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We propose an adaptive phase technique for the parametric cooling of mechanical resonances. This
involves the detection of the mechanical quadratures, followed by a sequence of periodic controllable
adjustments of the phase of a parametric modulation. The technique allows the preparation of
the quantum ground state with an exponential loss of thermal energy, similarly to the case of
cold-damping or cavity self-cooling. Analytical derivations are presented for the cooling rate and
final occupancies both in the classical and quantum regimes.
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Mechanical resonators are oftentimes used in displace-
ment [1], force [2], acceleration [3] or mass sensing [4]
applications. Bringing them to their quantum ground
state is of fundamental interest for research studying the
classical to quantum physics transition [5]. A particularly
successful path in achieving control over motion has been
taken in optomechanics where photons are interfaced
with phonons [6]. Cooling close to the quantum ground
state of an isolated mechanical resonance has been
achieved both via cavity self-cooling [7–10] and via
externally imposed feedback [11–16]. In the former case,
external driving of a cavity optomechanical system leads
to the possibility of resolved sideband cooling [17, 18]. In
the latter case, detection of the light scattered from an
optomechanical system allows for the implementation of
a cold-damping mechanism [19], where a viscous force
proportional to the momentum is provided. Extensions
to the simultaneous feedback cooling of many mechanical
resonances are also possible [20, 21]. Both these two
paths have been extensively utilized theoretically and
experimentally and their advantages and limitations are
well understood [6, 22, 23]. More recently, a third option,
dubbed parametric cooling, has arisen, as an efficient
option for cooling optically levitated particles [24, 25],
atoms in cavities [26] or nano-electromechanical res-
onators [27]. For a generic oscillator at resonance
frequency Ω, the main ingredient of this technique is the
periodic modulation of the spring constant at 2Ω. In the
particular case of levitated nanoparticles, this is achieved
by feedback control of the trapping potential [28]. The
cooling mechanism is then similar to cold-damping but
with a non-exponential loss rate of energy [24, 29].

Here, we propose a variation of the parametric
cooling technique, which is not based on a controlled
cold-damping feedback loop [14] but, instead, on the
adjustment of the modulation phase: we dub this
technique phase adaptive parametric cooling. The
technique solely requires the detection of the momentum

and position quadratures of the oscillator, from which
an optimal modulation phase is deduced and fed back
into the system (as illustrated in Fig. 1). Parametric
driving of an oscillator of displacement x with natural
frequency Ω and mass m, consists in supplementing
the bare restoring force F = −mΩ2x with an extra
small modulation δF = 2mΓΩ cos (2Ωt+ φ)x (under the
condition Γ� Ω). Alternatively, this can be understood
as a periodic and phase dependent variation of the spring
contant k(t, φ). The key point in our treatment is the
observation that the phase φ is a crucial tuning knob:
when properly adjusted, it can steer the system to a
cooling regime characterized by an exponential loss of
energy at rate Γ. For a thermal environment at average
occupancy nth � 1, we analyze the classical competition
between parametric cooling and thermal reheating to
predict a final occupancy as low as γnth/Γ, where γ is the
intrinsic mechanical damping. The same result holds in

FIG. 1. Parametric cooling via phase adaptive feedback.
Generic oscillator with natural frequency Ω. Detection of
the mechanical quadratures q and p allows for the design of
an adaptive phase feedback strategy, based on the paramet-
ric modulation of the spring constant at frequency 2Ω and
adjustable modulation phase φ.
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the quantum regime and can be generalized as well to the
simultaneous cooling of a number of oscillators [30–32]
via a single parametric modulation drive.

The emergence of damping behavior is analytically
shown by noting that a parametric driven oscillator
satisfies a Mathieu-like equation, under perturbative
conditions. This analytical solution allows for the
identification of the optimal phase of the parametric
modulation and the subsequent derivation of an efficient
phase adaptive feedback procedure. Classical and
quantum limits for cooling efficiency can be derived and
compared to simulation of a set of stochastic equations.
Finally, the technique can easily be extended to the
simultaneous cooling of many mechanical modes.

Model and equations - We consider a mechanical
resonance (along some quantized direction x̂ of effec-
tive mass m subjected to the standard restoring force
F = −mΩ2x̂ and to a weak parametric modulation
δF = 2mΓΩ cos (2Ωt+ φ)x̂; here Ω is the natural oscilla-
tion frequency and a modulation amplitude Γ� Ω and
phase φ are assumed. With the definition of the zero point
motional amplitude xzpm =

√
~/(mΩ), one can introduce

the dimensionless position quadrature q̂ = x̂/xzpm and
the corresponding momentum quadrature p̂ such that
[q̂, p̂] = i. The Heisenberg-Langevin equations of motion
then can be derived as

dq̂

dt
= Ωp̂, (1a)

dp̂

dt
= −γp̂− Ωq̂ + 2Γ cos(2Ωt+ φ)q̂ + ζ̂(t), (1b)

describing a parametrically driven, quantum mechan-
ical oscillator subject to thermal noise via the term
ζ̂(t). In the absence of external forces, the mechan-
ical mode is in equilibrium with a thermal bath at
temperature Tth to which an average occupancy nth

corresponds. The action of the bath onto the me-
chanical resonance is modeled via quantum stochastic
noise operators ζ̂(t) of zero average and with two-time

correlations 〈ζ̂(t)ζ̂(t′)〉 = 1/(2π)
∫
dωSth(ω)e−iω(t−t′).

The thermal power spectrum is given by Sth(ω) =
γω/Ω {coth [~ω/(2kBTth)] + 1}. For large mechanical
quality factors Qm = Ω/γ � 1, the thermal damp-
ing rate can be defined in terms of sidebands: γ =
[Sth(Ω) − Sth(−Ω)]/2 while the average thermal occu-
pancy is nth = [Sth(Ω) + Sth(−Ω)]/(2γ). Notice that the
equipartition theorem implies that, in a thermal state the
variance in the two quadrature is the same and derivable
as 〈q̂2〉 = 〈p̂2〉 = nth + 1/2.

In a first step, we take an average over the Langevin
equations and construct a second order differential equa-
tion for the expectation value q = 〈q̂〉. We then fol-
low a perturbative method which requires that the mod-
ulation parameter b = Γ/Ω � 1 is small. Eliminat-
ing the trivial exponential damping by the transforma-

tion q = q̄e−γt/2 allows for the derivation of a Mathieu-
like equation ¨̄q +

[
Ω′2 − 2bΩ2 cos(2Ωt+ φ)

]
q̄ = 0 where

Ω′ =
√

Ω2 − γ2/4 (as Qm � 1, one can safely approxi-
mate this term in the following with Ω). Further simpli-
fications are then obtained via the transformation to a
dimensionless time variable t̄ = Ωt+ φ/2. The dynamics
can now be exactly mapped onto the standard Mathieu
equation

d2qM
dt̄2

+ [1− 2b cos(2t̄)] qM = 0. (2)

In the following we will use approximate solution of this
equation, obtained in the limit b � 1. Notice that the
reverse transformation from t̄ to the real time variable is
then done via the identification q(t) = qM(Ωt+φ/2)e−γt/2.

Parametric self-cooling solution – The general pro-
cedure for analytically solving a differential equation in
Mathieu form as in Eq. (2) is well known [33] and famously
used, for example, in the theory of harmonic trapping of
ions in Paul traps [34] (albeit in a very different regime,
where the modulation is much faster than the natural fre-
quency). In the limit of small modulation b� 1, one can
show that, to a very good approximation (see Appendix)
the (classical) solution can be written in terms of negative
and positive damping components

q = A−e−
(γ+Γ)t

2 sin (Ωt+ φ′) +A+e
− (γ−Γ)t

2 cos (Ωt+ φ′)
(3)

FIG. 2. Single shot cooling a) Time evolution of the occupancy

for three randomly selected initial conditions (q
(j)
0 , p

(j)
0 ) for

j = 1, 2, 3, each with an optimized phase φ
(j)
0 . All trajectories

show exponential cooling up to the turning points τj where
the damped solution is comparable to the growing one. The
parameters are γ/Ω = 10−6, nth = 104 and b = 0.05. The
time is expressed in inverse units of Ω. b) Time dynamics
of occupancy for varying b (other parameters same as in (a))
shows the direct dependence of the cooling rate on b and that
the validity of the analytically predicted exponential cooling
holds even for relatively large b = 0.25.
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with φ′ = φ/2 − π/4. The solution above shows that
parametric driving brings in an additional optical damp-
ing rate Γ (we have assumed b > 0) that adds to the
intrinsic thermal damping γ. The negative solution in-
dicates increased damping, while the positive solution
leads to a heating instability as soon as − becomes larger
than γ. The coefficients A± are derived from the initial
conditions q0 and p0 (as detailed in Appendix) and their
ratio strongly depends on the driving phase φ. For a fixed
modulation phase φ, the initial conditions then dictate
whether the system will follow a cooling or heating dy-
namics in the transient regime; in the long time limit,
independently of the initial conditions, the system will
blow up as the heating solution will always prevail.

Let us ask for the conditions for which A− � A+, such
that the damped solution dominates at early times. Un-
der the approximation that b� 1, a simplified analytical
expression can be found (see Appendix)

φ
(0)
opt =

π

2
+ 2 tan−1

[
q0

p0

]
, (4)

that sets the proper, optimized value for the modulation
phase. This allows one to formulate the strategy for the
single shot cooling mechanism: detection of scattered
light allows to infer the initial conditions, which in turn
are used to optimize the modulation phase. The resulting
cooling dynamics occurs for any initial conditions as
illustrated in Fig. 2. The loss of energy is exponential at
the analytically predicted rate Γ and dominates up to
a time τ where (roughly) τ ≈ (1/Γ) ln(A−/A+) (where
the positive and negative solutions are comparable).
This means that the occupancy reached at time τ is
roughly A−/A+ times smaller than the initial one.
Analytically one can deduce A−/A+ ≈ 2(q2

0 − p2
0)/(bq2

0)
(see Appendix) which indicates on average a reduction in
thermal energy by a factor of roughly 1/b.

This result already suggests the mechanism to achieve
control over the cooling dynamics at arbitrarily long times:
at regular times jδτ (with j = 1...N and the repetition
time interval δτ < τ), before heating starts to dominate,
one detects the instantaneous values of q(jδτ) and p(jδτ)
and updates the phases φ(jδτ) to the values indicated
by Eq. 4. Following this procedure for N steps suggests
the loss of energy roughly by a factor 1/bN . For values
of b around 0.1, in only 6 feedback steps one can reduce
an initial nth = 104 average occupancy to well below unity.

Feedback cooling versus reheating – The perfor-
mance of any cooling technique involves the competition
between the externally induced damping dynamics and
the inherent reheating due to the thermal environment in
which the oscillator is embedded. We first analyze the per-
formance of an adaptive phase feedback procedure in the
presence of classical thermal noise (under the Markovian
approximation) modelled by as a Wiener process 〈dW (t)〉
of zero average and variance 〈dW (t)2〉 = dt equal to the

FIG. 3. Feedback phase adaptive cooling. a) Time evolution of
the occupancy for a given set of initial conditions assuming
initially fixed phase (red line) as opposed to adapted phase
with δτ < τ (blue line, fast feedback) and δτ > τ (magenta
line, slow delayed feedback). b) Two trajectories with different
initial conditions randomly picked from an thermal distribution
with nth = 104. In the presence of thermal noise, the cooling
dynamics is purely exponential at the theoretically predicted
loss rate Γ. Close to the ground state, the competition between
Brownian noise thermal heating and parametric cooling shows
the reach of an equilibrium final occupancy at nfinal ≈ γnth/Γ.
Fluctuations around this value are owed to the competition
between stochastic processes involving thermal reheating and
continuous optical cooling action. c) Phase-space illustration
of an initial thermal state (103 points in orange) and the
corresponding final cold state (in blue). d) Zoom in of the
final occupancy distribution in phase space, showing that the
system reaches a thermal state. The parameters are chosen
as γ/Ω = 10−6 and b = 0.05. The time is expressed in inverse
units of Ω.

infinitesimal time increment. To this end one writes a set
of coupled difference equations

dq = Ωpdt, (5a)

dp = −γpdt− Ωqdt+ Fmoddt+
√

2γnthdW (t), (5b)

where the Brownian noise is normalized such that, in
the absence of the trap modulation force, the system
thermalizes at rate γ to the temperature Tth associated
with an average quanta occupancy nth. For numerical
simulations, one can model dW (t) =

√
dtN (0, 1), where

N (0, 1) describes a normally distributed random variable
of unit variance. A semi-analytical solution can be instead
found by turning the difference equations into a set of
recurrence equations. We discretize the time interval [0, t]
into n steps of duration dt = t/n. The equations above
can be rewritten as vn−Mnvn−1 =

√
2γnthudWn where

v = (q, p)> and u = (0, 1)> and the evolution matrix is
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defined as

Mn =

[
1 Ωdt

−Ωdt+ 2Γ cos [2Ω(n− 1)dt+ φ] dt 1− γdt

]
.

(6)
A formal analytical solution can be then found easily
and can be written in terms of time ordered matrices
Tnj =MnMn−1...Mj in the following form

vn = Tn1v0 +
√

2γnth

n−1∑
j=1

TnjudWn−j . (7)

The first part in the equation above describes the
deterministic evolution from the initial conditions while
the last part is the long term behavior dominated by
thermal noise. Notice that for nth = 0, the evolution
matrix is time independent and the Tnj is simply equal
to M(n−j) which allows for analytical solutions.

The phase adaptive feedback algorithm is then as
chosen as follows: at the initial time t = 0, the trapped

modulation phase is picked at φ
(0)
opt, from the detected

quadratures, to insure an initial damping period. Moni-
toring of the q and p quadratures at regular time intervals
jδτ (with j = 1, ...N ) is then followed by an update of

the modulation phases φ
(j)
opt fixed by Eq. (4) with the

replacement of the instantaneous quadratures qj = q(jδτ)
and pj = p(jδτ). In Fig. 3a, the performance of the
technique is exemplified on three different trajectories
with identical initial conditions but different feedback
times (at zero environment temperature). For an

optimized φ
(0)
opt the red line shows the heating in the

absence of feedback, while regular interval feedback show
either exponential loss of energy when δτ < τ (blue line)
or imperfect exponential loss for δτ > τ (magenta line).

For large thermal occupancies nth = 104, the two
trajectories (picked randomly from a thermal distribu-
tion) shown in Fig. 3b show that for quick feeedback,
exponential loss is achieved towards the same final
occupancy. From equilibrium considerations [22], the
final occupancy can be deduced as the ratio of the
reheating rate of the ground state γnth and the total
damping rate γ + Γ, such that nfinal = γnth/(γ + Γ).

Quantum ground state cooling – The classical model
of thermalization does not include the characteristics of
the quantum harmonic oscillator, i.e. that the commu-
tations between q̂ and p̂ which automatically impose a
minimal variance of 1/2 in both quadratures even for
zero temperature. To this end, we instead consider the
quantum dynamics of the system described by Eqs. (1) in
differential form and with a quantum white noise input
that includes the zero-point energy. Let us assume dynam-
ics around the steady state, characterized by vanishing
average momentum and position and by an optimally
adjusted modulation phase φ that gives rise to a constant
cooling rate Γ. We can perform a Fourier transform of

FIG. 4. Simultaneous cooling. a) Final occupancy (lower
panel, red - initial occupancy, black - isolated cooling, blue
- simultaneous cooling) of eight equidistant modes (upper
panel). b) Same as in a) but considering the case where two
modes are degenerate in frequency. c) Time dynamics of the
cooling process for all modes showing fluctuations associated
with the competition between the imposed cooling and the
inherent heating dynamics owed to the thermal bath. d) Same
as in c) but with the clear message that degenerate modes
are decoupled from the cooling dynamics. The parameters are
chosen as γ/Ω = 10−6, b = 0.05 and the initial occupancy is
close to 105 for all modes. The time is expressed in inverse
units of Ω.

Eqs. (1) to derive

χ−1(ω)q̂(ω) = Γ
[
eiφq̂(−2Ω + ω) + e−iφq̂(2Ω + ω)

]
+ζ̂(ω),

(8)
where the mechanical susceptibility is defined as χ(ω) =

Ω
(
Ω2 − ω2 − iγω

)−1
and the last term describes a sum

of noise stemming from both the thermal bath and the
effective parametric cooling bath (introduced phenomeno-
logically to account for the fluctuation-dissipation theo-
rem). Similar to the procedure illustrated in Ref. [22], we
compute the power spectrum of the position quadrature
and integrate it over all frequencies to obtain the final
occupancy as nth = 〈q̂2〉+ 1/2 (as we have assumed that
thermal equipartition requires 〈q̂2〉 = 〈p̂2〉). The power
spectrum contains Lorentzians of linewidth γ + Γ. Under
the assumption that γ+Γ� Ω, one can estimate the final
occupancy by only considering power spectra components
around ±Ω. To this end we write ω = ±Ω + δ where δ
where is a small variation δ � Ω. After integration and
under the assumption that Γ > γ one can show that (see
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Appendix)

〈q̂2〉 =
γ(Γ + γ sinφ)

Γ2 − γ2

(
nth +

1

2

)
+

Γ(Γ + γ sinφ)

2(Γ2 − γ2)
. (9)

The first contribution describes the effect of the reduction
of the thermal bath effect onto the oscillator, while the sec-
ond term is necessary to secure a larger than 1/2 variance
stemming from quantum fluctuations. A more concise
expression can be obtained under the more stringent condi-
tions where Γ� γ and final occupancy nfinal = 〈q̂2〉−1/2
is expressed in a very simple form as

nfinal =
γ

Γ

(
nth +

1

2

)
(10)

The result is not surprising and agrees with the stochastic
classical analysis previously described: the final tempera-
ture is roughly reduced by a factor Γ/γ. This reduction
is bounded from above by the mechanical quality factor
Qm (as Γ < Ω is the required condition for the validity of
the perturbative solution).

Simultaneous cooling of multiple modes – The
phase adaptive mechanism can be extended to simul-
taneously cool a number nres of adjacent mechanical
resonances [30–32]. Denoting their frequencies with Ωj

with j = 1, ...nres, we assume a generalized modulation
force

∑
j 2Γj cos(2Ωjt + φj)qj . Assuming spectrally

resolved detection of all quadratures, the set of modula-
tion phases can be extracted and used for the periodic
adjustment of the modulation force at intervals jδτ .
The results are presented in Fig. 4 both for equidistant,
well separated nres = 8 resonances, as well as for the
particular case of two degenerate modes. The final
occupancy in steady state is calculated for individual,
isolated cooling (ignoring the presence of adjacent
resonances) and compared with the performance of
the simultaneous cooling technique. The results are
consistent with previous treatments of cold-damping [20],
for example, showing that cooling is efficient as long as
the modes are frequency separated by more than the
effective cooling rate Γj .

Discussions and outlook – As opposed to previous
theoretical treatments [29] of parametric cooling [24],
the technique introduced here does not need external
engineering of a cold-damping feedback force and
only makes use of a minimally invasive detection loop
in the process. The predicted dynamics is purely
exponential in energy loss and is captured in a fully
analytical model both at the classical and at the
quantum level. While parametric cooling has been
experimentally introduced for the motional control of
optically levitated particles [24, 25], atoms in cavities [26]
or nano-electromechanical resonators [27], our description
here is quite general involving solely the modulation of

the spring constant of the resonator. Therefore, possible
applications could extend to optomechanical systems such
as a membrane-in-the-middle optomechanical systems, to
cooling of ions in traps or to the refrigeration of phonon
modes in solid-state systems.
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Appendix A: Classical dynamics of a parametrically drive mechanical resonator

The standard solution to the Mathieu equation is written as an infinite sum

qM (t̄) = E−eiβt̄
n=∞∑
n=−∞

C2ne
i2nt̄ + E+e−iβt̄

n=∞∑
n=−∞

C2ne
−i2nt̄. (11)

The coefficients of all harmonics (see Ref. [34]) can be found to satisfy the following recursive equation

C2n+2 −D2nC2n + C2n−2 = 0, (12)

where

D2n =
1− (2n+ β)2

b
(13)

In the limit of small b, the first three terms in the expansion above suffice to properly describe the trajectory: we
reduce the analysis to n = 0,±1. For β = −1 + x, where x is a complex number with amplitude much smaller than
unity, we find that D0 = 2x/b and D2 = −2x/b while all other Ds are very large. Fixing (without loss of generality)
C0 = 1 and truncating all coefficients for |n| > 1 we obtain x = ib and C2 = i, as the only non-vanishing coefficient.
Finally, we can write the solution as

q(t) = 2A−e−
(γ+Γ)t

2 cos (Ωt+ φ′) + 2A+e
− (γ−Γ)t

2 sin (Ωt+ φ′), (14)
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where A− = 2E−eiπ/4e−bφ/4 and A+ = 2E+eiπ/4ebφ/4 and the newly introduced phase is φ′ = φ/2 + π/4. The initial
conditions ask that qM (t̄ = φ

2 ) = q(t = 0) = q0 and q̇M (t̄ = φ
2 ) = p(t = 0) = p0, which leads to the following set of

equations

A− cosφ′ +A+ sinφ′ = q0, (15a)

−A− sinφ′ +A+ cosφ′ − b

2
A− cosφ′ +

b

2
A+ sinφ′ = p0. (15b)

In a first step, we neglect A+ assuming it is much smaller than the damped solution and obtain from above

φ
(0)
opt =

π

2
+ 2 tan−1

[
1

p0

q0
+ b

2

]
. (16)

With the observation that, for the chosen optimal phase, the signs of the sin and cos terms are always the same, we
can obtain |A−| =

√
q2
0 + p2

0 thus equal to the initial variance of the thermal state.

Appendix B: Classical stochastic evolution

The coupled difference equations

dq = Ωpdt, (17a)

dp = −γpdt− Ωqdt+ Fmoddt+
√

2γnthdW (t), (17b)

can be directly numerically simulated by modelling dW (t) =
√
dtN (0, 1), where N (0, 1) describes a normally distributed

random variable of unit variance. However, more analytical insight can be obtained by turning the difference equations
into a set of recurrence equations. We discretize the time interval [0, t] into n steps of duration dt = t/n and can then
rewrite the equations above as

vn −Mnvn−1 =
√

2γnthudWn (18)

where v = (q, p)> and u = (0, 1)> and the evolution matrix is defined as

Mn =

[
1 Ωdt

−Ωdt+ 2Γ cos [2Ω(n− 1)dt+ φ] dt 1− γdt

]
. (19)

A solution can be then found easily and can be written in terms of time ordered matrices Tnj =MnMn−1...Mj in
the following form

vn = Tn1v0 +
√

2γnth

n−1∑
j=1

TnjudWn−j . (20)

As a simple check, let us describe solely the thermalization dynamics of an unmodulated oscillator (setting Γ = 0).
The time ordered matrices are much simpler now: Tn1 = Mn and Tnj = Mn−j . Under the assumption that
γ � Ω, diagonalization of the matrix M = SΛS−1 is straightforward in terms of the two eigenvalues of M
equal to λ1 = 1 − γdt/2 − iΩdt, λ2 = 1 − γdt/2 + iΩdt. Notice that the two eigenvalues can be rewritten as
λ1 = (1− γdt/2)e−iΩdt = reiθ and λ2 = re−iθ where r = 1− γt/2n and θ = Ωt/n. The resulting quadratures after n
steps are written as

qn =
λn1 + λn2

2
q0 + i

λn1 − λn2
2

p0 +
√

2γnth

n−1∑
j=0

λj1 − λ
j
2

2
dWj , (21a)

pn =
λn1 + λn2

2
p0 − i

λn1 − λn2
2

q0 +
√

2γnth

n−1∑
j=0

λj1 + λj2
2

dWj , (21b)
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where the deterministic parts describe simply the oscillatory weakly damped transient evolution and the last terms are
the effect of the thermal environment. In the large n limit we find a closed expression

q(t) = e−γt/2 [qo cos(Ωt) + p0 sin(Ωt)] + lim
n→∞

√
2γnth

n−1∑
j=0

rj sin(jθ)dWj , (22a)

p(t) = e−γt/2 [p0 cos(Ωt)− q0 sin(Ωt)] + lim
n→∞

√
2γnth

n−1∑
j=0

rj cos(jθ)dWj , (22b)

where we have used that limn→∞(1 − γt/2n)n = e−γt/2. From these expressions, one can estimate that in steady

state 〈q2〉ss = 〈p2〉ss = nth by using 〈dWjdWj′〉 = δjj′t/n and evaluating the limit limn→∞
∑n−1
j=0 r

2j sin2(jθ) = 1/(2γt).

Appendix C: Quantum ground state cooling

Let us assume steady state and fix the modulation phase to φ such that the cooling rate is exponential at rate
Γ and both the position and momentum expectation values vanish. We will compute the final occupancy from the
variance in position (assuming thermal equipartition between momentum and position quadratures) obtained from the
power spectrum in the Fourier domain Sq(ω) via an integration 〈q̂2〉 = 1/(2π)

∫∞
−∞ dωSq(ω). The Fourier transform of

Eqs. (1) leads to

−iωq̂(ω) = Ωp̂(ω), (23a)

−iωp̂(ω) = −γp̂(ω)− Ωq̂(ω) + Γ
[
eiφq̂(ω − 2Ω) + e−iφq̂(ω + 2Ω)

]
+ ζ̂(ω). (23b)

Notice that, for Γ = 0, the above equations lead to q̂(ω) = χ(ω)ζ̂(ω) where the mechanical susceptibility is

χ(ω) =
Ω

(Ω2 − ω2)− iγω
. (24)

This indicates a simple way of computing the variance by using the correlations of the thermal environment 〈ζ(ω)ζ(ω′)〉 =
Sth(ω)δ(ω+ω′) where Sth(ω) is the thermal power spectrum with sidebands Sth(−Ω) = 2γnth and Sth(Ω) = 2γ(nth +1).
As for very high mechanical quality factors Qm � 1, the susceptibility is a very sharply peaked function around ±Ω
one can approximate it around the two poles at ±Ω by expanding it in terms of a small quantity γ � |∆| � Ω. The
expansion is then χ(−Ω + ∆) ' 1/(2∆ + iγ) and χ(+Ω + ∆) ' 1/(−2∆− iγ). The variance can then approximated
by 〈q̂2〉 (t) = 1/(2π)

∫∞
−∞ d∆(4∆2 + γ2)−1(Sth(−Ω) + Sth(Ω)) = nth + 1/2 as expected. We made use of the integral

1/(2π)
∫∞
−∞ d∆1/(4∆2 + γ2) = π/(2γ).

We can now rewrite Eqs. (23) as a recursive equation

q̂(ω) = Γχ(ω)
[
eiφq̂(−2Ω + ω) + e−iφq̂(2Ω + ω)

]
+ χ(ω)ζ̂(ω). (25)

We the proceed as above making small variations around ±Ω and assuming that the only components which contribute
to the power spectrum of the position quadrature are q̂(±Ω + ∆). We can now separate two coupled equations

q̂(−Ω + ∆) = Γχ(−Ω + ∆)e−iφq̂(Ω + ∆) + χ(−Ω + ∆)ζ̂(−Ω + ∆), (26a)

q̂(Ω + ∆) = Γχ(Ω + ∆)eiφq̂(−Ω + ∆) + χ(Ω + ∆)ζ̂(Ω + ∆). (26b)

and invert them to find the solutions for q(−Ω + ∆) and q(Ω + ∆) expressed as

q̂(−Ω + ∆) = −χ̄(∆)
[
−(2∆ + iγ)ζ(−Ω + ∆) + Γe−iφζ(Ω + ∆)

]
, (27a)

q̂(Ω + ∆) = −χ̄(∆)
[
Γeiφζ(−Ω + ∆) + (2∆ + iγ)ζ(Ω + ∆)

]
. (27b)

The modified mechanical susceptibility is approximated by the following expression (under the assumption that
|∆| � Ω)

χ̄(∆) =
1

4∆2 + Γ2 − γ2 + 4iγ∆
. (28)
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The denominator shows the presence of the optical damping rate Γ but not as a broadening adding to γ as is the case for
cold damping or cavity cooling. We now again use the correlations of the noise term in the frequency domain however
supplemented with the bath responsible with damping at rate Γ and with zero temperature. Notice that, for small ∆, the
only contributing terms are 〈ζ(−Ω + ∆)ζ(Ω + ∆′)〉 ' S(−Ω)δ(∆ + ∆′) and 〈ζ(Ω + ∆)ζ(−Ω + ∆′)〉 ' S(Ω)δ(∆ + ∆′)
where now S(−Ω) = 2γnth and S(Ω) = 2γ(nth + 1) + 2Γ. This leads to the following contributions

〈q̂(−Ω + ∆)q̂(−Ω + ∆
′
)〉 = |χ̄(∆)|2Γe−iφ [2∆ (S(Ω)− S(−Ω))− iγ (S(−Ω) + S(Ω))] δ(∆ + ∆

′
), (29a)

〈q̂(Ω + ∆)q̂(Ω + ∆
′
)〉 = |χ̄(∆)|2Γeiφ [2∆ (S(Ω)− S(−Ω)) + iγ (S(−Ω) + S(Ω))] δ(∆ + ∆

′
), (29b)

〈q̂(−Ω + ∆)q̂(Ω + ∆
′
)〉 = |χ̄(∆)|2

[
(4∆2 + γ2)S(−Ω) + Γ2S(Ω))

]
δ(∆ + ∆

′
), (29c)

〈q̂(Ω + ∆)q̂(−Ω + ∆
′
)〉 = |χ̄(∆)|2

[
Γ2S(−Ω) + (4∆2 + γ2)S(Ω))

]
δ(∆ + ∆

′
). (29d)

We can now add all the contributions to find the position power spectrum via the following integral

〈q̂2〉 =
1

2π

∫ ∞
−∞

d∆|χ̄(∆)|2
{

4γ(2γΓ sinφ+ 4∆2 + Γ2 + γ2)(nth +
1

2
) + 2Γ

(
4∆(γ + Γ) cosφ+ 2γΓ sinφ+ 4∆2 + Γ2 + γ2

)}
(30)

The result for the relevant case Γ > γ is

〈q̂2〉 =
γ(Γ + γ sinφ)

Γ2 − γ2

(
nth +

1

2

)
+

Γ(Γ + γ sinφ)

2(Γ2 − γ2)
. (31)

Notice that in the limit where the additional damping dominates Γ� γ one can simplify the expression above and
compute the final occupancy nfinal = 〈q̂2〉 − 1/2 to lead to

nfinal =
γ

Γ
(nth +

1

2
) (32)

In the opposite case where Γ < γ the variance reads

〈q̂2〉 =
γ(γ + Γ sinφ)

γ2 − Γ2

(
nth +

1

2

)
+

Γ(γ + Γ sinφ)

2(γ2 − Γ2)
. (33)

For Γ = 0 we recover the expected result 〈q̂2〉 = nth + 1/2.
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