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INFN Roma1, Piazzale Aldo Moro 5, 00185, Roma, Italy and
4 Institute for Gravitational Wave Astronomy & School of Physics and Astronomy,

University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

The ringdown signal emitted during a binary black hole coalescence can be modeled as a linear
superposition of the characteristic damped modes of the remnant black hole that get excited during
the merger phase. While checking the consistency of the measured frequencies and damping times
against the Kerr BH spectrum predicted by General Relativity (GR) is a cornerstone of strong-field
tests of gravity, the consistency of measured excitation amplitudes and phases have been largely left
unexplored. For a nonprecessing, quasi-circular binary black hole merger, we find that GR predicts
a narrow region in the space of mode amplitude ratio and phase difference, independently of the
spin of the binary components. Using this unexpected result, we develop a new null test of strong-
field gravity which demands that the measured amplitudes and phases of different ringdown modes
should lie within this narrow region predicted by GR. We call this the amplitude-phase consistency
test and introduce a procedure for performing it using information from the ringdown signal. Lastly,
we apply this test to the GW190521 event, using the multimodal ringdown parameters inferred by
Capano et al. (2021) [1]. While ringdown measurements errors for this event are large, we show that
GW190521 is consistent with the amplitude-phase consistency test. Our test is particularly well
suited for accommodating multiple loud ringdown detections as those expected in the near future,
and can be used complementarily to standard black-hole spectroscopy as a proxy for modified gravity,
compact objects other than black holes, and binary precession.

Introduction. A binary black hole (BBH) ringdown is
the gravitational-wave (GW) signal emitted as the rem-
nant black hole (BH) formed during a BBH coalescence
relaxes towards a stationary configuration [2–5]. Accord-
ing to Einstein’s general theory of relativity (GR), the
final state is uniquely described by the Kerr metric [6–9].
After a transient regime, the dynamics of this relaxation
phase can be described as the evolution of perturbations
(set up by the binary’s initial conditions) on the metric
of the remnant BH. The GW signal emitted during this
phase can be well-approximated as an infinite linear su-
perposition of quasi-normal modes (QNMs), i.e. damped
sinusoids modes with discrete characteristic complex fre-
quency spectra [10–13]. Each mode is identified by three
integers (l,m, n) and defined in terms of its frequency
flmn, damping time τlmn, excitation amplitude Almn,
and phase φlmn (see Eq. (2) below).

While the frequencies and damping times depend only
on the remnant’s mass and spin, each ringdown mode
can be independently excited with amplitude and phase
set by the features and symmetries of the initial pertur-
bation. For ringdown signals produced by quasi-circular
BBH coalescences, Almn and φlmn are solely determined
by the BBH parameters – specifically, their masses and
spins – and can be calculated using numerical relativ-
ity (NR) simulations [14–16]. Thus, ringdown allows us
to check two key predictions of GR in the strong-field
regime: a) if the QNM spectrum is consistent with that
of a Kerr BH with the expected mass and spin, and b) if
the mode excitation is consistent with the dynamics of
the (pre-)merger as predicted for fully nonlinear BBH
simulations within GR.

Here we focus on the latter possibility and propose a
novel test of GR that we dub ringdown amplitude-phase
consistency (APC) test. After a suitable normalization,
we find that only a narrow region of the mode amplitude-
phase plane is allowed for a BBH ringdown in GR. On
the other hand, different values of the amplitudes and
phases are generically expected not only for BBHs in GR
extensions [17–21], but also within GR if the binary com-
ponents are not BHs [22] (e.g. in neutron-stars or even
more exotic boson-star [23–26] coalescences). In both
cases the remnant can still be a Kerr BH (therefore pass-
ing standard QNM tests), but the QNM amplitudes and
phases are model dependent and can provide a way to
distinguish the nature of the merger.

One virtue of this test is that it does not require in-
formation from the inspiral phase other than the bi-
nary extrinsic parameters. It is therefore particularly
well suited for massive BBHs, where the inspiral is short
and the parameter estimation of the binary intrinsic pa-
rameters (e.g. the mass ratio) is affected by large un-
certainties, which jeopardize the accuracy of inspiral-
merger-ringdown (IMR) consistency tests [27]. This is
the case of GW190521 [28], which is also the only event
detected thus far for which a measurement of subdom-
inant angular-mode parameters has been reported [1].
GW190521 is an outstanding event also because at least
its primary component mass lies in the BH mass gap
predicted by the pair-instability supernova theory, thus
suggesting also exotic explanations [29–31] that would
impact on the QNM amplitudes and phases.
QNM amplitude and phase fits. We focus on non-
precessing, quasi-circular BBHs; we comment on the role
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of spin misalignment and eccentricity in the final discus-
sion. It is convenient to use the dominant (l = m = 2,
n = 0) mode as a baseline and work with the intrinsic
amplitude ratio and phase difference defined as

ARlmn ≡
Almn
A220

, δφlmn ≡
m

2
φ220 − φlmn , (1)

respectively [32]. These quantities are partially indepen-
dent of the extrinsic parameters like sky position, dis-
tance, polarization ψ, and inclination ι. In particular,
the definition of δφlmn removes the degeneracy of the
mode phase φlmn and the coalescence phase ϕ (see Ap-
pendix A 6 and Ref. [33] for a related discussion). In this
parametrization, the ringdown waveform can be analyti-
cally modeled as

h+ + i h× = A220

∑
lmn

(
e−i

m
2 φ220ARlmne

iδφlmnSlmn(ι, ϕ)

× ei2πflmnte−t/τlmn
)
, (2)

where Slmn(ι, ϕ) are the spin 2-weighted spheroidal har-
monic basis functions which for simplicity we approxi-
mate to spherical harmonic functions [34]. This assump-
tion can be easily relaxed and, as later discussed, intro-
duces a systematic error no larger than 1% for spinning
remnants with af . 0.9 and for the modes considered in
this work.

For a quasi-circular BBH, ARlmn and δφlmn are func-
tions of the binary mass ratio q = m1/m2 ≥ 1 and spins
{χ1, χ2}. We fit for ARlmn and δφlmn mode-wise for a
set of 142 nonprecessing and noneccentric NR simula-
tions from the SXS catalog [35]. Our simulation set is
consistent with that used to calibrate the SEOBNRv4HM
model [36] and spans q ∈ [1, 10] and χ1,2 ∈ [−0.9, 0.9].
We fit for the (lmn) ∈ {(330), (210), (440)} modes and
provide ready-to-use analytical fits in terms of q and a
post-Newtonian motivated effective spin χpheno(q, χ1, χ2)
whose explicit form depends on the mode under con-
sideration (see Appendix A). In the nonspinning limit,
these fits are consistent with the those obtained in [36–
39], while they correct the results given in [40] for the
phase difference. Here, we will highlight the main as-
pects of the fit significant to the APC test and refer to
Appendix A for details.

In Figure 1, each shaded area delimits the regions on
the ARlmn − δφlmn plane estimated by fitting the am-
plitudes and phases of a given mode using Eq. (2) to
our dataset of ringdown NR waveforms. They there-
fore bracket the admissible range for BBH ringdowns
within GR. The dashed curves correspond to the non-
spinning limit (χ1,2 = 0), wherein ARlmn and δφlmn para-
metrically depends on the mass ratio q only. On the
other hand, the spread of each shaded region around the
dashed curve quantifies the effects of the progenitor spins
χ1,2. Given the parity and polarization conventions of
the odd/even m modes used for the SXS waveforms, we
plot mod(δφlmn, π) for the (210) and (330) modes and
mod(δφlmn, 2π) for the (440) mode (see Appendix A).

FIG. 1. The regions of the ARlmn − δφlmn plane allowed for
BBHs in GR for various modes. They are estimated by fitting
the parameters ARlmn − δφlmn of Eq. (2) to 142 nonprecess-
ing waveforms, covering the parameter space q ∈ [1, 10] and
χ1,2 ∈ [−0.9, 0.9]. Given the parity of the odd/even m modes,
we plot mod(δφlmn, π) for the (210) and (330) modes and
mod(δφlmn, 2π) for the 440 mode. The dashed curve within
each region corresponds to the nonspinning limit.

We find that, for the (330) mode, this GR admissible
region of the parameter space is remarkably narrow, since
the effects of the progenitor spins are small. In partic-
ular, δφ330 ∈ [2.68, π] and A330 ∈ [0, 0.42] for our entire
dataset. On the other hand, spin effects on both ARlmn
and δφlmn are larger for the (440) mode and, especially,
for the (210) mode, which translates into wider allowed
regions.
The ringdown APC test. Any nonprecessing, quasi-
circular BBH ringdown in GR must be characterized by
amplitude and phases lying in the narrow GR admissible
region on the ARlmn−δφlmn space presented in Fig. 1. We
can use this feature to devise a null test of strong gravity
wherein we demand that the measured amplitudes and
phases of the modes in a ringdown signal must lie in this
narrow region. Conceptually, the ringdown APC test
involves ensuring that the posterior distribution of the
estimated mode amplitude ratios and phase differences
have significant support in the allowed region. Since this
should be the case for all quasi-circular BBH mergers re-
gardless of the binary parameters, this test can be easily
extended to incorporate a population of observations.

However, while performing this test it is important
to take into account the uncertainty about the ring-
down start time compared to the global peak time tp at
which the strain amplitude |h(t) = Σlmnhlmn| of the sig-
nal maximizes [40, 41]. Given the time tplmn at which
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each |hlmn| mode peaks (as computed from NR fits),
we arbitrarily shift each mode by ∆t = tp − tp220, with
tp220 < tplm0 [40, 42]. This induces a correction to the
amplitude ratio,

ARlmn(tp) = ARlmn(tp220)e
∆t
τ220
− ∆t
τlmn . (3)

Note that the τlmn are similar for the modes considered
here. For example, for a BH with final spin af ≈ 0.85
consistent with GW190521 [1, 28], τ330/τ220 ∼ 0.986,
τ440/τ220 ∼ 0.974, and τ210/τ220 ∼ 0.956. Therefore,
even a conservative choice ∆t ≈ 10M (which is equiva-
lent to ∆t ≈ 2(tp330−t

p
220) ≈ (tp210−t

p
220) [40] and therefore

sets a conservative upper bound on ∆t) translates into
a ≈ (1, 2, 3)% correction for the amplitude of the (330),
(440), (210) modes, respectively, well below the current
statistical uncertainties [1].

A similar correction needs to be accounted for the in-
trinsic phase, φlmn(tp) = φlmn(tp220) + ωlmn∆t. Using
Eq. (1), this translates into the phase difference

δφlmn(tp) = δφlmn(tp220) +
(m

2
ω220 − ωlmn

)
∆t. (4)

Since ωlmn ≈ l
2ω220 (as can be exactly proven in the

eikonal, l = m� 1, limit [12, 43]), for l = m modes such
as (330) and (440) the phase correction induced by ∆t is
≈ 10% and ≈ 20% for the (330) and (440) mode, respec-
tively, again assuming ∆t = 10M (see Appendix A 6).
This is a rather conservative choice for the (330) mode,
since in this case ∆t . 5M [40], leading to a systematic
uncertainty no larger than 4%. In other words, for the
l = m mode the phase fits can be directly compared to
the inference results as,

δφlmn(tp) ≈ δφlmn(tp220) ∀ l = m. (5)

On the other hand, for the (210) mode the uncertainty
coming from the last term in Eq. (4) is much larger.
Application on GW190521. GW190521 is the only
event observed by the LIGO-Virgo-KAGRA (LVK) Col-
laboration thus far that has allowed for a measurement of
the subdominant angular mode in the ringdown [1]. The
total signal-to-noise ratio (SNR) of this event is ρ ≈ 14,
of which ρ ≈ 12 from the ringdown phase only – with√

142 − 122 ∼ 7 from the inspiral –, due to the large to-
tal source mass of the binary (Mtot = 151+29

−17M� [28]).
This makes GW190521 ideal for ringdown-only tests and,
as a proof of principle, here we apply our ringdown APC
test to this event.

In Fig. 2, we plot the 67% and 95% credible regions in
the AR330 − δφ330 plane obtained from the posterior dis-
tributions provided in [1]. The orange contour refers to
the parameter estimation obtained by assuming the Kerr
QNM spectrum as predicted in GR, whereas the blue
contour generalizes this result to the case in which the
QNM frequencies and damping times are allowed to vary.
Interestingly, this more general and agnostic assumption
does not deteriorate the confidence region significantly.

◆ GR prediction

Capano, 2021: Kerr BH

◆ Capano, 2021: non GR ◆ Injection: Kerr BH

◆ Ours: Fixing polarization
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FIG. 2. Ringdown APC test applied to GW190521. The
amplitude ratio AR330 and the phase difference δφ330 contours
obtained from [1] are compared to the GR prediction (shad-
owed gray area). The solid and dashed contours represent
the 67% and 95% credible levels, respectively. The orange
and blue contours correspond to the posteriors obtained by
fixing the GR QNM spectrum or allowing deviations from the
Kerr QNMs, respectively. The black dot-dashed contour pro-
vides the 95% credible region obtained as in [1] but fixing the
polarization to the maximum likelihood value (ψ = 0) given
by the IMR analysis [44]. The red dot-dashed contour pro-
vides the 95% credible region for the NR injection SXS:0258
consistent with GW190521 and with SNR ρ = 30.

The gray shadowed area marks the GR-permissible re-
gion on the AR330 − δφ330 plane, obtained by taking al-
ready into account the following uncertainties – the 1σ
deviations on the best fit results, the ∼ 1% and ∼ 4%
uncertainties on AR330 and δφ330, respectively, sourced
by the ringdown start-time ambiguity discussed above,
and the spherical-vs-spheroidal harmonic approximation.
The black dot-dashed contour provides the 95% credible
region obtained as in [1] but fixing the polarization angle
ψ to the maximum likelihood value estimated from the
full IMR analysis in [44], as already done in [1] for the
other two antenna pattern parameters, namely the right
ascension and declination (see also [45–47] for similar ap-
proaches in standard BH spectroscopy tests). Estimat-
ing the polarization angle independently is required to
break the degeneracy between ψ and δφlmn. Indeed, ψ
may be estimated solely from the inspiral-merger regime,
while the intrinsic dependence of δφlmn on q and χpheno

(see Appendix A 6) only arises in the ringdown phase.
In this case we observe a small bias on δφ330 that may
be sourced by the weak constraints obtained on ψ for
GW190521. Finally, the red dot-dashed contour in Fig. 2
denotes the 95% credible region obtained from inject-
ing the SXS NR waveform SXS:0258 (i.e. with param-
eters similar to GW190521 [48]) into Gaussian noise at
SNR ρ = 30. For this injection we considered a three-
detector configuration (Livingston-Hanford-Virgo) with
the polarization angle fixed to the IMR maximum likeli-
hood value and performed the parameter estimation us-
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ing the PyCBC Inference library [49]. This injection is
representative for the quality of the test achievable with
a GW190521-like event at SNR twice as much the actual
value for GW190521. As expected in this case the con-
fidence region shrinks and the test is significantly more
accurate.

As shown in Fig. 2, the 1σ credible intervals obtained
in [1] contain the GR permissible range. This estab-
lishes that the posteriors are compatible with GR and
that GW19021 passes the ringdown APC test.

Discussion. The APC test provides a novel strategy to
test GR using the ringdown mode excitation. NR wave-
forms of BBH mergers can be used to obtain accurate
empirical relations for the mode amplitude ratio ARlmn
and phase difference δφlmn as functions of the binary
mass ratio and spins. We found a tight relation between
ARlmn and δφlmn which can be tested with GW multi-
mode ringdown measurements, as in GW190521. Indeed,
we showed that for GW190521 the AR330−δφ330 relation is
consistent with the 1σ posterior distributions presented
in [1].

We have tested the accuracy of our fits to SXS wave-
forms against both the RIT [50] and Maya [51] NR cat-
alogs (see Appendix A 4). The fitting uncertainties ob-
tained on the (330) mode are well below the statistical
uncertainties of the current GW observations. Likewise,
approximating the spheroidal harmonics in Eq. (2) with
the spherical harmonics basis used in NR simulations
introduces mode mixing [34, 52, 53] which is typically
small. For GW190521 this affects AR330 and δφ330 at the
percent level. The uncertainty on the ringdown start
time also affects both AR330 and δφ330 at the percent level.
This holds true for any l = m mode, while the phase of
l 6= m modes is more affected by a shift of the peak time,
making l 6= m modes not optimal for our test.

Overall, for the (330) subleading mode the total sys-
tematic errors accumulated from the fit, ringdown start
time, and spherical-harmonic approximation may reach
a value of about ∼ 13% for both ARlmn and δφlmn. For
GW190521, the marginalized 1σ statistical uncertainty
on these quantity is about 100%, therefore much larger
than the systematic deviations accumulated mainly from
the current fit uncertainties. However, the situation
might change for louder detections as those routinely ex-
pected in the third-generation era [54, 55], in which case
systematic errors of the fit might limit the accuracy of the
APC test, unless the quality of NR waveforms improves.
On the other hand, the measurements of the polarization
angle ψ (which is degenerate with the phase difference
δφlmn) and of other binary’s intrinsic parameters are ex-
pected to improve as more interferometers are added to
the network, or through an electromagnetic counterpart,
and will anyway improve with third-generation detectors,
therefore allowing for a more accurate test.

We have focused on quasi-circular binaries with aligned
spins, although the same test can be applied to more
generic cases. In Appendix A 7, we estimate that un-
less the eccentricity e & 0.3 (e & 0.6) its effect on

the fits of δφ330 (AR330) is negligible. Likewise, we have
found that the binary spins have a subleading effects on
ARlmn − δφlmn compared to the mass ratio, especially for
the (330) mode which is typically the most relevant one
for the test. This suggests that – at least for this mode –
the effect of spin precession should also be subdominant.
On the other hand, for the (210) and (440) modes the
effect of the binary spins is more relevant, so for these
modes spin precession should be accurately modeled.

Indeed, as any null-hypothesis consistency test, its po-
tential failure would signal a departure from the adopted
baseline model, and such a departure could have mul-
tiple origins. Most conservatively, a failure of the test
proposed here can be seen as evidence for spin precession
or large eccentricity in the BBH. Another possibility is
that the observed ringdown was not originated from a
BBH, even if the remnant is a standard Kerr BH and GR
is correct. Indeed, the coalescence of sufficiently mas-
sive neutron stars, boson stars [23–26], or many other
exotic compact objects [22] might still produce a ring-
down with QNMs consistent with those of a Kerr BH
in GR, but with different QNM amplitudes and phases,
thus failing our test while passing standard tests based
on BH spectroscopy. In this context, although measure-
ment errors are large, it is relevant that GW190521 passes
the APC test. It would be interesting to assess whether
this is in tension with alternative explainations for this
event, e.g. a Proca star merger [29]. Finally, a departure
from the APC test can signal a violation of GR, even
in those cases in which stationary BHs are described by
the same Kerr solution and would therefore pass stan-
dard BH spectroscopy tests. Disentangling these three
possibilities might require a generalization of our fits and
multiple loud ringdown detections – since, for example,
the effects of precession might appear only in a subclass
of events, whereas GR deviations should be ubiquitous.

While we focused on applying the test using only the
ringdown signal and prior knowledge of the binary extrin-
sic parameters (coming either from the inspiral or from
an independent sky localization), a variant of the test is
to check for IMR consistency using the mode excitation
amplitudes. As discussed in Appendix B, in principle one
could invert the ARlmn(q, χpheno) and δφlmn(q, χpheno) re-
lations to infer an estimate of the mass ratio (and spins)
from the QNM excitations and then compare these es-
timates with those inferred from the inspiral. However,
owing to the mild dependence of δφlmn on the binary pa-
rameters the quality of this test is expected to be rather
poor. A more promising avenue is to neglect the phases
and use only the amplitude ratios of several subleading
QNMs. This might be particularly relevant for systems
like GW190521 where, due to the short duration and
relatively low SNR at low frequencies, the inference on
the binary parameters is controversial and model depen-
dent [44, 56, 57]. Also in this case the better accuracy
(especially at low frequency) of third-generation detec-
tors might significantly improve this test (see also [58]
for a conceptual framework in this direction).
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Overall, given the amount of observations expected in
the near future and the prospect in the third-generation
era, we argue that the APC test provides an excellent
arena to complement standard BH spectroscopy tests in
the strong-gravity regime.
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Appendix A: Fits for ARlmn and δφlmn

For each of the 142 NR SXS waveforms in our dataset,
we fit for ARlmn and δφlmn for (lmn) = (330), (210), and
(440) modes. The waveform dataset spans q ∈ [1, 10]
and χ1,2 ∈ [−0.9, 0.9]. We fit for the amplitudes Almn
and phases φlmn of each hlmn mode using the following
ansatz,

hlmn = Almne
−iφlmnei2πflmnte−t/τlmn , (A1)

where the frequencies and damping times are fixed to the
values predicted by GR, whereas Almn and φlmn refers
to the same starting time t = 0. On the other hand, the
ringdown modes hlmn are extracted at a reference time
tp220 corresponding to the peak of the dominant (220)
mode. To refer all modes to the same starting time we
account for a time shift ∆t = tp − tp220, where tp . 10M
is the global peak time of the signal. As discussed in
the main text, this ansatz does not fully match Eq. (2)
due to the peak time ambiguity, which adds some small
uncertainty on the phase values δφlmn for the l = m
modes.

1. Error estimate for NR waveforms

NR waveforms contain two sources of uncertainties
that are of interest to our study; i) resolution uncertain-
ties which are produced by the finiteness of the numeri-
cal grid; and ii) extrapolation errors which are produced
from computing the data at a finite radii and extrapolat-
ing them to future null infinity. To quantify resolution
errors, for each simulation we compute the mismatch (as
defined, e.g., in Eq. (1) of [41]) between waveforms at the
two highest resolutions. Then, to estimate the extrapola-
tion errors, we use the highest-resolution waveform and
compute the mismatch between the waveform extrapo-
lated with either second or third polynomial order. We
finally compute the distribution of the mismatch across
our dataset. In Table I we give the order of magnitude
of the mismatch at the median value for the distribution
for each mode. Extrapolation errors are negligible rela-
tive to resolution errors for each mode, and the maximum
mismatch is at most of O(10−3). A more detailed study
on NR systematics in the context of ringdown amplitude
and phase fits are presented in a companion paper [59].
In Appendix A 4 we will also compare the results of our
fits obtained using different catalogs of NR BBH wave-
forms.

2. Fits for ARlmn

For a quasi-circular nonprecessing binary, the mode
amplitude ratios and phase differences generically depend
on all intrinsic binary parameters such as mass ratio q
and spin amplitudes χ1,2. However, as in the case of an
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Mode Error Mismatch
h22 Resolution O(10−3)

Extrapolation O(10−6)
h33 Resolution O(10−4)

Extrapolation O(10−6)
h21 Resolution O(10−3)

Extrapolation O(10−6)
h44 Resolution O(10−3)

Extrapolation O(10−6)

TABLE I. Resolution and extrapolation error estimates for
NR waveforms in the SXS catalog used for our fits.

effective PN waveform modeling [37], it turns out that
also ARlmn depends most strongly on certain combina-
tions of the spins. We therefore obtain analytical (ap-
proximate) relations for ARlmn as a function of the BBH
parameters using the ansatz [37]

ARlm0 = a0 δ + a1 δ
2 + a2 χ ∀ odd modes (A2)

ARlm0 = a0 (1− 3η) + a1 (1− 3η)2 + a2 (1− 3η)3 (A3)

a3 + χs , ∀ even modes

where the {(3, 3, 0), (2, 1, 0)} ∈ odd modes and (4, 4, 0) ∈
even modes, η = q/(1 + q)2, δ =

√
1− 4η,

χ =
χa + χs

√
1− 4η

2
(A4)

is a particular combination of the spin parameters and,
for (anti)aligned spins, χs,a = (m1χ1 ± m2χ2)/(m1 +
m2) with m1,2 being the progenitor BH masses. This
ansatz automatically enforces ARlmn(q)→ 0 for q → 1 for
all odd modes in the χ1 = χ2 limit, which arises from
the binary’s symmetry under m1 ↔ m2. Note that the
above ansatz differs from the ones we have used for the
nonspinning fits presented in Ref. [40].

We fit the data in two hierarchical steps following [14]:
we first fit the nonspinning waveforms using Eqs. (A2)
with χ1,2 = 0. Then, we fit for the spinning BBH wave-
forms, keeping the values of the coefficients obtained from
the nonspinning fit to constrain the final result in the
nonspinning limit. This improves the accuracy of the fit
in the region of the parameter space where the NR solu-
tions are known to be more accurate [14, 60]. We get the
following analytical ready-to-use fits:

AR330 = 0.572
√

1− 4η − 0.144(1− 4η) + 0.035χ , (A5)

AR210 =
∣∣∣0.328

√
1− 4η + 0.115(1− 4η)− 0.414χ

∣∣∣ ,
(A6)

AR440 = 0.251
(
1 + 59.773η3 +−16.307η2 − 3η

)
− 0.011χs .

(A7)

We set the amplitudes to be positive, shifting by a
factor π the phase, δφlmn → δφlmn+π, for those cases in
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FIG. 3. Top panel: amplitude ratio ARlmn in terms of the mass
ratio q obtained from fitting 142 waveforms for the (330),
(210), and (440) modes. The spread of the points on the
vertical direction quantifies the effects of the binary spin pa-
rameter, χpheno = χ, χs for the odd/even modes, respectively.
The solid line shows the fit for the nonspinning case. Bottom
panel: Normalised residual distributions for the three modes.
Notice that effects are relatively small for the (330) and (210)
compared to their typical amplitudes. Further analysis about
the errors is provided in a followup paper [59].

which the fit provides a negative amplitude. For the (210)
mode, we observe that AR210 tends to negative values at
low mass ratio q . 2 and high spin χ ∼ 0.4. In this case
we added the absolute value to the ansatz in order to keep
the ARlmn > 0 convention . Note that the fits recover the
test particle limit [40, 61] as q →∞, and the nonspinning
regime as χ1,2 → 0. Indeed, in the nonspinning limit we
verified that our fit agrees reasonably well with the fits
in [39, 40, 62].

In the top panel of Fig. 3, we present the ampli-
tude ratio ARlmn as a function of q for all 142 simula-
tions. The green diamonds, red crosses, and blue dots
correspond to AR330, AR210, and AR440, respectively. The
solid lines denotes ARlmn for the nonspinning BBHs, i.e.,
ARlmn = ARlmn(q, χ1,2 = 0). For all modes considere here,
ARlmn increases with the mass ratio, i.e. for more asym-
metric binaries. Spins effects are small for AR330 and AR440,
leading to a small scatter around the solid lines. This also
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suggests that spin effects are generically small for these
modes, even when accounting for spin misalignment.

In order to show the spin and mass-ratio dependence
more clearly, in the top panel of Fig 4 we present a con-
tour plot of ARlmn as a function of q and χ, χs. We
observe that, at variance with the other modes, AR210

depends significantly on the binary spins. Finally, we
quantify the goodness of the fit using residuals. In the
bottom panel of Fig. 3, we present the normalized fit
residual distributions, where residuals are the difference
between the amplitude/phase obtained by the fit and
that obtained from the raw NR data,i.e., Residuals =
(ARlmn,NR−data − ARlmn,fit) or (δφlmn,NR−data − δφlmn,fit)
for each simulation used. We see that the residues are
centered around zero with a small spread. Compared to
their absolute value, these errors are small for the (330)
and (210) mode and modest for the (440) mode.

3. Fits for δφlmn

a. Disentangling NR conventions from physical phase

The NR waveforms from different catalogs adopt dif-
ferent conventions for phases, so one must appropriately
account for this to combine/compare phases across sev-
eral NR waveform catalogs. These conventions arise from
the choice of – a) the tetrad adopted to extract the NR
waveform which adds an overall polarization angle ψ0;
and b) from rotations of the BH orbital plane by an an-
gle ϕ0. Two waveforms (say A and B) from different
catalogs with the same physical intrinsic parameters and
aligned in time are related by [32, 53],

hAlmn(t) = eι(ψ0+mϕ0)hBlmn(t). (A8)

The polarization angle across the NR codes is ei-
ther ψ0 = 0 or ψ0 = π to preserve the rotating-
counterrotating mode symmetry, hlm = (−1)lh∗l−m, for

circularly-polarized, nonprecessing waveforms1 [53]. We
are interested only in the physical contribution to the

phase, δlmn(~λ), which depends only on the binary intrin-

sic parameters ~λ. A generic ringdown phase φlmn results
from the sum of the three contributions [32, 62]

φlmn = δlmn(~λ) +mϕ0 + {0, π} . (A9)

Unlike the physical phase δlmn(~λ) that depends on the
BBH parameters, the extrinsic phase terms ψ0 and ϕ0

1 The rotating-counterrotating mode symmetry implies hlm =
(−1)l h∗l,−m. We can define a new waveform hplm up to a

polarization angle ψ0 as hplm = eiψ0 (−1)l hlm and hpl−m =

eiψ0 (−1)l hl−m. Then, hpl−m = e2iψ0 (−1)l hp,∗lm and hpl−m =

(−1)l hp,∗lm if and only if ψ0 = 0, π.

may vary across sets of NR simulations and codes. How-
ever, the dependency on ϕ0 is eliminated out if we fit for
the following quantity

δφlmn :=
m

2
φ22n − φlmn =

m

2
δ220(~λ)− δlmn(~λ) (A10)

+
{

0,
(m

2
− 1
)
π
}
.

The phase difference δφlmn depends only on the intrinsic

binary parameters ~λ and on a global phase factor which
is either zero or (m2 − 1)π depending on the simulation.
For instance, we can identify the convention used in a NR
waveform by knowing that, in the low-frequency inspiral
regime, the phase difference between the dominant (220)
mode and a higher mode (lmn) satisfies mod(mφ220 −
2φlmn, 2π) = 0, 2π, for both the even and the odd modes
(see Appendix D of [53] and [42]). For the SXS data, we
have checked that this value is consistent with ψ0 = 0.
On the other hand, the RIT and Maya [50, 51] waveform
catalogs adopt the ψ0 = π convention [35].

b. Phase fits

Similar to the case of the amplitude ratio, we produce
ready-to-use fits for δφlmn = m

2 φ22n−φlmn as a function
of the BBH parameters. We use the following ansatz in-
formed by the leading order PN expressions on δφlmn [36]

δφ330 = b0 δ + b1 χφ + c0 , (A11)

δφ210 = b0 δ + b1 χφ + b2 χ
2
φ + c0 , (A12)

δφ440 = a0 η
d0 + b1 χs , (A13)

where χφ ≡ 1
2 (χa +

√
1−4η

1−2η χs) is another phenomenolog-

ical fit parameter.
We follow a similar hierarchical fitting procedure as

the one previously described for the amplitude-ratio fits.
The fits obtained for the δφlmn read

δφ330 = 2.759 + 0.406
√

1− 4η − 0.055χφ (A14)

δφ210 = 0.401 + 0.286
√

1− 4η + 0.402χφ + 0.652χ2
φ

δφ440 = 4245.459η5.646 − 0.365χs .

In Fig. 5 we present δφlmn (as defined in Eq. (A10))
obtained at tr − tp22 = 10M . Again the solid lines cor-
respond to the nonspinning BBH case, while the spread
of points around the lines quantify the spin dependence
of the result. As q increases, we observe that δφ330 and
δφ440 mildly increase while δφ210 rapidly vanishes. We
stress that for the SXS catalog the convention is such that
mod(δφ330, π) = π in the low-frequency PN regime. For
q ≈ 1, we see that δφlmn develops a dependence on the
BBH spin parameters, which is reduced as q increases.
This is consistent with [36], where mod(δφ330, π) is eval-
uated at tr = tp22.

We again evaluate the fit residuals for each NR wave-
form; the distribution of the residuals is shown in the
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FIG. 4. Contour plots showing the amplitude ratio ARlmn (top) and phase difference δφlmn (bottom) as functions of q and
χpheno = χ, χs, χφ (depending on the panels) for the (lmn) = (330) (left), (210) (middle), and (440) (right) mode. As χpheno

increases, the magnitude of AR330 increases as well, whereas AR210 decreases and AR440 mildly decreases. The small region around
q ∼ 1− 2 and χ > 0 in which AR210 increases with χ is forced by fitting |AR210|, which induces a sign flip on the trend of AR210(χ).
In the bottom panels, δφlmn decreases linearly with χφ for the (330) mode while it increases as χ2

φ for the (210) mode. The
value of the phase difference δφlmn decreases with χpheno for the (330) and (440) modes while it increases for the (210) mode.

bottom panel of Fig. 5. Similar to Fig. 3, the largest er-
rors are obtained for δφ440. Finally, in the bottom panel
of Fig 4 we show δφlmn as a function of q and χ, χs, χφ for
the (330) (left), (210) (middle) and (440) (right) modes.
As in the case of the amplitude ratio, the phase δφ330 is
only mildly affected by the spin, whereas a stronger spin
dependence occurs for the 221 and (440) modes.

4. Comparison of the fits using other NR catalogs

The RIT and Maya public catalogs [50, 51] provide a
large set of NR simulations that can be used for fitting
and testing. In particular, the public data provided for
the RIT catalog is tested to be in the convergent regime –
resolution errors shall dominate – and shows good global
IMR agreement with the SXS data for all the modes up to
l = 5. We have calibrated the amplitudes and phases us-
ing data from the SXS catalog since the latter is the only
code that provides data at different resolutions and ex-
trapolation levels, which we used for the error estimates
previously presented. On the other hand, we can use NR
data from the RIT and Maya catalogs to benchmark our

results. This test is particularly useful since the two fami-
lies of codes use significantly different numerical schemes
to solve Einstein’s equations for a BBH 2. In particu-
lar, both ARlmn and δφlmn computed from different codes
may be affected dominantly by the finite extraction and
extrapolation effects which may add differences up to a
few percent [60]. We observe that the systematic errors
(i.e., a shift of the median value of the distribution with
respect to zero), are below the fitting errors which are
instead characterized by the width of the distributions.
This observation holds true for all the modes considered
here.

To compare the data from the different catalogs, we
have to revisit again the various conventions used in each
of them, for example the ψ0 = 0, π rotational factors
arising from different tetrad choices in the simulations.
For the RIT and Maya data we need to replace δφlmn →
−δφlmn − m

2 π, where the latter factor results from the

2 For instance, while the SXS waveforms are solved in the gener-
alized harmonic gauge, the RIT and Maya are solved using the
BSSNOK formulation.
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FIG. 5. Same as Fig. 3 but for the phase difference δφlmn.

different tetrad conventions used in these codes. The
additional minus sign comes from the reversed definition
of the imaginary component of the hlm modes between
the SXS dataset and the RIT and Maya datasets, which

just implies that φSXS
lmn ↔ −φ

RIT,Maya
lmn [35].

In Fig. 6 we compare the SXS amplitude ratio and
phase difference of the (330) mode with the RIT and
Maya data. For the amplitude ratio (left panels of Fig. 6),
we find a good match between the Maya and SXS data
while the results show an offset of about AR330 ∼ 0.05
when using the waveforms from the RIT catalog. This
systematic offset is still smaller than the value of the un-
certainty observed in GW190521, δAR330 ∼ 0.1, but it may
become important for louder future events. In the case
of the phase difference (right panels of Fig. 6), despite we
find a better agreement between all the three codes, the
RIT code shows slightly larger tails. The standard devia-
tion obtained from the normalized residuals distributions
is about ∼ 0.1 rad for the three codes, and it is therefore
irrelevant for current or near-future GW observations.

5. Identifying fit outliers in the data

We have observed that the BH spins have a minor im-
pact on the values of ARlmn and δφlmn compared to the
effect of the mass ratio q. This allow us to use an ansatz
linear in χpheno for all the modes and magnitudes except
for δφ210, in which the effects of χpheno are found to be
larger. While this property makes it easier to model ARlmn
and δφlmn in terms of the physical parameters, we have
found that some outliers may still decrease the quality
of the spin-dependent part. We believe that the outliers
are dominated by numerical noise and we remove them
from our calibration dataset as explained in the follow-
ing. We first look for highly significant outliers on both
ARlmn and δφlmn by testing the spin fit χpheno at each
mass ratio q. More specifically, we select the data at
mass ratio q = 1, 2, 3, 6, 7, 8 to perform a bootstrapping
analysis on the χpheno axis. This is achieved by comput-
ing the spinning fit at each q, that in general will contain
N points, for a data set of N − 1 points. We iterate the
fit for the N points at each q, and we compute the value
of the standard deviation σ(qi, χipheno). Then, we select
the median value of σ̄ and we discard all points beyond
a conservative deviation of 4σ̄. In Fig. 7 we show an ex-
ample of this procedure applied to the amplitude ratio
AR330. We see that the blue cross placed at the low-right
corner is easily identified by this algorithm. However,
it is important to keep a conservative criterion to avoid
rejecting systematically false outliers.

6. On the ∆t dependence for the phase difference

As discussed in the main text, in order to refer the NR
fits to the parameter estimation to the same initial time
we need to shift each mode by ∆t = tp − tp220, where tp

is the global peak time of the signal and tp220 is an arbi-
trary reference time taken to be the peak time of |h220|.
This time shift introduces a dephasing ∆φlmn = ωlmn∆t
and an extra term in the phase difference δφlmn(tp) (see
Eq. (4)) (m

2
ω220 − ωlmn

)
∆t . (A15)

Fortunately, as can be shown analytically in the geodesics
approximation valid in the eikonal limit l = m �
1 [12, 43], for the fundamental (n = 0) modes the fol-
lowing approximation holds: ωlm0 ∼ l/2ω220. Thus, for
the l = m modes the extra terms in Eq. (A15) is small.
In Fig. 8, we show ωlmn− l/2ω220 for the (330) and (440)
modes as a function of the remnant spin, showing that the
difference is in the range ≈ [0.04, 0.08] for any spin. This
yields an ambiguity in δφlmn approximately of (ω330 ∼
3/2ω220)∆t ∼ 0.04∆t/M and (ω440 ∼ 4/2ω220)∆t ∼
0.07∆t/M . Choosing a very conservative error estimate
on ∆t, namely ∆t = 2(tp33 − t

p
22) = 10M , we conclude

that ignoring the dephasing introduced by ∆t will at
most introduce an overall uncertainty δφ330 ∼ 0.4 rad
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FIG. 6. Top panel: amplitude ratio (left) and phase difference (right) in terms of the mass ratio q and the phenomenological
spin parameter χpheno obtained from fitting 142 waveforms for the (330) modes and from data from the SXS, RIT, and Maya
catalogs. The solid line joining the points represents nonspinning solution. Bottom panel: Normalized residual distributions
obtained for the data from the three datasets for the amplitude ratio (left) and phase difference (right).

and δφ330 ∼ 0.8 rad. Note that, since (tp33 − t
p
22) ∼ 5M

for all the NR simulations explored [40, 42], in practice
we expect the uncertainty on δφ330 to be typically half
of this conservative estimate.

7. The effect of the eccentricity

The coalescence of eccentric binaries can in principle
modify the initial perturbation conditions of the final BH,
and hence the QNM amplitudes and phases. In general,
the amplitude ratio ARlmn and the phase difference δφlmn
should also depend on the eccentricity e. In Fig. 9 we
examine the impact of the eccentricity on the values of
AR330 and δφ330 for a set of mass ratios q = 2, 3, 4, i.e.,
where both the standard BH spectroscopy test and our
APC test are most promising [1, 63]. To obtain these es-
timates, we have used the data from the RIT catalog [50].
Notice that the values on δφ330 are significantly modified
only at relatively large values of the eccentricity with
e & 0.3, while this value raises up to e & 0.6 for AR330.
These values are still above the upper limit threshold of
e ∼ 0.1 obtained from the search of eccentric objects

during the first and second LIGO observation runs [64],
thus not relevant for the bulk of the events observed by
current ground based GW observatories.

Appendix B: Consistency between mode-excitation
and BBH mass ratio in GW190521

In this work we have proposed a new APC test of GR
that can be done for GW190521-like systems using the
ringdown alone (and possibly prior knowledge of the bi-
nary extrinsic parameters [33]). In this section, we high-
light another possible null test of GR that makes use of
the amplitude ratio and its relation to the BBH mass
ratio, and therefore requires the entire inspiral-merger-
ringdown (IMR) signal. The basic concept here is that
one could estimate the mass ratio q from the ringdown
by inverting the ARlmn = ARlmn(q) relation and then check
whether the inferred value is consistent with q measured
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For the (330) mode and a conservative choice ∆t ∼ 10M this
adds an uncertainty of about 0.4 rad. On the other hand, such
approximation worsens for the (440) mode.

independently from the full IMR signal3. This is com-
plementary to the standard IMR consistency tests per-
formed by the LVK Collaboration [27] and is based on an
idea similar to that used to design the merger-ringdown
test for the BBH population presented in Ref. [58].

Our fits provide empirically 2-to-2 maps

(ARlmn, δφlmn) → (q, χpheno) which can be inverted
to obtain q. Note that the sensitivity of this test toward
the measurement of the spin is limited since AR330 and
AR440 have a rather mild dependence on the spins (see
Fig. 3). However, even neglecting the spin dependence,
one can simply map AR to q to a good approximation.
For instance, for q = 2 we get AR330 = 0.14, 0.19 for
χ1,2 = ±0.85, so the spin dependence is minor. In
principle this kind of test can also be designed with
δφlmn. However, the dependence of δφlmn on the BBH
parameters is weak, and so one expects larger errors on
the inferred BBH parameters.

We scrutinize GW190521 for consistency between
mode-excitation and BBH mass ratio. Owing to its large
total mass and short inspiral signal in the LIGO-Virgo
band, the inspiral parameter estimation of GW190521 is
particularly sensitive to model systematics and there is
some tension among the binary parameters (including the
mass ratio) inferred with different waveforms [44, 56, 57].
Thus, one cannot perform a reliable IMR-like test on this
signal. In Fig. 10 we compare the different estimates for q
using parameter estimation posteriors provided in these
IMR studies with the expected value of q inferred from
ringdown. For the ringdown estimate of q, we compare
the estimate of AR330 obtained in [1] along with our fit
results. Specifically, we show

(i) the parameter-estimation results on ARlmn from [1]
(red) and translated to q by inverting our AR330

mode fit. The red dot (Ours) provides its best like-
lihood value obtained from the marginalized distri-
bution q −AR330.

(ii) the parameter-estimation results on q and χ1,2 ob-
tained by the LVK collaboration [57] (blue) and
translated to ARlmn by using our (330) mode fit.
The blue-square (LVK) provides its best likelihood
value obtained from the marginalised distribution
q −AR330. Since the LVK does not provide an inde-
pendent distribution on AR330, we get the elongated
blue contours using our fit.

We observe that Ours, Capano+, and LVK are all consis-
tent with the parameter-estimation posterior distribution
at the 1σ and 2σ credible level. Note that the q distribu-
tion from Capano+ is obtained from an independent set
of fits [37]. We also obtained a rather flat distribution
on the phenomenological spin parameter with χ ∈ [0, 1],
which is expected given the mild dependence of both
AR330(q, χpheno) and δφ330(q, χpheno) on χ. However, this
paradigm may change shortly with louder detections such
as those expected from third-generation detectors [54, 55]
and LISA [58].

3 While in principle an IMR consistency test can be done by di-
rectly checking the consistency of the fundamental mode ampli-
tude A220 as a function of the binary parameters, this quantity

depends on several (both intrinsic and extrinsic) parameters so
its constraining power is limited, e.g., by correlations. On the
other hand the amplitude ratio ARlmn depends mainly on the
binary mass ratio and spins.
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FIG. 10. Amplitude ratio AR330 estimated from the set of
NR waveforms used in this work and restricted to q < 3. The
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