1024 and a Courant
factor of 0.5.

To demonstrate the convergence of our code, the error and convergence was analyzed
for a broad range of examples using the same methods as detailed in the Appendices of
Refs. [9, 13]. Our code shows no signs of numerical instability and exhibits clear second order
convergence at early times. At later times when a smooth, ultralocal spacetime develops, we
empirically see the convergence improve to third order.

In order to compare whether and how the robustness and rapidity of smoothing is affected
by the shape of the scalar field potential, we consider the same type of initial conditions as
employed in Refs. [9] and [13]. In general, as specified below, we consider initial conditions
that lie in the non-perturbative regime of flat FRW spacetimes. For example, we adjust
the amplitude qx of the initial scalar field velocity fluctuations proportionally to the slope
of the scalar field potential |V̄,φ/V̄ | such that qx ∼ 10 % of the flat FRW attractor value
Qattr ∼ |V̄,φ/V̄ |. In addition, we choose the vacuum part of the initial shear tensor given by
Eq.(2.16) such that the initial shear density parameter Ωs is the dominant contribution to
the total energy density.

3 Robustness and the downhill slope

Non-perturbative, numerical relativity robustness studies of slow contraction [4, 9, 10, 13] so
far have all involved a pure negative exponential potential that is unbounded below. One of
the goals of this paper is to systematically explore the conditions on the scalar field potential
to achieve robust and rapid smoothing. We do this by first presenting three representative
cases involving a steep negative power-law potential, a negative super-exponential potential,
and a shallow negative exponential potential. Then, using the type of dynamical systems
analysis that we developed in Ref. [9], we show that, to achieve robust smoothing, it suffices
that the scalar field potential V (φ) is negative and MPl|V,φ/V | & 5 during the smoothing
stage.

3.1 Worked examples

To study whether and how the potential shape affects the robustness and rapidity of smoothing
during slow contraction, we performed a large set of simulations involving a wide range of
initial conditions and scalar field potentials with different signs, amplitudes and slopes. In
the following, we will summarize our findings using representative examples.

Figure 1 shows snapshots of the evolution of the shear, spatial curvature and scalar
field density parameters Ωs,Ωk and Ωφ defined in Eqs. (2.7-2.9) for three different potential
shapes: V (φ) = −V0φ

n with n = 50 (upper row), V (φ) = −V0 exp(φ2/M2) with M2 = 1/3
(middle row) and, as a reference case, V (φ) = −V0 exp(−φ/m) with m = 0.2 (lower row). In
Figure 2, we present the evolution of the density parameters for a shallow negative exponential
V (φ) = −V0 exp(−φ/m) with m = 0.5. For each potential, we set the coefficient to V0 = 0.1
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Figure 1: Snapshots of the Hubble-normalized energy density in shear Ωs (green), curvature
Ωk (red), and scalar field Ωφ (blue) as a function of the number of e-folds of contraction
NΘ in the inverse mean curvature Θ corresponding to a negative power-law potential (upper
row), a negative super-exponential potential (middle row), and a steep negative exponential
potential with m = 0.2 (lower row). The initial states are highly curved, inhomogeneous and
anisotropic and only differ in the initial scalar field velocity, as specified in Sec. 3.1. Each of
the three potentials leads to complete smoothing within less than 20 e-folds of contraction.

(in units of the mean curvature Θ at t0). The three potentials corresponding to Fig. 1 lead
to complete smoothing (Ωφ = 1, Ωs,Ωk = 0) by NΘ ' 17 (power-law), NΘ ' 11 (super-
exponential), and, NΘ ' 12 (exponential), respectively, where NΘ is equal to the number of
e-folds of contraction of Θ. The shallow negative exponential potential corresponding to Fig. 2
does not lead to complete smoothing. Instead, some parts of the original Hubble-volume (the
entire simulation box) are smoothed and some end in an anisotropic Kasner-like state (Ωs =
const. 6= 0), locally developing chaotic mixmaster behavior [5, 6]. The case in Fig. 2 is also
representative of positive potentials and the case of a free scalar with no potential.

To evaluate their effect on the robustness of smoothing, we independently varied all
parameters corresponding to the initial conditions in Eqs. (2.14-2.16) from zero to O(1).
Here and henceforth, we keep those parameters fixed that do not have any significant effect
on robustness. That is, in each of the four cases, the divergence-free part of the Hubble-
normalized shear tensor Z̄0

ab defined in Eq. (2.16) is set to

Z0
ab(t0, ~x) =

b2 ξ 0
ξ b1 + a1 cos(x+ φx) a2 cos(x+ φx)
0 a2 cos(x+ φx) −b1 − b2 − a1 cos(x+ φx)

 , (3.1)

where a1 = 0.5, a2 = 0.5, b1 = −0.15, b2 = 1.8, ξ = 0.01 and φx = 0.15; the scalar field
distribution is set to φ(t0,x) = 0; and the period and shift of the sinusoidal spatial variations
of the scalar field velocity are fixed by setting mx = 1, dx = 0 and my, dy = 0.

Note that, for the simulations presented in this Section, all deviations from homogeneity
are along a single spatial direction. As shown in Ref. [10] and below in Sec. 4.2.2, this

– 7 –



Figure 2: Snapshots of the Hubble-normalized energy density in shear Ωs (green), curvature
Ωk (red), and scalar field Ωφ (blue) as a function of the number of e-folds of contraction in
the inverse mean curvature Θ corresponding to a shallow negative exponential potential with
m = 0.5. The potential is not sufficiently steep to source a smoothing slow contraction phase
but instead leads to a (degenerate) Kasner-like final state in which spacetime is continuously
being bumped from one Kasner-like state to another.

kind of initial condition is the least favorable for slow contraction to start. Intriguingly,
inhomogeneities along two or three spatial directions are more favorable because they mean
less symmetric initial conditions and more ways to carry the system towards the flat FRW
attractor fixed point and away from the Kasner-like fixed point that appears to have a small
basin of attraction.

We found that the key parameters that affect the robustness and the rapidity of smooth-
ing are the sign and steepness of the scalar field potential, the field’s average initial velocity
Q0 (in units of the mean curvature Θ at t0) and the magnitude of the velocity fluctuation
mode qx corresponding to the wavenumber mx as defined in Eq. (2.15). Our finding extends
and generalizes the results of Refs. [4, 9], which only considered pure exponential potentials.
For the four cases that we present here, Q0 and qx are specified for each potential separately
as follows: For the super-exponential potential, Q0 = 1, qx = 0.3; for the exponential poten-
tial with m = 0.2, Q0 = 0.6, qx = 0.5; for the power-law potential, Q0 = 5, qx = 5; and for
the exponential potential with m = 0.5, Q0 = 0, qx = 0.2. Our convention is that Q0 > 0
corresponds to a scalar field rolling downhill (towards more negative values of the poten-
tial). For the three potentials corresponding to Fig. 1, qx is adjusted to the slope such that
the initial velocity fluctuation is non-perturbatively far from the flat FRW attractor value,
Qattr ∼ |V̄,φ/V̄ |; for example, qx ∼ 0.1Qattr. For the power-law and exponential potentials,
the average initial velocity Q0 is chosen such that it corresponds to the smallest value for
which complete smoothing is reached. For the super-exponential, Q0 is the smallest value
for which complete smoothing is reached more rapidly than in the case of the exponential
potential.

Although robust smoothing could be achieved with power-law and super-exponential
potentials as well, the overall dynamics is rather different from what we observe in the case
of the pure exponential potential (middle row of Fig. 1). The difference can be illustrated,
e.g., through the evolution of the Hubble-normalized lapse. Figure 3 depicts the inverse
Hubble-normalized lapse N−1 as a function of t corresponding to the case of power-law
and super-exponential potentials in Fig. 1 for a representative spatial point x = π that
starts out in a highly curved, inhomogeneous and anisotropic region. In the case of a pure
negative exponential, N−1 = 1/(2m2) during the smoothing phase. In the case of a power-
law potential, N−1 first steeply approaches a large value (∼ 250) but then, having reached a
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Figure 3: Evolution of the Hubble-normalized lapse N−1 as a function of the number of
e-folds of contraction NΘ in the inverse mean curvature Θ corresponding to a negative power-
law potential (left panel) and a negative super-exponential potential (right panel) for a select
spatial point x = π that starts out in a highly curved, inhomogeneous and anisotropic state.
Once the smoothing phase is reached, N−1 coincides with the effective equation of state
associated with the scalar field φ defined in Eq. (1.3).

maximum (NΘ ' 20), N−1 relatively quickly (by NΘ ' 40) falls back to 3 at which point the
smoothing phase comes to an end. Yet, due to the rapidity of smoothing, we do not observe
any deviations from homogeneity, isotropy or flatness at any later point, even when running
the simulations for over 100 or more e-folds. In the case of the super-exponential, N−1 grows
linearly as slow contraction proceeds. In particular, the smoothing case can last arbitrarily
long just like the smoothing phase sourced by exponential potentials.

3.2 Potential shape from dynamical systems analysis

Having demonstrated numerically that sufficiently steep negative potentials all lead to an
extended period of smoothing slow contraction that is robust to a wide range of initial con-
ditions, including those that lie outside the perturbative regime of FRW spacetimes, we now
show analytically that, to achieve robust smoothing, it suffices that the scalar field potential
V (φ) is negative and MPl|V,φ/V | & 5 during the smoothing stage. To this end we adapt the
methods developed in the first systematic robustness study of slow contraction [9].

Ref. [9] provides a dynamical systems method to identify the attractor fixed points of
the coupled Einstein-scalar equations in the ultralocal limit when the macroscopic equation
of state is sourced by a negative exponential potential. In our numerous simulations that
involved negative as well as positive potentials ranging from power-law to exponential to
super-exponential, we have confirmed that in general the system rapidly converges to an
ultralocal (Ēai, Āb, S̄a ' 0) state that is spatially-curved (n̄ab 6= 0) and anisotropic (Σ̄ab 6= 0).
This means, the attractor fixed points of the coupled, non-linear Einstein-scalar PDE system
are the same as the attractor fixed points of the coupled, linear ODE system (see Appendix B)
that describes the evolution in the ultralocal limit.

Since, in the ultralocal limit, the momentum constraint (A.10), which reduces to a simple
algebraic relation:

εa
bcn̄b

dΣ̄cd = 0, (3.2)

implies that the shear and spatial curvature tensors commute, it is straightforward to verify
(see, Appendix B in Ref. [9]) that the essential time evolution of the Einstein-scalar ODE
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system is encapsulated by the eigenvalue ODE system,

σ̇1 =
(

1− 3N
)
σ1 − 1

3 N
((

2ν1 − ν2 − ν3

)
ν1 −

(
ν2 − ν3

)2)
, (3.3)

σ̇2 =
(

1− 3N
)
σ2 − 1

3 N
((

2ν2 − ν1 − ν3

)
ν2 −

(
ν1 − ν3

)2)
, (3.4)

ν̇1 =
(

1 +N
(
2σ1 − 1

))
ν1, (3.5)

ν̇2 =
(

1 +N
(
2σ2 − 1

))
ν2, (3.6)

ν̇3 =
(

1−N
(
2σ1 + 2σ2 + 1

))
ν3, (3.7)

˙̄W = −
(

3N − 1
)
W̄ −N V̄,φ, (3.8)

where σi and νi (i = 1, 2, 3) denote the Hubble-normalized shear and spatial curvature tensors,
respectively, and W̄ is the Hubble-normalized scalar field velocity. Note that, by definition,
the shear tensor Σ̄ab is trace-free and hence σ3 = −σ1 − σ2 is not an independent variable.

The eigenvalue system (3.3-3.8) is subject to the Hamiltonian constraint,

N−1 = 3− V̄ − 1
3

(
ν2

1 + ν2
2 + ν2

3

)
+ 1

6

(
ν1 + ν2 + ν3

)2
, (3.9)

and the CMC gauge condition that yields the lapse equation,

3N−1 = 3 + W̄ 2 − V̄ (φ) + 2
(
σ2

1 + σ1σ2 + σ2
2

)
. (3.10)

The fixed point solutions of the eigenvalue ODE system have been identified in Ref. [9]
for the case of V̄,φ/V̄ ≡ constant . In the frozen coefficient approximation where we treat
the system as one with constant coefficients for each fixed value of φ, it is straightforward to
verify, e.g., by using a computer algebra system, that the ODE system admits the same type
of fixed point solutions for V̄,φ/V̄ 6= constant and changing adiabatically:

• if V̄ > 0, there exist four spatially curved fixed point solutions (with at least one of the
νi 6= 0);

• if V̄ ' 0, there exists a spatially curved (e.g., ν1 = ν2 6= 0, ν3 = 0) and anisotropic
(σ1 = σ2 = −1) fixed point and a flat (all νi = 0) but anisotropic (σ1, σ2 6= 0) Kasner-
like (N = 1/3) fixed point;

• if V̄ < 0, there exists a flat FRW (all σi, νi = 0) fixed point solution:

W̄ = −
V̄,φ
V̄
, V̄ = 3− 1

2

(
V̄,φ
V̄

)2

, N−1 =
1

2

(
V̄,φ
V̄

)2

. (3.11)

To show the stability of the flat FRW fixed point solution for the general case of
V̄ < 0 and V̄,φ/V̄ 6= constant , we linearize the eigenvalue system (3.3-3.8) around the fixed
point (3.11):

δσ̇i =

(
1− 6

(
V̄,φ
V̄

)−2
)
δσi (3.12)
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δν̇i =

(
1− 2

(
V̄,φ
V̄

)−2
)
δνi, (3.13)

δφ̇ = −2

(
V̄,φ
V̄

)−2

δW̄ , (3.14)

δ ˙̄W =

(
1− 6

(
V̄,φ
V̄

)−2
)(

δW̄ +

(
V̄,φφ
V̄
−
(
V̄,φ
V̄

)2
)
δφ

)
, (3.15)

where we used Eqs. (3.9-3.10), to eliminate the dependent variables δN = −N 2W̄ δW̄ and
δV̄ = −W̄ δW̄ . For the stability analysis, we consider sufficiently small environments around
each field value φ0 such that the frozen coefficient approximation holds, i.e., the coefficients
of the linearized system (3.12-3.15) can be viewed as constants.

The perturbations around the flat FRW fixed point decay as t → −∞, i.e., the fixed
point solution is a stable attractor, if:

MPl

∣∣∣∣ V̄,φV̄
∣∣∣∣ > √6 and

1

8

((
V̄,φ
V̄

)2

− 6M−2
Pl

)
≥
V̄,φφ
V̄
−
(
V̄,φ
V̄

)2

≥ 0, (3.16)

as the scalar field is rolling downhill. The key difference from the case with MPl|V̄,φ/V̄ | =
constant is the term ∝ δφ in Eq. (3.15). Due to the presence of this term, the equations
for δφ and δW̄ are coupled, which results in the second condition in Eq. (3.16) that bounds
V̄,φφ/V̄ both from above and below.

As we have seen in the examples presented above in Sec. 3.1, due to the extraordinary
rapidity of smoothing, the potential can have an overall power-law shape if it exhibits expo-
nential behavior for some time, sourcing a sufficiently large and nearly constant MPl|V̄,φ/V̄ |.

As to how long this requirement must be met, depends on the initial conditions. For
generic initial conditions that lie far outside the perturbative regime of flat FRW geometries,
the whole of spacetime is typically smoothed within NΘ ' 10-20 e-folds of contraction of the
inverse mean curvature Θ, ifMPl|V̄,φ/V̄ | & 5. Once the flat FRW state is reached, the system
stays there and spacetime continues to slowly contract for any negative potential. The overall
potential shape only determines how much faster the Hubble radius shrinks than the scale
factor, i.e. by how much physical distances contract during 60 or more e-folds of contraction
in the Hubble radius. The shallower the potential the more physical distances shrink for the
same amount of contraction in the Hubble radius.

Although rapid and robust smoothing does not require an overall exponential (or super-
exponential) potential, various theoretical arguments as to what might constitute a consistent
theory of quantum gravity point towards steep exponentials or super-exponentials; see e.g.,
Ref. [14]. For example, the ‘range constraint’ [16] states that for low-energy effective theories
to remain valid, the scalar field should roll over a range of ∆φ ∼ O(1) (in reduced Planck
units). In the case of a negative exponential potential as given in Eq. (1.2) with V̄,φ/V̄ =
−1/m, we can approximate ∆φ using the fixed point solution as given in Eq. (3.11):

∆φ ' 2mNΘ, (3.17)

where NΘ = t0−t measures the number of e-folds of contraction of the inverse mean curvature
Θ, see Eq. (2.3). That is, during NΘ ∼ O(100) e-folds of contraction, ∆φ ∼ O(1) if m/MPl ∼
O(10−2). For such a potential, physical distances shrink by a factor of 3 during 60 e-folds of
contraction in the Hubble radius.
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In the cases where we observed that the system approaches the Kasner-like fixed point,
the potential wasn’t steep enough for the system to reach the flat FRW state. The same occurs
for positive potentials or no potentials. In all of these cases, V̄ rapidly becomes negligible
and the dynamical behavior corresponds to that of a free scalar and, as shown in Ref. [9],
the system approaches the Kasner-like fixed point. Note there is a continuous set of possible
Kasner-like states (see, e.g., Row 2 of Table 1 in Ref. [9]) such that the dynamics can evolve
to an inhomogeneous chaotic mixmaster state. Scalars with such potentials are ill-suited
microphysical sources for smoothing slow contraction.

4 Graceful exit, boundedness and the uphill slope

All potentials considered thus far have in common that they are unbounded from below,
meaning that the phase of smoothing slow contraction could last arbitrarily long and the
Ricci curvature, the Hubble radius and energy density could get arbitrary large. However, in
scenarios that involve a classical (non-singular) bounce, slow contraction must conclude well
before the Hubble radius shrinks to the size of the Planck length; see, e.g., [11, 12].

The transition from slow contraction to the bounce stage is only successful, though, if
it preserves the homogeneity, isotropy and flatness over exponentially many super-Hubble
scales (‘graceful exit’). In the remainder of this paper, we construct realistic models of slow
contraction that include an exit stage and use the tools of numerical relativity to explore
whether and how the smoothing power of slow contraction is affected by modifying the scalar
field potential to include the exit stage.

4.1 General prescriptions for model building

We continue considering scalar fields with canonical kinetic energy that are minimally-coupled
to Einstein gravity. Realistic potentials that generate an extended phase of smoothing slow
contraction that is robust to a wide range of initial conditions and lead to an end of slow
contraction share three characteristic features:

• a downhill slope with MPl|V,φ/V | > 5 to source NΘ ∼ 60 or more e-folds of slow
contraction;

• a potential minimum that leads to an exit from slow contraction; and

• an uphill slope that ends with a slightly positive plateau or a local minimum the height
of which, VDE, corresponds to today’s dark energy density.

First, to account for today’s observable universe, slow contraction must last sufficiently
long. In particular, to generate the primordial fluctuations observed in the CMB, spacetime
must converge to the homogeneous, isotropic and flat FRW state before the last NΘ ∼ 60
e-folds of slow contraction of the inverse mean curvature Θ, see, e.g., Ref. [9]. For general
initial conditions, earlier numerical studies [4, 9, 10, 13] as well as our results presented in the
previous Section demonstrate that slow contraction is a robust and rapid smoother, typically
reaching the flat FRW state within the first 10-20 e-folds of contraction in the inverse mean
curvature, Θ, even if the initial conditions lie well outside the perturbative regime of the flat
FRW state. Overall then, the downhill slope of the potential must be sufficiently long to
accommodate NΘ ∼ 80 or more e-foldings of slow contraction.

Second, to exit after NΘ ∼ 80 or more e-foldings of slow contraction, the kinetic energy
density of the scalar field must increase relative to its potential energy density such that the
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potential energy density becomes negligible relative to the total energy density, i.e., V̄ → 0,
causing the equation of state ε to approach 3 from above and ending slow contraction.

During the smoothing phase, the kinetic and potential energy densities increase at the
same rate, as can be seen from Eq. (3.11). In principle, the relative contribution of the poten-
tial energy density, V̄ , can become negligible in two distinct ways: with a negative potential
that is bounded from below or with a negative potential that is unbounded from below if its
slope becomes too shallow to continue sourcing slow contraction, i.e., MPl|V,φ/V | ≤

√
6.

However, if smoothing slow contraction is sourced by a scalar potential withMPl|V,φ/V | ≤√
6 (after the smooth FRW state is reached) and which is unbounded from below, the scalar

field must explore exponentially large field ranges. Arguments from fundamental physics
[1, 3, 7, 15, 16] suggest that an effective theory can only be consistent with quantum gravity
if the scalar field explores a finite range of O(1) in reduced Planck units. For this reason, to
prevent the scalar from rolling over field ranges & O(1), we only consider potentials that are
bounded from below.

Given the requirement ofNΘ ∼ 80 or more e-foldings of slow contraction, from Eq. (3.17),
we can estimate the location of the minimum, φmin, independently of the exact shape of the
potential in that region:

φmin ' φ0 − 2NΘm; (4.1)

here we use the fact that ε rapidly decreases and approaches 3 from above once the minimum
is passed. After that point, the scalar field kinetic energy continues being blue-shifted by
the large Hubble anti-friction such that the field starts rolling uphill instead of remaining at
the potential minimum. As the field is climbing uphill, its potential energy density cannot
keep up with the growing kinetic energy density. The relative contribution of the potential to
the total energy density continuously decreases and V̄ eventually becomes negligible causing
ε→ 3.

Third, we require that the potential does not asymptote zero from below but instead
has a small plateau or a small local minimum with VDE > 0, corresponding to the currently
measured value of the dark energy density. In the case of a local minimum, the plateau is
replaced by a small positive barrier followed by the small positive local minimum. In this case,
the strongly blue-shifting scalar field kinetic energy pushes the field over the barrier such that
the scalar reaches the positive local minimum, starts to oscillate, decaying into the particles
of the standard model and reheating the universe. Along the way, spacetime transitions to
the hot expanding phase through a cosmological bounce that can take place before or after
reheating; see e.g., Ref. [11].

4.2 Worked Examples

Next, we construct sample potentials that lead to an exit from slow contraction after NΘ ∼ 80
e-folds to test the effect on the robustness of smoothing.

We are interested in potentials of the form

V (φ) '

{
−V0e

−φ/m + VDE, if φ� φmin,

−Ṽ0e
φ/m̃ + VDE, if φ�min,

(4.2)

such that V has a local minimum at φmin with the downhill slope (φ � φmin) exponentially
decreasing at the rate of m−1 and the uphill slope (φ� φmin) exponentially increasing at the
rate of m̃−1, and the constant VDE > 0 generating a small positive plateau. (In the case that
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the plateau is replaced by a barrier followed by a small positive local minimum, we found that
there was no change to the robustness and rapidity of smoothing during slow contraction.)

A concrete example that we use in our numerical simulations is given by

V (φ) = −V0e
−φ/m × 1

2
×
(

tanh

(
φ− φ∗
m∗

)
+ 1

)
+ VDE, (4.3)

where m∗ < 2m such that V (φ) has a minimum at

φmin = φ∗ +
1

2
× ln

(
2
m

m∗
− 1

)
×m∗. (4.4)

The exponential uphill slope defined in Eq. (4.2) is fixed through the coefficient Ṽ0 = V0e
−2φ∗/m∗

and exponent m̃−1 = 2(m/m∗ − 1/2)m−1 > 0 .
All simulations presented below have in common that, when defining the parameters for

the scalar field and its potential, we chose the least favorable conditions for slow contraction
to start. For example, we set

V0 = 0.1M2
PlΘ

−2
0 , VDE/V0 = 1, φ0 = 0, (4.5)

such that the field starts at V (φ) = 0, eliminating the possibility of smoothing in regions that
might undergo a brief phase of accelerated expansion sourced by VDE before transitioning
to contraction, and eliminating the possibility that the initial conditions are biased towards
smoothing slow contraction because the field starts out with a negative value of the potential.

In addition, we set

m∗ = 0.5m, φ∗ = −2NΘm and NΘ = 80, (4.6)

which makes the uphill slope much steeper (m̃−1 = 3m−1) than the downhill slope decreases
(m−1) and we allow at most NΘ ' 20 e-foldings of contraction to reach complete smoothing.
It is essential for the background to reach complete smoothing during the first 20 e-folds.
Otherwise, it would not be flat FRW during the last 60 e-folds as required to generate the
nearly scale invariant spectrum of temperature fluctuations observed in the CMB.

Furthermore, as specified in the next two sections, we choose the initial shear and scalar
field velocity contributions such that the resulting initial state is far outside the perturbative
regime of flat FRW spacetimes.

4.2.1 Inhomogeneities along one spatial axis

We start with considering initial conditions that involve inhomogeneities along a single spatial
direction. As we will see below in Sec. 4.2.2, this symmetry restriction leads to the least
favorable initial conditions for slow contraction to start. Nevertheless, we found that the
remarkable robustness and rapidity of smoothing remain unaffected by altering the shape
of the scalar field potential to include a large negative minimum such that the scalar field
exits slow contraction and, climbing uphill, the field ends up on a small positive plateau
corresponding to today’s dark energy density.

To facilitate comparison with the case of a pure negative exponential, we employed the
same parameters to specify the initial shear and scalar field velocity contributions defined in
Eqs. (2.16) and (2.15), respectively, i.e.,

a1,2 = 0.5, b1 = −0.15, b2 = 1.8, ξ = 0.01, κ1,2 = 0.01, c1,2 = 0, (4.7)
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Figure 4: Phase diagram showing possible final states corresponding to the potential given by
Eq. (4.3) with parameters defined in Eqs. (4.5-4.6) and initial conditions defined in Eqs. (4.7-
4.8). The diagram shows the final states as a function of the inverse mass scalem−1 associated
with the downhill slope of the scalar field potential and its mean initial velocity Q0. As in the
case of a pure exponential, the entire region relevant to cyclic and bouncing models (Q0 > 0
and m < 0.25) converges completely or to an exponential degree (as measured by proper
volume) to the flat FRW attractor solution.

qx = 0.1m−1, qy = 0, dx = −0.15, dy = 0, mx = 1, my = 0. (4.8)

We varied the parameters determining the average initial velocity Q0 of the scalar and the
steepness of the downhill slope of the potential |V,φ/V | = m−1 because these are the only two
quantities that can affect whether and how complete smoothing is reached.

Figure 4 summarizes our findings in form of a phase diagram first introduced in Ref. [9].
Each point of the diagram corresponds to a simulation with a different combination of
(m−1, Q0). The large white region represents all simulations that lead to complete smooth-
ing. In each of these simulations, the flat FRW state is reached everywhere within NΘ = 20
e-folds of contraction in the inverse mean curvature Θ; the field passes through the potential
minimum by NΘ ' 80 and reaches the positive potential plateau by NΘ ' 90.

As seen in earlier studies involving pure negative exponentials, the smoothing power
decreases with smaller mean initial velocities and the system eventually starts to exhibit
spiking behavior. For even smaller initial velocities (Q0 ≤ 0), spacetime is not smoothed
completely but ends up with a mixture of flat FRW and Kasner-like states. As pointed out
in Refs. [4, 9], the reason is that, if the mean initial velocity is uphill directed (Q0 < 0),
there will always be some regions in which the scalar’s potential energy cannot catch up to its
kinetic energy such that, in those regions, the scalar field behaves like a free field, resulting
in convergence to an ultralocal, anisotropic Kasner-like state.

Only a small region of parameter space leads to final states that are not completely
smooth: a final state that is nowhere smooth can only be obtained if the characteristic mass
scale m of the scalar field potential is large, i.e., m ≥ 0.25MPl, corresponding to a too shallow
downward slope. Note, in addition, that Q0 is measured in units of the mean curvature Θ−1

0 at
the initial time t0 which is vanishingly small in Planck units. For the purposes of illustration,
we have intentionally limited the phase diagram to the tiny region where Q0 ∼ O(1) Θ−1

0 . The
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Figure 5: Snapshots of the evolution of the inverse Hubble-normalized lapseN−1 correspond-
ing to the potential in Eq. (4.3) with m = 0.1MPl and different values of the mean initial
velocity Q0. Each row represents a different final state: complete smoothing by NΘ ' 12
(upper row), complete smoothing modulo spikes by NΘ ' 36 (middle row) and a mixed final
state (lower row). Once the scalar field reaches the minimum of the potential at NΘ ' 80,
the field starts climbing uphill due to the large negative Hubble anti-friction. The smoothing
phase ends by NΘ ' 90 when the field reaches the positive potential plateau.

overwhelming majority of parameter space with Q0 � Θ−1
0 consists entirely of completely

smooth final states.
Comparing to the case of a pure exponential potential with similar initial conditions

as, e.g., in Phase Diagram V of Ref. [9], it becomes clear that the robustness of smoothing
remains unaffected by altering the shape of the scalar field potential to include an exit from
the smoothing phase. Even though we chose different initial conditions, the phase boundary of
the mixed state is only shifted slightly in the diagram. As emphasized above, these differences
are nominal since the parameter space in the phase diagrams covers a vanishingly small part
of the entire (Q0 ≥ 0) parameter space. In both cases, complete smoothing is reached except
for a tiny region where Q0 < O(1) Θ−1

0 .
As a matter of fact, the results found when bounding the potential from below are a

further manifestation of the robustness and rapidity of smoothing through slow contraction.
First, the robustness to initial conditions remains unaffected even though the system has less
time – at most NΘ ' 80 e-folds of smoothing phase before reaching the potential minimum
– compared to earlier simulations with unbounded potentials that were run for NΘ ' 200 or
more e-folds.

Second and more importantly, once the flat FRW state is reached, deviations from
flatness, isotropy and homogeneity do not regrow after the system exits the smoothing stage.
The reason why deviations do not regrow can be understood by linearizing the evolution
equations listed in Appendix A around the flat FRW state. The perturbed geometric variables
δĒa

i, δn̄ab, δĀb, δS̄a all share the same scaling behavior, i.e.,

δĒa
i, δn̄ab, δĀb, δS̄a ∝ e(1−N )t, (4.9)
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and the components of the linearized shear tensor scale as

δΣ̄ab ∝ e(1−3N )t. (4.10)

As slow contraction proceeds, t < 0 decreases and all perturbations get suppressed exponen-
tially because N remains below 1/3 even after the scalar field reaches the potential minimum
and approaches the positive potential plateau, as illustrated in Fig. 5. As the field climbs
uphill, N → 1/3 from below. Once the field arrives on the potential plateau, N = 1/3,
meaning that the shear perturbations remain exponentially suppressed, they neither shrink
nor grow, while the other perturbations continue to shrink exponentially.

Third, even in the case of simulations where the final state is a mix of flat FRW and
Kasner-like regions, the proper 3-volume of Kasner-like regions is exponentially suppressed
relative to the 3-volume occupied by regions with flat FRW geometry. As shown in Refs. [6, 9],
the proper 3-volume of a region corresponding to a segment with length ∆x is ∝ |τ |3N , where
τ is the proper FRW time given through d ln a(τ)/dτ ≡ (1/3)e−t. Note that τ → 0 as
t → −∞ (see, Eq. 2.3). As shown in Fig. 5, during the smoothing phase (10 . NΘ . 80),
N = 2m2 � 1 in the segments that contract slowly while N = 1/3 in Kasner-like regions.
That is, as τ → 0, the proper volume of Kasner-like regions shrinks at an exponentially faster
rate than the proper volume of the flat FRW regions. After the field reaches the bottom of the
potential, all regions start contracting at the same rate ∝ |τ |. As a result, the volume ratio
remains the same with the Kasner-like regions occupying exponentially less proper volume.

The conclusions presented here were drawn from one specific sample potential. Per-
forming simulations with different choices of m/m∗, ranging from steep (m/m∗ = 2) to very
shallow (m/m∗ = 0.6), we confirmed that the results presented above are insensitive to the
choice of m/m∗. In particular, simulations with m/m∗ = 0.6 lead to the same phase diagram
as the one depicted in Fig. 4.

4.2.2 Inhomogeneities along two spatial axes

As a last step, we investigate the effect of inhomogeneities and anisotropies along two spatial
axes. The parameters fixing the initial shear and scalar field velocity contributions defined in
Eqs. (2.16) and (2.15), respectively, are specified as follows:

a1,2 = 0.5, b1 = −0.15, b2 = 1.8, c1,2 = 0.5, κ1,2 = 0.01, ξ = 0.01,
(4.11)

qx = 0.1m−1, qy = 0.1m−1, dx = −0.3, dy = −0.45, mx = 2, my = 3. (4.12)

To facilitate comparison with the 1D case presented in the previous Section 4.2.1, we kept the
parameters determining the shape of the scalar field potential given in Eqs. (4.5-4.6) as well
as all 1D quantities, a1,2, b1,2, κ, ξ and qx, given in Eqs. (4.7-4.8) the same with the exception
of the mode number of the initial scalar field velocity, mx, that we increased from 1 to 2 to
allow for higher mode spatial variations in the x-direction. In addition, to relax the symmetry
restriction forbidding inhomogeneities and anisotropies along a second spatial direction, we
assigned the parameters c1,2, qy and my non-zero values.

Figure 6 illustrates three different evolutions corresponding to a potential with downhill
slope m−1 = 4 for three different values of the mean initial velocity Q0: The final state is flat
FRW everywhere if Q0 = 1; flat FRW modulo spiking if Q0 = 0.6 and a mix of flat FRW and
Kasner-like regions if Q0 = 0. The difference to the 1D case is striking: As can be seen from
Fig. 4, for m = 0.25, 0 ≤ Q0 ≤ 0.7 leads to a mixed state of flat FRW and Kasner-like regions
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Figure 6: Snapshots of the Hubble-normalized energy density in shear Ωs (green), curvature
Ωk (red), and scalar field Ωφ (blue) as a function of NΘ corresponding to the potential defined
in Eq. (4.3) with m = 0.25 for three different values of the mean initial velocity of the scalar
field. These result in different smoothing outcomes: a mixed state of flat FRW and Kasner-
like regions if Q0 = 0 (upper row) , complete smoothing modulo spikes if Q0 = 0.6 (middle
row) and complete smoothing if Q0 = 1.0 (lower row). The initial state is highly curved,
inhomogeneous and anisotropic along two spatial dimensions, as specified in Eq. (4.11).

while only Q0 > 0.7 leads to complete smoothing, in the 2D case, all 0 ≤ Q0 < 0.6 lead to
a mixed state and all Q0 ≥ 0.6 lead to complete smoothing (with or without spiking). This
finding suggests that releasing the symmetry restriction on the initial conditions enhances the
robustness of slow contraction, yielding further evidence for the conjecture in Ref. [10] that
the Kasner-like fixed point has a small basin of attraction.

The phase diagram in Figure 7 gives further supports the conjecture: In addition to the
absence of the final state that is nowhere smooth, a comparison with Figure 4 shows that all
phase boundaries are located below the ones from the one-dimensional simulations.

5 Conclusion

In this paper, we presented the first systematic study of more realistic scalar field potentials
that can be incorporated in bouncing cosmologies. In particular, whereas previous studies
only considered the slow contraction phase induced by purely negative exponential potentials
that are unbounded below, here we have explored a much wider range of potentials that can
also accommodate the graceful exit, bounce, and reheating stages that initiate the subsequent
hot expansion phase.

Using the methods of numerical relativity, we confirmed that a large family of negative
power-law, exponential and super-exponential potentials can source a smoothing slow con-
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Figure 7: Phase diagram showing possible final states corresponding to the potential given by
Eq. (4.3) with parameters defined in Eqs. (4.5-4.6) and initial conditions defined in Eqs. (4.11-
4.12) with inhomogeneities and anisotropies along two spatial directions. The diagram shows
the final states as a function of the mean initial scalar field velocity Q0 and the inverse mass
scale m−1 corresponding the downhill slope of the scalar field potential. The entire region
relevant to cyclic and bouncing models (Q0 > 0) converges completely or to an exponential
degree (as measured by proper volume) to the flat FRW attractor solution.

traction phase that rapidly converges to the homogeneous, isotropic and flat FRW state for a
wide range of initial conditions, including those that lie far outside the perturbative regime of
flat FRW geometries. Even though classically, once the flat FRW fixed point is reached, the
state remains smooth whether the potential is power-law, exponential or super-exponential,
arguments based on quantum gravity considerations suggest that potentials with an exponen-
tial or super-exponential downhill slopes are favorable because we find that, in those cases,
the scalar field traverses a range of O(1)MPl or less.

In addition, we found that bounding the scalar potential from below to end the smoothing
phase does not affect the robustness and rapidity of smoothing. Having reached the negative
potential minimum, the scalar field continues to climb uphill until it reaches a small positive
plateau or settles in a small positive local minimum to reheat the universe.

Most importantly, we established ultralocality sets in rapidly for a remarkably wide range
of potentials, even in cases where the slow contraction phase lasts for a limited time. The
fact that gradient terms quickly become negligible is the main reason why altering the scalar
potential to include an end to slow contraction has no affect on the robustness and rapidity
of smoothing: The ultralocal state is typically reached within O(1) e-folds of contraction in
the inverse mean curvature Θ. Then, since gradients no longer affect the evolution, each
spacetime point individually approaches the flat FRW attractor fixed point as long as the
potential is sufficiently steep (i.e., MPl|V,φ/V | & 5). Once ultralocality is reached, spacetime
remains flat FRW independent of the existence of a potential minimum and subsequent uphill
slope leading to a small positive plateau or a small positive local minimum separated by a
barrier.

Our numerical scheme is adapted to spacetimes where the mean curvature evolves mono-
tonically. In particular, we did not consider cosmologies where slow contraction is preceded
by a phase of dark energy expansion, as is the case in cyclic cosmologies. Extending our
results to these scenarios is the focus of ongoing work.
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A Numerical scheme: evolution and constraint equations

Using Hubble-normalized variables defined in Eqs. (2.4-2.6) and imposing the frame and
coordinate gauge conditions described in Sec. 2.1, the Einstein-scalar field equations (2.1-2.2)
in orthonormal tetrad form yield a hyperbolic system of evolution equations:

∂tĒa
i = −

(
N − 1

)
Ēa

i −N Σ̄a
bĒb

i, (A.1)

∂tΣ̄ab = −
(

3N − 1
)

Σ̄ab −N
(

2n̄〈a
c n̄b〉c − n̄ccn̄〈ab〉 − S̄〈aS̄b〉

)
+ Ē〈a

i∂i

(
Ēb〉

i∂iN
)

(A.2)

−N
(
Ē〈a

i∂iĀb〉 − εcd(a

(
Ēc

i∂in̄b)d − 2Ācn̄b)d

))
+ εcd(an̄b)dĒc

i∂iN + Ā〈aĒb〉
i∂iN ,

∂tn̄ab = −
(
N − 1

)
n̄ab +N

(
2n̄(a

cΣ̄b)c − εcd(aĒc
i∂iΣ̄b)d

)
− εcd(aΣ̄b)dĒc

i∂iN , (A.3)

∂tĀa = −
(
N − 1

)
Āa −N

(
Σ̄a

bĀb − 1
2Ēb

i∂iΣ̄a
b
)
− Ēai∂iN + 1

2 Σ̄a
bĒb

i∂iN , (A.4)

∂tφ = N W̄ , (A.5)

∂tW̄ = −
(

3N − 1
)
W̄ −N

(
V̄,φ + 2ĀaS̄a − Ēai∂iS̄a

)
+ S̄aĒa

i∂iN , (A.6)

∂tS̄a = −
(
N − 1

)
S̄a −N

(
Σ̄a

bS̄b − Ēai∂iW̄
)

+ W̄ Ēa
i∂iN , (A.7)

where angle brackets denote traceless symmetrization defined as X〈ab〉 ≡ X(ab) − 1
3Xc

cδab.
The hyperbolic PDE system (A.1-A.7) is coupled to the elliptic lapse equation

− Ēai∂
i
(
Ēa

j∂jN
)

+ 2ĀaĒa
i∂iN +N

(
3 + Σ̄abΣ̄

ab + W̄ 2 − V̄
)

= 3, (A.8)

which results from our choice of CMC slicing. The system of Eqs. (A.1-A.8) serves as our
numerical scheme.

Furthermore, Eqs. (A.1-A.7) propagate the following constraints:

1
2 Σ̄abΣ̄ab + 1

2 n̄
abn̄ab − 1

4(n̄cc)
2 − 2Ēa

i∂iĀ
a + 3ĀaĀa + 1

2W̄
2 + 1

2 S̄
aS̄a + V̄ = 3, (A.9)

Ēb
i∂iΣ̄a

b − 3Σ̄a
bĀb − εabcn̄bdΣ̄cd − W̄ S̄a = 0, , (A.10)

Ēb
i∂in̄

b
a + εbcaĒb

i∂iĀc − 2Ābn̄
b
a = 0, (A.11)

S̄a − Ēai∂iφ = 0, (A.12)

εbca

(
Ēb

j∂jĒc
i − ĀbĒci

)
− n̄adĒdi = 0. (A.13)

As detailed above in Sec. 2.2, we use the constraints to specify the initial conditions as well
as for code testing, in particular, to ensure numerical convergence.

B Einstein-scalar system in the ultralocal limit

In the ultralocal limit (Ēai, Āa, S̄a → 0), the evolution equations (A.1, A.4 and A.7) and the
constraints (A.13) are trivially satisfied such that the coupled Einstein-scalar non-linear PDE
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system (A.1-A.7) reduces to the following coupled linear ODE system:

˙̄Σab = −
(

3N − 1
)

Σ̄ab −N
(

2n̄c〈an̄b〉c − n̄ccn̄〈ab〉
)
, (B.1)

˙̄nab = −
(
N − 1

)
n̄ab + 2N n̄c(aΣ̄b)c, , (B.2)

φ̇ = N W̄ , (B.3)
˙̄W = −

(
3N − 1

)
W̄ −N V̄,φ, (B.4)

where dot denotes differenciation w.r.t. the time coordinate t as defined in Eq. (2.3).
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