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Dopaminergic medication for Parkinson’s disease (PD) modulates neuronal oscillations
and functional connectivity (FC) across the basal ganglia-thalamic-cortical circuit.
However, the non-oscillatory component of the neuronal activity, potentially indicating
a state of excitation/inhibition balance, has not yet been investigated and previous
studies have shown inconsistent changes of cortico-cortical connectivity as a response
to dopaminergic medication. To further elucidate changes of regional non-oscillatory
component of the neuronal power spectra, FC, and to determine which aspects of
network organization obtained with graph theory respond to dopaminergic medication,
we analyzed a resting-state electroencephalography (EEG) dataset including 15 PD
patients during OFF and ON medication conditions. We found that the spectral slope,
typically used to quantify the broadband non-oscillatory component of power spectra,
steepened particularly in the left central region in the ON compared to OFF condition.
In addition, using lagged coherence as a FC measure, we found that the FC in the
beta frequency range between centro-parietal and frontal regions was enhanced in the
ON compared to the OFF condition. After applying graph theory analysis, we observed
that at the lower level of topology the node degree was increased, particularly in the
centro-parietal area. Yet, results showed no significant difference in global topological
organization between the two conditions: either in global efficiency or clustering
coefficient for measuring global and local integration, respectively. Interestingly, we
found a close association between local/global spectral slope and functional network
global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory
dynamics in forming the functional global integration which characterizes PD. These
results provide further evidence and a more complete picture for the engagement of
multiple cortical regions at various levels in response to dopaminergic medication in PD.
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INTRODUCTION

Parkinson’s disease (PD) is the second most common neural
degenerative disorder characterized by massive degeneration of
dopaminergic neurons in the nigrostriatal dopamine system
(Olanow et al., 2009). It has been increasingly recognized
that PD is accompanied by functional disturbances both at
subcortical and cortical levels (Braak et al., 2003; Boon et al.,
2019). Clinically, dopamine loss is managed via dopaminergic
therapy (DT). The dopaminergic system has been shown to have
considerable and widespread modulatory influences on many
brain structures including the cortex (Steiner and Kitai, 2001).
While dopamine replacement therapy is efficient for improving
the motor symptoms, the neural mechanisms of dopaminergic
medication are not yet fully understood (Schapira, 2005).

In PD, it has been repeatedly reported that it is characterized
by abnormal oscillatory synchrony in the basal ganglia-thalamus-
cortical (BGTC) network in the beta frequency band (13–30 Hz)
that could be modulated by dopaminergic medications and deep
brain stimulation (DBS) (Brown, 2003; Wingeier et al., 2006;
Kühn et al., 2009; De Hemptinne et al., 2015; Müller and
Robinson, 2018). In the frequency domain, electrophysiological
brain signals typically consist of a power-law 1/f component
and periodic oscillatory activities. While a majority of studies
have so far been dedicated to the oscillatory activity, increasing
evidence shows that non-oscillatory (aperiodic) activity also
provides information about the intricate neuronal dynamics
unfolding at different temporal scales (He et al., 2010; Voytek
et al., 2015). A broadband aperiodic component of the spectrum
is often represented by the slope of the fitted line in log-
log space (known as spectral slope). The changes in spectral
slope have been associated with neural development, healthy
aging, and performance in working memory tasks (Voytek et al.,
2015; Donoghue et al., 2020). In addition, previous studies
have reported that it is altered in different pathologies, such
as schizophrenia (Peterson et al., 2017; Molina et al., 2020)
and ADHD (attention deficit/hyperactivity disorder) (Robertson
et al., 2019). Importantly, it has also been demonstrated
that the spectral slope is a potential indicator of the local
excitation/inhibition balance (Gao et al., 2017; Colombo et al.,
2019). In addition, TMS (transcranial magnetic stimulation)
studies, which can directly probe the changes in excitation and
inhibition, have shown that PD is accompanied by changes in
cortical excitability (Ridding et al., 1995; Hanajima et al., 1996;
Cantello, 2002). Thus, it would be important to test whether
and how this measure is altered in PD, in particular with
dopaminergic medication.

While regional changes could provide comprehensive
understanding of the underlying local circuitry, the brain rather
functions as a distributed network. Functional connectivity (FC)
analysis allows us to understand how distinct regions interact,
and graph-theory based approach enables a macroscopic
perspective of brain connections on the regional and whole-brain
network level. Many previous studies showed that network
architecture is related to brain function or dysfunction (Bassett
and Bullmore, 2009; Bullmore and Sporns, 2009). Using resting
state fMRI (functional magnetic resonance imaging), it has

been intensively investigated how dopaminergic medication
modulates brain FC in the BGTC network (Tahmasian et al.,
2015). The most consistent finding across different rs-fMRI
studies revealed decreased connectivity within the posterior
putamen in PD (Tessitore et al., 2019), and that its cortical
projections are modulated by dopaminergic medication (Herz
et al., 2014). To date, few fMRI studies have adopted graph
theoretical approach in PD, and the reported findings have been
inconsistent. Specifically, compared to healthy controls, PD
patients showed lower global efficiency (GE) (Sang et al., 2015),
while no abnormalities in topographical property at the global
level were observed in PD (Berman et al., 2016; Hou et al., 2018;
Ruan et al., 2020). Both increase (Sang et al., 2015) and decrease
(Hou et al., 2018) in nodal centrality have been observed in PD
compared to healthy controls. In addition, it was found that
levodopa administration significantly decreased local efficiency
of the network (Berman et al., 2016), and conversely resulted in
an increase in eigenvector centrality of cerebellum and brainstem
in PD (Jech et al., 2013).

As for the EEG/MEG (electro- and magnetoencephalography)
studies, compared to healthy controls, increased cortico-cortical
FC in PD has been found primarily in alpha and beta frequency
ranges, and cortico-cortical coherence was linked to the severity
of the clinical symptoms (Silberstein et al., 2005; Stoffers et al.,
2007, 2008; Bosboom et al., 2009; George et al., 2013; Miller et al.,
2019). Dopaminergic medication induced changes in cortical
synchronization have also been investigated by computing pair-
wise coherence across the entire montage using multi-channel
EEG/MEG. However, both reduction of FC after dopamine
medication (Silberstein et al., 2005; George et al., 2013; Heinrichs-
Graham et al., 2014) and the absence of connectivity modulation
were previously reported (Miller et al., 2019). Very recently,
using advanced modeling analysis, in response to dopaminergic
medication, increased cortico-cortical synchronization in beta
band has been detected by taking into account the contribution
from other sub-networks (Sharma et al., 2021). To capture
the changes across the whole cortex, through the application
of graph theoretical measures in EEG/MEG, previous studies
have demonstrated abnormalities in topographical organizations
of functional network in PD compared to healthy controls,
suggesting that the interactions between cortical areas become
abnormal and contribute to PD symptoms at various stages
(Utianski et al., 2016). Furthermore, the alterations in network
attributes were linked to both motor and cognitive dysfunctions
(Olde Dubbelink et al., 2014; Boon et al., 2017). However,
how the topological organization of the cortical functional
network changes after dopaminergic administration remains
rather elusive. To address this issue, we applied graph theory-
based network analysis to investigate further changes in cortical
connectivity in patients with PD after the administration
of dopaminergic medication. Besides, previous studies have
suggested a close link between the local excitation/inhibition
balance and information transmission locally and globally (Deco
et al., 2014), and the network’s organizational structure (Zhou
et al., 2021). Therefore, we asked whether and how the spectral
slope, as a proxy of the local E/I ratio, would relate to the
network-wise activity in the context of PD.
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To further characterize the regional and functional network
changes due to dopaminergic medication, we address the
following questions. Regarding local properties: (1) How does
the aperiodic property of the electrophysiological brain signal
change in response to dopaminergic medication administration?
With respect to cross-area interactions: (2) What is the effect of
dopaminergic medication on functional connectivity? (3) Does
dopaminergic medication induce alterations in the lower and/or
higher level of the network architectures? (4) Do local changes in
non-oscillatory component of neural activity influence functional
network topology/organization? To answer these questions, we
analyzed a publicly available dataset including EEG data of PD
patients from ON and OFF dopaminergic medication conditions
(George et al., 2013; Rockhill et al., 2020).

MATERIALS AND METHODS

Participants
The data analyzed in this study is open-source data (George
et al., 2013; Swann et al., 2015; Jackson et al., 2019). This
dataset includes resting state EEG data with a duration of around
3 min. Data were collected from 15 PD patients (8 female,
average age = 63.2 ± 8.2 years, mild to moderate disease with
average disease duration of 4.5 ± 3.5 years) during OFF and ON
dopaminergic medication sessions. All participants were right-
handed and provided written consent in accordance with the
Institutional Review Board of the University of California, San
Diego and the Declaration of Helsinki. For more information you
may refer to George et al. (2013).

Data Collection
EEG of patients with PD were recorded on two different days for
ON and OFF medication sessions which were counterbalanced
across subjects. For the OFF medication session, patients were
requested to withdraw from their medication at least 12 h
prior to the EEG recording. For the ON medication session,
subjects took their medication as usual. A 32-channel EEG cap
with BioSemi ActiveTwo system was used to acquire the EEG
data with a sampling rate of 512 Hz. Two additional electrodes
were placed over the left and right mastoids used for reference.
During the EEG recording, participants were instructed to sit
comfortably and fixate on a cross presented on the screen. Each
recording session lasted at least 3 min. In addition, participants
completed a few clinical assessments which were previously
reported in George et al. (2013). In this study, we did not link
the clinical scores of patients to the EEG measures as the authors
of the original paper mentioned some uncertainty about these
scores. Yet, to assure these two conditions represent two distinct
parkinsonian states, we examined the change in the motor section
of unifined Parkinson’s disease rating scale (UPDRS III) scores
between the two conditions. Statistical analysis showed that there
was a significant reduction of the clinical scores in ON condition
(mean ± SD: 32.67 ± 10.42) compared to that in OFF condition
(mean ± SD: 39.27 ± 9.71). Note, that in this dataset a healthy
control group was also included. However, we focused on the
comparison of data between ON and OFF conditions which is

also a standard study setup for differential parkinsonian states
induced by medication in PD (Tinkhauser et al., 2017; Sharma
et al., 2021).

Data Pre-processing
EEG data were analyzed using EEGLAB (version 14.1.2; Delorme
and Makeig, 2004) and FieldTrip toolboxes, together with
customized scripts in Matlab (The MathWorks Inc., Natick, MA,
United States). First, a high-pass filter at 1 Hz was applied to
remove low frequency drifts (two-way FIR filter, order = 1,536,
eegfilt.m from EEGLab). Subsequently, independent component
analysis (ICA – infomax algorithm implemented in EEGLab) was
used to remove artifactual sources of cardiographic components,
eye movements and blinks, and muscle activity in the data.
Further, channels with inadequate quality were rejected by
visually inspecting whether their spectra demonstrated residual
EMG at higher frequency ranges [on average 5.4 ± 3.1 for
OFF and 5.2 ± 2.8 for ON, no difference between conditions
(p = 0.6606)]. Bad channels were interpolated with neighboring
electrodes using a method of spherical splines (EEGLab function
“eeg_interp”). Next, data were examined visually for the presence
of residual artifacts and segments contaminated by gross artifacts
and these events were marked and then excluded from further
analysis [on average 172.5 ± 22.7 s in OFF and 165.5 ± 33.6 s
in the ON condition remained, no difference in the number
of rejected data points (p = 0.3591)]. Subsequently, data were
re-referenced to the common average.

DATA ANALYSIS

Power Spectral Density
Power spectral density (PSD) was calculated using the function
“pwelch” in MATLAB, with a Hamming window of 512 samples
(i.e., 1 s) and a 50% overlap. Beta band power was estimated as
the averaged PSD in the beta frequency range (13–30 Hz). In
addition, in line with a previous study (Donoghue et al., 2020),
we utilized another way of estimating the oscillatory beta power
by accounting for the overall spectral slope. For this purpose, we
subtracted the spectral slope (measured by a fitted line in a log-log
space) and estimated the beta power on the residuals of the PSD.

Power Spectral Density Slope
To reduce contamination from high frequency non-neuronal
noise, we estimated the slope of the PSD in a frequency range
of 2–45 Hz. A three-step robust regression method was used to
estimate the slope based on the computed PSD. This method
was proposed and applied by Colombo et al. (2019). First, a
least-squares linear line was fitted to the raw PSD using the
function “robustfit” in MATLAB in the log frequency-log PSD
space. Second, frequency points with larger than 1 median
absolute deviations of the PSD residuals were identified as
oscillatory peaks. Continuous frequency bins surrounding these
peak frequencies were considered as the base of the oscillatory
peaks and were also excluded for the further step. Last, a second
least-squares fit was performed on the rest of the frequency
ranges. We took the slope (with the sign) of the second fitted
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line as the final spectral slope of the PSD. Thus, a more
negative slope demonstrates a steeper decay, while a less negative
slope represents a flatter one. One advantage of this method
is that it considers the potential bias resulting from linearly
spaced frequency bins being estimated with a logarithmic scale.
Therefore, before the regression procedure, the PSD curve was
up-sampled with logarithmically distributed frequency bins. For
more details, please refer to the study by Colombo et al. (2019).

Functional Network Analysis
A network is constructed by a collection of nodes and links
between pairs of nodes. In this study, we defined each node
as a brain region approximately represented by each channel,
while links represent the connectivity between pairs of channels.
FC between the brain areas was determined by computing the
lagged coherence which accounts for the volume conduction
issue. Each network can be represented by a symmetrical 32 × 32
adjacency matrix.

Functional Connectivity
Functional connectivity measure was quantified by the lagged
coherence between all the channel pairs in a frequency range
of 1–35 Hz with resolution of 1 Hz. This metric quantifies the
strength of phase coupling between two signals by eliminating
the effects of volume conduction (Pascual-Marqui, 2007; Pascual-
Marqui et al., 2011), and it has been shown to be even more
suitable than phase lag index for the application of connectivity
estimation when using EEG and MEG (Hindriks, 2021). Its
value ranges between [0, 1]: “0” stands for no coupling, and
“1” represents perfect coupling. This measure has been utilized
in earlier EEG studies (Milz et al., 2014; Vecchio et al., 2021).
FC in an oscillatory frequency band was acquired by averaging
the FC values over the respective frequency range (for instance
beta band FC was obtained by averaging the FC values over 13–
30 and 8–12 Hz for the alpha band). To investigate whether
medication could result in changes in FC in oscillatory frequency
band across the whole brain (neighboring areas and remote
regions), we applied a seed-based connectivity comparison
approach. This means that the connectivity was calculated
between a given electrode (seed) and all other electrodes for each
subject. Then, whole-head connectivity was compared between
conditions using a cluster-based permutation test to account for
multiple comparisons.

Network Measure
We estimated the brain network metrics based on the
scalp sensor-based EEG connectivity matrix. Although often
performed in source space, due to a small number of channels
(Lantz et al., 2003) we did it rather in sensor space similar to
previous studies (Stam et al., 2007; Zeng et al., 2015; Chai et al.,
2019; Sun et al., 2019; Mitsis et al., 2020; Smith et al., 2021). In the
discussion, we mention and discuss limitations associated with
the estimation of graph metrics in sensor space.

Node Degree
Node degree estimates the number of edges connected to
each node. To estimate the importance of each node (each

channel in our case), node degree centrality weighted by edge
importance (the connection is stronger, edge weights are larger)
was utilized for this purpose. Specifically, we used the function
“Centrality” implemented in Matlab for this measure (parameter
“importance” specified by edge weights).

Graph Theory Based Complex Network Measures
Overall Functional Connectivity. For each individual FC matrix,
the overall FC was obtained by averaging all the connectivity
values across all the pairs of the connection in a matrix.

Proportional Thresholding. Proportional thresholding is a
commonly applied approach to remove connections with
lower strength and to obtain a sparse connectivity matrix for
computing the network properties based on graph theory. Here,
we applied a proportional threshold to keep a consistent density
of the connections across individuals (Bassett and Bullmore,
2009; van den Heuvel et al., 2017). If a proportional threshold
(PT%) is applied to a functional network, all the strongest
PT% of the connections are preserved and set to 1; the other
connections are set to 0. As suggested by Rubinov and Sporns
(2010), networks should be ideally characterized and show
consistent patterns across a broad range of thresholds. These
threshold values are often determined differently across studies.
Therefore, in this study we examined a wide range of thresholds
ranging from 36 to 4% (resulting in networks with around
20–200 links) in steps of 2%, similar to a previous study (van
den Heuvel et al., 2017). To show how the network looks like, in
Figure 1, we plotted the grand mean networks within each group
at differential thresholding values (20, 10, and 2%).

Graph Metrics. Various measures characterize a network’s
structure. Two fundamental ones are included here: clustering
coefficient (CC) and global efficiency (GE). These two basic
graph metrics were computed as implemented in the Brain
Connectivity Toolbox (Rubinov and Sporns, 2010). Clustering
coefficient is a commonly used measure to quantify the functional
network segregation. It is defined as the fraction of triangles
(ratio of the present and total possible number of connected
triangles) around an individual node and is equivalent to
the fraction of a node’s neighbors that are neighbors of each
other (Watts and Strogatz, 1998). The clustering coefficient
of a network CC is the average clustering coefficient across
all the nodes in the network. It reflects the prevalence of
clustered connectivity around individual nodes (Rubinov and
Sporns, 2010): the larger the CC, the greater the degree of
functional segregation.

The other metric, GE, was used to quantify the functional
network integration. This is based on a basis measure – shortest
characteristic path length. Paths are sequences of distinct nodes
and links, with shortest paths between two nodes defined as the
path with the fewest edges in a network (the sum of the number
of its constituent edges is minimized). GE for a network, obtained
by the average inverse shortest path length between all the pairs,
is a measure of functional network integration: the larger the GE,
the greater the degree of global integration. All these measures
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were computed with an open source Matlab toolbox (Rubinov
and Sporns, 2010).1

Statistical Tests
Non-parametric Wilcoxon signed rank test was performed for
the comparisons of measures in PD OFF and ON states.
Spearman’s correlation coefficients were calculated to estimate
the relations between different measures. We applied the false
discovery rate (FDR) procedure (Benjamini and Hochberg,
1995) to correct for multiple tests (correlation calculation)
across channels. Significance is reported when FDR-corrected
p-values are below 0.05.

To account for multiple comparisons of metrics across
all channels, we performed a channel space cluster-based
permutation test using the “Monte Carlo” method, as
implemented in FieldTrip (Oostenveld et al., 2011). At sample
level (each channel in this case), a dependent t-test was utilized
to estimate the effect. A total of 1,000 randomizations were
performed across groups (ON and OFF conditions) and for
each permutation. Additionally, the single sample t-values are
thresholded at the 95th quantile, and cluster-level statistics
(sum of t-values within each cluster) were computed and the
largest cluster statistic was taken to build a null distribution.
We then compared the observed cluster-level statistic from
the empirical data against the null distribution derived from
the permutation procedure. p-Values below 0.05 (two-tailed)
were considered significant. A positive or negative cluster
demonstrates a significant difference between two conditions
(OFF > ON) or (OFF < ON).

RESULTS

Spatial Specificity and Effects of
Medication on Spectral Slope
The grand mean of PSD averaged from all channels across
subjects in each group is shown in Figure 2A. One can observe
that the PSD decay in PD OFF was shallower compared to the
PSD decay in PD in the ON condition. The spectral slope was
computed for each channel and each subject. Figure 2B shows
the topography of the grand mean of the spectral slope across
all subjects within each group (upper panel for OFF and lower
panel for ON condition). As shown in Figure 2B, for both groups,
spectral slopes were more negative (steeper slopes) along the
fronto-central-parietal midline of the brain and flatter in the
other regions. In general, the ON condition was characterized by
a more negative slope than that in the OFF condition.

We investigated the difference between the two conditions for
all channels. As described in section “Materials and Methods,”
we applied a non-parametric cluster-based permutation test
to correct for multiple comparisons in the channel space.
When comparing slope values in PD OFF with those of
PD ON, a significant positive cluster (p = 0.0220) indicated
an increased slope (flatter) in PD OFF. This difference

1http://www.brain-connectivity-toolbox.net

demonstrated a lateralized pattern covering mostly left central
region (Figure 2C).

No Beta Power Difference Between
Conditions Before and After Correcting
for the Slope Effect
Previous studies have demonstrated inconsistent changes in
cortical beta power: an increase of beta power after dopaminergic
medication (Melgari et al., 2014) and insignificant cortical
beta power changes after DT in PD (George et al., 2013;
Miller et al., 2019). Since we showed that the background
slope was significantly modulated by dopaminergic medication
(significantly steepened by the medication), we assumed that
insignificant beta power reports might partly be attributed to
the overall broadband slope changes. To test this assumption,
we first applied a traditional approach to estimate the beta band
power on the raw PSD. We computed the mean PSD value
in the beta frequency range (13–30 Hz) for each channel and
each subject in each group. Cluster-based permutation tests in
channel space showed no significant difference in beta power
between conditions (Figure 3A). Next, to address whether this
finding might be due to a flattened background spectral slope
(as observed in the PD OFF vs. ON comparison) on the top
of which oscillations were present, we used a second approach
controlling for the spectral slope to estimate beta-oscillation
power for each channel and subject. Figure 3B shows the grand
mean of the residuals of the PSD across all channels after
accounting for spectral slope. By averaging the PSD values in
the same frequency range of 13–30 Hz, beta band power for
each channel and each subject was re-calculated. Cluster-based
permutation tests identified two non-significant negative clusters
(OFF-ON) (p = 0.0739, 0.0939), mainly localized in bilateral
centro-parietal regions (CP5, CP1 and C4, CP6, Figure 3C). This
demonstrates that even after accounting for the background slope
effect, there were no significant beta power changes between the
two medication conditions.

Functional Connectivity in Beta Band Is
Increased After Medication
First, we predominantly focused on the sensorimotor seed-
based connectivity changes, which typically include C3 and C4
electrodes (Swann et al., 2015; Miller et al., 2019). The upper
panel of Figure 4A depicts the FC between C3 and one of
the representative channels from the parietal region (Pz) along
a wide frequency range (1–35 Hz). One can observe clear
peaks around the alpha and beta frequency bands for both the
ON and OFF conditions. Next, we averaged the connectivity
values in the beta frequency range (13–30 Hz) as a measure
of beta band FC. As described above, C3 seed-based beta
band connectivity was compared between medication conditions.
A negative cluster localized in the parieto-occipital region
(OFF < ON, p = 0.007) was identified as shown in the upper
panel of Figure 4B, demonstrating a lower connectivity between
C3 and parieto-occipital regions in the OFF compared to the ON
conditions. However, there was no significant difference in the
comparison of C4 seed-based connectivity between conditions.
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FIGURE 1 | Circular graph plot for the grand mean networks within each group under different PT%. Upper panel: in OFF condition, the networks under the
thresholding values of 20, 10, and 2%. Lower panel: in ON condition, the networks under the thresholding values of 20, 10, and 2%. The degree of transparency
represents how relatively strong the connection is within the network: the less transparency, the stronger the connection is.

Furthermore, to investigate whether the frontal region showed
altered synchronization with other regions, we chose one of
the representative channels in the frontal area [Fz, which is
typically within the cluster of electrodes near the supplementary
motor area (Casarotto et al., 2019)] and performed the same
analysis as for electrode C3. As shown in the lower panel of
Figure 4A, there were obvious peaks in the broad oscillatory
frequency range (alpha and beta) for both conditions. The lower
panel of Figure 4B shows the topographical pattern for the
comparison between OFF and ON conditions, and a significant
negative cluster (p = 0.0250) localized primarily in the parietal
region. This demonstrated that the synchronization between
Fz and parietal regions in the beta band was significantly
enhanced in the ON compared to OFF condition in PD.
Finally, we performed the same analysis for the other channels
to demonstrate whole-head comparisons in a head-in-head
plot (Figure 4C). As in C3 and Fz seed-based connectivity
comparisons, the other channels in seed-based connectivity also
showed significant increase in ON compared to OFF conditions.
Significant clusters (p < 0.05) are marked by warm color.
In general, the topographies showed significant alterations in
synchronization between frontal, central, and parieto-occipital
regions. To show that these connectivity effects are not mainly
driven by the power of the beta oscillation itself, we also examined
the PSD and connectivity profiles and found that in the beta
band the peaks of the connectivity between the two channels
do not coincide with the peaks of the power from either of
the relevant channels (see Supplementary Figure 1). Therefore,
we conclude that the connectivity effect estimated from the

lagged coherence is not driven by the power and rather reflects
phase-driven interaction. In addition, due to presence of peaks
of the FC in the alpha band, we used the same approach to
explore the FC changes in alpha band (8–12 Hz). Yet, there was
no significant cluster detected for all the possible seeds when
comparing the two conditions. Due to our predominant interest
in the beta frequency range and pronounced effects observed in
this frequency band, in the rest of the study we focus on the
measures from the beta band.

Node Degree in Centro-Parietal Region
in Beta Band Is Increased After
Medication
Next, we tested whether the local level of a network feature,
namely the node degree, was modulated by the medication
effect. For this purpose, we calculated the node degree (from the
connectivity in the beta band) for each channel and each subject.
Figure 5A shows the topographical maps of the grand mean of
the node degree across subjects within each group. As can be
seen from Figure 5A, both groups showed a spatial specificity
regarding the degree distribution (left for OFF and right for ON
conditions): a higher level of the node degree in central areas than
in other regions. This demonstrates that the central region might,
in general, interact more with other regions in the whole brain
network. Next, we compared the node degree between conditions
for all channels using a cluster-based permutation test. Figure 5B
shows the spatial difference pattern – a significant negative
cluster was detected (p = 0.0140, OFF vs. ON, shown by labels)

Frontiers in Aging Neuroscience | www.frontiersin.org 6 April 2022 | Volume 14 | Article 846017

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-846017 April 25, 2022 Time: 15:4 # 7

Zhang et al. Dopaminergic Modulation of EEG in Parkinson’s Disease

FIGURE 2 | (A) Grand mean of PSD across all channels and subjects within each group [OFF in black and ON in red, and the shaded area indicates the standard
error of the mean (SEM)]. (B) Grand mean spatial distribution of spectral slope estimated from power spectra over 2–45 Hz across subjects within each group (upper
panel for OFF, lower panel for ON condition). Color bar indicates the slope value. (C) Spatial-difference pattern of spectral slope between OFF and ON (OFF-ON)
condition (cluster-based permutation test, p = 0.0220). Significant positive clusters are labeled. Color bar indicates the statistical t-value.

mainly in the centro-parietal region, suggesting that medication
modulated the node degree of the beta band functional network
in a way that the connectivity of the centro-parietal region
became more pronounced in the whole network. Thus, this
analysis further confirmed our findings obtained from seed-based
connectivity analyses, revealing that synchronization was up-
regulated by medication specifically between the centro-parietal
region and other regions.

No Significant Change in the Global
Network Topology: Either in Network
Segregation or Network Integration
Measure
To answer the question whether the global network structure
is modulated by medication, we estimated the two fundamental
features of a network: the GE for measuring functional network

integration and the CC for measuring network functional
segregation. We report the comparison results for both of the
measures across a wide range of proportional thresholding
values (36–4%, with a step of 2%) between the two conditions.
Since it has been shown that differences in overall FC could
have predictable consequences for between-group differences
in network topology (van den Heuvel et al., 2017), we here
first checked whether in our data there could be a possible
bias for the comparison. However, no significant difference in
overall FC between condition comparisons was found (Wilcoxon
signed rank test, two-tailed, p = 0.1514). Thus, the overall FC is
probably not a significant bias in the comparisons we performed
as shown below. As seen in Figure 6A, across the whole range of
thresholding (36–4%), the mean GE across subjects in the OFF
condition (in black) almost overlapped with that from the ON
condition (in red). As for clustering coefficient, the grand mean
of CC in the OFF condition (black line) showed higher values
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FIGURE 3 | (A) Topography for the comparison of beta band power between PD OFF and ON conditions estimated from the raw power spectra. No significant
cluster was detected for the comparison. (B) Mean of the residuals of PSD (across all channels and subjects within each group, OFF in black and ON in red, and the
shaded area indicates the SEM) after subtracting the spectral slope. Oscillatory peaks are present in alpha and beta bands in both groups. (C) Topography for the
comparison of oscillatory beta band power between PD OFF vs. ON conditions after accounting for the background spectral slope. Two negative clusters were
identified as shown by the labels, but none of them reached significance (p = 0.0739, 0.0939). Color bar indicates the statistical t-value.

than those in the ON condition (red line) across all thresholding
values (Figure 6B). However, the statistical comparison did not
indicate a significant difference in GE (p > 0.05, p-values shown
in dashed orange line, right y-axis), or in CC between the two
conditions (p > 0.05, p-values shown in dashed orange line,
right y-axis). Thus, controlling for the overall FC values and
across a wide range of thresholding values, we were not able
to demonstrate a significant impact of medication on global
network configuration.

Spectral Slope (Local and Global)
Predicts the Network Global Efficiency in
OFF Medication
Next, we asked how the spectral slope, as a proxy of measuring
local E/I balance, would relate to the brain functional network;
thus, we investigated a possible relationship between spectral
slope and network topology. First, we averaged the spectral slope
across all channels to represent an overall slope (referred to
as global slope) for each subject. Spearman’s correlation was
performed between global slope and network metrics (GE and
CC) derived under an exemplary thresholding value at 20%
in both groups. As shown in the scatter plot in Figure 7A,
GE negatively correlated with global slope (Rho = −0.7643,
p < 0.001) in the OFF condition. In contrast, no such association
was observed in the ON condition (Rho = −0.1036, p = 0.7144).
Next, we performed a correlation analysis for the channel-
wise slope (referred to as local slope) and network GE in the
OFF condition. This analysis revealed a significant negative
relationship between local slope values and network GE as shown
in the topographical map (channels demonstrating significance
are highlighted by label, FDR-corrected) in Figure 7B, and this
relationship was most pronounced in the left centro-parietal area.
There was no significant relationship between local slopes and GE
in the ON condition. In addition, we examined if the relationship
we observed at the 20% thresholding could be obtained regardless
of the specific thresholding value. We performed the correlation

analyses between global slope and network GE across the whole
range of thresholding values (36–4% with a step of 2%) in the
OFF group. As shown in Figure 7C, almost across all PT%,
the negative association between global slope and network GE
was present consistently (p < 0.05, p-values shown in dashed
orange line, right y-axis), except under an extreme thresholding
value of 4%. The spatial correlation pattern between local slope
and network GE was also examined under the same range of
thresholding values, and consistently negative relations between
local slope from the centro-parietal region and network GE
were observed (see Supplementary Figure 4). These results
showed that global slope negatively correlated with network
GE across a wide range of thresholding values, and a further
topographical correlation map between local slope and network
GE demonstrated a region-specific pattern.

Control for the Discontinuity in the Data
To assure that the estimation of the metrics is not affected by
signal discontinuity introduced by removing the artifacts, we
additionally performed the main analyses respecting the cutting
borders. Consistently, we obtained very similar results with
respect to spectral slope and lagged coherence. The differences
between the two medication conditions remained unchanged.
A detailed report can be found in Supplementary Figures 2, 3.

DISCUSSION

In this study, we investigated local and global changes induced
by dopaminergic medication in a cohort of PD patients using
non-oscillatory spectral slope measure and connectivity analysis
in resting state EEG. Locally, we estimated the slope of the non-
oscillatory wideband background activity and showed that the
left central region had a significantly decreased (steeper) spectral
slope during the ON compared to OFF medication state. In
addition, in ON compared to OFF, we observed an increase in
the FC in the beta band, mainly between centro-parietal and

Frontiers in Aging Neuroscience | www.frontiersin.org 8 April 2022 | Volume 14 | Article 846017

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-846017 April 25, 2022 Time: 15:4 # 9

Zhang et al. Dopaminergic Modulation of EEG in Parkinson’s Disease

FIGURE 4 | (A) Lagged coherence plot over a frequency range of 1–35 Hz. Upper panel shows the mean connectivity (measured by lagged coherence) estimated
from C3 and Pz, while the lower panel shows the connectivity estimated from Fz and Pz, across the subjects within each group (OFF in black and ON in red, and the
shaded area indicates the SEM). (B) Upper panel: topography for C3 seed-based connectivity (lagged coherence in beta band) comparison between OFF vs. ON
condition (channel-space cluster-based permutation test). The significant cluster is highlighted by the labels in white, while the seed channel C3 is marked in yellow
and outlined by a square box. Lower panel: the same analysis performed for the seed channel Fz, and a significant negative cluster (OFF < ON) was detected
(p = 0.0250). Color bar indicates the statistical t-value. (C) Head-in-head plot for the seed-based connectivity (lagged coherence in beta band) comparison for all
channels. At each channel, the head plot shows the topography for comparison of connectivity between this channel and all other channels using cluster-based
permutation test. Only the significant clusters (p < 0.05) are shown by warm color.

frontal regions. Further, graph theory-based analysis showed an
enhanced node centrality in particular in the centro-parietal
regions but no significant alteration in the complex level of
network topology (GE or CC). Lastly, we found a strong negative

relationship between spectral slope (locally and globally) and
network’s GE in the OFF condition, where a flatter slope was
associated with a smaller degree of GE of the functional network.
These findings provide further evidence for the engagement of
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FIGURE 5 | (A) Mean spatial distribution of node degree calculated from the beta band functional connectivity for each group: left for OFF and right for ON condition.
For both groups, the electrodes in the central area have a higher level of node degree than that of other regions. Color bar indicates the magnitude of node degree.
(B) Spatial difference pattern for comparison of node degree between two conditions (OFF vs. ON). The labeled channels show the identified significant negative
cluster (OFF < ON, p = 0.0140) using cluster-based permutation test. Color bar indicates the statistical t-value.

multiple cortical regions in response to dopaminergic medication
in PD, which in turn may indicate that the therapeutic efficacy of
dopaminergic medication may relate to both regional and global
changes in cortical activity.

Non-oscillatory Background Spectral
Slope
Using multi-channel resting state EEG, we observed that patients
with PD in the medication OFF condition had an increased
(flatter) spectral slope compared to medication ON condition.
This effect was found to be spatially specific to the left central
region. The spectral slope, a metric to quantify this background
power spectrum, has been reported to be altered in the first
year of development, healthy aging and in mental disorder such
as schizophrenia (Peterson et al., 2017; Donoghue et al., 2020;

Molina et al., 2020; Schaworonkow and Voytek, 2021), and could
also predict the dynamic behavioral outcome in working memory
tasks (Voytek et al., 2015; Donoghue et al., 2020). In our study,
we observed that the spectral slope steepened in ON compared
to OFF conditions. Given that previous studies demonstrated
that healthy aging is accompanied by flattening of the spectral
slope (Voytek et al., 2015; Cesnaite et al., 2021) and that neural
electrophysiological biomarkers associated with PD are already
present in the apparently healthy aging brain (Zhang et al.,
2021), one can speculate that PD might be accompanied by a
flattening of the power spectra and that dopaminergic medication
might reverse this flattening effect. The effect was found most
pronounced in the left central area (strongest at C3 electrode in
the detected cluster), which might indicate a modification over
the sensorimotor area by the medication. The broadband spectral
slope underlying the dopamine medication modulation effect
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FIGURE 6 | (A) Mean GE estimated from beta band functional connectivity across subjects within each group (OFF in black and ON in red, and the shaded area
indicates the SEM) across a wide range of thresholding values (36–4% in step of 2%). The dashed orange line represents the p-values (right y-axis) for the
comparisons: none are below 0.05. (B) Same analysis, but for CC: across a wide range of thresholding values no significant difference was observed between the
conditions (OFF vs. ON).

FIGURE 7 | (A) Scatter plot shows that global efficiency for the beta band network (under thresholding value 20%) negatively correlates with the global slope
(averaged slope across the whole head) in the OFF condition. Each asterisk represents one subject. (B) Spatial pattern for the correlation between local slope and
global efficiency (beta network and under 20% thresholding). The channels highlighted by label indicate significant correlation after FDR correction. Color bar
indicates the correlation coefficient value. (C) Through a family of thresholding values (36–6%, with a step of 2%), there was a significantly negative relationship
(p < 0.05, p-values shown in dashed orange line, right y-axis) between global efficiency and global slope.
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in patients with PD may thus potentially serve as a biomarker
sensitive to dopamine replacement therapy. At the same time,
even though we carefully cleaned the data and removed artifacts
which might contribute to the estimation of spectral slope, we
could not completely rule out this confounder. However, we
would like to emphasize that this is unlikely to drive the effect
of spectral slope we observed, otherwise one would expect a
spatial pattern which shows strongest difference over the frontal
or temporal areas (which cover large muscle groups and prone
to be contaminated by the muscle activity). Additionally, as we
mentioned before, the spectral slope has been shown to index the
E/I balance, and we will discuss the implication of this finding
below (see section “Spectral Slope and Network Global Efficiency:
Local E/I Balance and Global Network”).

Power of Beta Oscillation
Previous studies have demonstrated an increase in cortical beta-
band power in PD compared to healthy controls and alleviated
beta band synchrony after medication administration (Stanzione
et al., 1996) and attenuation by DBS (Whitmer et al., 2012). On
the other hand, other studies have also reported an opposite
effect—an increase of beta band power after dopaminergic
medication (Melgari et al., 2014). In addition, some studies
demonstrated that dopaminergic medication did not have any
effect on cortical beta power (Stoffers et al., 2007; George et al.,
2013; Swann et al., 2015; Miller et al., 2019). Importantly, all
previous PD studies on this topic have only considered total
power of beta without separating it into oscillatory and 1/f
aperiodic components. In the present study, we tested the impact
of the removal of the aperiodic part of the spectrum on the
estimation of oscillatory power. We found that a conventional
approach to estimate oscillatory power based on the raw PSD
resulted in a non-significant difference in beta band in the PD
OFF compared to ON state. After accounting for the spectral
slope changes, a marginal increase of beta power was detected
in the centro-parietal regions in the comparison between the
ON and OFF conditions, yet this difference failed to reach
significance. Our data thus suggests that even though the beta-
band power estimation by the conventional approach might
be partly affected by the background wideband PSD spectra,
correcting the effect still does not yield a clear and statistically
significant difference between the ON and OFF conditions. Thus,
in line with some previous studies (George et al., 2013; Swann
et al., 2015; Miller et al., 2019), we further confirm that with
and without considering the background slope effect, there was
no difference in beta power between the medication conditions.
In addition, we discuss a possible relation of our findings to
prior studies which were based on the same dataset. The only
intersecting aspect across all these prior studies and ours is the
investigation of beta-band power change during resting state.
Consistently with what have been reported by George et al.
(2013) and Swann et al. (2015), our study demonstrated there
was no beta power change between the two medication states.
Importantly, in our study, we have examined a possible bias
from the overall PSD slope effect and showed that even when
considering it there was no spectral power change in beta
frequency range between the two conditions. Yet, we suggest

that future studies should take into account the effect of the
aperiodic spectral component for the comprehensive evaluation
of oscillatory power changes in PD.

Functional Connectivity
We observed a significant increase in FC of beta oscillations
in the ON compared to OFF condition, in particular between
the centro-parietal regions with frontal regions. Previous studies
have demonstrated a presence of beta-band coherence between
STN (subthalamic nucleus) and multiple cortical regions,
including sensorimotor (Hirschmann et al., 2011, 2013; Litvak
et al., 2011), parietal and frontal areas (Litvak et al., 2011) in the
OFF medication condition in patients with PD. Dopaminergic
medication can also alter the beta-band connectivity between
STN and cortical regions (Stoffers et al., 2008; Litvak et al.,
2011; Hirschmann et al., 2013; van Wijk et al., 2016). As
for the cortico-cortical connectivity, dopaminergic medication
administration was shown to either reduce interactions between
cortical areas (Silberstein et al., 2005; George et al., 2013;
Pollok et al., 2013; Heinrichs-Graham et al., 2014) or not to
produce any significant changes (Miller et al., 2019). In a very
recent study using combined STN-LFP (local field potential)
and MEG recordings, the authors discovered differential effects
of dopaminergic medication in different levels of networks
(Sharma et al., 2021). Specifically, in the cortico-cortical network,
sensorimotor-cortical connectivity across multiple regions was
enhanced in the beta band during the ON medication state.
Therefore, our observations of the enhancement of such a
coherent fronto-parietal motor network in the ON condition
is consistent with this recent report. Such enhancement of FC
is partially in agreement with another study which employed
simultaneous fMRI/EEG recordings and showed that a higher
dose of dopaminergic medication increased FC between motor
areas and the default mode network in fMRI, whereas EEG
connectivity remained unaffected (Evangelisti et al., 2019). In
general, the dopaminergic effect over the cortico-cortical motor
network might relate to the motor decision-making associated
network, which has been shown to involve cortical fronto-parietal
regions (Siegel et al., 2015), or it might relate to the default-
mode network changes associated with non-motor symptoms in
PD as suggested by other fMRI studies (Gao and Wu, 2016).
Notably, a recent EEG study in PD using source localization
demonstrated the presence of strong phase-amplitude coupling
between the phase of beta and the amplitude of broadband
gamma oscillations in a variety of cortical regions (including
sensorimotor, somatosensory, and prefrontal areas) involved
in motor and executive control (Gong et al., 2021). In line
with this study, our findings of increased connectivity between
centroparietal-frontal regions after dopaminergic medication
further emphasize the importance of cortico-cortical connections
in PD. These electrophysiological findings are consistent with
previous fMRI studies suggesting a critical role of motor circuitry
in PD in response to dopamine administration (Shen et al., 2020).

Global and Local Network Organization
Using graph theory, we demonstrated that in the ON condition,
there was a significant increase in node degree in centro-parietal
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regions implying that these regions became more influential in
the communication within the network. However, the network
topology does not seem to undergo a major re-configuration
as we did not identify significant changes in GE or CC in the
brain network. This seems consistent with findings of previous
studies in which PD patients were compared to healthy controls
and no differences in topographical properties were found at
the global level either in fMRI (Ruan et al., 2020) or in EEG
in all frequency bands (Hassan et al., 2017). Another previous
study also investigated the topographical structure of functional
network using graph analysis based on MEG of patients with
PD (Olde Dubbelink et al., 2013). Compared to healthy controls,
their longitudinal study revealed a tendency toward a more
random brain functional organization which was associated with
lower local integration in multiple frequency bands and lower
GE in the upper alpha band. However, another study using
EEG found an increase in local integration and a decrease
in GE across all the frequency bands in PD compared to
healthy subjects (Utianski et al., 2016). In the present study, we
explored the alterations in a functional spectral network using
graph metrics and showed that dopaminergic medication intake
did not significantly alter the brain network organization but
did exert a significant enhancement in node degree of some
particular regions within the network. The absence of significant
changes in global integration and segregation of the functional
network might suggest that dopaminergic medication does not
re-configure the network at a global organizational level. Instead,
these observations appear to imply that the brain network as a
whole does not respond to medication at the complex (global
integration and segregation) but rather at the low-level network
topology (local node). It would be interesting for future studies to
test whether this relates to the clinical improvement of symptoms
and whether it is possible to significantly alter the network
organization through different therapeutic interventions based
on brain stimulation.

Spectral Slope and Network Global
Efficiency: Local E/I Balance and Global
Network
A steeper spectral slope after dopaminergic medication intake
was evident in PD. As proposed by previous computational work,
the scaling property of the power spectrum of the membrane
potentials and EEG could be due to the frequency attenuation
of the extracellular medium itself (Bédard et al., 2006), or the
intrinsic low-pass filtering effect of the electrical properties of
the neural dendrites (Lindén et al., 2010; Einevoll et al., 2013).
Alternatively, steepening of the slope could be a consequence of
dampened activity propagation (Freeman and Zhai, 2009). More
recently, by applying a realistic computational model, it has been
demonstrated that stronger inhibitory activity results in steeper
spectral decay compared to a situation with a stronger excitatory
drive and thus the spectral slope value can be linked to the local
excitation/inhibition ratio (Gao et al., 2017). Importantly, this
spectral slope derived from ECoG recording dynamically reflects
the effects of anesthesia induced by propofol. Furthermore, other
pharmacological studies on resting state EEG confirmed further

that spectral slope can differentiate the states of wakefulness
compared to a reduction or a complete loss of consciousness
induced in the anesthesia (Colombo et al., 2019). Even though
an exact generative mechanism of the 1/f shaped arrhythmic
brain activity is still unclear (He, 2014), these recent prior work
from simulations and experiments with the recordings across
different spatial scales have indicated that the spectral slope
could be a sensitive marker of the E/I dynamics. Following the
E/I balance hypothesis of the spectral slope, a steeper slope
after medication, observed in this study, may indicate that
dopamine induced a state characterized by stronger inhibition
over excitation. This line of interpretation agrees with previous
TMS studies reporting a reduction of intracortical inhibition
at rest in PD OFF medication (Ridding et al., 1995; Hanajima
et al., 1996; Cantello, 2002) and an enhancement of evoked
inhibitory activity (reflected in late TMS-evoked activity and beta
TMS-evoked oscillations) after dopaminergic medication intake
(Casula et al., 2017).

In addition, we found a close relationship between broadband
non-oscillatory background activity measured by the spectral
slope and the beta-band GE of the functional network. Global
network efficiency represents the ability of integration of activity
of widely distributed regions within a network, impacting
information transmission and communication (Bullmore
and Sporns, 2012). Notably, a previous simulation work
demonstrated that synaptic E/I balance is crucial for efficient
neural coding (Zhou and Yu, 2018), and the local E/I ratio plays
a role in information transmission at large scale brain level
(Deco et al., 2014). This theory concurs with our findings: the
local and global spectral slope, reflecting the local and global
tune of E/I balance, is closely associated with the functional
network global integration property. The negative relationship
between them implies that more excitation over inhibition
corresponds to a lower level of functional network integration.
Consistently, a recent study from both fMRI recording and
simulation data showed that the local E/I ratio could have a
significant impact on the organization of whole brain functional
networks: GE of the functional network is an inverted-U shaped
function of local E/I ratio and the more deviation from the
balanced E/I state (in either direction), the lower GE of the
whole functional network (Zhou et al., 2021). Our observation
about the relationship between local and global slopes with the
global network integration property can potentially be explained
by this model: in OFF medication, an imbalanced E/I state
(indexed by flatter slope) deviating from balanced E/I ratio exerts
a monotonous negative relation with functional network GE.
A presence of a negative relation between the spectral slope and
GE might indicate that the network in PD OFF state resides
within the left part of the inverted-U shaped function [GE
vs. E/I ratio, refer to the Figure 8A of the study (Zhou et al.,
2021)] where a monotonous correlation can be expected. Such
a close association did not hold for the medication ON group.
We assume that the medication moves the network back closer
to a more balanced state, reflected in a steeper spectral slope
(steepening of the flattened slope in OFF state); thus, functional
network organization was no longer closely related to the E/I,
since in a close-to balanced E/I state the GE would rather remain
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stable (i.e., it reaches a maximum at the optimal E/I state). Our
data did not show a difference in the network’s GE property
and in contrast did demonstrate a difference in E/I dynamics
(reflected by the spectral slope) between the two conditions,
thus actually providing a possibility which allows us to more
specifically identify a position of the network in the OFF state.
One intriguing explanation would be that GE changes rather
slowly for quickly changing E/I ratio; therefore, the network in
OFF condition stays relatively close to the one in ON condition
along the GE axis, and along the E/I axis the networks from two
conditions stay further apart.

The spatial distribution of local slope and GE demonstrated
a specific pattern where the slope from the centro-parietal
regions showed strongest relations with the GE of the brain
network. In line with previous fMRI studies demonstrating that
the nodal property of the parietal cortex is closely associated
with motor outcome and decreased with progressing disease
stage (Hoehn and Yahr stage) in PD (Sang et al., 2015; Fang
et al., 2017; Suo et al., 2017), we assume that centro-parietal
regions play an important role in orchestrating the whole global
network organization. This is congruent with the finding that the
connectivity patterns in these cortical regions are also affected by
dopaminergic medication, as discussed above.

LIMITATIONS

The first limitation of this study is that due to a rather
low density of electrodes, we performed all connectivity
analysis in sensor space. Thus, we refrain from making any
conclusions about the specific structure of the networks (e.g.,
small-world and scale-free networks) as is also suggested in
a critical study on the application of graph measures in
EEG/MEG (Kaminski and Blinowska, 2018). It should also
be noted that even if the analysis were to be conducted
in source space, the volume conduction issue may still
be present. Importantly, we applied a connectivity measure
that is specifically used to overcome the volume conduction
issue. Moreover, we were able to show that our findings
remained consistent for a wide range of thresholds for the
networks’ properties.

Another limitation of our study is that clinical measures
were not available and therefore, we could not associate
EEG measures with the severity of clinical symptoms. We
acknowledge this and suggest that future studies could include
such a design so that the link between EEG parameters and
clinical phenotypes can be explored. Future work should test
whether and how local and global EEG parameters relate to
clinical symptoms.

Lastly, due to the lack of EEG comparison with the
healthy control group and the possibility to link the observed
effects to differential components of the clinical symptoms
in PD, we are rather restricted in our interpretation of the
neuronal effects due to dopaminergic modulation. In particular,
significant modulation of the spectral slopes and connectivity
in some specific regions might potentially indicate a successful
improvement associated with particular motor aspects (for

instance bradykinesia), while non-significant changes might
indicate the absence of such modulation for other motor
components such as internal motor control as shown in a
recent study (Michely et al., 2015). Alternatively, the absence of
neuronal changes in some regions might imply a co-existence of
possible non-dopaminergic alterations (for instance serotonergic
dysfunction) that could also become present in the course
of PD and are not modulated by dopaminergic medication
(Politis and Niccolini, 2015).

CONCLUSION

Using multi-channel resting EEG recordings in PD patients,
we showed differential effects of dopaminergic medication on
local non-oscillatory components and connectivity parameters.
Both from the local-level and brain-network perspective, the
centro-parietal area was identified as the region where significant
alterations in non-oscillatory wideband activity, measured by
spectral slope and node centrality within the spectral functional
network in the beta band, occurred. However, the network’s
global topologies, namely global integration (measured by GE)
and global segregation (measured by CC) remained unaffected
by the dopaminergic medication. Furthermore, during the OFF
state, a close association between the spectral slopes (local and
global) and network global integration was observed. These
findings align with the theory that local E/I balance impacts global
network structure, which might in turn demonstrate a crucial role
of local non-oscillatory dynamics in forming the functional global
integration in PD.
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Supplementary Figure 1 | Normalized PSDs and connectivity profiles in OFF and
ON conditions. In the upper panel: in OFF state, blue lines show the PSD profiles
and black lines show the connectivity (left for C3-Pz and right for Fz-Pz). In the
lower panel: in ON state, blue lines show the PSD profiles and red lines show the
connectivity (left for C3-Pz and right for Fz-Pz).

Supplementary Figure 2 | Spectral slope effect remains the same after taking
care of the cutting borders. (A) Left panel: grand mean PSD plot in PD ON

condition before and after respecting the cutting borders (original PSD estimation
in magenta and PSD estimation with taking care of the cutting borders in light
blue). Two lines almost completely overlap across all the frequencies. Right panel:
histograms of the estimated spectral slope values across all the channels and all
the subjects within PD ON group with original approach in magenta and new
approach (considering the borders) in light blue. (B) Topographical pattern of the
comparison of the spectral slope between two conditions based on the
estimations considering the cutting borders (OFF vs. ON, p = 0.0240). This
topography is consistent with the Figure 2C of the main manuscript.

Supplementary Figure 3 | Functional connectivity effects remain unchanged
after taking care of the borders introduced by removing the artifactual segments.
(A) Left panel: averaged functional connectivity between Fz-Pz channels in PD
OFF condition before and after considering the cutting borders (original and new
estimation in magenta and light blue color, respectively). Two approaches give rise
to very similar estimation values. Right panel: same analysis but in the PD ON
condition. (B) Topographical pattern of the comparison of the Fz-seed based
functional connectivity between two conditions (OFF vs. ON, p = 0.028). The
significant cluster is highlighted by the labels in white, while the seed channel Fz is
marked in yellow outlined by a square box. This spatial difference pattern is very
consistent with the lower panel of Figure 4B of the main manuscript.

Supplementary Figure 4 | Spatial patterns for the correlation between local
slope and global efficiency (beta network and under a variety of thresholding
values). Significant channels are shown in labels (p < 0.05) after FDR correction.
Color bar indicates the correlation coefficient value. The spatial specificity over the
centro-parietal region is generally consistent across a family of thresholding values
(36–18%). At the PT% of 14%, a significant negative relationship is still present.
For the higher PT% values, no significant correlation remains after multiple testing
correction.
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