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Abstract 31 
Cognitive aging is associated with widespread neural reorganization processes in the human brain. 32 
However, the behavioral impact of such reorganization is not well understood. The current 33 
neuroimaging study investigated age differences in the functional network architecture during 34 
language production. Combining task-based functional connectivity, graph theory and cognitive 35 
measures of fluid and crystallized intelligence, our findings show age-accompanied large-scale 36 
network reorganization even when older adults have intact word retrieval abilities. In particular, 37 
functional networks of older adults were characterized by reduced decoupling between systems, 38 
reduced segregation and efficiency, and a larger number of hub regions relative to young adults. 39 
Exploring the predictive utility of these age-related changes in network topology revealed high, 40 
albeit less efficient, performance for older adults whose brain graphs showed stronger 41 
dedifferentiation and reduced distinctiveness. Our results have important implications for theoretical 42 
accounts of neurocognitive aging, indicating a successful compensatory network reconfiguration at 43 
the cost of efficient wiring. 44 
 45 
 46 
Keywords: aging, functional connectivity, semantic memory, graph theory, language production 47 
 48 

  49 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Introduction 50 
Communication is an essential human ability for everyday life. It draws on the general knowledge of 51 
words, concepts, and ideas we accumulate across the lifespan, so-called semantic memory, as well 52 
as personal experiences, also referred to as episodic memory1. Although communication abilities 53 
remain largely intact in healthy aging, and copious evidence has shown preservation or even 54 
increases in semantic memory through adulthood into very old age2–4, memory problems in verbal 55 
communication, such as finding the right word and tip-of-the-tongue episodes, are a common 56 
complaint with increasing age5. This paradox has been explained in terms of less efficient access 57 
and retrieval processes during language production that rely on semantic and cognitive control 58 
functions like working memory, attention, and inhibitory control, and are well established to steadily 59 
decline with age6. Thus, the impact of aging on communicative abilities may vary as a function of an 60 
individual’s cognitive control abilities and intact semantic memory. However, little is known about the 61 
neural mechanisms underlying those subtle changes in communicative abilities with age. 62 

The recent conceptualization of the brain as a complex modular system7,8 provides a unique 63 
framework to examine age-related changes in neural information processing and their 64 
consequences for behavior. To this end, graph-theoretical measures offer an analytical method to 65 
model such complex systems and explore organization principles of human brain networks9,10. Links 66 
between functional connectivity within and across specialized modules or neural networks and 67 
cognitive outcomes in young adults have revealed a topological organization of the brain that 68 
combines local information processing with global information integration aimed at optimizing global 69 
cost efficiency (“small world” organization)11,12. Age-related changes to this modular organization 70 
have been described as a general decline of functional network segregation evident in the form of 71 
decreased within- and enhanced between-network functional connectivity13–15. Moreover, increasing 72 
age has been associated with reduced small-world organization, modularity, and local and global 73 
efficiency of functional brain networks16–19. The impact of such reorganization on cognition remains 74 
debated. Most studies associated neural dedifferentiation with performance decline13,18,20, whereas 75 
some have pointed towards a pattern of compensational response, where reduced network 76 
segregation counteracts the age-related decline of brain function to maintain successful 77 
performance15. 78 

While the majority of studies investigated functional connectivity from resting-state functional 79 
magnetic resonance imaging (fMRI), important insight can be gained through task-based functional 80 
connectivity. Interestingly, age-accompanied differences in network topology during task processing 81 
largely concur with reported patterns in resting-state in the form of stronger integration and reduced 82 
segregation21–23. However, their behavioral relevance seems to depend on the cognitive resources 83 
required for the task of interest. Research from domains well known to steadily decline with age, 84 
such as episodic and working memory, reported compensational recruitment of control and attention 85 
networks for successful performance21,24,25 but also maintenance processes with age to preserve 86 
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neural resources despite structural deterioration26,27. A different picture emerges for cognitive 87 
abilities that remain stable with age like language and creativity. Here, increased connectivity 88 
between usually anti-correlated networks such as executive and default networks might be 89 
advantageous for older adults when access to semantic memory and little cognitive control are 90 
required so that they can rely on prior knowledge to maintain high performance23,28,29. 91 

Despite its relevance for successful verbal communication, research on age-related network 92 
organization during semantic word retrieval is sparse. In this context, semantic fluency tasks are 93 
especially valuable since they tap into semantic memory but also cognitive control processes and 94 
are often linked to preserved albeit slower performance in older adults30. Previous studies revealed 95 
age-related reduced functional connectivity within domain-specific networks during semantic word 96 
retrieval, however, without affecting behavioral performance31,32. Furthermore, we recently showed 97 
that functional connectivity within and between domain-general networks like the default and 98 
multiple-demand network differently impacts the behavior of older and young adults during a 99 
semantic fluency task, even when network coupling is age-invariant29. Thus, domains that are 100 
usually well-preserved with age offer an opportunity to inform the current understanding of age-101 
accompanied changes in the architecture of functional brain networks and their behavioral 102 
relevance regarding compensatory and aberrant mechanisms. 103 

The present study addresses this gap by exploring age-related reorganization of functional 104 
networks during processing of a semantic word retrieval task. Networks of task-based functional 105 
connectivity in groups of healthy young and older adults were derived via data-driven, multivariate 106 
methods. We were interested in age differences in the coupling of task-relevant networks and their 107 
behavioral relevance. Furthermore, we applied graph-theoretical measures of brain system 108 
segregation, integration, and network hubs to investigate the network topology in young and older 109 
adults. Leveraging recent advances in network neuroscience, we used orthogonal minimum 110 
spanning trees33 (OMST) for the calculation of graph measures to avoid arbitrary thresholding of 111 
functional connectivity matrices34. These measures were then related to participants’ in-scanner 112 
task performance and abilities of fluid and crystallized intelligence to examine the prognostic utility 113 
of age-related changes in brain network topology. Exploring task-based network topologies as a 114 
function of cognitive performance in a domain that is usually well preserved with age enabled us to 115 
gain key insights into age-related reorganization processes within subjects and to inform theoretical 116 
accounts regarding compensatory and detrimental effects of neurocognitive aging on behavior.117 
  118 
	 	119 
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Results 120 
The main objective of this study was to investigate age-related changes in integration and 121 
segregation of functional neural networks engaged in the goal-directed access to semantic memory. 122 
By contrasting a paced overt semantic fluency task with an overt counting task, we delineated 123 
neural networks specific to semantic access and control processes in healthy young (n = 30, mean 124 
= 27.6 years, SD = 4.3, range = 21–34) and older adults (n = 31, mean = 65.5 years, SD = 2.75, 125 
range = 60–69 years). Due to strong in-scanner motion (>1 voxel size), data from three older 126 
participants had to be excluded from further analyses, leading to a final sample size of 28 127 
participants in the older group. While both groups were matched for gender, participants in the 128 
young group had significantly more years of education (t(55.86) = 5.21, p < 0.001). During one 129 
experimental session, participants completed two runs of the fMRI experiment (Figure 1a) followed 130 
by a neuropsychological assessment probing semantic knowledge as well as verbal- and non-verbal 131 
executive functions (Table 1). Consistent with previous research, older adults only performed better 132 
for the measure of semantic memory (spot-the-word test; t(54.39) = 3.14, p = 0.003), indicating a 133 
maintenance of semantic knowledge and an increase in vocabulary with age4, while young adults 134 
performed better on all other tests (all at p < 0.01), which is consistent with the assumption of a 135 
general age-related decline of executive functions6. For all reported correlation analyses, 136 
neuropsychological measures were summarized via exploratory factor analysis (Methods). Results 137 
revealed an “executive functions” factor with high loadings on Trail Making Tests A (0.8) and B 138 
(0.71), Digit Symbol Substitution Test (0.73), and reading span test (0.45), and a “semantic 139 
memory” factor with spot-the-word test (0.5) and verbal fluency tests for hobbies (0.44) and 140 
surnames (0.98). For the in-scanner tasks, we fitted mixed-effects models accounting for individual 141 
variance of participants and semantic categories via random effects and the difference in years of 142 
education via covariate (Table S1). Likelihood-ratio tests showed that both age groups performed 143 
similarly (𝑥"= 2.18, p = 0.14) and generally better for counting than semantic fluency (𝑥"= 8.06, p = 144 
0.005; Figure 1b). For response time, results showed an interaction between task and age group 145 
(𝑥"= 79.73, p < 0.001) with older adults performing slower than young adults during the semantic 146 
fluency but not the counting task (Figure 1c). 147 
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 148 
Figure 1. Experimental design. (a) The fMRI experiment consisted of 43-s task blocks of overt 149 
paced semantic fluency and counting, which were presented in a pseudorandomized order and 150 
separated by 16-s rest periods. Two examples for each task are shown. There were 10 blocks per 151 
run for each task. At the beginning of a task block, a 2 s visual word cue indicated whether 152 
participants were expected to generate category exemplars or count forward (1 to 9) or backward (9 153 
to 1). Participants were instructed to produce exactly one exemplar for a category or to say one 154 
number when the fixation cross turned green and to pause when the cross turned red. If they could 155 
not think of an exemplar, they were instructed to say “next”. Each task block contained 9 trials of the 156 
same semantic category/counting task which were separated by jittered inter-stimulus intervals. (b) 157 
and (c) show behavioral results for each task and age group. While results revealed better 158 
performance for counting than semantic fluency in both groups but no difference in accuracy 159 
between age groups, older adults performed slower during semantic fluency than young adults. 160 

 161 
Table 1. Characteristics and neuropsychological test results of participants 162 
 Young adults Older adults 

 (n = 30) (n = 28) 

Demographics   

Age (years) 27.6 (4.4) 65.2 (2.8) 

Gender (F:M) 16:14 14:14 

Education (years) 18.7 (2.6) 15.2 (2.5)* 

Beck Depression Inventory (cut-off 18 points) – 4.7 (4.1) 

Neuropsychological    

Spot-the-word test (max. 40) 29.1 (3.2) 31.5 (2.5)* 

Semantic fluency (sum surnames, hobbies) 51.2 (8.4) 40.7 (6.7)* 

Reading span test (max. 6) 3.5 (1) 2.9 (0.7)* 

Digit symbol substitution test (max. 90 in 90 s) 72.1 (11.4) 50.2 (10.4)* 

Trail Making Test A (time in s) 17.3 (5.8) 25.4 (6.4)* 
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Trail Making Test B (time in s) 36.1 (11.9) 61.8 (29.4)* 

Mini-Mental State Examination (max. 30 points) – 28.36 (1.2) 

Note. Mean values of raw scores with standard deviations. * Significant differences between age 163 
groups at p < 0.01. 164 

 165 
Goal-directed access to semantic memory involves default, semantic, and executive control 166 
networks 167 
Using the data-driven method of group spatial independent component analysis (ICA) on the whole 168 
data set, we defined functional cortical networks for the semantic task. The ICA identified 55 169 
components of which 42 were clearly attributable to artifacts. From the resulting 13 non-noise 170 
components, low-level sensory components including auditory, sensorimotor, and visual networks 171 
were identified and removed since their roles were beyond the scope of our investigation. For 172 
reference, all independent components are displayed in Figure S1.  173 

The remaining seven components were submitted to one-sample t-tests and thresholded 174 
controlling the family-wise error (FWE) rate at peak level with p < 0.05 and a cluster-extent 175 
threshold of 10 voxels. Figure 2 shows the thresholded maps with their original component number. 176 
To determine which cognitive network best described each component, we calculated the Jaccard 177 
similarity coefficient (J) between our thresholded, binarized components of interest and template 178 
masks of common resting-state35 and semantic cognition networks36. Results showed similarity 179 
above threshold (J = 0.15) for all component maps with distinct cognitive networks (Table 2). For 180 
IC06, we found overlap with the frontoparietal control network C (CONT-C) and default mode 181 
network A (DMN-A). Although spatial similarity was marginally higher for CONT-C than DMN-A 182 
(𝐽Control C − 𝐽Default A = 0.01), we refer to this component as part of the default system. Significant 183 
clusters included classic midline structures of the core default network37 like posterior cingulate 184 
cortex, precuneus, and prefrontal cortex (Figure 2). An additional analysis of similarity coefficients 185 
between the component maps and the 7-networks parcellation35 revealed a stronger similarity with 186 
the default network as a whole for this component (𝐽Control − 𝐽Default = -0.03; see Table S2 for results 187 
with the 7-networks parcellation). Furthermore, a second component (IC13) showed strong similarity 188 
with DMN-A. As described in Methods, we combined the component maps of IC06 and IC13 to 189 
assess whether this would lead to a numerical improvement of J. Results showed that this was not 190 
the case with J = 0.21 for the combined components which was below the similarity coefficient of 191 
IC13 alone (J = 0.26). Thus, both components represented distinct parts of DMN-A and were hence 192 
included in subsequent analyses. For IC13, we further included default mode network C (DMN-C), 193 
which showed the second strongest overlap and was represented by significant clusters in bilateral 194 
parahippocampal gyri. Indeed, a combined template of DMN-A and DMN-C led to a numerical 195 
improvement in similarity compared to DMN-A alone (𝐽Default A + C − 𝐽Default A = 0.091). Thus, to gain 196 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 10, 2022. ; https://doi.org/10.1101/2022.05.10.491274doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.10.491274
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

a comprehensive representation of the default network, both subsystems were combined and are 197 
referred to as default mode network A+C (DMN-A+C). 198 

Results of Jaccard calculations further revealed the following networks for the other 199 
components: default mode network B (DMN-B; IC16) with peak activations in bilateral middle 200 
temporal gyri (MTG), inferior and superior frontal gyri (IFG, SFG), and left angular gyrus (AG); 201 
semantic network (SEM; IC18) with strong overlap with the semantic control network and peak 202 
activations in left IFG, SFG, paracingulate gyrus, posterior superior temporal gyrus (STG), and AG; 203 
frontoparietal control network B (CONT-B; IC09) with large clusters in bilateral SFG and middle 204 
frontal gyri (MFG), AG, and posterior MTG; ventral attention network B (VAN-B; IC45) with peak 205 
activation in prefrontal cortex including paracingulate gyrus, bilateral IFG and supramarginal gyri; 206 
and dorsal attention network A (DAN-A; IC52) with large clusters in bilateral AG, and 207 
temporooccipital cortex. Statistical tables with all significant clusters are reported in Supplementary 208 
Table S3. The overlap between each component and the selected cognitive network is shown in 209 
Figure 2. 210 
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 211 
Figure 2. ICA-derived networks and their overlap with cognitive networks. T-scores from one-212 
sided t-tests (FWE-corrected p < 0.05 at peak level) are displayed for the seven selected 213 
component maps with their respective network label according to spatial similarity analysis. 214 
Overlaps between the thresholded component map and the spatially most similar cognitive network 215 
according to the Jaccard index are outlined on the surface of the brain. The areas of overlap were 216 
used for subsequent network analyses. 217 

 218 

Table 2. Jaccard indices for independent components and cognitive networks 219 

 
IC06 IC09 IC13 IC16 IC18 IC45 IC52 

Frontoparietal control A 0.054 0.133 0.032 0.013 0.151 0.083 0.109 

Frontoparietal control B 0.091 0.210 0.028 0.073 0.125 0.050 0.018 

Frontoparietal control C 0.168 0.020 0.066 0.010 0.010 0.028 0.044 

Default A 0.154 0.089 0.255 0.149 0.040 0.054 0.019 

Default B 0.039 0.069 0.031 0.263 0.082 0.098 0.010 

5.31

5.31 22.56

Default A (IC 06) Default A+C (IC 13) Default B (IC 16)

Control B (IC 09) Ventral attention B (IC 45)

Dorsal attention (IC 52)

5.31 21.83

5.31 20.95 5.31 32.2 5.31 23.11

Semantic (IC 18)

5.31 28.83 23.44

5 31 13 6 21 89

5.31 14.24 23.175.31 13.57 21.835.31 17.07 28.83

5.31 13.96 22.615.31 13.13 20.95 5.31 18.71 32.11
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Default C 0.014 0.010 0.122 0.008 0.026 0.001 0.020 

Dorsal attention A 0.051 0.041 0.062 0.015 0.054 0.003 0.180 

Dorsal attention B 0.008 0.038 0.006 0.006 0.071 0.053 0.123 

Limbic A 0.000 0.001 0.002 0.014 0.002 0.002 0.011 
Limbic B 0.001 0.007 0.015 0.004 0.009 0.005 0.002 

Ventral attention A 0.042 0.012 0.023 0.015 0.033 0.124 0.065 

Ventral attention B 0.014 0.074 0.001 0.031 0.059 0.195 0.039 

Somatomotor A 0.022 0.052 0.000 0.039 0.036 0.029 0.028 

Somatomotor B 0.000 0.016 0.038 0.009 0.033 0.011 0.015 

Temporal parietal 0.001 0.029 0.014 0.118 0.023 0.035 0.034 

Central visual 0.022 0.006 0.006 0.038 0.011 0.004 0.123 

Peripheral visual 0.025 0.009 0.074 0.020 0.038 0.034 0.037 

General semantic cognition 0.032 0.030 0.072 0.194 0.201 0.092 0.050 

Semantic control 0.012 0.036 0.012 0.067 0.153 0.091 0.027 

Note. The selected network labels for the respective independent components are shown in bold 220 
while all cognitive networks that showed a higher similarity coefficient than J = 0.15 are shown in 221 
italics. 222 

 223 

Stronger coupling of default and executive systems predicts intact but less efficient 224 
semantic retrieval in older adults 225 
Following rigorous quality control and data-cleaning procedures (Methods), functional brain 226 
networks (graphs) were constructed based on the seven networks derived from the ICA. For each 227 
participant, a graph consisting of seven nodes each representing one network, as well as a graph 228 
with 121 nodes based on significant clusters within each network (see Figure 4a for all 121 nodes) 229 
were created. Graphs were then submitted to correlational psychophysiological interaction analyses 230 
(cPPI)38 to extract task-related connectivity for our condition of interest (semantic fluency). In 231 
contrast to traditional PPI analysis, cPPI results in undirected, symmetric matrices that can be 232 
submitted to network analyses. We tested for statistically significant coupling differences between 233 
age groups by means of network-based statistics using permutation testing while controlling for in-234 
scanner head motion (Figure 3a). Overall, the network of older adults showed reduced decoupling 235 
compared to young adults. This was especially the case for connectivity across different networks 236 
as shown by subsystems of the default network that were less decoupled from attention networks. 237 
Significantly stronger positive coupling was found in the graphs of older adults for the networks SEM 238 
with VAN-B, CONT-B with VAN-B, and DAN-A with VAN-B. A similar picture of age-related 239 
differences emerged for the more fine-grained graphs containing 121 nodes. Here, young adults 240 
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generally showed stronger positive coupling within individual networks and between subsystems of 241 
the default network and stronger decoupling between different networks (Figure S2).  242 
 We probed the behavioral relevance of the network connection pairs that showed significant 243 
age differences by calculating mixed-effects models for accuracy and response time data (Figure 244 
3b; Table S4-5). These models and all subsequent reported models controlled for years of 245 
education and head motion defined as average framewise displacement (FD) and included random 246 
intercepts for participants and semantic categories. Continuous predictors were always mean-247 
centered before model estimation. Reported significant effects are based on likelihood-ratio tests. 248 
Results were corrected for multiple comparisons using the Bonferroni-Holm method. For accuracy, 249 
we found significant interactions between age and between-network connectivity for VAN-B with 250 
DMN-A+C (𝑥"= 12.39, p = 0.002) and DAN-A (𝑥"= 14.18, p < 0.001). Predicting response time 251 
revealed significant interactions between age and between-network connectivity for VAN-B with 252 
DMN-A+C (𝑥"= 5.65, p = 0.035), SEM (𝑥"= 25.75, p < 0.001), and DAN-A (𝑥"= 28.81, p < 0.001), 253 
and for DAN-A with DMN-B (𝑥"= 51.76, p < 0.001). For older adults, increased coupling between 254 
default and attention networks predicted high but less efficient performance, while increased 255 
coupling of SEM and VAN-B and between both attention systems (DAN-A and VAN-B) was 256 
associated with faster responses. A different picture emerged in young adults, where stronger 257 
coupling between default and executive systems predicted faster but poorer performance while 258 
increased connectivity between DAN-A and VAN-B was associated with better and faster reactions. 259 
These results suggest that both age groups showed distinct connectivity profiles, with older adults 260 
generally profiting from increased coupling between different cognitive systems and the opposite 261 
pattern for young adults. 262 
 263 
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 264 
Figure 3. Functional coupling between task-relevant networks in young and older adults and 265 
their behavioral relevance. (a) Chord diagrams display significant results of functional coupling 266 
between the ICA-derived networks. Connectivity values are partial correlations. The color intensity 267 
and width of a connection indicate its correlational strength. Red indicates coupling and blue 268 
indicates decoupling between networks. Chord diagrams of each age group are based on cPPI-269 
derived significance values while age differences were assessed using permutation testing in 270 
network-based statistics (cluster-forming threshold at p = 0.01, FWE-corrected significance 271 
threshold at p = 0.05 with 10,000 permutations). (b) Network connections that showed significant 272 
age differences were probed for their behavioral relevance. Plots show significant two-way 273 
interactions between age and the respective network pair for accuracy and response time data. 274 
Connectivity values were mean-centered for interaction analyses. Results were corrected for 275 
multiple comparisons using the Bonferroni-Holm method at p = 0.05. VAN ventral attention network, 276 
DAN dorsal attention network. 277 

 278 
Reduced segregation and higher integration of task-relevant networks is associated with 279 
better and more efficient performance in older adults 280 
Next, we investigated brain system segregation and integration to get a better understanding of 281 
age-related differences in whole-brain dynamics (Figure 4a). Segregation quantifies the presence of 282 
densely connected regions that form distinct subnetworks or communities in a global brain network 283 
(Figure 4b). In functional connectivity networks, such communities are indicative of functional 284 
specialization and segregated neural processing9,10. Results of a linear mixed-effects model for 285 
global brain system segregation revealed a significant effect of age (𝑥"= 11.23, p < 0.001) with 286 
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young adults exhibiting stronger segregation than older adults (Figure 4c; Table S6). Examining the 287 
predictive value of segregation for in-scanner performance and neuropsychological measures 288 
revealed significant interactions between age and segregation for accuracy (𝑥"= 9.54, p = 0.002), 289 
response time (𝑥"= 71.15, p < 0.001), and a significant correlation of segregation with executive 290 
functions in young adults (r = 0.45, p = 0.013). For all interactions, increasing levels of segregation 291 
predicted better and faster performance in young adults. In contrast, increasing brain-wide 292 
segregation had no effect on accuracy but predicted faster responses in older adults (Figure 4c; 293 
Table S7).  294 
 We used the measure of global efficiency to assess network integration. Global efficiency is 295 
calculated as the inverse of the sum of shortest paths between all nodes in a network and is thus a 296 
measure of efficient signal transmission39. In brain networks, it is used to assess their capacity for 297 
parallel information transfer and integrated processing11. Like most graph theoretical measures, the 298 
calculation of global efficiency requires a sparse graph to represent a biologically plausible network 299 
of functional connectivity40. Following recent work on the most reliable and representative 300 
construction of brain networks33,40,41, we calculated individual OMST based on the weighted 301 
functional connectivity matrices and used the OMST to assess global efficiency. A linear mixed-302 
effects model indicated higher global efficiency for young adults (𝑥"= 21.86, p < 0.001; Figure 4d; 303 
Table S8). Efficiency values were then entered into regression models to assess their predictive 304 
value. Results showed a significant main effect of global efficiency for accuracy (𝑥"= 8.79, p = 305 
0.003) and a significant interaction with age for response time (𝑥"= 41.79, p < 0.001). While 306 
increasing system-wide efficiency was generally associated with better performance, it also 307 
predicted faster performance in older adults but slower responses in young adults (Figure 4d; Table 308 
S9).  309 
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Figure 4. Age-related differences in whole-brain segregation and integration and their 310 
behavioral relevance. (a) For each participant, a task-related brain network graph was constructed 311 
using 121 nodes. The nodes were based on significant global and local peak maxima of the seven 312 
networks derived from the ICA (see Supplementary Table S1 for exact locations of nodes). (b) 313 
Spring-embedded graphs depicting age differences in the modular organization of the brain. Graphs 314 
are based on average connectivity in each age group. Stronger segregation is reflected by higher 315 
within- and lower between-network correlations. In comparison, young adults show stronger 316 
segregation than older adults for most networks. For visualization purposes, graphs are displayed at 317 
5% graph density. (c) Brain-wide system segregation was higher for young adults and had distinct 318 
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effects on behavior for each age group with young adults profiting from increasing segregation. (d) 319 
A different picture emerged for global efficiency, a measure of network integration. Global efficiency 320 
was calculated for individual orthogonal minimum spanning trees, which were based on weighted 321 
correlation matrices. The graphs of young adults showed stronger global efficiency than older 322 
adults. While increasing global efficiency was associated with better performance in both age 323 
groups, it predicted a slower performance in the group of young adults and a faster performance in 324 
older adults. Note that segregation and global efficiency values were mean-centered for analyses 325 
with behavior. 326 

 327 
Brain system segregation predicts age-related differences in behavior as a function of 328 
network type 329 
We next examined whether segregation differed between networks. Previous research showed that 330 
networks exhibit differences in their patterns of age-related changes in segregation13. While these 331 
studies focused on a broad distinction of sensorimotor and cognitive association networks, we 332 
investigated segregation and its behavioral relevance for each network individually to explore age-333 
accompanied differences as a function of system type. Overall, results showed that all networks 334 
were less segregated in older than young adults (𝑥"= 47.06, p < 0.001; Figure 5a). However, 335 
networks’ increasing segregation differed in their behavioral relevance (Table S11). For accuracy, 336 
we detected significant interactions between age and network segregation (Figure 5b) for DMN-B 337 
(𝑥"= 5.76, p = 0.016) and VAN-B (𝑥"= 18.22, p < 0.001). For response time (Figure 5c), results 338 
showed significant interactions with age and the networks DMN-A (𝑥"= 79.3, p < 0.001), CONT-B 339 
(𝑥"= 21.16, p < 0.001), and DAN-A (𝑥"= 68.62, p < 0.001). Overall, stronger segregation of different 340 
systems was associated with better and faster performance for young adults and poorer and slower 341 
reactions in older adults. Only increasing segregation of DMN-A predicted slower reactions in young 342 
adults which might point to a different role of this system in semantic cognition. We also explored 343 
the relationship of network segregation with neuropsychological measures (Figure 5d). Results 344 
revealed a significant positive correlation of segregation in the VAN-B with executive measures in 345 
young adults (r = 0.4, p = 0.03) and a negative correlation of DMN-B with semantic memory in older 346 
adults (r = -0.38, p = 0.045).  347 
 In summary, exploring brain system integration and segregation in a semantic task revealed 348 
age-specific dynamics where young adults clearly profit from a stronger modular network 349 
organization whereas increasing integration improves efficiency only in the aging brain. 350 
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Figure 5. Segregation of individual networks is associated with distinct behavior of older and 351 
young adults as a function of system type. (a) Individual networks’ segregation values by age. 352 
All networks showed stronger segregation in young adults. (b) Generalized linear mixed-effects 353 
models for accuracy revealed significant interactions with age and network segregation for two 354 
systems while (c) linear mixed-effects models for response time showed significant interactions for 355 
three networks. For most networks, increasing segregation was associated with better and faster 356 
performance in young adults and worse and slower reactions in older adults. (d) Significant 357 
correlations between network segregation and neuropsychological measures. For young adults, we 358 
detected a positive correlation of increasing segregation of VAN-B with executive functions, 359 
whereas for older adults, a negative correlation of increasing segregation of DMN-B with semantic 360 
memory was found. Note that segregation and global efficiency values were mean-centered for 361 
analyses with behavior. VAN ventral attention network, DAN dorsal attention network.  362 
 363 

Stronger system-wide integration of brain networks in older adults is facilitated by additional 364 
connector hubs in frontal and temporal regions 365 

An important characteristic of large-scale brain organization is the presence of regions, or nodes, 366 
that play an important role in facilitating communication between communities of a network. These 367 
nodes, commonly referred to as connector hubs, are defined by a high number of connections 368 
(edges) diversely distributed across communities42. Previous work has highlighted their crucial role 369 
for integrative processing in resting- and task-state networks43. We explored the existence of 370 
connector hubs via the normalized participation coefficient (PC)44. Results revealed connector hubs 371 
in bilateral frontal, parietal, and temporal regions in both age groups (Figure 6a; Table S12-13). 372 
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Notably, there were multiple nodes from the subsystems of the default network and CONT-B 373 
identified as connector hubs in the bilateral regions of the inferior parietal lobe and AG. 374 
Furthermore, both age groups had connector hubs in the right MTG and MFG. In older adults, 375 
additional connector hubs were found in the left inferior temporal gyrus and the frontal pole. A linear 376 
model revealed nodes with stronger PC only in the graphs of older adults: in the frontal pole, which 377 
was also identified as a connector hub, STG, and bilateral fusiform gyri (Figure 6b; Table S14).  378 

 379 

Figure 6. Topology of network hubs in young and older adults. (a) The normalized participation 380 
coefficient (PC) was calculated for individual orthogonal minimum spanning trees (OMST). Graphs 381 
display the PC of each node for the average OMST in each age group (top). For visualization 382 
purposes, the strongest 5% of connections are shown. Stronger PC values are reflected by color 383 
and node size. The higher the PC, the more a node is connected with nodes from other 384 
communities. The node with the highest PC value in each age group is extracted and displayed with 385 
its neighboring nodes colored by community (middle). Note that these connector hubs are 386 
connected to many different communities. Connector hubs were defined in each age group via PC 387 
values at least 1SD above the mean. In both groups, connector hubs were detected in frontal, 388 
parietal, and temporal regions (bottom). (b) A linear model with age as predictor revealed nodes 389 
with stronger PC only in older adults. The top and middle graphs were plotted using the ForceAtlas2 390 
algorithm. The force-directed layout causes nodes of the same community to cluster together and 391 
diversely connected hubs (connector hubs) to appear in the center of the graph. 392 
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Discussion 394 
The neural bases of cognitive aging remain poorly understood. It is especially debated how age-395 
related neural reorganization impacts cognition. However, a better understanding of the neural 396 
resources that help to maintain cognitive functions and counteract decline would be mandatory to 397 
design more efficient treatment and training protocols. Previous work has largely focused on neural 398 
changes in resting-state and during processing of tasks that are primarily affected by age. In the 399 
present study, we approached this unresolved issue by investigating the functional brain 400 
organization of young and older adults in language, a key domain of human cognition that has been 401 
shown to be largely preserved in healthy aging. As a main result, we demonstrate a large-scale 402 
age-related reconfiguration of the network architecture even when older adults show intact word 403 
retrieval abilities. Overall, networks showed increased integration of task-negative and task-positive 404 
networks with age which manifested as increased coupling between functional connectivity 405 
networks, reduced segregation of global brain systems, and a larger number of connector hubs in 406 
brain graphs of older adults. Associating these age-related differences in network profiles with 407 
behavior revealed intact, albeit less efficient, performance for more integrated systems in older 408 
adults. These findings shed new light on the frequently reported pattern of declining brain system 409 
segregation with age and its impact on cognition13,22. Extending previous work from different 410 
cognitive domains, our results indicate a compensatory role of increased brain system integration 411 
but also reveals its limitations in terms of economical processing. 412 

Using task-based fMRI data and group spatial ICA, we characterized seven higher-order 413 
large-scale functional networks relevant to semantic word retrieval across participants. These 414 
included default, semantic, frontoparietal control, and attention networks. Notably, our analysis 415 
detected two networks associated with semantic processing: a network component showing spatial 416 
similarity with an ALE-derived network of general semantic cognition36 and another component 417 
overlapping with the subnetwork DMN-B35 which has been proposed to facilitate access to semantic 418 
knowledge1,37. Both networks overlap in key regions of semantic processing, including left IFG, 419 
MTG, and AG. However, while the network identified as DMN-B involved bilateral ATL regions, a 420 
cross-modal hub of semantic processing1, the semantic network component showed stronger 421 
activity in frontal regions that have been attributed to semantic control processes36. The semantic 422 
network component also showed strong spatial similarity with a semantic control network and a 423 
subnetwork of frontoparietal control. Thus, the networks SEM and DMN-B, which were derived in a 424 
data-driven manner for our task, appear to represent complementary aspects of semantic cognition. 425 
Moreover, in line with our previous work29, we detected default as well as executive control and 426 
attention systems, thereby lending support to the notion that networks that have been characterized 427 
as anti-correlated during resting-state become functionally integrated for successful task processing 428 
when controlled access to semantic memory is required45. Indeed, exploring task-based functional 429 
connectivity within and between these networks in both age groups showed strong positive coupling 430 
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not only between subnetworks of the same system, such as the default network, but also between 431 
distinct cognitive networks. Two subnetworks of the default network, DMN-A and DMN-B, were 432 
strongly coupled with the frontoparietal control network. This finding agrees with accumulating 433 
evidence that the default network integrates with control and executive resources during goal-434 
directed task processing45,46, especially when complex behavior is supported by knowledge47, and 435 
thus enables flexible cognition37. 436 

Our results on age-related differences in network coupling revealed additional integration of 437 
distinct networks with age. Older adults showed stronger positive coupling of SEM, CONT-B, and 438 
DAN-A with VAN-B relative to young adults, suggesting an increased cognitive demand during 439 
semantic processing. In contrast, networks of young adults displayed stronger decoupling of default 440 
systems with attention networks. Previous work indicates a modulation of network integration 441 
through task demand in young adults with more demanding cognitive functions benefiting from a 442 
more integrated brain organization to facilitate information flow across components43,46,48. Our 443 
results transfer this observation to the aging brain and demonstrate increased crosstalk between 444 
networks with age. Importantly, when we associated the age-related differences in network coupling 445 
with behavior, we found that enhanced coupling of different cognitive systems like default and 446 
attention networks was associated with consistently high but less efficient performance in older 447 
adults. Conversely, only increased connectivity between subsystems of the attention network 448 
predicted better and more efficient performance in young adults. Our findings offer a new 449 
perspective on the effect of a more integrated network structure in the aging brain on cognitive 450 
function. Consistent with results from the domains of working memory, episodic memory, and 451 
creative thinking21,24,25,28, we demonstrate that enhanced integration of different cognitive systems in 452 
older adults is associated with high accuracy but at the cost of efficiency. While this network 453 
structure helps older adults to maintain cognitive flexibility, it might not be the most efficient form of 454 
wiring. These results point towards a compensatory response to age-related decline of brain 455 
function during semantic word retrieval. 456 

We gained further insight into age differences in network architecture through the application 457 
of graph-theoretical measures. Exploring integration and segregation on a brain system level 458 
allowed us to investigate age-related changes in organization principles of task-state networks. Our 459 
results revealed global decreases in segregation and efficiency with age. The reduction of 460 
segregation in older adults is in line with previous work from resting-state13,19,20 and task-based 461 
studies22,24,25, as well as longitudinal investigations16–18, and suggests that aging is associated with a 462 
reduced ability for specialized processing within highly connected clusters10. This was further 463 
confirmed by our results on segregation of each individual network where young adults generally 464 
showed stronger segregation. 465 

In terms of global efficiency, the majority of resting-state and task-based studies reported 466 
lower global efficiency in older adults18,20,49, although variability is high, and some have also 467 
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reported no changes or even increases with age13,17,19,50. These discrepancies might stem from 468 
methodological considerations such as the number of nodes in a brain graph since global efficiency 469 
is based on the length of its edges51 or different thresholding methods of connectivity matrices like 470 
the commonly applied proportional thresholding, which has been shown to introduce spurious 471 
correlations and inflate group-related differences in graph metrics34. To avoid these pitfalls, our 472 
calculation of global efficiency was based on the recently developed OMST33, a data-driven 473 
approach of individualized graph construction with high reliability40,41. 474 

Reduced global efficiency implies higher wiring cost and a less efficient information flow 475 
among distributed networks of the global brain system11. This is especially relevant for the 476 
processing of complex cognitive functions like semantic word retrieval which require the integration 477 
of distinct networks, as revealed by our functional connectivity analyses. At the neurobiological 478 
level, these changes have been associated with reduced functional connectivity of long-range 479 
connections in older adults20. Thus, even though functional networks become more integrated with 480 
age, potentially due to stronger activation of more but less specialized nodes, the efficient 481 
information transfer between different networks is impaired leading to slower processing in aging. 482 
This observation may represent an overall decline of cognitive attention systems in the aging brain, 483 
reflected in slower responses with similar task accuracy, which was already evident at the 484 
behavioral level in our data. 485 

Additional evidence for this interpretation stems from the larger number of connector hubs in 486 
older adults, as revealed by a higher nodal participation coefficient with age. Recent work on the 487 
reconfiguration of networks from resting- to task-state in the young brain has shown an increase of 488 
connector hubs with enhanced task demands to facilitate integration across different networks and 489 
enable better task performance48,52. Moreover, studies in healthy aging have found more connector 490 
hubs in older adults also during resting-state, indicating a reduced distinctiveness of network-491 
specific nodes18,19,53. Our work confirms these findings during task processing and allows an 492 
interpretation in light of the semantic nature of our task. Nodes with a higher participation coefficient 493 
in older adults were located in frontal and temporal regions and associated with CONT-B, DAN-A, 494 
and SEM networks. This result underlines the enhanced cognitive demand during semantic word 495 
retrieval with age and provides a mechanistic explanation for the frequently reported pattern of over-496 
activation of prefrontal control regions during demanding task processing in older adults54. A 497 
reduced selectivity in activation of network nodes and hence an over-recruitment of less specialized 498 
brain regions leads to a decline in efficient neural processing between brain regions, and this 499 
process might form the basis of neural dedifferentiation in aging18,53. Its effect on cognition, aberrant 500 
or compensatory, depends on the neurocognitive requirements of a task and an individual’s neural 501 
resources.  502 

Exploring the topology of task-relevant neural networks as a function of cognitive 503 
performance allowed us to directly link observed age-related differences with behavior. Our results 504 
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show that young adults strongly capitalized on a more segregated system during task processing, 505 
as evidenced by improved and more efficient performance during semantic word retrieval and 506 
generally better executive functions. This was true for increasing segregation on a global system 507 
level, but also for most individual networks. In contrast, increasing segregation of the whole brain 508 
graph predicted faster but not better performance in older adults. When zooming into individual 509 
networks, more segregation did not benefit older adults’ behavior. Notably, enhanced segregation of 510 
DMN-B correlated negatively with semantic memory functioning in older adults, confirming the 511 
significance of this network for access to semantic memory and its necessary integration with 512 
domain-general default and executive networks for successful word retrieval in aging. Moreover, 513 
increasing global efficiency predicted better performance across groups but faster responses only in 514 
older adults. These findings have important implications for current theories on the behavioral 515 
impact of network reorganization in aging. While a less selective and more integrated network 516 
organization might not be the most efficient system in terms of processing speed, it enables older 517 
adults to maintain high performance. Consistent with previous task-based investigations21,24,25,28, our 518 
findings thus point towards a compensatory mechanism of age-accompanied reconfiguration in 519 
network topologies. However, our results also reveal the limitations of such compensatory 520 
reorganization processes and demonstrate that a youth-like network architecture in terms of 521 
balanced integration and segregation is associated with more economical processing.  522 

In conclusion, our findings provide evidence for age-accompanied large-scale network 523 
reorganization during access to semantic memory even when older adults show intact word retrieval 524 
abilities. In particular, functional networks of older adults were characterized by increased coupling 525 
between different systems, reduced segregation and efficiency, and a larger number of hub regions 526 
relative to young adults. Associating these changes with behavior revealed high, albeit less efficient, 527 
performance for networks in older adults showing stronger dedifferentiation and reduced 528 
distinctiveness. Our results are in line with compensatory accounts of network reconfiguration with 529 
age, but also reveal the limitations of such reorganization processes. 530 
  531 
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Methods 532 
Participants 533 
Participants consisted of 31 healthy older adults (mean age: 65.5 years, range: 60–69 years) and 534 
30 healthy young adults (mean age: 27.6 years, range: 21–34 years), which is the same sample as 535 
described previously29. Data of three older participants as well as single runs of six participants had 536 
to be excluded due to strong motion during fMRI (>1 voxel size), leading to a final sample size of 28 537 
participants in the older group. Inclusion criteria were native German speaker, right-handedness, 538 
normal hearing, normal or corrected-to-normal vision, no history of neurological or psychiatric 539 
conditions, and no contraindication to magnetic resonance imaging. Older adults were additionally 540 
screened for cognitive impairments with the Mini-Mental State Examination55 (all ≥26) points and for 541 
depression with the Beck Depression Inventory56 (all ≤14 points). A battery of neuropsychological 542 
tests was administered to assess cognitive functioning. Semantic knowledge and verbal executive 543 
functions were assessed with the German versions of the spot-the-word test (Wortschatztest)57, the 544 
reading span test58, and the semantic fluency test, the latter consisting of two 1-min trials of 545 
semantic categories (hobbies and surnames) that were not part of the fMRI task (Regensburger 546 
Wortflüssigkeitstest)59. Non-verbal executive functions were measured with the Digit Symbol 547 
Substitution Test60 and the Trail Making Test61. Differences between age groups for 548 
neuropsychological measures were determined with two-sample t-tests. Prior to the experiment, 549 
participants gave written informed consent. The study was approved by the local ethics committee 550 
of the University of Leipzig and conducted in accordance with the Declaration of Helsinki. 551 

 552 
Experimental Procedures 553 
The experimental procedure is reported in detail in previous work29 and briefly summarized here. 554 
Participants completed one experimental session which consisted of two runs of the fMRI 555 
experiment and neuropsychological tests, and lasted two hours in total. Experimental tasks 556 
consisted of a paced overt semantic fluency task and a control task of paced overt counting, which 557 
were implemented in a block design in the scanner (Figure 1 in Results). For the semantic fluency 558 
task, participants were asked to produce exemplars for 20 semantic categories, which were divided 559 
in 10 easy (e.g., colors) and 10 difficult (e.g., insects) categories based on a separate pilot study in 560 
healthy young and older adults29. Task blocks were 43 s long and separated by rest blocks of 16 s. 561 
Each block started with a 2 s visual word cue indicating whether participants were expected to 562 
generate category exemplars or count forward (1 to 9) or backward (9 to 1). This was followed by 563 
nine consecutive trials of the same category or counting task, respectively. Trials within one block 564 
were separated by inter-stimulus intervals of 2-4 s. Participants were instructed to generate one 565 
exemplar for a category or one number per trial, which was indicated by a green cross on the 566 
screen, and to pause when the cross turned red. They were told not to repeat items and to say 567 
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“next” if they could not think of an exemplar for the respective category. Each run contained 10 568 
semantic fluency blocks, divided in easy and difficult categories, and 10 counting blocks, consisting 569 
of forward and backward counting, thus resulting in a total duration of 19.4 min per run. The order of 570 
blocks was counter-balanced and pseudo-randomized across participants. Before the fMRI 571 
experiment, participants received instructions and practiced the task with a separate set of 572 
categories outside the scanner. Stimuli were presented using the software Presentation 573 
(Neurobehavioral Systems, Berkeley, USA; version 18.0). Answers were recorded via a FOMRI III 574 
microphone (Optoacoustics, Yehuda, Israel). After the experiment, response recordings were 575 
analyzed for verbal answers and onset times after being cleaned from scanner noise via Audacity 576 
software (version 2.3.2) and transcribed by three independent raters. 577 

 578 
fMRI Data Acquisition and Preprocessing 579 
fMRI data were collected on a 3 T Prisma scanner (Siemens, Erlangen, Germany) with a 32-580 
channel head coil. For the acquisition of functional images, a multiband dual gradient-echo echo-581 
planar imaging sequence was used for optimal blood oxygenation level-dependent (BOLD) 582 
sensitivity throughout the entire brain1,2. The following scanning parameters were applied: TR = 583 
2000 ms; TE = 12 ms, 33 ms; flip angle = 90°; voxel size = 2.5 x 2.5 x 2.75 mm with an inter-slice 584 
gap of 0.25 mm; FOV = 204 mm; multiband acceleration factor = 2. To increase coverage of 585 
anterior temporal lobe (ATL) regions, slices were tilted by 10° of the AC-PC line. 616 images 586 
consisting of 60 axial slices in interleaved order covering the whole brain were continuously 587 
acquired per run. Additionally, field maps were obtained for later distortion correction (TR = 8000 588 
ms; TE = 50 ms). This study analyzed the data from echo 2 (TE = 33 ms) since preprocessing was 589 
performed using the software fMRIPrep3, which currently does not support the combination of 590 
images acquired at different echo times. We chose to use results from preprocessing with fMRIPrep 591 
since this pipeline provides state-of-the-art data processing while allowing for full transparency and 592 
reproducibility of the applied methods and a comprehensive quality assessment of each processing 593 
step that facilitates the identification of potential outliers. We also double-checked results from 594 
preprocessing with fMRIPrep with a conventional SPM preprocessing pipeline of both echoes. The 595 
comparison of both pipelines did not reveal big differences in analysis results. A high-resolution, T1-596 
weighted 3D volume was obtained from our in-house database (if it was not older than two years) or 597 
collected after the functional scans using an MPRAGE sequence (176 slices in sagittal orientation; 598 
TR = 2300 ms; TE = 2.98 ms; flip angle = 9°; voxel size = 1 x 1 x 1 mm; no slice gap; FOV = 256 599 
mm). Preprocessing was performed using fMRIPprep 20.2.33 which is based on Nipype 1.6.14. In 600 
short, preprocessing steps included skull stripping, distortion correction, co-registration, slice timing 601 
correction, and calculation of several confounding time-series for each of the two BOLD runs per 602 
participant. Anatomical T1-weighted images were skull-stripped, segmented, and spatially 603 
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normalized. For spatial normalization to standard space, the Montreal Neurological Institute (MNI) 604 
ICBM 152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model 605 
(MNI152NLin6Asym) was entered as output space in fMRIPrep. For more details on the 606 
preprocessing pipeline, see the section corresponding to workflows in fMRIPrep’s documentation 607 
(https://fmriprep.org/en/20.2.3/workflows.html). After preprocessing, 29 volumes from the beginning 608 
of each run were discarded since they were collected for the combination of the short and long TE 609 
images. This yielded 587 normalized images per run which were included in further analyses.  610 

 611 
Independent component analysis 612 
We applied group-wise ICA to define spatially independent task-active networks in a data-driven 613 
manner. ICA has been shown to decompose fMRI time series into reliable functionally connected 614 
components with the advantage of simultaneously removing non-neural fluctuations through the 615 
identification of artefactual components64. Preprocessed, normalized data were smoothed with a 5 616 
mm3 FWHM Gaussian kernel and entered into a general linear model for each participant and 617 
session using Statistical Parametrical Mapping software (SPM12; Wellcome Trust Centre for 618 
Neuroimaging), implemented in MATLAB (version 9.10/R2021a). GLMs included regressors for the 619 
task blocks (semantic fluency and counting) as well as nuisance regressors consisting of the six 620 
motion parameters and individual regressors for strong volume-to-volume movement as indicated 621 
by values of framewise displacement > 0.965. Additionally, an individual regressor of no interest was 622 
included in the design matrix if a participant had missed a whole task block during the experiment (n 623 
= 10). Before model estimation, a high-pass filter with a cut-off at 128 s was applied to the data. 624 

Preprocessed, normalized and smoothed data were analyzed using the Group ICA of fMRI 625 
Toolbox (GIFT v4.0c). Dimensions were reduced to 55 using minimum description length 626 
information criteria. Icasso was repeated 50 times to ensure reliability of the decomposition, and 627 
group-level ICs were back-reconstructed to the participant level using the group-information guided 628 
ICA (GICA3) algorithm66. We calculated group ICA treating all participants as one group to ensure 629 
that the same components were identified in both groups. We discarded those components related 630 
to banding artifacts and noise after careful visual inspection of the spatial maps according to 631 
established criteria64 (see Supplementary Figure S1 for an overview of all 55 ICs). Of the remaining 632 
13 non-noise components, seven components of interest were selected. To characterize the spatial 633 
extent of the seven remaining components at the group level, we calculated one-sided t-tests for 634 
participants’ spatial maps. A gray matter mask that restricted statistical tests to voxels in the 635 
cerebrum was applied to all group-level analyses. Results were corrected for multiple comparisons 636 
using a peak level threshold at p < 0.05 with the family-wise error (FWE) method and a cluster-637 
extent threshold of 10 voxels. 638 
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 639 
Brain network construction 640 
Brain networks were constructed based on the seven selected component maps of the ICA. To 641 
determine network labeling of the thresholded maps, we used the Jaccard index (J), a measure of 642 
spatial similarity67. By calculating the ratio of overlapping voxels in two binary spatial network maps 643 
relative to all active voxels in either image, the Jaccard index can be used as a measure to assess 644 
the fit between a spatial component map (A) and a template image (B): 645 

𝐽 =
|A ∩ 𝐵|
|A ∪ 𝐵| 646 

The index ranges from 0 to 1, with a high Jaccard index denoting high similarity of two spatial maps. 647 
It has been used previously to assess similarity of brain activation maps with template network 648 
parcellations68,69. We defined a minimum threshold of J = 0.15 to consider a network template for a 649 
spatial component mask69. Next, if two components were best described by the same network 650 
template thereby indicating that the network might have split up in multiple components, we 651 
assessed the similarity of the combined component maps to the template. If the combined map 652 
reached a higher similarity index than each component individually, the combination was kept as a 653 
reflection of the respective network. 654 
 As template masks, we used the 17-networks functional connectivity-based parcellation 655 
scheme35 as well as the network masks of general semantic cognition and semantic control defined 656 
in a meta-analysis36. We included separate template masks for semantic cognition in our analysis to 657 
account for the semantic nature of our task. We also probed similarity of Jaccard indices with a 7-658 
networks parcellation scheme35. While the results for the 7-networks parcellation generally agreed 659 
with the more fine-grained parcellation, the 7-networks parcellation resulted in three components 660 
showing high spatial similarity with the default network template. However, differential roles have 661 
been reported for subsystems of the default network when access to semantic memory is required6. 662 
Specifically, the dorsal medial subsystem of the default network (“Default B” in the 17-networks 663 
parcellation scheme) has been shown to broadly overlap with a left-lateralized temporal-frontal 664 
semantic network6,7. Since we were interested in the age-dependent interplay of domain-specific 665 
and domain-general networks in semantic cognition, the remaining analyses were based on the 17-666 
networks parcellation scheme. 667 

Based on the results of the Jaccard index, each thresholded component map was inclusively 668 
masked by the respective resampled template network. We were interested in the effect of age on 669 
the functional connectivity within and between selected networks. In a first step, to explore 670 
functional connectivity between networks, we extracted averaged time series across all voxels 671 
within one masked component, thus leading to seven time series per participant and run. Second, 672 
networks were further parcellated into distinct regions of interest (ROIs) based on peak maxima of 673 
activated clusters. ROIs were created for all peak maxima of a significant cluster (up to three ROIs 674 
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per cluster) using the MarsBar toolbox70. To this end, identified clusters were extracted from the 675 
thresholded and masked component maps, spheres of 5 mm surrounding each maximum 676 
coordinate were created, and, in a last step, both images were combined. In this way, we ensured 677 
that ROIs would only contain voxels that were included in the group-level statistics. Parcellating the 678 
seven network components based on strongest correlation peaks led to 126 cortical ROIs per 679 
participant and run.  680 

Functional time series were extracted for the seven ROIs and 126 ROIs parcellation 681 
schemes from non-smoothed functional data. To account for motion artifacts and other signal 682 
confounds, the following denoising pipeline was applied during time series extraction: 24 683 
realignment parameters (six motion parameters, temporal derivatives, and quadratic terms), global 684 
signal, and top five aCompCor components for white matter and cerebral spinal fluid, respectively. 685 
Censoring included a framewise displacement threshold of 0.9 mm and 18 discrete cosine-basis 686 
regressors to account for signal drifts. All these regressors were combined in a design matrix and 687 
removed from the data in a single step71,72. The denoising strategy was based on recent 688 
recommendations73 that compared the performance of different denoising pipelines for analysis of 689 
task-based functional connectivity. Consistent with previous research on resting-state functional 690 
connectivity74,75, the authors reported that the inclusion of global signal in a denoising pipeline 691 
markedly reduced global motion artifacts and led to more comparable results across conditions in 692 
task-based functional connectivity data73. Further, time series were detrended and demeaned, and 693 
functional images were masked with a subject-specific, resampled gray matter mask before 694 
denoising. During signal extraction for the set of 126 ROIs, the number of voxels per ROI and 695 
participant were extracted. ROIs for which more than 15% of participants did not show any signal 696 
coverage were excluded. The resulting 121 ROIs were used for the remaining analyses. 697 

 698 
Functional connectivity matrices 699 
We applied cPPI analyses38 to obtain connectivity terms that describe task-related interactions 700 
between our networks and regions of interest. In contrast to traditional PPI analyses, cPPI results in 701 
undirected, symmetrical connectivity matrices that are based on pairwise partial correlations 702 
between ROIs. We calculated cPPI for our contrast of interest semantic fluency > counting, 703 
separately for the 7-networks and 121-ROIs parcellations. In brief, the deconvolved time series for 704 
each ROI was multiplied with the task time course from the first-level GLM design matrix and 705 
convolved with a canonical HRF to form a PPI term. Pairwise partial correlations were estimated 706 
between PPI terms of two regions while controlling for the observed BOLD signal in both regions, 707 
the original task regressor and average in-scanner head motion (mean FD). Connectivity matrices 708 
were calculated for each run separately and then averaged, resulting in a 7 x 7 and 121 x 121 709 
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correlation matrix per participant. Subsequently, correlation coefficients were Fisher-transformed to 710 
z values. 711 

 712 
Network measures 713 
Within- and between-network functional connectivity 714 
Within- and between-network functional connectivity were explored for the 7-networks and 121-715 
ROIs connectivity matrices in both age groups. Using the connectivity matrices with seven networks 716 
allowed us to investigate the coupling and decoupling between task-relevant networks while the 717 
more fine-grained parcellation provided additional insights into the coupling of regions within distinct 718 
networks. All subsequent network measures were based on the 121-ROIs connectivity matrices. 719 
 720 
Brain system segregation 721 
We calculated global segregation as previously implemented by Chan and colleagues9,13,76, using 722 
the unthresholded, weighted connectivity matrices. In line with previous work on functional 723 
connectivity in healthy aging18,76, we excluded negative correlations from segregation and 724 
integration analyses by setting them to zero. Excluding negative correlations has been shown to 725 
improve the reliability of graph measures77 and to help avoid interpretational difficulty, for example 726 
when it comes to concepts like shortest paths78. Building upon the network parcellation of our ICA 727 
analysis, each functional network was treated as a distinct system, and segregation was computed 728 

as the difference between mean within-system (𝑍.)	and mean between-system (𝑍0)	correlations 729 
divided by mean within-system correlation as shown in the following equation: 730 

Brain system segregation =	
𝑍. −	𝑍0
𝑍.

 731 

A higher ratio score denotes greater separation of functional systems.  732 
 We also calculated segregation values for each functional network individually such that 733 

within-system connectivity 𝑍. represents the mean of all edges (correlations) between pairwise 734 

nodes that belong to the same network and between-system connectivity 𝑍0 reflects the mean of all 735 
edges between nodes of the respective network and all other nodes. 736 
 737 
Edge filtering 738 
Most graph theoretical measures require some form of filtering to obtain a sparse graph that is more 739 
likely to represent true functional connectivity than a maximally dense graph as produced by a 740 
correlation matrix78. While threshold-based filtering methods like proportional or absolute 741 
thresholding are commonly applied in network neuroscience, they are driven by an arbitrary choice 742 
of the respective threshold and suffer from low reliability40. To avoid these pitfalls and based on 743 
recent research on the reliability of graph construction in neuroscience40,41, we calculated the 744 
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orthogonalized minimum spanning tree (OMST)33 on the weighted functional connectivity matrices. 745 
Apart from its high reliability, the OMST has several advantages compared to commonly applied 746 
threshold-based methods of graph construction: It adheres to the intrinsic topological structure of 747 
the brain network by resulting in a fully connected, weighted graph and offers a data-driven method 748 
of individualized network construction accounting for each individual’s optimal state of economic 749 
wiring in terms of cost and efficiency. In contrast to the original minimum spanning tree (MST), the 750 
OMST filters connectivity networks until the highest global cost efficiency (GCE) of a graph is 751 
reached while including both strong and weak connections and preserving the same mean degree 752 
across groups.  753 

The OMST was calculated in three steps as described by Dimitriadis et al. (2017): (a) the 754 
MST of a graph is defined; (b) the corresponding edges of the MST are removed from the original 755 
graph by setting edge weights to 0; (c) steps (a) and (b) are repeated until the GCE of the graph is 756 
optimized. GCE is defined as the global efficiency minus cost, where cost corresponds to the total 757 
weights of the selected edges of the OMST divided by the sum of the edges of the original fully 758 
weighted graph12. The final OMST is constructed by combining all the removed, non-overlapping 759 
MSTs. To show that the OMST indeed results in higher GCE than other filtering methods, we 760 
compared the GCE for OMST, MST, and a method of proportional thresholding where we used a 761 
common range of 5-20% strongest edge weights of a graph (Supplementary Figure S3). To avoid 762 
differences in graph measures caused by the number of nodes in a graph, we excluded all nodes 763 
where at least one participant had no signal during construction of matrices. This resulted in a 764 
104x104 matrix per participant, which was used for construction of OMST and all subsequent 765 
measures. 766 
 767 
Brain system integration 768 
We calculated global efficiency as a measure of system-wide integration. It is defined as the 769 
average of the inverse shortest path length between all pairs of nodes in a graph and is thus a 770 
measure of efficient signal transmission10,39.  771 

Global efficiency =	
1

𝑁(𝑁 − 1)
4

1
𝐿6,86	98∈;

 772 

Global efficiency was based on the individual OMSTs using the reciprocal edge weights to obtain a 773 
distance matrix where high weights signify short paths between nodes.  774 
 775 
Global network hubs 776 
We identified hubs via the normalized participation coefficient (PC)44. The PC provides insight into 777 
the functional role of a node. Specifically, it evaluates whether a node mainly interacts with nodes 778 
from its community or multiple communities of a network79. In network neuroscience, PC has been 779 
applied to define nodes that are important for communication between communities (connector 780 
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hubs) and nodes that are central to the communication within communities (provincial hubs)42,43,52. 781 
Recently, it has been shown that the conventional measure of PC is strongly influenced by the size 782 
and connectedness of its community leading to a reduced interpretational value of this graph 783 
measure44. Thus, a normalized version of the PC has been introduced that accounts for these 784 
differences in real-world networks while preserving its meaning. It is calculated similarly to the 785 
original PC as one minus the ratio between the degree 𝑘 of node 𝑖 with nodes in its community 𝑚 786 
and the degree of node	𝑖 with all other nodes in the network. However, a normalization factor is 787 
added by subtracting the median degree of this node in a series of random networks: 788 

Normalized PC = 1− ?𝐵@ 4 A
𝑘6(𝑚) − 𝑘6(𝑚)BCDE

𝑘6
F
"

G∈H

 789 

We calculated 100 random networks for each node. Connector hubs were then defined as nodes 790 
with a PC value of at least 1SD above the mean in each age group.  791 

 792 
Statistical analysis 793 
Age-related changes for within- and between-network functional connectivity 794 
To assess differences between age groups for within- and between-network connectivity, we ran 795 
two-sample t-tests for each edge of the 7-network and 121-ROIs connectivity matrices within the 796 
Network-Based Statistics toolbox (NBS)51. NBS applies cluster-based thresholding to correct for 797 
multiple comparisons using permutation testing. In contrast to more conventional procedures for 798 
controlling the family-wise error rate, such as the false discovery rate, NBS considers connected 799 
components in networks (graphs), which makes it especially suited for network statistics. We set an 800 
initial cluster-forming threshold at p < 0.01 (two-sided test; t = 2.67) and an FWE-corrected 801 
significance threshold at p < 0.05 with 10,000 permutations. To control for the influence of motion 802 
on functional connectivity, the average in-scanner head motion per participant was included as a 803 
covariate. Average head motion was defined as the mean FD based on the calculation of the root 804 
mean square deviation of the relative transformation matrices80. 805 
 806 
Age-related changes for network measures of segregation and integration 807 
Linear mixed-effects models were set up to examine how the dependent variables brain system 808 
segregation, individual network segregation, global efficiency, and nodal participation coefficient 809 
were predicted by age group. We included in-scanner head motion (mean FD) as covariate and a 810 
random intercept for participants. Models were calculated as follows: 811 

Network measure = 𝛽@ + 𝛽KAge+ 𝛽"Motion+ (1|Subject) + 	𝜀 812 
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Significance values were obtained by likelihood ratio tests of the full model with the effect in 813 
question against the model without the effect in question.  814 
 815 
Association between network measures and cognitive performance 816 
For those network measures that showed differences between young and older adults, we further 817 
examined their association with participants’ cognitive performance for the in-scanner task and the 818 
neuropsychological test battery. Analyses were performed using mixed-effects models with a 819 
logistic regression for accuracy data due to their binomial nature and a linear regression for log-820 
transformed response time data. We only analyzed response times for correct reactions for the 821 
semantic fluency task since our connectivity values were also based on our contrast of interest 822 
semantic fluency > counting. Models contained fixed effects for the respective mean-centered 823 
network measure (between-network functional connectivity, brain system segregation, individual 824 
network segregation, and global efficiency) and age group as well as their interaction term, and 825 
random intercepts for participants and semantic categories. Further, mean-centered values of mean 826 
FD and education were entered as covariates. Models were set up as shown in the following 827 
equation: 828 

Cognitive measure = 𝛽@ + 𝛽KNetwork measure+ 𝛽"Age+ 𝛽MNetwork measure	 × Age+ 𝛽OMotion+829 
𝛽PEducation+ (1|Subject) + (1|Category) + 𝜀  830 

where cognitive measure denotes accuracy and response time, respectively. Significance values 831 
were obtained via likelihood ratio tests. We applied sum coding (ANOVA-style encoding) for all 832 
categorical predictors. 833 
 We performed correlation analyses with the neuropsychological tests that had been 834 
assessed outside of the scanner. Due to the collinearity of some neuropsychological tests, we ran 835 
an exploratory factor analysis on the standardized test scores using maximum likelihood estimation 836 
and varimax rotation. Based on the hypothesis test (𝜒2 = 14.04, p = 0.081), two factors with an 837 
eigenvalue > 1 were chosen. For subsequent correlations with network measures, participant factor 838 
scores extracted via regression methods were used. 839 
 All statistical models except for NBS were performed using R 4.1.0 via RStudio81 and the 840 
package lme482. Results were visualized using the ggplot283 and ggeffects84 packages. If applicable, 841 
post-hoc comparisons were applied using the package emmeans85. The exploratory factor analysis 842 
was calculated with the stats package81. OMSTs and all graph theory measures were calculated in 843 
Matlab using the Brain Connectivity toolbox10 and publicly available scripts for OMST and 844 
normalized PC. Chord diagrams were generated with the circlize package86, spring-embedded plots 845 
using the igraph package87, and force-directed plots using the ForceAtlas2 algorithm for R available 846 
on Github (https://github.com/analyxcompany/ForceAtlas2).  847 
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Data availability 848 
All behavioral data and raw data of functional connectivity and graph-theoretical measures are 849 
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holds all self-written code for analyses and figures for this project. Raw neuroimaging data are 852 
protected under the General Data Protection Regulation (EU) and can only be made available from 853 
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