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Abstract
Experimental and theoretical studies have shown that ephaptic coupling leads to the synchronisation and slowing down of
spikes propagating along the axons within peripheral nerve bundles. However, the main focus thus far has been on a small
number of identical axons, whereas realistic peripheral nerve bundles contain numerous axons with different diameters. Here,
we present a computationally efficient spike propagation model, which captures the essential features of propagating spikes
and their ephaptic interaction, and facilitates the theoretical investigation of spike volleys in large, heterogeneous fibre bundles.
We first lay out the theoretical basis to describe how the spike in an active axon changes the membrane potential of a passive
axon. These insights are then incorporated into the spike propagation model, which is calibrated with a biophysically realistic
model based on Hodgkin–Huxley dynamics. The fully calibrated model is then applied to fibre bundles with a large number of
axons and different types of axon diameter distributions. One key insight of this study is that the heterogeneity of the axonal
diameters has a dispersive effect, and that a higher level of heterogeneity requires stronger ephaptic coupling to achieve full
synchronisation between spikes.

Keywords Peripheral nerves · Ephaptic coupling · Spike propagation · Synchronisation

1 Introduction

Signal transmission in peripheral nerve fibres is based on the
propagation of action potentials, or spikes, along the axonal
membrane, which alters the electrophysiological properties
of the extracellular medium and therefore influences nearby
axons via so-called ephaptic coupling (Anastassiou et al.
2011; Buzsáki et al. 2012; Anastassiou and Koch 2015).
Early experiments have demonstrated that in the presence
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of a highly resistive extracellular medium, action potentials
travelling in two parallel, closely spaced axons synchronise
and travel at a lower velocity than in the isolated case (Katz
and Schmitt 1940; Rosenblueth 1941; Arvanitaki 1942;Mar-
razzi and Lorente de Nó 1944). This has been reproduced in
theoretical work using numerical or analytical tools (Clark
and Plonsey 1970; Bell 1981; Eilbeck et al. 1981; Barr and
Plonsey 1992; Binczak et al. 2001; Bokil et al. 2001; Reut-
skiy et al. 2003;Maïna et al. 2015; Shneider andPekker 2015;
Goldwyn and Rinzel 2016; Schmidt and Knösche 2019; She-
heitli and Jirsa 2020; Capllonch-Juan and Sepulveda 2020).
Both theoretical and experimental work, however, have been
restricted thus far to a small number of identical axons due
to the experimental or computational effort (with the excep-
tion of Capllonch-Juan and Sepulveda (2020)). In contrast,
peripheral nerve bundles are composed of a relatively large
number of nerve fibres, which follow a wide distribution of
axonal diameters (Sanders 1947; Assaf et al. 2008; Ikeda
and Oka 2012; Eichel et al. 2020). As there is an approxi-
mately linear relationship between the axon diameter and the
velocity of a spike (Hursh 1939; Goldman and Albus 1968;
Schmidt and Knösche 2019), one can expect that structural
heterogeneity counteracts the synchronisation of spikes, akin
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to phase-coupled oscillators, where wider distributions of
the angular frequencies require stronger coupling to achieve
synchronisation (Kuramoto 1984; Pikovsky et al. 2001).
The main difference between phase-coupled oscillators and
ephaptically coupled spikes is that in the latter case the cou-
pling is restricted to axonal segments close to the spikes, and
that the lifetime of a spike is restricted to the time interval
between spike generation and the spike reaching the distal
end of the axon. Therefore, spike synchronisation depends
crucially on the initial conditions, as demonstrated recently
for white-matter fibre bundles (Schmidt et al. 2021). For this
reason, we focus our analysis on initially synchronous spike
volleys, in line with previous studies (Binczak et al. 2001;
Reutskiy et al. 2003).

Our aim is to systematically study ephaptic coupling
effects in peripheral nerves with large axon counts and dis-
tributed morphology. For this, we devise a simplified spike
propagation model (SPM) that reduces the computational
effort significantly as compared to solving models based on
nonlinear partial differential equations. The SPM is inspired
by phase-coupled oscillators in the sense that each spike is
endowed with an intrinsic propagation velocity based on the
morphology of the associated axon. Furthermore, each spike
can be ascribed a coupling function that characterises the
spatiotemporal profile of ephaptic coupling with spikes in
nearby axons. The collective ephaptic coupling generated by
all spikes in a fibre bundle then perturbs the intrinsic velocity
of a single spike, which decelerates if the axonal membrane
is hyperpolarised, and vice versa. In the resulting numerical
scheme, the position of each spike is propagated based on its
perturbed velocity. In turn, the positions and velocities of the
spikes determine their mutual ephaptic coupling effects.

We begin our investigation by considering an exemplary
bundle containing two axons, for which we develop the the-
oretical basis that can be extended to larger fibre bundles.
First, we compute the effect that the spike in an active axon
has on a nearby passive axon, whichwe do analytically under
the assumption that the axons are homogeneous and that
the perturbation of the passive axon can be captured by the
linear terms of the cable equation. As most axons in periph-
eral nerves are myelinated, the assumption of homogeneity
implies that the specific location of nodes of Ranvier is irrel-
evant. We calibrate the proposed SPM using a biophysically
realistic model based on Hodgkin–Huxley dynamics.

The calibrated SPM is then used to study large axon bun-
dles systematically, especially the interplay between axon
diameter distribution and the strength of ephaptic coupling,
with the latter having a synchronising effect, and the for-
mer a dispersive effect. The coupling strength is determined
by the fibre density (i.e. relative volume occupied by nerve
fibres), and the resistivity of the extracellular medium. The
aim here is to identify conditions under which synchroni-

sation can occur given different axon diameter distributions
and structural parameters, especially fibre density.

2 Ephaptic coupling between nerve fibres

In this section, we lay the theoretical basis of the SPM by
considering fibre bundles with a small number of axons.
First, we derive an analytical expression for the extracel-
lular potential generated by a spike in an active axon. This
is then used to compute the perturbation of the membrane
potential of a passive axon (an axon that does not carry a
spike) generated by a spike in a nearby active axon. The per-
turbation can be regarded as the ephaptic coupling between
two nerve fibres. The resulting mathematical framework is
then extended to the interaction between multiple axons. To
reduce the computational load, we introduce a piecewise
quadratic approximation of the spatial spike profile, which
allows us to compute the ephaptic coupling function analyti-
cally. Lastly, we introduce the SPM and calibrate it by fitting
free parameters to a biophysically realistic model based on
the cable equation and Hodgkin–Huxley dynamics.

2.1 Perturbation of the extracellular medium by a
spike in a single axon

Axons may be regarded as core conductors (Rall 1977;
Trayanova et al. 1990; Holt and Koch 1999), whereby the
formation and propagation of spikes can be described by the
one-dimensional cable equation:

Cm
∂V

∂t
= gax

∂2

∂x2
φi − gmV + IHH(V ). (1)

The derivation of the cable equation is based on Kirchhoff’s
first law, which states that the currents are balanced at any
given location inside or outside the axon.Here, themembrane
potential V is defined as the difference between intracellular
and extracellular potential, V = φi − φe. If the extracellular
medium is grounded, then V = φi and the traditional cable
equation is recovered. In general, however, that assumption
does not hold because of the finite size of the extracellular
medium, and its finite conductivity (Tveito et al. 2017). The
term on the left-hand side of Eq. (1) describes the capac-
itive currents across the axonal membrane and the myelin
sheath, with Cm being the capacitance of the membrane and
myelin. The terms on the right-hand side of Eq. (1) describe
resistive currents, of which the first term is the longitudinal
intra-axonal resistance, which depends on the intracellular
conductivity σax and the cross-sectional area of the axon
Aax = πr2ax via gax = σaxAax. The second term is the pas-
sive resistive current across the membrane and myelin, with
gm being the radial resistance of the myelin and the mem-
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brane, and the third term represents voltage-gated currents
described by the Hodgkin–Huxley model.

Under the assumption that the boundary of the fibre bundle
is perfectly insulating, the current balance outside an axon
can be formulated in the equivalent manner:

Cm
∂V

∂t
= −gex

∂2

∂x2
φe − gmV + IHH(V ). (2)

Here, the (longitudinal) extracellular resistance gex depends
on the extracellular conductivity σex and the cross-sectional
area of the extracellular space, Aex. This relationship, how-
ever, is no longer applicable if multiple axons are in the same
bundle. In this case, the extracellular potential depends on the
capacitive and resistive currents generated by all axons, and
we therefore find the following relationship for the current
balance in the extracellular medium:

N∑

n=1

Cm
∂Vn
∂t

= −gex
∂2

∂x2
φe −

N∑

n=1

{gmVn − IHH(Vn)} , (3)

with N being the total number of axons. It is easy to see from
Eq. (3) that if the extracellular conductivity or the cross-
sectional area of the extracellular medium increases (thus
increasing gex), then φe decreases (which has been demon-
strated numerically in Tveito et al. (2017)).

Typically, spikes are measured as the spatiotemporal pro-
file of the depolarisation of the membrane potential V . Here,
we are interested in recovering a relationship between the
extracellular potential φe and the membrane potential V .
Combining Eq. (3) and Eq. (1), and using φi,n = Vn + φe,
we obtain

φ′′
e = −

∑
n gax,nV

′′
n

gex + ∑
n gax,n

. (4)

The terms V ′′
n and φ′′

e denote the second spatial derivative in
the axial direction of Vn and φe. Although Eq. (4) is only
an implicit representation of the extracellular potential via
its second spatial derivative, we show that this expression
is sufficient to compute the effect of a spike onto the mem-
brane of a nearby axon. It is also obvious that the effect of
axonal activity onto the extracellular medium is additive. In
the following, we use the equivalent representation in terms
of conductivities and fibre density. The fibre density ρ can
be defined as ρ = g−2Aax/(g−2Aax + Aex), where g is the
g-ratio of the fibres, i.e. axonal diameter divided by fibre
diameter (axon plus myelin). The perturbation of the extra-
cellular medium by a spike in the nth axon is thus given by

φ′′
e = −

(
1 + σex

σax

1 − ρ

g2ρ

)−1 Aax,nV ′′
n∑

m Aax,m
. (5)

We note here that we only consider axonswith circular shape,
therefore Aax can be replaced by the square of the fibre diam-
eter dn .

2.2 Perturbation of themembrane potential of a
passive axon by a spike in a contiguous one

Aspike can be regarded as a travellingwave along the axon. If
the axon is sufficiently homogeneous, then this wave appears
stationary in the co-moving frame. For simplicity, we assume
here that the axons under consideration are either homoge-
neous, which would be the case for unmyelinated axons, or
homogenised in the case of periodically myelinated axons.
The term homogenised refers to the technique proposed by
Basser (1993),which yields compoundvariables for the cable
parameters that depend on the properties of myelinated and
unmyelinated segments.

We transform the cable equation, Eq. (1), into the co-
moving frame by setting ξ = x − ct , where c is the
propagation velocity of the spike, which results in

− cτV ′ = λ2(V ′′ + φ′′
e ) − V + g−1

m IHH(V ). (6)

Here, we havemade use again of φi = V +φe, as well as τ =
Cm/gm andλ2 = gax/gm , and ·′ indicates differentiationwith
respect to ξ . More specifically, τ is the homogenised time
constant, and λ is the homogenised length constant (Basser
1993):

τ = λ2

((
1 − l

L

)
τmyel

λ2myel

+ l

L

τnode

λ2node

)
, (7)

λ =
((

1 − l

L

)
λ−2
myel +

l

L
λ−2
node

)−1/2

, (8)

where indices denote either myelinated segments with length
L , or nodes of Ranvier with length l. The node and myelin-
specific parameters were chosen to be τmyel = 0.47ms,
τnode = 0.03ms, λmyel = 1930

√
ln(1/g)d, and λnode =

55
√
d , with d being the axon diameter. These parameters are

the same as in Schmidt and Knösche (2019), and all length
scales aremeasured inμm.For simplicity,we set l/L = 0.01.
Since the g-ratio is also held fixed at g = 0.6, the only free
parameter is the axon diameter d.

If the perturbation is sufficiently small, it will fail to elicit
a spike in the passive axon, and the nonlinear term IHH(V )

can be neglected for simplicity. Thus we arrive at a linear
ODE that describes the spatial profile of the perturbation in
the passive axon:

− cτV ′
p − λ2V ′′

p + Vp = λ2φ′′
e . (9)

Here, Vp indicates the perturbation of the membrane poten-
tial caused by φ′′

e . This is an inhomogeneous differential
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equation of second order. The homogeneous solution to (9)
is found to be

Vp,hom(ξ) = C1h1(ξ) + C2h2(ξ), (10)

where h1(ξ) = exp(ξ/ν+) and h2(ξ) = exp(−ξ/ν−) are
the fundamental solutions to (9), with

ν± = 1

2

√
c2τ 2 + 4λ2 ± cτ

2
. (11)

Since the perturbations are localised, we require that Vp → 0
as ξ → ±∞, and therefore Vp,hom = 0. Nevertheless, the
fundamental solutions serve to identify the particular solu-
tion to (9), which is found by the method of variation of
parameters. The particular solution can be posed as

Vp,par (ξ) = α1(ξ)h1(ξ) + α2(ξ)h2(ξ), (12)

which is identical to the full solution to (9), Vp(ξ). Since
differentiation will yield only one equation for the two
unknowns α1(ξ) and α2(ξ), we may make a further assump-
tion regarding the solution structure:

α′
1(ξ)h1(ξ) + α′

2(ξ)h2(ξ) = 0. (13)

Differentiation of (12) and insertion of the resulting terms
into (9) then yields

α′
1(ξ)h′

1(ξ) + α′
2(ξ)h′

2(ξ) = −φ′′
e (ξ). (14)

Equations (13) and (14) pose a set of two linear equations that
can be solved for α′

1(ξ) and α′
2(ξ). Subsequent integration

results in

α1(ξ) = −
∫

exp(−ξ/ν+)λ2φ′′
e (ξ)√

c2τ 2 + 4λ2
dξ, (15)

and

α2(ξ) =
∫

exp(ξ/ν−)λ2φ′′
e (ξ)√

c2τ 2 + 4λ2
dξ. (16)

Since the integrands vanish at ±∞, we can pose these indef-
inite integrals as definite integrals on the interval [ξ,∞) for
α1(ξ), and (−∞, ξ ] for α2(ξ) instead. This yields the fol-
lowing integral form for Vp(ξ):

Vp(ξ) =
∫ ∞

ξ

exp((ξ − ζ )/ν+)λ2φ′′
e (ζ )√

c2τ 2 + 4λ2
dζ

+
∫ ξ

−∞
exp(−(ξ − ζ )/ν−)λ2φ′′

e (ζ )√
c2τ 2 + 4λ2

dζ. (17)

An alternative representation is the following convolution
integral:

Vp(x, t) =
∫ ∞

−∞
w(x − y)φ′′

e (y, t)dy, (18)

with the asymmetric convolution kernel given by

w(x) = λ2√
4λ2 + c2τ 2

{
ex/ν

+
x ≤ 0,

e−x/ν−
x > 0.

(19)

The convolution kernel and integral are represented here in
absolute space instead of the co-moving frame. In Fig. 1,
we visualise the convolution kernel, and compare the per-
turbation of a passive axon that was obtained numerically,
with the convolution of this kernel with the second deriva-
tive (curvature) of the spatial spike profile. The relatively
small difference between the numerical and analytical result
can be explained by nonlinear effects not taken into account
in the convolution, and the homogenisation of the axonal
parameters.

Thus far, we have considered a single spike that evokes a
perturbation in a nearbypassive axon [whichmaybe regarded
as a ‘test axon’ as in Goldwyn and Rinzel (2016)]. We now
seek to extend the notation to accommodate the perturbations
evoked by spikes in multiple axons travelling at different
velocities. First, we consider the contribution to the pertur-
bation of axon i by a spike in axon j :

V i, j
p (x, t) =

∫ ∞

−∞
wi, j (x − y)φ′′

e, j (y, t)dy, (20)

where φe, j is the contribution of the spike in axon j to the
extracellular potential, and

wi, j (x) = λ2i√
4λ2i + c2jτ

2
i

{
ex/ν

+
i, j x ≤ 0,

e−x/ν−
i, j x > 0,

(21)

is the convolution kernel specific to the interaction between
axon i and axon j , with

ν±
i, j = 1

2

√
c2jτ

2
i + 4λ2i ± c jτi

2
. (22)

Since we consider the linear regime (i.e. IHH(V ) = 0), the
perturbations are additive, and the full perturbation and extra-
cellular potential are found to be

V i
p =

∑

j∈A
V i, j
p , φe =

∑

j∈A
φe, j , (23)

where A is the set of all active, spike-carrying axons.
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a b c

Fig. 1 The perturbation in a passive axon can be described by a convo-
lution of the curvature of the spike profile and an asymmetric kernel. a
Spike profile at a particular point in time, computed numerically using
the biophysical model (Sect. 2.5). The profile is representative for all
stages of spike propagation. b Comparison of the perturbation in a pas-
sive axon obtained numerically with the biophysical model, and the

convolution of the analytically derived integral kernel with the second
derivative of the numerically obtained spike profile. c Profile of the
asymmetric kernel. The kernel is compressed to the right (direction of
propagation of the spike), and elongated to the left. Parameters:ρ = 0.3,
d = 1μm, c = 3.1 m/s

2.3 Piecewise quadratic approximation of spike
profiles

To reduce the computational load, we opt for an approxi-
mation of the spike profile that can be adjusted via a shape
parameter a1. In the time domain, the spike is parameterised
as follows:

V (t) =

⎧
⎪⎪⎨

⎪⎪⎩

a1t2 if 0 < t < tmax/2
Vmax − a1(t − tmax)

2 if tmax/2 < t < t2
a2(t − 1)2 if t2 < t < Ts
0 else.

(24)

The amplitude is set to Vmax = 110, and the other parame-
ters can be related to a1 by imposing smoothness conditions,
which results in

tmax = √
2Vmax/a1, (25)

t2 = tmax + Vmax

a1(Ts − tmax)
, (26)

a2 = Vmax

(Ts − tmax)2 − Vmax/a1
. (27)

Thus, the spike has a total duration of Ts , and its shape can be
varied between a triangular shape at large values of a1, and a
bell-shape at small values of a1. The shape of the spike can
then be translated into the spatial domain by calling V (t) =
V (ξ/c), which results from the co-moving frame transform.

The piecewise quadratic approximation of the spike pro-
file leads to a piecewise constant curvature, which allows us
to compute the perturbation exerted by an active axon on its
neighbouring axons analytically. The curvature is given by

the second derivative:

V ′′(t) =

⎧
⎪⎪⎨

⎪⎪⎩

2a1 if 0 < t < tmax/2
−2a1 if tmax/2 < t < t2
2a2 if t2 < t < Ts
0 else.

(28)

In the co-moving frame, this translates into

V ′′(ξ) =

⎧
⎪⎪⎨

⎪⎪⎩

2a1/c2 if 0 < ξ < ctmax/2
−2a1/c2 if ctmax/2 < ξ < ct2
2a2/c2 if ct2 < ξ < cTs
0 else.

(29)

The quadratic approximation of the spike profile is shown
in Fig. 2, alongside its second derivative and the resulting
perturbation profile in a passive axon. The perturbation pro-
file can be computed by inserting Eq. (29) into Eq. (5), and
inserting the resulting expression for φ′′

e into Eq. (20).
The complete mathematical expression for the perturba-

tion in a passive axon driven by a spike in a second, active
one is given by the following expression:

V 1
p (ξ) =

(
1 + σex

σax

1 − ρ

g2ρ

)−1 r22
r21 + r22

λ21√
4λ21 + c22τ

2
G(ξ),

(30)

where G(ξ) is a function describing the spatial profile of the
perturbation:

G(ξ) = −a1
c22

F(ξ ; 0, c2tmax/2) + a1
c22

F(ξ ; c2tmax/2, c2t2)

−a2
c22

F(ξ ; c2t2, c2Ts), (31)
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a b c

Fig. 2 Piecewise quadratic approximation of spike profile. a The
parameter a1 controls the shape of the spike profile, where larger val-
ues correspond to faster depolarisation. b The curvature (second spatial
derivative) is piecewise constant. It is depicted on a signed logarith-

mic scale for better comparison. The unit of the curvature is mV/mm2.
c Resulting perturbation in a passive axon. Parameters: ρ = 0.3,
d = 1μm, v = 3.1m/s, Ts = 4ms

with

F(ξ ; ξ1, ξ2)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ν+
(
e(ξ−ξ1)/ν

+ − e(ξ−ξ2)/ν
+)

if ξ ≤ ξ1

ν+
(
1 − e(ξ−ξ2)/ν

+)
+ ν−

(
1 − e−(ξ−ξ1)/ν

−)
if ξ1 < ξ < ξ2

ν−
(
e−(ξ−ξ2)/ν

− − e−(ξ−ξ1)/ν
−)

if ξ ≥ ξ2.

(32)

These expressions can be readily translated into absolute
space, which is omitted here for brevity.

2.4 Calibration of spike propagationmodel

The spike propagation model was introduced previously for
white-matter fibre bundles (Schmidt et al. 2021). Here, we
adapt this model to accommodate the specific properties of
peripheral nerve bundles. The major difference lies in how
the extracellular potential is generated.While inwhite-matter
fibre bundles one has to consider their radial extent due
to their large diameter, peripheral bundles can be regarded
as quasi-one-dimensional objects in terms of the parame-
terisation of the extracellular potential. For instance, if we
consider a bundle containing 100 axons with diameters of
approximately 1µm each, the resulting bundle diameter is
approximately 10µm. The electrotonic length constant λ of
such axons, however, is approximately 1mm. Thismeans that
any effects not covered by the 1D representation of the axon
bundle can be neglected, which is in line with the finding of
Trayanova et al. (1990), whereby the 1D representation holds
if the radius of the fibre bundle (≈10µm in our case, when
N = 100) is less than 0.03 times the length of the rising phase
of an action potential (>1 mm in our case, cf. Fig. 1a). This
implies that even at N = 1000 this approximation would be
valid. Furthermore, this holds if the diameters of the axons

increase, since both the bundle diameter and the length of ris-
ing phase increase linearly with the axon diameter (the latter
is due to the linear relationship between axon diameter and
spike velocity in myelinated axons).

The core concept of the SPM is that a spike can be repre-
sented by its position on the axon, and its velocity.We remark
here that the number of spikes in the SPM is preserved, i.e.
that spikes are neither created (‘ectopic spikes’) nor annihi-
lated by the ephaptic coupling. The velocity is considered
constant along the axon in the unperturbed case. Perturba-
tions of the membrane potential caused by spikes in other,
contiguous axons, however, have an effect the propagation
velocity, which is modelled in linearised form by:

v(x) = v0

(
1 + 1

γ Vthr
Vp(x)

)
. (33)

This is based on the assumption that the propagation velocity
is determined by a putative spike threshold θ via v = f (θ),
with v0 = f (Vthr) (Fig. 3a). Eq. (33) is then obtained by
linearising f (θ) around Vthr, where γ = − f ′(Vthr). The
perturbation of the membrane potential, Vp(x), is computed
as shown in the previous section, which requires knowledge
of the spike’s position. Finally, the position of the spike on the
i th axon (each active axon carries one spike) is determined
by

ẋi = v(x)
∣∣∣
x=xi

. (34)

This means that the perturbation at the location of the spike
determines the instantaneous propagation velocity. In gen-
eral, Eq. (34) has to be solved numerically. For computational
reasons, we consider the difference between spike positions
to compute v(x):
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v(x)
∣∣∣
x=xi

= v0,i

⎛

⎝1 + 1

γ Vthr

∑

j

V i, j
p (x j − xi + xthr)

⎞

⎠ .

(35)

Since the spike position xi refers to the point where
the membrane potential first deviates from zero, xthr =√
Vthr/a1v(xi ) is introduced to mark the position where

the membrane potential first reaches Vthr. Consequently, the
parameters γ and Vthr cannot be lumped together and have
to be treated separately in the calibration.

In total, the SPM has three free parameters, which are
the shape parameter a1, and the spike threshold Vthr and the
coupling parameter γ , which set how strongly the pertur-
bation affects the propagation velocity. The spike threshold
also defines the spike position along the spike profile, where
the spike is sensitive to perturbations. (We note here that
although there are two threshold crossings, we only consider
the one along the rising phase, which determines the propa-
gation velocity. The falling phase (‘tail’) of the spike is due to
repolarisation processes, which do not affect the spike veloc-
ity.)

We first fit the shape parameter a1 by minimising a cost
function, which is defined as the sum of squares of the dif-
ference between the model spike profile and the spike profile
generated with the biophysical model, see Fig. 3b. Only the
rising phase of the spike profile is considered here, since the
falling phase does not contribute significantly to the perturba-
tion of the extracellular medium (cf. Fig. 1b). There is a clear
minimum of the cost function at a1 = 740, which yields a
near perfect match of the spike profiles along the rising phase
(Fig. 3b).

To identify realistic values for γ and Vthr, we first generate
data for the propagation velocities in N = 10 coupled axons
using a biophysically realistic model, which is explained in
detail in the next section. We use different parameter values
of the fibre density and the fibre diameters. Specifically, the
fibre density is chosen at ρ ∈ {0.5 0.6 0.7 0.8 0.9}, and
the fibre diameters are chosen to be 1µm for the smallest
axon, and (1 + �d)µm for the largest axon, with �d ∈
{0.1 0.2 0.3}. Thus, we fit the SPM to Np = 15 parameter
combinations pn of ρ and �d.

To identify the best-fitting set of parameters, we define the
following cost function that is to be minimised:

C(P) =
√√√√ 1

NpN

Np∑

n=1

N∑

i=1

(
τSPM,i (pn,P) − τBPM,i (pn,P)

τBPM,i (pn .P)

)2

,

(36)

where τSPM,i and τBPM,i are the axonal delays of the spike
in the i th axon generated with the SPM and the biophys-

ical model, respectively. This cost function characterises
the model discrepancy for a given set of free parameters
P = (γ, Vthr).

In Fig. 3, we illustrate the cost function, which shows a
clear minimum at γ = 2.785 and Vthr = 7.05mV. The dis-
continuities in the cost function are due to transitions from
asynchrony to synchrony. This result indicates that the pertur-
bation of themembrane potential, Vp, affects the propagation
velocity quite strongly. We note here that in a previous work
on white-matter fibre bundles (Schmidt et al. 2021), the opti-
mal parameters were found to be γ = 6 and Vthr = 30mV.
This discrepancy can be explained by the fact that there the
extracellular potential φe was used to compute the perturba-
tion, whereas here we use the perturbed membrane potential.
The latter has a smaller amplitude due to axial currents,which
is implicitly modelled by the convolution kernel.

To further illustrate the match between the SPM and the
biophysical model, we plot spike trajectories generated with
the SPM (Fig. 3d) for selected parameter combinations of ρ

and �d, and compare them with the corresponding trajecto-
ries generated with the biophysical model (Fig. 3e).

2.5 Biophysical model of spike propagation

The biophysical model is based on Eq. (1), as it provides a
detailed description of the nonlinear voltage-gated currents.
Specifically, we rewrite Eq. (1) as

τ
∂Vn
∂t

= λ(Vn + φe)
′′ − V + g−1

m IHH(Vn). (37)

where Vn is the membrane potential of the nth axon, and we
insert Eq. (5) for φ′′

e . For numerical purposes, space is dis-
cretised into 100µm long segments. In this description, we
distinguish between nodal and internodal segments. Intern-
odal segments do not contain nodes of Ranvier, therefore
we set λ = λmyel, τ = τmyel, and IHH(V ) = 0. For nodal
segments, we compute λ and τ according to Eq. (8), except
that we replace the internodal length L by the length of the
segment.

Voltage-gated ion channels are only located at the nodal
segments, and they obey the following equations:

IHH(V ) = gNam
3h(eNa − V ) + gKn

4(eK − V ),

(38)

with the dynamics of the gating variables given by Hodgkin
and Huxley (1952)

ṁ = 2.5 − 0.1V

exp(2.5 − 0.1V ) − 1
(1 − m) − 4 exp(−V /18)m,

(39)
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a

d

e

b c

Fig. 3 Calibration of spike propagationmodel. aAn assumed nonlinear
relationship between spike threshold and time lag between two refer-
ence points can be linearised around the default threshold value. The
effect of perturbations of the membrane potential, and therefore of the
spike threshold, on the time lag is then described in this linearised form.
b The spike profile in the quadratic approximation is fitted to the spike

profile of the biophysical model. The best fit occurs around a1 ≈ 740. c
Cost function for varying values of Vthr and γ . The best fit is identified
for the following set of parameters: γ = 2.785, Vthr = 7.05. d Spike
trajectories in the SPM. Spike volleys are initiated at x = 0 and t = 0.
e Spike trajectories generated with the biophysical model

ḣ = 0.07 exp(−V /20)(1 − h) − 1

exp(3.0 − 0.1V ) + 1
h,

(40)

ṁ = 0.1 − 0.01V

exp(1 − 0.1V ) − 1
(1 − n) − 0.125 exp(−V /80)n.

(41)

The reversal potentials in Eq. (38) are chosen to be eNa =
115mV, and eK = −12mV (Brill et al. 1977). While the
maximum conductivities were set to gNa = 1200ms/cm2

and gK = 90ms/cm2 by Brill et al. (1977), we chose gNa =
4800ms/cm2 and gK = 720ms/cm2 to facilitate faster spike
propagation. gm in Eq. (37) was set to 33ms/cm2, which
corresponds to τnode = 0.03ms. The equations were solved
using the forward Euler method with�t = 0.05μs. To avoid
boundary effects, the axons were padded with 200 nodal and
internodal segments (20mm in total) on either side.Neumann

boundary conditions were applied to both ends, i.e. V ′(a) =
V ′(b) = 0, with a = −20mm and b = 120mm.

3 Ephaptic coupling in nerve bundles

In this section, we utilise the SPM to study the effect of
fibre heterogeneity on the velocity of, and synchronisation
between spikes. A special focus here is on fibre bundles with
heterogeneous fibre diameters, which are distributed accord-
ing to either a shifted, uniform distribution or a shifted alpha
distribution. Of particular interest is the interplay between
this heterogeneity and the strength of ephaptic coupling as
expressed by the fibre density.

For simplicity, we focus here on the case of spike vol-
leys that engage all axons in the fibre bundle, and that are
completely synchronous initially (i.e. emission times are

123



Biological Cybernetics

identical). The novelty here lies in the fact that the SPM
reduces the computational effort as compared to the biophys-
ical representation of the axon bundle, which allows us to
model the interaction within spike volleys in large bundles.
The numerical efficiency allows us to perform parameter
screenings to describe the behaviour of the SPM in detail.
Specifically, we vary the relative amount of extracellular
space, which scales inversely with the amount of ephap-
tic coupling, and we vary the width of the distribution of
axon diameters. The fibre bundles are 100 mm long and we
record the axonal delays, which are measured as the time dif-
ference between spike initiation and spike termination. We
compare two types of distributions: a uniform distribution,
and a shifted alpha distribution.

3.1 Uniform distribution of fibre diameters

The uniform distribution is set up as follows:

ρ(d) = 1

�d
�(d − 1)�(1 + �d − d), (42)

where�d is thewidth of the uniform distribution, and�(·) is
the Heaviside step function. The minimum diameter is fixed
at 1µm,which results in amaximumdiameter of (1+�d)µm
in this distribution. The mean and standard deviation of this
distribution is 1 + �d/2 and �d/

√
12, respectively. The

coefficient of variation (standard deviation divided by mean)
is thus �d/

√
3(2 + �d).

In Fig. 4a, b, we show the effect of fibre density and diam-
eter distribution on the mean and standard deviation of the
axonal delays. At small values of �d and large values of
ρ, spikes synchronise completely, as indicated by a standard
deviation of delays close to zero. This is concurrent with an
increase in the mean delay as the fibre density increases. The
same synchronisation can be observed at larger values of�d,
yet a higher fibre density ρ is required to achieve full syn-
chronisation. Before full synchronisation sets in, the standard
deviation of delays increases with ρ, which indicates that
there is no (complete) synchronisation of the spikes within
the volley. Rather, slow spikes form a synchronous cluster
which slows down, while fast spikes remain asynchronous.
We show a delay density plot in Fig. 4c, which illustrates the
delay distribution across ρ for �d = 0.1µm. Here, com-
plete synchronisation occurs at ρ ≈ 0.86, yet already at
lower values one can observe clustering and slowing down
of spikes. Figure 4d shows 2D histograms of delay distribu-
tions and axon diameters at the transition from asynchrony
to synchrony. While there is a slight increase in delays with
increasing ρ in the asynchronous regime, there is a rapid
increase in the delays when full synchronisation sets in.

3.2 Fibre diameters from a shifted alpha distribution

To test whether these results depend on the type of diameter
distribution, we perform the same analysis for a shifted alpha
distribution:

ρ(d) = α−2(d + 1)e−(d+1)/α�(d − 1). (43)

The minimum value in this distribution is d = 1, but the
maximum diameter depends on the number of axons N .

Once more, we find a parameter regime at small values
of α and large values of ρ where the spikes completely syn-
chronise (Fig. 5a, b). At larger values of α we find again
that synchronisation is only partial, in line with the results
obtained for the uniform distribution of diameters. This indi-
cates that the specific type of distribution is not important,
rather the width of the distribution is essential for the types of
synchronisation (complete or partial) between the spikes. To
illustrate the route to synchronisation, we detail the results
for α = 0.01 in Fig. 5c. Once more, the spike density plot
shows that across a wide range of ρ, synchronisation is par-
tial, and only at around ρ ≈ 0.8 it becomes complete. Again,
a slow cluster forms at smaller values of ρ, which is seen in
Fig. 5d.

3.3 Comparison with biophysical model

We have identified parameters at which the spike volleys
undergo complete synchronisation. While we have used the
biophysical model to calibrate the SPM, that was done for a
relatively small number of axons (N = 10).We now focus on
the transition to synchrony with uniformly distributed fibre
diameters, and compare the delay distribution between the
SPM and the biophysical model for N = 200 axons. Due
to the long simulation times for the biophysical model, we
focus on three different values of ρ at �d = 0.1.

The SPM predicts that at ρ = 0.8 and ρ = 0.85 the spikes
do not fully synchronise, yet at ρ = 0.85 one can observe
the formation of a slow, synchronised cluster. At ρ = 0.9,
the spikes are fully synchronised (Fig. 6a). These results are
confirmed by the biophysical model (Fig. 6b), albeit slow
clusters in the asynchronous regime seem to bemore strongly
developed (as indicated by higher spike counts in the binwith
highest delays).

It is interesting to note that slow spikes pertaining to small
axons synchronise before the entire spike volley synchro-
nises. To explain this effect, we investigate how strongly an
axon is perturbed by a spike in a contiguous axon depend-
ing on its diameter. Since synchronous spikes experience the
hyperpolarising phase of each other’s perturbation, we com-
pute the minimum of Vp for various diameters in response
to a spike in an axon with d = 1µm. In Fig. 6c, we plot
the amplitude of this minimum relative to the minimum in
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a b c

d

Fig. 4 Delays in an axon bundle with uniform distribution of axonal
diameters, as computed with the SPM. a Mean axonal delay for vary-
ing values of �d and ρ, N = 100. b Standard deviation of delays, for
same parameter range as in (a). c Logarithmic spike density showing

the distribution of delays as ρ increases. �d = 0.1, N = 200. d 2D
histograms of delays and axon diameters for varying values of ρ, in
the absence of ephaptic coupling (ρ = 0) and around the transition to
synchrony. �d = 0.1, N = 200

an axon with d = 1µm. Spikes are generated both with
the SPM and the biophysical model, although Vp is com-
puted with the analytical approach (cf. Fig. 1b). Our results
demonstrate unequivocally that the effect on smaller axons is
stronger than on larger axons, which leads to earlier entrain-
ment of slow spikes than of fast spikes.

4 Discussion

The main contribution of the present study is to illustrate
the effect of ephaptic coupling and fibre heterogeneity on
the synchronisation of spike volleys in peripheral nerve bun-
dles. The results confirm our initial hypothesis that while
ephaptic coupling facilitates synchronisation, fibre hetero-
geneity counteracts this tendency. This is illustrated by the
finding that for increasing fibre heterogeneity, the strength of
ephaptic coupling (which increases with fibre density) nec-
essary to produce full synchronisation within a spike volley
also increases. This effect is independent of the specific type
of fibre distribution chosen. At sufficiently high levels of
heterogeneity, spike volleys no longer synchronise, even if
the nerve bundle is completely filled with nerve fibre (fibre
density ρ = 1). Nevertheless, in the absence of full synchro-
nisation a more subtle phenomenon can be observed, which

is the clustering and concurrent slowing down of spikes in
small axons, while spikes in large axons do not synchronise.
A possible explanation for this is that small axons experience
a stronger perturbation of theirmembrane potential than large
axons, cf. Fig. 6c. This clustering appears to be more promi-
nent for the shifted alpha distribution, possibly due to the
prominent peak at small axon diameters.

To obtain these results for large numbers of axons,we have
adapted a spike propagation model (SPM) that was previ-
ously devised to simulate spike volleys in white-matter fibre
bundles (Schmidt et al. 2021). The core assumption of the
SPM is that the propagation of a spike is fully characterised
by its intrinsic velocity (determined by structural and electro-
physiological parameters of the corresponding nerve fibre),
and the extracellular potential generated by spikes in nearby
nerve fibres. The SPM therefore represents a much simpler
model, without having to solve the nonlinear partial differ-
ential equation associated with the full biophysical model.
Nonetheless, the SPMcontains three free parameters that had
to be calibrated using the biophysical model. We chose the
scenario of ten ephaptically coupled nerve fibres to generate
data for delays with the biophysical model, and the discrep-
ancy between the data and the output of the SPM defined a
cost function. Minimising this cost function, we were able
to find an unambiguous optimal set of parameters for which
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a b c

d

Fig. 5 Delays in an axonbundlewith axonal diameters obeying a shifted
alpha distribution, as computed with the SPM. aMean axonal delay for
varying values of α and ρ, N = 100. b Standard deviation of delays, for
same parameter range as in (a). c Logarithmic spike density showing

the distribution of delays as ρ increases. α = 0.01, N = 200. d 2D
histograms of delays and axon diameters for varying values of ρ, in
the absence of ephaptic coupling (ρ = 0) and around the transition to
synchrony. α = 0.01, N = 200

a b c

Fig. 6 a Delay distribution in the SPM for uniformly distributed axon
diameters, at different values of ρ and �d = 0.1, N = 200. b Delay
distribution generated with the biophysical model for the same parame-
ters as in (a). c Estimate of relative coupling between axons of different

diameters. A spike is generated in an axon with d = 1µm, and its effect
on axons of varying diameters is computed by computing Vmin

p (illus-

trated in inset) and plotting its amplitude relative to Vmin
p at d = 1µm

the SPM matched best the biophysical results. Regardless
of the specific choice of parameters, we surmise that syn-
chronisation and clustering of spike volleys is a universal
phenomenon in the SPM.

Some limitations apply to the SPM. One main limitation
is that spike volleys travel across the fibre bundle without the
possibility of generating (ectopic) spikes, or extinguishing
them. In the present study,we only consider spike volleys that

engage all axons, therefore only the latterwould be a possibil-
ity. Amechanism of spike generation and extinction could be
incorporated into the SPM by defining conditions involving
the perturbation of the membrane potential. More precisely,
if the membrane of a passive axon is sufficiently depolarised,
then a spike is generated there; conversely, if themembrane is
sufficiently hyperpolarised, a spike is extinguished. A previ-
ous study, based on a spatially extended FitzHugh–Nagumo
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model, has demonstrated the possibility of emerging ectopic
spikes in ephaptically coupled axons (Sheheitli and Jirsa
2020).

Another limitation is that our study is based on a
homogenised formulation of axonal morphology, which
discounts the precise location and alignment of nodes of
Ranvier. While a previous study has shown that the effect
of ephaptic coupling was stronger when nodes are aligned, a
staggered arrangement of nodes yielded the same qualitative
results (Binczak et al. 2001). Node alignment could be taken
into account in the SPM by generating data with the biophys-
ical model for different levels of nodal alignment, and fitting
the coupling parameter γ to these values. Alternatively, theo-
retical considerations as in (Binczak et al. 2001) could serve
to modulate the ephaptic coupling strength accordingly.

Our study considers relatively narrow axon diameter dis-
tributions to illustrate the effect of ephaptic coupling up to
complete synchronisation. Peripheral nerves typically have a
wide range of axon diameters, typically 1−10µm(Ikeda and
Oka 2012; Eichel et al. 2020). In the context of our results,
wide distributions prevent synchronisation and ensure exact
temporal coding based on axon diameter, even if axons are
densely packed. However, the clustering regime where only
slow spikes synchronise could still be applicable, especially
in fibre bundles with a selectivity for large or small axons,
thus narrowing the distribution within the bundle. Here, the
function of thicker and thinner axons could diverge: thinner
axons might transmit convergent, synchronous information,
whereas thicker axons might transmit time-critical informa-
tion.

Finally, we would like to contemplate the possibility to
confirm our results experimentally. While it is difficult to
record spikes directly in peripheral nerves, it is easy to record
the EP generated by nervous activity using surface elec-
trodes. The EP of a spike volley can be computed using
the line-source approximation (Holt and Koch 1999;McCol-
gan et al. 2017). A typical EP waveform generated by a
single spike is triphasic, with an initial hyperpolarisation,
intermediate depolarisation, and final hyperpolarisation. In
the case of spike volleys, this wave form is convolved by
the spatial distribution of spikes in the volley. As a con-
sequence, highly synchronised volleys will show a strong
triphasic profile, whereas distributed volleys show weaker
profiles. The clustering that we have observed would then
likely result in a multiphasic EP profile, with a fast, low-
amplitude response resulting from fast, asynchronous spikes,
and a slow, high amplitude response resulting from slow,
synchronised spikes. Interestingly, experiments show mul-
tiphasic EP profiles, which hints at the existence of such a
clustering regime (Parker et al. 2018). Nevertheless, it is also
possible that the multiphasic nature of these EPs is due to
feedback mechanisms, and it requires more detailed mod-
elling work to disentangle the different mechanisms.
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