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The Relativistic Dynamical Inversion technique, a novel tool for finding analytical solutions to
the Dirac equation, is written in explicitly covariant form. It is then shown how the technique can
be used to make a change from cartesian to spherical coordinates of a given Dirac spinor. Moreover
the most remarkable feature of the new method, which is the ease of performing non-trivial change
of reference frames, is demonstrated. Such a feature constitutes a potentially powerful tool for
finding novel solutions to the Dirac equation. Furthermore, a whole family of normalizable analytic
solutions to the Dirac equation is constructed. More specifically, we find exact solutions for the
case of a Dirac electron in the presence of a magnetic field as well as a novel solution comprising
of a combination of a spherically symmetric electric field and magnetic fields. These solutions
shed light on the possibility of separating the positive and negative energy parts of localized Dirac
spinors in the presence as well as in the absence of magnetic fields. The presented solutions provide
an illustration of the connection between the geometrical properties of the spinor and spin-orbit
coupling for normalizable spinorial wave functions.

I. INTRODUCTION

The Relativistic Dynamical Inversion technique (or
RDI for short) first proposed in [1], was designed to
solve the following problem: Given an arbitrary (desired)
spinorial spacetime wave packet ψ, find an electromag-
netic vector potential Aµ such that the Dirac equation is
satisfied. Several examples demonstrating the ability of
RDI to find novel non-trivial analytical solutions to the
Dirac were discussed in [1–3] . The most appealing fea-
ture of RDI is the clear geometrical meaning bestowed
upon the spinor by the Hestenes formalism on which it
is based, whose main advantage is that a clear classi-
cal interpretation can be given to the elements of the
theory; this in turn provides the intuition of how the
electron in the quasi-classical approximation is expected
to move in the desired field configuration for which the
solutions to the Dirac equation are sought, with the in-
formation about such “motion” being encapsulated in the
geometrical interpretation of ψ. However, in its cur-
rent form, RDI is formulated in cartesian coordinates,
which severely hinders the feasibility of the technique
to tackle problems possessing certain symmetries, for in-
stance spherical or cylindrical symmetry, which generally
lead to a great deal of simplification in the equations
one need to solve. A general way to address this issue
is to rewrite the equations of RDI in manifestly covari-
ant form. Another advantage in making RDI explicitly
covariant is that only then can gravity also be included.

Before proceeding, it is noteworthy that Hestenes (see
[4] and references therein) already put forward a covari-
ant version of his technique, which should be equivalent
to the one developed here. However, while Hestenes’
formulation relies heavily on his so called geometric al-
gebra, with a plethora of new symbols and calculation
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rules, the formalism developed here relies only on basic
matrix algebra and tensor calculus, consequently being
accessible to a wider audience. Moreover, Hestenes fo-
cused mainly on gravitational effects which might mis-
lead the reader to thinking that it is all his formalism is
about; in contrast, our main focus is on the covariance of
the formulation, which applies not only to curved space-
time, but also to curvilinear coordinates and non-inertial
frames in flat spacetime. In addition, our technique can
also deal with spacetimes endowed with torsion.

In this work we put forward the Manifestly Covari-
ant Relativistic Dynamical Inversion (CRDI) technique,
a novel formalism which is the offspring of the marriage
between the Hestenes formulation with the formalism of
Polar Spinors (see, for instance, [5, 6]). In order to il-
lustrate the usefulness of CRDI, we start with a general
form of the spinorial spacetime wave packet ψ constitut-
ing a general solution to the Dirac equation in cartesian
coordinates and show that a particular case of such so-
lution is the ground state of the Hydrogen atom. Then
we make a change from cartesian to spherical coordi-
nates and demonstrate a novel feature of CRDI, which
is the easiness of performing non-trivial change of refer-
ence frames that can potentially be a powerful tool in the
quest of novel analytical solutions to the Dirac equation.
In addition, we construct a whole family of normalizable
analytic solutions to the Dirac equation. More specif-
ically, we find exact solutions for the case of a Dirac
electron in the presence of a magnetic field as well as a
novel solution consisting of the combination of a spheri-
cally symmetric electric field and magnetic fields. These
solutions give some clues on the relationship between
magnetic fields, spin-orbit coupling and the geometrical
properties of the Dirac spinor.

This paper is organized as follows. In Sec. II an
overview of the steps needed to write the Dirac equa-
tion in explicitly covariant form is given. In Sec. III we
summarize both the Hestenes formalism and the RDI
technique. Then we present a step by step derivation of
CRDI in Sec. IV. In Sec. V we first show how the chosen
general ψ reproduces the solutions presented in [3] and
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then proceed to describe two families of analytical solu-
tions of the Dirac equation, one of which is novel, con-
structed with the help of our newly developed technique.
In Sec. VI we analyze the newly found solutions in light
of the geometrical interpretation of CRDI. Finally, in
Sec. VII we draw some conclusions and highlight some
of the potential applications of CRDI.

II. GENERAL COVARIANCE AND DIRAC

SPINORS

In this section we describe the steps needed to write
the Dirac equation in manifestly covariant form. This
discussion is based on the procedure introduced in [7].

Hereafter, Greek indices label the spacetime manifold
while Latin indices label the tangent space to the man-
ifold. Since in Sections III A and III C there is no dis-
tinction between Greek and Latin indices (everything is
written in cartesian coordinates), we use Greek indices
throughout both sections.

The general procedure to write the Dirac equation in
explicitly covariant form is as follows: choose a single
point on a curved manifold. There the manifold is ex-
actly equal to the tangent space at the chosen point.
Since we are considering the Lorentzian curved met-
ric tensor, the tangent space at every point will be
Minkowski. One can then define a field at each point
that transforms as a scalar under coordinate transfor-
mations in the curved manifold, and as a spinor under
the Lorentz group in the tangent space. Given that at
the chosen point the curved manifold and the tangent
space are identical, one has just constructed a Lorentz
spinor at one point on a curved manifold. One may then
construct such an object at every other point.

Each point on the curved manifold has its own in-
dependent tangent space in which it can transform un-
der an arbitrary Lorentz transformation. Thus, to si-
multaneously define a Lorentz spinor at all points on
a curved manifold, one must let it transform under lo-
cal Lorentz transformation in each independent tangent
space at each point. Therefore the first step to write
the Dirac equation in covariant form is to construct the
complexification of the SO(1, 3) gauge theory for spinors.

To identify the space of SO(1, 3) gauge transforma-
tions with the space tangent to the manifold at each
point, one must do the following: First, as stated at the
beginning of this section, one must identify the SO(1, 3)
indices (Latin indices) with the tangent space Lorentz
indices. Second, one must find a way to define an in-
dependent set of gamma matrices at each point on the
curved manifold which act at the tangent space at that
point. And third, one must find a way to relate the
spin connection to the geometry of the curved manifold
such that a tangent space Lorentz transformation under
which the theory must be invariant simply translates to
a SO(1, 3) gauge transformation on the spinor field.

The first task can be straightforwardly taken care of
by simply identifying the Latin indices with flat Lorentz
indices. The other two are more involved. It turns out
that the first step towards simultaneously tackling both
of them is to introduce a new field that relates the curved
metric with the tangent space metric. It is called the

tetrads, commonly denoted in the literature by the sym-
bols eµa and eaµ, obeying the following relations

ηabe
a
µe

b
ν = gµν (1)

where ηab is the Minkowski metric on the flat tangent
space while gµν is the curved metric tensor on the mani-
fold. The geometrical meaning of the tetrads is that they
constitute a set of four orthonormal vectors (in terms
of the Minkowski metric) at each point on the tangent
space to the manifold. The definition of the gamma ma-
trices as matrix valued functions of the coordinates on
the manifold is done by imposing that they must obey
the following curved Clifford algebra

{γµ, γν} = 2gµν1 (2)

where 1 is the 4 × 4 identity matrix and {., .} is the
anticommutator. The tetrad is relevant here because
the solution to the above anticommutation relation can
simply be written in terms of the standard flat gamma
matrices using the tetrad, that is

eaνγa = γν . (3)

Finally the third and final task is to write the spin con-
nection in terms of the geometry of the curved mani-
fold so that tangent space Lorentz transformations under
which the theory must be invariant simply translate to
SO(1, 3) gauge transformation, under which the theory
is already invariant. This can be done, it turns out, by
using the so called metronilic property, ∇µγν = 0. This
task is more involved and will be addressed in Sec. IVA.

III. AN INTRODUCTION TO RDI

In this section we give a brief review of both the
Hestenes formalism and the RDI technique.

A. A review of the Hestenes formalism

This section is a reinterpretation of the work of
Hestenes [8] in terms of the quaternion formalism de-
veloped in Ref. [9]. The new point of view consists in
interpreting γµ as vectors of a space-time reference frame
instead of matrices. By definition the scalar product of
these vectors is just the components ηµν of the metric
tensor

1

2
(γµγν + γνγµ) = γµ · γν = ηµν (4)

generating an associative algebra over the real num-
bers, which has been called the space-time algebra by
Hestenes. It provides a direct and complete alge-
braic characterisation of the geometric properties of
Minkowski space-time in cartesian coordinates. In the
standard representation the Dirac equation for an elec-
tron with charge e and mass m in an external electro-
magnetic field Aµ reads

γµ (i~∂µ − eAµ)ψ = mcψ. (5)
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The Dirac spinor ψ ∈ C4 obeying (5) is a column vector
with four complex components

ψ =







ψ1

ψ2

ψ3

ψ4






=







r0 − ir3
r2 − ir1
s3 + is0
s1 + is2






, (6)

where the sµ and rµ are real functions of space-time.
The representation (6) in terms of the components
ψ1, ψ2, ψ3, ψ4 presumes a specific representation of the
Dirac matrices, the standard (Dirac) representation,

γ0 =

(

I 0
0 −I

)

, γk =

(

0 −σk
σk 0

)

(7)

subject to γ0(γµ)†γ0 = γµ as well as γ2(γµ)∗γ2 = γµ

where I is the 2× 2 identity and σk the Pauli matrices.
The matrices αk = γkγ0 are to be interpreted as unit

quaternions. The αk generates an algebra over the real
numbers which is isomorphic to the Pauli algebra. This
fact is emphasized by writing

α1α2α3 = γ0γ1γ2γ3 = i, i
2 = −1. (8)

Thus, i plays a similar role as i =
√
−1 does in the

Pauli Algebra. In quaternion theory, it is an additional
operator which commutes with the αk and squares to
−1. From the standard representation (7) it follows

αk =

(

0 σk
σk 0

)

, i =

(

0 iI
iI 0

)

,

iαk =

(

iσk 0
0 iσk

)

, γ5 = iγ0γ1γ2γ3 =

(

0 I
I 0

)

. (9)

By introducing the canonical basis in the spinor space

u1 =







1
0
0
0






, u2 =







0
1
0
0






, u3 =







0
0
1
0






, u4 =







0
0
0
1






,

(10)

γ0u1 = u1, iα3u1 = γ2γ1u1 = iu1, (11)

u2 = −iα2u1, u3 = α3u1, u4 = α1u1, (12)

we have that the Dirac spinor ψ given in (6) in this
representation can be written as

ψ = ψ1u1 + ψ2u2 + ψ3u3 + ψ4u4

= [r01+ (s1α1 + s2α2 + s3α3)−
−i (r1α1 + r2α2 + r3α3) + is0]u1 (13)

where relations (11) and (12) have been used. Thus any
Dirac spinor ψ can be written as

ψ = Ψu1 (14)

where Ψ can be written down directly from the column
matrix form (6) by using

Ψ = r01+ (s1α1 + s2α2 + s3α3)−
−i (r1α1 + r2α2 + r3α3) + is0 =

=







ψ1 −ψ∗
2 ψ3 ψ∗

4

ψ2 ψ∗
1 ψ4 −ψ∗

3

ψ3 ψ∗
4 ψ1 −ψ∗

2

ψ4 −ψ∗
3 ψ2 ψ∗

1






. (15)

The matrix spinor Ψ is then a general complex quater-
nion.

The most general form of the spinor Ψ can be trans-
lated into the polar form

Ψ =
√
ρ exp (iβ/2)R, (16)

where R = BU [10]. The matrices U and B are unitary
and Hermitian, respectively, with U encoding the rota-
tions and B performing the boosts. From equation (16)
we have, noting that Uγ0 = γ0U

Ψγ0Ψ̃ = ρv/ = ρBγ0B−1 = ρB2γ0 (17)

since B−1 = B̃ = γ0B†γ0 = γ0Bγ0. Then

Ψγ3Ψ̃ = ρs/ = ρBUγ3U †B−1 = ρBUα3U
†Bγ0 (18)

for the spin. Before proceeding, we would like to address
the issue of why is the vector spin density in (18) cal-
culated with γ3 and does not involve γ5. The reason is
that it is a feature of the Hestenes formalism; in such a
formalism the γ5 is somewhat hidden in the definition of
the matrix spinor while the γ3 appears because the spin
is aligned along the third axis. However, these are only
‘incidents’ of the choice of formalism. Of course when
written in the usual formalism the γ3 leaves its place
to the γ5γ3 and all the usual definitions are recovered.
Finally, we would like to call attention to the following
definitions

Ψ−1 =
Ψ̃

ΨΨ̃
, Ψ̃ = γ0Ψ

†γ0, ΨΨ̃ = ρeiβ, R−1 = R̃. (19)

The general matrix spinor (16) satisfies the Hestenes-
Dirac equation

(~c∂/Ψγ2γ1 − cqA/Ψ) = mc2Ψγ0 (20)

where A/ = Aµγµ and ∂/ = γµ∂µ. The factorization (16)
implies

∂/Ψ =
1

2

(

∂/ ln ρ+ ∂/βi− 2γµR∂µR−1
)

Ψ. (21)

Substituting (21) in (20) leads to

~(∂/ ln
√
ρ+ ∂/βi

2 − γµR∂µR−1)Ψγ2γ1 −
−qA/Ψ=mcΨγ0. (22)

B. Summary of the Relativistic dynamical

inversion technique

Once the matrix spinor is given, the next step is to
find the electromagnetic fields that induce the motion of
the electron encoded in Ψ. Formally, the vector potential
can be written in terms of Ψ by inverting (22) as

eA/ = ~∂/Ψγ2γ1Ψ−1 −mcΨγ0Ψ−1, (23)

The vector potential equation can also be rewritten in a
more illuminating form

eA/ = ~∂/Ψγ2γ1Ψ−1 − p/e−iβ , p/ = mcv/, (24)
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which allows us to identify p/ with the kinetic momentum.
The vector potential given by (23) is required to obey

the following constraints

Tr [eA/Γ1]/4 = 0,

Tr [eA/Γn]/4 = 0, for 6 ≤ n ≤ 16,

where

Γ1 = 1, Γ2 = γ0, Γ3 = γ1, Γ4 = γ2,

Γ5 = γ3, Γ6 = α1, Γ7 = α2, Γ8 = α3,

Γ9 = γ2γ3, Γ10 = γ3γ1, Γ11 = γ1γ2,

Γ12 = γ1γ2γ3, Γ13 = γ0γ2γ3, Γ14 = γ0γ3γ1,

Γ15 = γ0γ1γ2, Γ16 = γ5.

The above conditions imply

∂µ(ρv
µ) = 0,

∂µ(ρs
µ) +

2mc

~
ρ sinβ = 0. (25)

Thus, after taking into account the constraints (25),
the components of the vector potential such that the
Hestenes-Dirac equation is satisfied by the given matrix
spinor Ψ are

eA0 =
~

2

(

− 1

v20
[s+ v × (s× v)] · ~∇β − e2 · ∂0e1

+
~∇ · (ρs× v)

ρ

)

−mcv0 cosβ, (26)

eAk =
~

2

(

− vksµ∂
µβ + skvµ∂

µβ − e2 · ∂ke1

+
1

ρ

[

εklm
∂

∂xl
(ρ{ 1

v20
[s+ v × (s× v)]m})

− εklm
∂

c∂t
(ρslvm)

])

−mcvk cosβ. (27)

where ej = ΨγjΨ̃/ρ, j = 1, 2, e2 · ∂0e1 = Tr [e2∂0e1]/4
and e2 · ∂ke1 = Tr [e2∂ke1]/4.

C. Form Hestenes to Baylis: anatomy of the

matrix spinor

The first step towards gaining more physical insight is
the equivalence between the Baylis formulation known
as Algebra of Physical Space (APS) [11, 12] and the
Hestenes formalism introduced in Sec. III A; to the best
of our knowledge, this equivalence was previously dis-
cussed only by Gürsey in [9].

In the Baylis formalism the state ψ can be represented
by the following matrix Φ

ψ =







ψ1

ψ2

ψ3

ψ4






⇐⇒ Φ =

(

ψ1 + ψ3 −ψ∗
2 + ψ∗

4

ψ2 + ψ4 ψ∗
1 − ψ∗

3

)

. (28)

Moreover, one should note the following

Φ̄ = ΓΦTΓ† =

(

ψ∗
1 − ψ∗

3 ψ∗
2 − ψ∗

4

−ψ2 − ψ4 ψ1 + ψ3

)

, (29)

where the superscript T is transposition and Γ = −iσ2
is the quaternion operator equivalent to a complex con-
jugation, in terms of which we can write

Θ =

(

Φ 0
0 Φ̄†

)

(30)

as a full 4× 4 matrix. One should notice the following

UΨU † = Θ (31)

showing that the complete 4 × 4 Baylis form is just the
Hestenes matrix form up to a unitary transformation.
The specific unitary transformation is nothing else but
the transformation that performs the passage to the chi-
ral (Weyl) representation, that is, U = 1√

2

(

1 + γ5γ0
)

.

The matrix spinor (31) can be written in the following
general form

Θ =

(

Q 0
0 σ2(Q

†)Tσ2

)

,

Q = r0 − is0 − i(rk − isk)σk. (32)

The determinant of Ψ is

Det [Ψ] = (rµr
µ − sµs

µ − 2irµsµ) ·
· (rµrµ − sµs

µ + 2irµsµ) (33)

and is non-singular for rµr
µ − sµs

µ and rµsµ not simul-
taneously zero. We need these conditions to ensure that
Ψ be invertible, as needed for the CRDI procedure.

Calling Q = SV , with S =
√

rµrµ − sµs
µ − 2irµsµ

and Det [V ] = 1 we have that the function S can also be
expressed as S =

√
ρeiβ/2, where

√
ρ =

[

((rµr
µ − sµs

µ)2 + 4(rµsµ)
2
]1/2

, (34)

β = ± arctan

(

2rµsµ
rµrµ − sµs

µ

)

. (35)

The minus (plus) sign is for Q ( σ2(Q
†)Tσ2). Finally, we

have

Θ =
√
ρ

(

e−iβ/2V 0
0 eiβ/2σ2(V

†)Tσ2

)

. (36)

By construction V is a unimodular 2 × 2 complex ma-
trix forming the group SL(2,C), which is the complex
3-dimensional manifold having 6 degrees of freedom as-
sociated to the parameters of boosts and rotations.

It is instructive to check how this unitary transforma-
tion affects equation (14)

Uψ = Θu1, Uu1 =
1√
2







1
0
1
0






. (37)

Given that U is the unitary transformation connecting
the standard representation to the chiral representation,
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Ψ is the 4× 4 double cover of the Lorentz group. It then
follows that the matrix spinor Ψ is writable as

Ψ =
√
ρ exp (iβ/2)R, (38)

R = U †
(

V 0
0 σ2(V

†)Tσ2

)

U (39)

with R a unimodular 4×4 complex matrix corresponding
to the general Lorentz transformations. It is noteworthy
that the scalar function β (known as Yvon-Takabayashi
(YT) angle [13, 14]) is believed to be directly related to
antiparticles (see, for instance, [15]): specifically, its be-
ing zero corresponds to a pure particle state, its being π
corresponds to a pure antiparticle state, with any value
in between corresponding to mixed states [5]. The math-
ematical meaning of β is, however, very straightforward.
It simply describes the dynamics of the internal degrees
of freedom of the electron, for instance the spin-orbit
coupling. This point will become clear in the examples
presented below.

IV. THE MANIFESTLY COVARIANT

RELATIVISTIC DYNAMICAL INVERSION

Having presented the Hestenes form of the Dirac equa-
tion, we are now ready to move on so to make this for-
malism manifestly covariant [5]. The ensuing Relativis-
tic Dynamical Inversion technique will therefore be made
into the Manifestly Covariant Relativistic Dynamical In-
version technique.

A. General treatment: manifestly covariant

Hestenes formalism

In what we have done in the previous two sections, we
have introduced the Hestenes formalism in standard rep-
resentation and showed that in the chiral representation
it is equivalent to the Baylis formalism; chiral represen-
tations are important because they keep the irreducible
parts separated. Nevertheless, at least in 4 dimensions,
all representations are unitarily equivalent. The same
could be said for all possible systems of coordinates used
to write the Dirac spinor and the Dirac equation. Just
the same, it would be important to have a formalism that
is covariant in a manifest way for two reasons: the first
is that the passage from cartesian to any other system of
coordinates can be done straightforwardly; the second,
and most important, is that only in a clearly covariant
form can gravity be included. In the following we are
then going to consider only the generally covariant form
of the Dirac spinor field theory, but employing it to the
Hestenes formalism so to keep the advantages of RDI.

In the most general form, complex Lorentz transfor-
mations are given in terms of Clifford matrices γa such
that (2) holds. Then we can define

1
4 [γa,γb]=σab (40)

where σab also verify

2iσab=εabcdγ
5σcd (41)

implicitly defining the γ5 matrix in terms of the com-
pletely antisymmetric pseudo-tensor. We can see that

γiγjγk=γiηjk − γjηik+γkηij+iεijkqγ
5γq (42)

from which it is possible to get

{γa, σbc} = iεabcdγ
5γd (43)

[γa, σbc] = ηabγc−ηacγb (44)

and

{σab, σcd} = 1
2 [(ηadηbc−ηacηbd)1+iεabcdγ5] (45)

[σab, σcd] = ηadσbc−ηacσbd+ηbcσad−ηbdσac (46)

are all valid as geometric identities. This last relation-
ship in particular tells us that the σab matrices are the
generators of the Lorentz algebra, so that with parame-
ters θij=−θji we can write

Λ=e
1
2 θabσ

ab

(47)

as Lorentz transformations. To make them explicit, we
define the following quantities

a=−1

8
θijθ

ij (48)

b=
1

16
θijθabε

ijab (49)

and then

2x2=a+
√

a2+b2 (50)

2y2=−a+
√

a2+b2 (51)

so to introduce the parameters

cos y coshx=X (52)

sin y sinhx=Y (53)
(

x sinh x cos y+y sin y cosh x
x2+y2

)

θab +

+
(

x cosh x sin y−y cos y sinh x
x2+y2

)

1
2θijε

ijab=Zab (54)

which verify

X2−Y 2+
1

8
ZabZab=1 (55)

2XY − 1

16
ZijZabεijab=0 (56)

in general. Using (45) one can prove that

Λ=X1+Y iγ5 +
1

2
Zabσab (57)

in the most compact way. One might also be convinced
of this result by considering single rotations or boosts
and verify by direct inspection that (57) reduces to the
known forms. The inverse is

Λ
−1=e−

1
2 θabσ

ab

(58)

written explicitly as

Λ
−1=X1+Y iγ5− 1

2
Zabσab (59)
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as clear after using relations (55-56) given above. With
this transformation we can define spinor fields as what
transforms according to

ψ→Λψ (60)

in the most general case. Notice that we have

(Λ)abΛγ
b
Λ

−1=γa (61)

where (Λ)ab such that (Λ)ak(Λ)
b
jη

kj = ηab is a trans-

formation that belongs to the SO(1, 3) group and that
is the real representation of the Lorentz transformation.
For future convenience, let us introduce

(∂µXZ
ab −X∂µZ

ab) + 1
2 (∂µY Zij − Y ∂µZij)ε

ijab +

+∂µZ
akZb

k=−∂µζab (62)

in terms of which we can write

Λ
−1∂µΛ=

1

2
∂µζabσ

ab (63)

with (55-56) used throughout computations.
Given that the Lorentz transformations can have pa-

rameters that are local, we must expect some form of
gauge potential and a spinor covariant derivative. By
defining the gauge potential as the spinorial connection
Ωµ transforming as

Ωµ→Λ
(

Ωµ −Λ
−1∂µΛ

)

Λ
−1 (64)

it is easy to prove that the object

∇µψ=∂µψ+Ωµψ (65)

transforms as a covariant derivative of the spinor. Hence,
the conditions ∇µγν =0 can be expanded into

Ωµ=
1
2Ωijµσ

ij (66)

where

Ωi
jµ = eνj e

i
σ(Λ

σ
νµ − eσa∂µe

a
ν)

Λσ
αν =

gσρ

2
(∂αgρν + ∂νgαρ − ∂ρgαν)

as the most general (non-conformally invariant) decom-
position of the spinor connection. With this the final
task described in Sec. II is taken care of. The above
discussion is a general introduction to spinor fields and
their covariant derivatives. We will now try to see how
Hestenes matrix spinors fit into this scheme.

To begin our analysis, let us consider the Hestenes ma-
trix spinor given in (15). The first column is of course
the spinor ψ itself. The third column is γ5ψ in the stan-
dard representation (9). As for the second and fourth
columns, their meaning may look more cumbersome, but
in fact they are merely γ5iγ2ψ∗ and iγ2ψ∗ still in the
standard representation. That is, any column is obtained
from the first after applying the discrete transformations

ψ→γ5ψ (67)

ψ→ iγ2ψ∗ (68)

or combinations thereof. There is a straightforward
physical meaning for this: Starting from the first col-
umn describing a matter state of defined eigen-spin, the
third is just the corresponding antimatter state of same
eigen-spin. The second and fourth columns are then the
matter and antimatter states of inverted eigen-spin. It
is rather important to notice two things: first, despite
having deduced everything from the Hestenes formalism
given in standard representation, if we were to write the
spinor (15) in the form (note that each entrance sepa-
rated by a | corresponds to a column matrix)

Ψ =
(

ψ | γ5iγ2ψ∗ | γ5ψ | iγ2ψ∗) (69)

this way of writing the spinor would be representation-
independent; second, because we have γ2(γµ)∗γ2 = γµ

and [γ5, σij ]=0, it is easy to prove the following

γ5ψ→Λγ5ψ (70)

iγ2ψ∗→Λiγ2ψ∗ (71)

from which one can conclude that

Ψ→ΛΨ (72)

in general. In polar form (16), because ρ and β are
real scalars, the transformation law is inherited entirely
by R in the form R → ΛR showing that this is just
what we have for Lorentz transformations. Therefore,
the covariant derivative of Ψ is the same as ψ and

∇µΨ=∂µΨ+ΩµΨ (73)

in the most general situation. From the polar form we
have

∇µΨ =
[

1
2 (∂µ ln ρ+i∂µβ)+(Ωµ−R∂µR−1)

]

Ψ (74)

where the first parenthesis contains the covariant deriva-
tives of the two real scalars and we have an additional
parenthesis whose meaning is still not obvious. However,
we can prove that it is perfectly covariant. To see this,
consider that as mentioned above R→ΛR and combine
it with (64); putting things together yields

Ωµ−R∂µR−1→Λ
(

Ωµ −Λ
−1∂µΛ

)

Λ
−1 −

−ΛR∂µ(R−1
Λ

−1) = ΛΩµΛ
−1 −

−∂µΛΛ
−1 −ΛR∂µR−1

Λ
−1 −

−ΛRR−1∂µΛ
−1 = ΛΩµΛ

−1 −
−ΛR∂µR−1

Λ
−1=Λ

(

Ωµ−R∂µR−1
)

Λ
−1 (75)

as transformation law of the Ωµ − R∂µR−1 object and
therefore demonstrating its manifest covariance. Hence
we may define

Ωµ−R∂µR−1=−Rµ (76)

in terms of which

∇µΨ =
[

1
2 (∇µ ln ρ+i∇µβ)−Rµ

]

Ψ (77)

now clearly manifestly covariant in each term separately.
As a further step, we will see how Rµ decomposes in

terms of simpler expressions. Because in general we have

R∂µR−1= 1
2∂µξ

abσab (78)
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for some ξab and given (66) then we can define

∂µξij−Ωijµ≡Rijµ (79)

so that

Rµ=
1
2Rijµσ

ij (80)

with Rijµ real tensorial quantities. In fact, as

1
2Rijµσ

ij→Λ
(

1
2Rijµσ

ij
)

Λ
−1 (81)

the linear independence of the sigmas and (61) give

Rabµ→Rijµ(Λ
−1)ia(Λ

−1)jb (82)

showing that Rijµ has the transformation law of a real
tensor. Moreover, the velocity and spin vectors, (17) and
(18), satisfy the following geometrical identities

∇µvi = Rijµv
j , ∇µsi = Rijµs

j . (83)

The spinorial covariant derivative is then

∇µΨ=(∇µ ln
√
ρ+iγ5∇µβ/2− 1

2Rijµσ
ij)Ψ (84)

in the most general circumstance. In fact, (84) is valid
in any coordinate system, including curved space-times.

B. Introduction of Torsion

Because we are dealing with generic space-times in
which gravity can be present, it may be instructive, for
the sake of completeness, to allow also torsion. The Dirac
matter field equations in this case are [16]

iγµ∇µψ−XWµγ
µγ5ψ−mψ=0 (85)

with Wµ torsion and X torsion-spin coupling constant.
These equations can be written in the Hestenes formal-
ism by employing the polar form and keeping track of
the transformation of the spinor under ψ → γ5ψ and
ψ→ iγ2ψ∗; eventually it is easy to verify that

iγµ(∇µ ln
√
ρ+iγ5∇µβ/2)Ψ− i

2Rijµγ
µσijΨ−

−XWµγ
µγ5Ψ−mΨγ3γ5=0 (86)

as the Dirac equation for the Hestenes spinor. Equation
(86) is manifestly covariant as is straightforward to see.

C. Electromagnetic Interaction and Inversion of

the Gauge Potential

Having written the Dirac equation in curvilinear co-
ordinates for curved space-times in presence of torsion,
the only missing interaction for single particle systems is
electrodynamics. In order to add it we will employ the
concept of gauge covariance. When gauge covariance
is present, it simply means that complex objects trans-
form according to an additional phase eiqξ. One may
then wonder: What is the effect of such a phase shift on
the Hestenes spinor? In order to answer this question,

we have to consider that the discrete transformations
ψ→γ5ψ and ψ→ iγ2ψ∗ lead to

γ5ψ→eiqξγ5ψ (87)

iγ2ψ∗→e−iqξiγ2ψ∗ (88)

where now the phase is no longer the same for the second
and fourth columns. As a consequence, the full transfor-
mation for the gauge phase would be

Ψ→Ψexp (−qξγ1γ2) (89)

which can be easily checked. We notice that the phase
ultimately acts as if it were a rotation around the third
axis.

The covariant derivatives has to be up-dated with the
gauge potential which transforms as

Aµ→Aµ−∂µξ (90)

ensuring that

∇µΨ=∂µΨ−qAµΨγ
1γ2 (91)

is the gauge covariant derivative of the matrix spinor.
Thence, the matrix spinor in polar form now reads

Ψ =
√
ρ exp (iβ/2)R exp (qξγ1γ2) (92)

so that upon introduction of the object

q(∂µξ−Aµ)≡Pµ (93)

proven to be a real vector, one can write

∇µΨ=(∇µ ln
√
ρ+iγ5∇µβ/2−

− 1
2Rijµσ

ij)Ψ + PµΨγ
1γ2 (94)

as can be easily checked.
Finally, the Dirac equations are

iγµ(∇µ ln
√
ρ+iγ5∇µβ/2)Ψ− i

2
Rijµγ

µσijΨ

+ iPµγ
µΨγ1γ2−XWµγ

µγ5Ψ−mΨγ3γ5=0 (95)

which are the most general equations, despite the explic-
itly appearance of γa in it, which are determined only
within a proper Lorentz transformation. So it cannot be
overemphasised that the vectors γa need not be associ-
ated a priori with any coordinate systems, but they are
simply a set of arbitrarily chosen orthonormal vectors,
much in the same way in which γ2 is used to define the
procedure of charge conjugation without implying any
dependence on the second axis of the coordinate system.

The advantage of writing (95) is straightforward: be-
cause the spinor is in the form of an invertible matrix, it
is immediate to invert the Dirac equation with respect
to the electrodynamic potential. Then, solutions of the
Maxwell equations can be obtained very easily. Before
describing the inversion, let us massage a bit (95), so
that one can more easily compare it with (22), by multi-
plying it to the right with γ2γ1. Hence, after collecting
all the terms we end up with

γµ
(

∇µ ln
√
ρ−i(∇µβ/2 +XWµ)− 1

2Rijµσ
ij
)

Ψγ2γ1

+Pµγ
µΨ−mΨγ0=0. (96)
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The inversion is then

[γµ
(

∇µ ln
√
ρ−i(∇µβ/2 +XWµ)− 1

2Rijµσ
ij
)

Ψγ2γ1

−mΨγ0]Ψ−1= −γµPµ (97)

showing that it is possible to write Pµ in terms of some-
thing that does not contain Pµ itself. Because Pµ is
the only instance containing Aµ, electrodynamics is in-
verted. Since we will not be considering torsion in this
paper, hereafter we choose X = 0 in (95) and (97).

By following the procedure of [17] one can see that

P η=mc cosβvη+ ~

2 [(∂µβ+Bµ)v
µsη −

−(∂µβ+Bµ)s
µvη−(∂µ ln ρ+Rµ)sαvνε

µανη] (98)

where Rµ = R a
µa and Bµ = 1

2εµανηR
ανη. It is notewor-

thy that in order to calculate the vector potential from
(98), one needs to get the functions β, sµ, vµ, Bµ and
Rµ using the matrix spinor Ψ. We notice that according
to (98) P η is a real function, so taking (93) written as
Aµ ≡ ∂µξ − Pµ/q shows that Aη is also real, and there-
fore Aη describes a real electrodynamic potential, as ex-
pected. This seems to indicate that P η is the momentum
of the particle. This can definitively be accepted by con-
sidering that in the case of plane waves (94) reduces to

∇µΨ=PµΨγ
1γ2 (99)

which is equivalent to

∇µψ=−iPµψ (100)

as can be seen in [18]. This is precisely the definition of
the quantum mechanical momentum. A final confirma-
tion comes form its macroscopic limit, taken when the
spin is approximated to zero. This implies that sη as well
as β vanish [5]. In this case P η→mcvη which is precisely
the kinematic momentum. This also shows that the full
momentum is given by the simplest kinematic momen-
tum with two corrections. One is the multiplication by
cosβ and it accounts for the internal dynamics [5], while
the other is the addition of a term that is linear in ~ and
as such accounts for quantum mechanical corrections. In
fact, it can be proven that these corrections are precisely
the quantum potential of the de Broglie-Bohm theory
extended to the relativistic case with spin [19].

Also, from the Dirac equation we extract the following
constraints on the velocity ρv/ and spin ρs/ vector densities

∇µ(ρv
µ) = 0 (101)

∇µ(ρs
µ) = −2mc

~
ρ sinβ. (102)

Equations (98), (101) and (102) correspond to the co-
variant generalization of (26), (27) and (25). Note that,
based on the discussion of Sec. III, an important feature
of CRDI is that it can be straightforwardly connect with
the quaternion formalism of Gürsey (see also [20]).

In what follows we will apply (98) ,(101) and (102) to
construct a family of analytical solutions to the Dirac
equation in spherical coordinates in order to illustrate
the power of CRDI.

V. ILLUSTRATIONS OF THE METHOD

In this section, we start with the Dirac representation
of the gamma matrices in cartesian coordinates and will
transform them to spherical coordinates using tetrads.
Moreover, in addition to presenting an example for the
method, we will also choose the example to be represent-
ing a specific physical situation that we find extremely
intriguing. Namely, the one in which the YT angle is
taken to generate a spin-orbit coupling.

A. YT angle and spin-orbit coupling

As a prototype of the matrix spinor we will consider
the structure originally taken in [21, 22], and that is

Ψ =
√
ρei

β
2 BUe−γ2γ1ǫt/~, (103)

B = e(− sinφγ1γ0+cosφγ2γ0)
w
2 , (104)

U = e−γ2γ1φ/2e−γ3γ1 arctan[tan( β
2 ) tanh(w

2 )]eγ2γ1φ/2, (105)

where φ = arctan y/x, β = arctan g, w = arctanh f , g =
g(x, y, z) and f = f(x, y, z). This form is general in the
sense that it contains the module ρ and the chiral angle
β as two physical degrees of freedom. The other degrees
of freedom are the real constant ǫ, the rotation U and
the boost B. In analogy to the classical Kepler problem,
we consider an electron moving in a circular orbit on the
x − y plane; such a feature is described by the boost.
Since the electron is in an accelerated frame there is also
a precession of the spin vector, which is given by U . The
specific form of the rotation matrix is a consequence of
the conservation of total angular momentum due to its
dependence on the rapidity tanh(w2 ), which follows from
the spin-orbit coupling. Thus, the physically relevant
potentials derived from the matrix spinor (103) are the
ones for which the total angular momentum is conserved.

1. 2D time independent solution

Here we briefly discuss the relationship of (103) with
the solutions presented in [3] . Let us consider a solution
with g = 0 in (103) so that there will be no rotation in the
γ3γ1 plane, only in the γ2γ1 plane. The dynamics is thus
confined to the x − y plane, with the system possessing
cylindrical symmetry, since the boost is also along the
γ2γ0 direction (i.e., the y direction). The matrix spinor
(103) then becomes

Ψ =
√
ρe−γ2γ1φ/2eγ2γ0

arctanh f
2 eγ2γ1φ/2e−γ2γ1

ǫt
~

=
√
ρe(− sinφγ1γ0+cosφγ2γ0)

arctanh f
2 e−γ2γ1

ǫt
~ (106)

which is just a boost with rapidity w = arctanh f(r), in

which r =
√

x2 + y2, along the azimuthal direction in
the x− y plane together with the rotation around the ẑ
axis. It is noteworthy that the matrix spinor (106) cor-
responds to a solution with zero orbital angular momen-
tum L. The generalization to include it (i.e., by consid-
ering the corresponding quantum number l 6= 0) can be
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done by simply multiplying (106) on the right with a ma-
trix proportional to (re−γ2γ1φ)−l as we have previously
described in [3]. Moreover, the matrix spinor (106), with
the addition of the orbital angular momentum term, cor-
responds to the one underlying all stationary solutions
presented in [3].

2. 3D time independent solution

In this case we work with the matrix spinor (103) in
its full glory. In order to have non-zero YT angle, from
(35) we require that rµsµ 6= 0 and rµr

µ − sµs
µ 6= 0. In

keeping with this requirement, there is a particular form
of f and g that leads to the ground state of the Hydrogen
atom; that is

f =
sin θ√
1 +X2

, g =
cos θ

X
, (107)

for constant X =
√
1− Z2α2/Zα, where Z is the atomic

charge and α is the fine structure constant. Note that
the function f is nothing but the magnitude of the elec-
tron’s velocity. In order to generalize this solution, let
us consider X = X(r) a general real function of r alone.
Moreover, let us make the following choice of density

√
ρ = κ

e−G/2

r
(X2 + | cos θ|2)1/4, (108)

for some function G = G(r) and where κ is a normaliza-
tion constant.

Substituting in (103) gives

Ψ =
√
ρei

β
2 BUe−γ2γ1(ǫt/~−φ/2), (109)

B = e(− sinφγ1γ0+cosφγ2γ0)
arctanh(f)

2 , (110)

U = e−γ2γ1φ/2e−γ3γ1Θ/2, (111)

Θ = arccos

(

|sin θ|2X + |cos θ|2
√
X2 + 1

√

|cos θ|2 +X2

)

(112)

from which we extract the spinor

ψ =
κe−

iǫt
~

−G
2

√
2r













√

X +
√
1 +X2

0
i cos θ√

X+
√
1+X2

i eiφ sin θ√
X+

√
1+X2













(113)

that solves the Dirac equation for the vector potential

A0 = −V (r) and ~A = 0 calculated from (26) and (27),
as long as the following constraints

dX

dr
= −2

√
X2 + 1

r

(

r

[

ǫ

~c
+
V

~

]

√

1 +X2

− 1− mc

~
rX

)

, (114)

dG

dr
= 2

(

mc

~

√

1 +X2 −X

[

ǫ

~c
+
V

~

])

. (115)

are imposed on X and G. The constraints imposed on
X and G are needed so that the second equation in

(25) is satisfied while the first equation is obeyed re-
gardless. Before proceeding, let us analyze the defini-
tion (108). Such a form of density is not arbitrary; it
is given by (34). There is another way of getting the
density that relies solely on the matrix part of (109).
Consider a general function

√
ρ. By looking at the ma-

trix ei
β
2 BUeγ2γ1φ/2 one notes that all of its columns

are multiplied by the term (X2 + | cos θ|2)−1/4. Given
that the potential has spherical symmetry, the compo-
nents of ψ (i.e., the first column of Ψ) must be writ-
ten as the product of a radial only and an angular
only functions (e.g., ζ(r)η(θ, φ)). Since the only term
that cannot be written in such way is the overall mul-
tiplying function (X2 + | cos θ|2)−1/4, one must choose√
ρ = ζ(r)(X2 + | cos θ|2)1/4 for some real function ζ(r)

which must obey the constraint limr→∞ ζ(r) = 0. The
specific form of ζ(r) chosen here is inspired by the spinor
in the ground state of the Hydrogen atom.

The equation for X can be cast into the form of a
Riccati differential equation. For instance, upon making
the substitution X = − csch(2 arctanh(Z(r))) we get

dZ

dr
=
Z(r)2

(

c2m− cV − ǫ
)

c~
− c2m+ cV + ǫ

c~

+
2Z(r)

r
, (116)

dG

dr
=
Z(r)

(

c2m− cV − ǫ
)

c~
+
c2m+ cV + ǫ

c~Z(r)
. (117)

Hence a solution of the equation for Z(r) that is guar-
anteed to exist, should be substituted into the equation
for G which is then integrated.

We next move from Cartesian to spherical coordinates.
To do that, we first notice that (108) and (113) re-
tain their current form in spherical coordinates since the
spinors transform as scalars under a change of coordi-
nates. To build the tetrads, we start by considering the
metric tensor

gtt=1 grr=−1 gθθ=−r2 gφφ=−r2|sin θ|2 (118)

giving connection

Λθ
θr=Λφ

φr=
1
r (119)

Λr
θθ=−r (120)

Λr
φφ=−r|sin θ|2 (121)

Λφ
φθ=cot θ (122)

Λθ
φφ=− cos θ sin θ (123)

that are used in the calculation of the components of the
spin connection Ωµ. Next we use the unitary operator

U = e−γ2γ1φ/2e−γ1γ3θ/2 in order to construct the gamma
matrices on the manifold γν (note that γt = γ0 in this
case)

γr = Uγ3U† γθ = rUγ1U† γφ = r| sin θ|Uγ2U†

(124)

γr = Uγ3U† γθ =
1

r
Uγ1U† γφ =

1

r| sin θ|Uγ
2U†

(125)
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as can be easily checked. From eaνγa = γν we extract the
tetrads

e0t = 1 (126)

e1r=cosφ sin θ e2r = sinφ sin θ (127)

e3r = cos θ (128)

e1θ=r cos θ cosφ e2θ = r cos θ sinφ (129)

e3θ = −r sin θ (130)

e1φ = −r sinφ sin θ e2φ = r cosφ sin θ (131)

with dual

et0 = 1 (132)

er1 = cosφ sin θ er2 = sinφ sin θ (133)

er3 = cos θ (134)

eθ1 = 1
r cos θ cosφ eθ2 = 1

r cos θ sinφ (135)

eθ3 = − 1
r sin θ (136)

eφ1 = − sinφ 1
r sin θ eφ2 = cosφ 1

r sin θ . (137)

It turns out that the above tetrads give a zero spin con-
nection. Also, with the matrix spinor (103) we calculate
the following normalized components of the spin (18)
and velocity (17) leading to

s1 =

(

−X +
√
X2 + 1

)

sin θ cos θ cosφ
√

| cos θ|2 +X2
(138)

s2 =

(

−X +
√
X2 + 1

)

sin θ cos θ sinφ
√

| cos θ|2 +X2
(139)

s3 =
| sin θ|2X + | cos θ|2

√
X2 + 1

√

| cos θ|2 +X2
(140)

v0 =

√
X2 + 1

√

| cos θ|2 +X2
, v1 = − sin θ sinφ

√

| cos θ|2 +X2
(141)

v2 =
sin θ cosφ

√

| cos θ|2 +X2
. (142)

where we recall that X=X(r) everywhere.
Let us pause now, and consider for a moment the com-

ponents of the spin vector. By making the definition

V =

(

−X +
√
X2 + 1

)

sin θ cos θ
√

| cos θ|2 +X2
,

with range 0 ≤ V ≤ (
√
X2 + 1−X)/

√
2 + 4X2, the spin

components (138), (139) and (140) then take the simple
form

s1 = V cosφ, s2 = V sinφ, s3 =
√

1− V2 (143)

which, for the case of the H atom (i.e., if X is constant),
is just the parametrization of the upper hemisphere of
a sphere of radius (

√
X2 + 1 − X)/

√
2 + 4X2; the geo-

metrical interpretation of this result is straightforward:
considering (143) as a parametric equation with param-
eters φ and θ, it can be interpreted that the spin vec-
tor precess, with its tip constrained to move on the up-
per hemisphere of a sphere whose radius is a function
of X . Hence, the chosen matrix spinor (103) success-
fully describes the motion of an electron whose velocity

lies on the x − y plane and whose spin vector wobbles
on a surface in which the polar angle lies in the region
0 ≤ θ ≤ π/4 (this is because V attains its maximal
value for θ = π/4). In the general case with X = X(r),
the aforementioned geometrical picture does not strictly
holds (meaning that while the spin vector still precess, its
wobbling will lay on a more general surface). It is note-
worthy that the above interpretation is based on the idea
that the spinor is a quantum field, which can be seem
as some sort of fluid, the streamlines of which are the
electron trajectories in the given electromagnetic field.
Hence, it is in this context that the idea of motion is
applied, given that everything is time independent.

With the tetrads one can make the transition from
the tangent space to the manifold with sµ = saeµa and
vµ = vaeµa giving the following non-zero components

sr =
cos θ

√
X2 + 1

√

|cos θ|2 +X2
, sθ = − sin θX

r
√

|cos θ|2 +X2
(144)

vt =

√
X2 + 1

√

|cos θ|2 +X2
, vφ =

1

r
√

|cos θ|2 +X2
. (145)

The Rijµ tensor is calculated as the solution to the equa-
tion

2R∂µR−1−Ωijµσ
ij=Rijµσ

ij (146)

with R=BU above.

Let us illustrate here a very powerful property of the
proposed method, which is the possibility of easily writ-
ing the solution to the Dirac equation in any frame of
reference. First, one should remember that the solutions
to the Dirac equation are written in a frame of reference
at rest located at the origin of any chosen coordinate sys-
tem. For instance, in the case of the Hydrogen atom, this
is the frame of the proton (to be precise, it should be the
rest frame of the center-of-mass of the proton-electron
system, but because the proton is much more massive
than the electron, the center-of-mass and the proton are
approximately the same). The electron is seen by the
observer as undergoing a motion composed of transla-
tions and rotations that can easily be inferred from the
matrix spinor (103). Here we show how to change from
the aforementioned frame of reference to the rest frame
of the electron. The rest frame of the electron is the one
for which the spinor takes the form such that the spatial
part of the velocity operator is zero. The attentive reader
might complain that the change of these two systems
might be meaningless because in this transfer we move
from one inertial to a non-inertial frame. Such a reader
would in principle be right, as in fact there would have
to be difficulties in treating non-inertial frames with the
standard methods. However, our method here instead
is fully covariant, and as such it is naturally equipped
to treat non-inertial as well as inertial frames with equal
ease, the information about the acceleration of the frame
being contained in the spin connection.

In order to change reference frames we first have to
calculate the new tetrads. The tetrads are calculated
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with the following simple formulas

eta =
1

4
Tr (R−1γ0Rγa), eθa =

1

4
Tr (R−1γθRγa) (147)

eφa =
1

4
Tr (R−1γφRγa), era =

1

4
Tr (R−1γrRγa) (148)

whose components are

et0 =

√
X2 + 1

√

|cos θ|2 +X2
, et2 =

sin θ
√

|cos θ|2 +X2

er1 =
sin θX

√

|cos θ|2 +X2
, er3 = cos θ

√
X2 + 1

√

|cos θ|2 +X2

eθ1 =
cos θ

r

√
X2 + 1

√

|cos θ|2 +X2
, eθ3 = − sin θX

r
√

|cos θ|2 +X2

eφ0 =
1

r
√

|cos θ|2 +X2
, eφ2 =

1

r sin θ

√
X2 + 1

√

|cos θ|2 +X2

as it can be straightforwardly seen.

The electron rest frame is the one for which the spinor-
tetrad system gives the velocity va=(1, 0, 0, 0) (this can
always be done so long as the spinor is non-singular, that
is if the matrix spinor has determinant not equal to zero
identically in general). In this frame we are also going
to pick the spin aligned along the third axis (which can
always be done). In this case then, the matrix spinor is
simply

ΨRF =
√
ρei

β
2 1e−γ2γ1(ǫt/~−φ/2), (149)

which is just the matrix spinor (103) in which the re-
placement R → 1 is made. Moreover, the components
of the spin connection describing the acceleration of the
frame are

Ω02r = − sin θXX ′
√
X2 + 1 (| cos θ|2 +X2)

(150)

Ω13r =
sin θ cos θX ′

√
X2 + 1 (| cos θ|2 +X2)

(151)

Ω02θ =
cos θ

√
X2 + 1

|cos θ|2 +X2
(152)

Ω13θ =
X
√
X2 + 1

|cos θ|2 +X2
− 1 (153)

Ω01φ = − sin θ
(

|sin θ|2X + |cos θ|2
√
X2 + 1

)

|cos θ|2 +X2
(154)

Ω03φ =
|sin θ|2 cos θ

(

X −
√
X2 + 1

)

| cos θ|2 +X2
(155)

Ω12φ =
|sin θ|2X

√
X2 + 1 + |cos θ|2

(

X2 + 1
)

|cos θ|2 +X2
(156)

Ω23φ =
sin θ cos θ

(

X
(√
X2 + 1−X

)

− 1
)

|cos θ|2 +X2
. (157)

Therefore, the Dirac spinor in the rest frame

ψRF = ΨRF







1
0
0
0






=
κe−

G
2 − itǫ

~
+ iφ

2

√
2r

×













√

√

|cos θ|2 +X2 +X

0
√

√

|cos θ|2 +X2 −X

0













, (158)

along with the tetrads and the spin connection and the
vector potential At = −V (r) obeys the Dirac equation

i~eµaγ
a

(

∂µ +
1

2
Ωijµσ

ij

)

ψRF − q etaγ
aAtψRF

−mcψRF = 0 (159)

as long as conditions (114) and (115) are satisfied. It is
noteworthy that with the choice of functions (107) if one
fixes θ = π/2 (i.e., a projection onto the x − y plane),
the matrix spinor (103) takes the same form as (106).

The solution (158) was first presented in [21, 22]. The
most intriguing property of this spinor is that it is not
separable, even though the potential has spherical sym-
metry. In Ref. [21] it was not explicitly shown, but in-
stead speculated that the non-separability of the Dirac
spinor was a consequence of the frame in which the so-
lution was written. In this work we were able to prove
the connection between non-separability and reference
frame. In fact, if we compare (158) with the spinor
(113), which is the solution to the Dirac equation for
the same potential albeit in another frame of reference,
we note that variable separability is restored. Hence, we
can conclude that the symmetries of equations are not
always inherited by their solutions. In fact, here we just
proved that such symmetries, and in particular the prop-
erty of variable separability for the Dirac equation, are
frame dependent.

The cases just discussed represent physical situations
involving the presence of the YT chiral angle and the
fact that it is strictly connected to spin-orbit coupling
effects. We will investigate the inverse statement, that
is the fact that no spin-orbit coupling should only be
possible when the YT chiral angle is zero.

B. Zero YT angle and spin-orbit decoupling

A zero YT angle implies, from (35), that rµsµ = 0.
With this constraint in mind, let us choose the matrix
spinor in the form

Ψ =
√
ρBUe−γ2γ1

ǫt
~ , (160)

B = e(− sinφγ1γ0+cosφγ2γ0)
arctanh f

2 , (161)

U = e−γ2γ1φ/2e−γ3γ1θ/2e−γ3γ1π/4. (162)

In comparing the matrix spinor (103) against (160) we
note that, apart from

√
ρ and the fact that β is gone,

the only change is in the rotation matrix U .
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As an illustration, let us choose f = −
√
1− a2, with

a > 0 and a < 1 constant. Moreover, let us make the
following choice of density

√
ρ =

κ
(

1− a2
)1/4

e−G/2

√
2a r

√
sin θ

(163)

where κ is a normalization constant. Given these choices,
from (160) we extract the Dirac spinor

ψ =
√
ρe−

iǫt
~



















(1+a)1/2e−
iφ
2 (cos θ

2−sin θ
2 )

2

(1+a)1/2e
iφ
2 (sin θ

2+cos θ
2 )

2

i(1−a)1/2e−
iφ
2 (sin θ

2+cos θ
2 )

2

− i(1−a)1/2e
iφ
2 (cos θ

2−sin θ
2 )

2



















(164)

as easy to see. The most remarkable thing about this
spinor is that, from (26) and (27) (RDI is used here
because we are still in cartesian coordinates) we extract
the following vector potential

A0 =

√
1− a2~G′(r) + 2aǫ

c − 2cm

2a
(165)

A1 =
sinφ

(

−2
√
1− a2cm+ ~G′(r)

)

2a
(166)

A2 = −cosφ
(

−2
√
1− a2cm+ ~G′(r)

)

2a
(167)

A3 = 0 (168)

where r =
√

x2 + y2 + z2, thus implying that in order
to remove the spin precession, it was necessary to add a
magnetic field. Moreover, with the matrix spinor (160)
we calculate the following normalized components of the
velocity (17) and spin (18) which are given by

s0 = 0 s1 = − cos θ cosφ (169)

s2 = − cos θ sinφ s3 = sin θ (170)

v0 =
1

a
v1 = −

√
1− a2

a
sinφ (171)

v2 =

√
1− a2

a
cosφ v3 = 0. (172)

Note that the matrix spinor (160), the Dirac spinor (164)
and the vector potential above satisfy the Dirac equation
in cartesian coordinates. Moreover, it is noteworthy that
the spin vector no longer precess, instead always point-

ing in the −θ̂ direction. Hence, by making the YT angle
equals to zero, the spin-orbit coupling causing the pre-
cession of the spin vector also vanishes.

We next change to spherical coordinates. The form of
the spinor (164) remains the same while both γa and Aa

are transformed via the tetrads as usual. Given that
all the components of the spin connection Ωijµ with
the above tetrads and connection coefficients are zero,
the calculation of the components of the Rijµ tensors is
straightforward and the non-zero components are

R13θ = cosφ R23θ = sinφ (173)

R12φ = −1 (174)

We can transform the above tensors to the spacetime
manifold as follows

Rµνρ = eiµe
j
νRijρ

whose components are

Rrθθ = −r (175)

Rrφφ = −r| sin θ|2 Rθφφ = −r2 cos θ sin θ (176)

as can be easily checked. Finally, the components of the
velocity and spin vectors in spherical coordinates are

sθ = −r (177)

vt =
1

a
vφ =

√
1− a2

a
r sin θ (178)

with vector potential

At = ~

√
1− a2G′(r)

2a
− cm

a
+
ǫ

c
(179)

Aφ =
r sin θ

(

−2
√
1− a2cm+ ~G′(r)

)

2a
. (180)

and as it is easy to see, the density (163) is a solution to
the Dirac equation in polar form.

Let us next check some particular solutions. We first
consider the limit a→ 1. In doing so (164) and (178-180)
become

ψ =
√
ρe−

imc2t
~















e−
iφ
2 (cos θ

2−sin θ
2 )√

2

e
iφ
2 (sin θ

2+cos θ
2 )√

2

0
0















(181)

and

vt = 1 vφ = 0 (182)

At = 0 Aφ =
r sin θ~G′(r)

2
(183)

where we also assumed ǫ = mc2 for simplicity. In the
same limit the density (163) would go to zero, but the
density is defined only up to a normalization constant.
In our case we will choose the following density so to
avoid the degeneracy of this limit

√
ρ =

κe−G/2

r
√
2 sin θ

(184)

and thus preserving the fact that we still have a solu-
tion of the Dirac equations. This special solution for the
magnetic-solenoid field is quite interesting. For a discus-
sion on solutions to the Dirac equation in similar fields
see [23] and references therein.

As another particular solution which is presented here
for the first time, let us consider again (164) but now
taking the function G to be

G = − 2aα√
1− a2

log
(cmr

~

)

+
2
√
1− a2cmr

~
+
aiµ0r

2R~
.

(185)
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This particular form of the function G leads to the fol-
lowing components of the vector potential

At = −α~
r
, Aφ =

1

4
sin θ

(

iµ0r

R
− 4α~√

1− a2

)

. (186)

Thus, such a choice leads to the analytical solution for
the ground state of the Hydrogen atom along with a
magnetic field having components

Br =
iµ0 cos θ

2R
− 2α~ cos θ√

1− a2r
,

Bθ =
α~ sin θ√
1− a2r

− iµ0 sin θ

2R
(187)

corresponding to a superposition of a magnetic-solenoid
field such as the one at the centre of a circular loop of
radius R carrying a current i and a magnetic field gener-
ated by the current density J having only the following
component in the azimuthal direction

Jφ = − 2α~ sin θ√
1− a2r2

. (188)

Incidentally, by making the following substitution

G =
iµ0

2R~
r

into the Dirac spinor (181) and the vector potential (183)
we arrive at the analytical solution for the case with only
the constant and homogeneous magnetic field, i.e., the
field one get by putting α = 0 in (187). It is noteworthy
that this solution corresponds to the three dimensional
generalization of the inhomogeneous magnetic field solu-
tion given in [3] as can be easily seem if one writes the
correspondingly magnetic field in cartesian coordinates
and choose θ = π/2 (i.e., z = 0).

VI. DISCUSSION

In a comparison between the matrix spinors (109) and
(160), the most noteworthy feature of these solutions
to the Dirac equation are the effects the removal of the
YT angle have on the physics of the problem. The first
notable effect is the change from a purely spherically
symmetric electric field in (109) to a combination of a
spherically symmetric electric field with magnetic fields
in (160). The second, even more remarkable, effect is
that the removal of the YT angle leads to the absence of
spin-orbit coupling. That the latter is the case can be
clearly inferred from the structure of the matrix spinor
as discussed below.

Regarding the first effect one can note the following.
For all localized solutions found using RDI, a matrix
spinor with zero YT angle always led to a solution of
the Dirac equation for an electron interacting with a
magnetic field. It is well-known that for the case of
a magneto-static field there exists a Foldy-Wouthuysen
transformation in closed form that exactly diagonalizes
the Dirac Hamiltonian [24], thus allowing a full sepa-
ration into states of positive and negative energy (or
charge). This is consistent with the interpretation that

a non-zero YT angle corresponds to a mixture of pos-
itive and negative energy states, even more so in the
Hydrogen-like atom case in which the YT angle depends
on θ. The form of the matrix spinor (109) and the obser-
vation that for stationary electric fields no closed form
Foldy-Wouthuysen transformation exists (yet) which ex-
actly diagonalizes the Dirac Hamiltonian led us to spec-
ulate that, in such cases, a non-zero YT angle in the
matrix spinor is necessary. However, the matrix spinor
(160) proves that one can still have an inhomogeneous
static electric field for a matrix spinor having zero YT
angle with the expense of also adding a magnetic field.
These findings suggest a deep connection between pos-
itive and negative energy states separability, magnetic
fields and the YT angle.

Finally, in the case of the second effect, it seems to
be connected with the geometric features of the matrix
spinors (109) and (160). It was previously mentioned
that the function f is the magnitude of the electron’s
velocity. In the case of the matrix spinor (109) for con-
stant X (i.e., the spinor corresponding to the ground
state of a Hydrogen-like atom) the spatial components
of the velocity four-vector v/ live on the circles of latitude
of a sphere of radius Zα as can be inferred from their
dependence on sin θ. In contrast, for the matrix spinor
(160) the electron’s velocity is everywhere constant and
has its direction opposite to the Hydrogen-like atom case.
Moreover, from the definition of the spin vector (18) we
see that the considerable change of the rotation matrix
U from (109) to (160) will greatly influence the form of
s/. This implies that one effect of the YT angle is to
tilt the spin vector as can be seen by the appearance of
the term tan(β/2) in the rotation matrix (105), making
it dependent on the boost matrix in the Hydrogen-like
case in contrast to the electric plus magnetic field case
where the rotation matrix (162) is such that Uγ3U

† end
up commuting with B in (18); such a feature can easily
be inferred from (138), (139), (140), (169) and (170). It
is this commutativity between the boost and the rotation
matrix that led us to conclude the connection between a
non-zero YT angle with the spin-orbit coupling. The fact
that the aforementioned features are so straightforwardly
identifiable in the matrix spinor, while being hidden in
the standard Dirac spinor, highlights the advantages of
the CRDI technique in the geometrical interpretation of
solutions to the Dirac equation.

VII. CONCLUSION

We have written RDI in explicitly covariant form, thus
putting forward the more general CRDI technique, which
is the main result of this work. We then showed how it
can be used to perform non-trivial change of reference
frames with respect to which a given matrix spinor is
given that can potentially be a powerful tool in the quest
of novel solutions to the Dirac equation. In addition, a
whole family of normalizable analytic solutions to the
Dirac equation is presented. More specifically, we find
exact solutions for the case of a Dirac electron in the
presence of a magnetic field as well as a novel solution
consisting of a combination of a spherically symmetric
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electric field with magnetic fields. Giving the connection
of the YT angle β with quantum states having particle
and antiparticle admixtures as well as with the dynamics
of the spinor’s internal degrees of freedom (a.k.a spin),
its role in the solutions to the Dirac equation is yet to
be fully elucidated. Hence, an important feature of the
solutions presented here is that they offer some hints on
a possibly deep connection between β, magnetic fields
and spin-orbit coupling for normalizable Dirac spinors.
In fact, we propose the following conjecture: The only
localized (normalizable) solutions to the Dirac equation
having no spin-orbit coupling are those having zero YT
angle. Therefore, proving (or disproving) this conjec-
ture would be an important contribution in better un-

derstanding the geometrical role of β in the Dirac spinor.
Another application of CRDI would be the construc-

tion of solutions of the Dirac equation in presence of
both electromagnetic and gravitational fields. For in-
stance, such solutions could be used to study the so
called traversable wormholes, i.e., stable wormholes that
does not require exotic matter [25–27]. It is notewor-
thy the recently proposed solution describing a macro-
scopic (that is, allowing for humans to travel through it)
traversable wormhole [28]. Also, solutions to the Dirac
equation in the presence of gravitational fields could be
used in order to test the predictions that matter inter-
acting with a quantized gravitational field should lead to
an entangling interaction between massive objects [29].
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