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We consider the massive graviton phenomenological model based on the graviton’s dispersion
terms included into phase of gravitational wave’s waveform. Such model was already considered
in many works but it was based on a single leading-order dispersion term only. Here we derive
a relation between relativistic gravitons emission and absorption time intervals computed up to
O(γ−6), where γ is the Lorentz factor. Including the dispersion terms into the phase of gravitational
wave’s waveform results in two non-GR parameters of the 1-st and the −2-nd post-Newtonian orders
whose posteriors are used to put a constraint on the graviton’s rest mass. We use the TaylorF2
waveform model to analyse the event GW170817 and report the following 95%-confidence upper
bounds on the graviton’s rest mass: mLow Spin

g ≤ 1.305× 10−54g and mHigh Spin
g ≤ 2.996× 10−54g for

the high and low spin priors.

I. INTRODUCTION

The Einstein theory of gravity—general relativity
(GR) is already more than hundred years old [1–3]. Since
its first observational confirmation of the perihelion pre-
cession of Mercury’s orbit and of the deflection of light
by the Sun, it has been tested by many experiments and
astronomical observations in the weak gravity scales [4].
However, the quest for going beyond the Einstein’s GR
never stopped. There are many proposed modifications
of GR coming from assumptions of different origin, such
as astronomical observations and theoretical models, e.g.
modified Newtonian dynamics (MOND) [5–7] and bigrav-
ity models [8–11]. Here we shall pursue the idea of mas-
sive graviton.

The idea of graviton—quanta of the gravitational field
has a long story. The term graviton was coined by
Blokhintsev and Gal’perin in 1934, in their paper on
conservation of energy and neutrino hypothesis [12]. By
1949, successful quantisation of electromagnetic field by
Feynman, Schwinger, and Tomonaga opened up a per-
spective to quantise the gravitational field. Yet the pur-
sued ideas and attempts to successfully quantise the grav-
itational field have not brought us yet to a complete the-
ory of quantum gravity [13, 14], and there are different
points of view on the issue of gravitational field quantisa-
tion and different opinions were shared by Feynman [15]
and Schwinger [16].

In GR, gravitons are massless particles of spin 2 which
propagate in vacuum with the speed of light. Massive
gravity field theory was constructed by Ogievetsky and
Polubarinov in [17] and much later was rediscovered by
de Rham, Gabadadze, and Tolley [9] (see for comparison
[18]). Here we take phenomenological approach to mas-
sive graviton theory presented in [19]. Namely, we con-
sider massive graviton as a relativistic particle of mass
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mg whose energy E and 3-momentum p obey locally the
relativistic energy-momentum relation E2 = p2c2+m2

gc
4,

where c is the speed of light in vacuum. Using the ex-
pression for the graviton’s 3-velocity vg = pc2/E, the
energy-momentum relation gives the dispersion relation

vg/c =
√

1−m2
gc

4/E2 , (1)

which implies that more energetic gravitons move faster.
Including this effect into phase of a gravitational wave
(GW) from a compact binary coalescence should result
in GW dispersion. The parameter which controls the dis-
persion effect is the graviton’s mass. The leading-order
dispersion term appears among the post-Newtonian (PN)
expansion terms in GW waveform phase as a 1PN-order
term where mg is considered as an additional GW pa-
rameter [19]. One can infer the dynamic upper bound
value on the graviton’s mass from its posterior distribu-
tion obtained from the parameter estimation (PE) runs.

There is also static upper bound on mg which is not
related to propagation of gravitational interactions. Such
a bound is based on Yukawa-type correction of the char-
acteristic length scale ∼ m−1

g to the Newtonian gravita-
tional potential, which is due to exchange of a massive
mediator quanta—the massive graviton,

U(r) = −GM
r
e−rmgc/h . (2)

Here h is the Planck constant. In this scenario, one
searches for a rapid decay of a gravitational potential
with a distance, which indicates the Yukawa exponential
cutoff. The first estimate of the graviton mass based on
analysis of bound clusters of galaxies was reported in [20].
Taking 580kpc as the maximum separation of galaxies in
clusters for the distance over which gravity decreases by
the factor of e−1 the rest mass of graviton was found to
be less than 2 × 10−62g. However, the galaxies cluster
bound is a crude estimate and it may also be explained
by the presence of dark matter. Therefore, this estimate
may not be reliable. Better estimates of the graviton’s
Compton wavelength λg = h/mgc were based on solar
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system data analysis under Yukawa gravitational poten-
tial assumption and verification of Kepler’s third law for
the inner planets [19, 21]. The reported value for gravi-
tational coupling ≥ 1015m gives the upper bound on the
graviton’s mass mg ≤ 2.2× 10−54g.

The first dynamic bound of mg < 7.6× 10−20eV/c2 =
1.36× 10−52g with 90% confidence was found from anal-
ysis of the observed orbital decay of the binary pulsars
PSR B1913+16 and PSR B1534+12 [22]. GW150914
data was used to put the dynamic upper bound mg ≤
2.14×10−55g with 90% confidence [23]. There is also an-
other phenomenological model introduced in [24]. This
model is based on a Lorenz-violating dispersion relation

E2 = p2c2 +m2
gc

4 +Apαcα , (3)

where A and α are the Lorentz-violating parameters. The
first application of this model (though in the trivial case
of A = α = 0) to LIGO data of GW event GW170104
was reported in [25, 26], where the combined lower bound
was found to be λg > 1.6× 1016m, which corresponds to
the graviton’s mass bound mg ≤ 1.37 × 10−55g. The
same choice of the parameters for GW170817 event gave
the value mg ≤ 1.70× 10−54g [27]. For a set of different
values of α and A parameters the combined from ten GW
events the bound mg ≤ 4.7× 10−23eV/c2 = 8.4× 10−56g
was reported in [28].

In this paper we restrict our attention to the binary
neutron star merger GW170817 event [29]. For this
event, the contribution of the merger to signal-to-noise-
ratio is not significant, whence the inspiral regime and
standard PN methods dominate [30–34]. Moreover, the
source proximity allows us to neglect the cosmological
redshift, which simplifies our model. We consider the
standard (not Lorentz-violating) massive graviton disper-
sion relation (1). It could be that gravitons exist only as
massless particles, quanta of the gravitational field, or it
could also be that gravitons do not exists in nature, i.e.
there are no mediators of gravitational interaction, or
more strongly, gravity cannot be quantised. In that case
“massive gravitons” would imply a modification of gen-
eral relativity from which follows a nontrivial dispersion
relation of (classical) GWs in the linear (weak gravity)
regime. In such a scenario “graviton’s mass” might be
considered as a GW dispersion parameter. For instance,
modification of GW dynamics, such as GW birefringence,
was considered and tested on GW events in [35]. The
goal of our work is to use the current GWs observational
data and put constraints on graviton’s mass (or the GW
dispersion parameter).

Our paper is organised as follows. In Sec. II we present
the massive graviton kinematics and derive a relation be-
tween emission and absorption time intervals computed
from the first two terms in the inverse Lorentz factor ex-
pansion of the massive graviton dispersion relation. In
Sec. III using the TaylorF2 waveform model we apply
the time intervals relation to compute phase of GW wave-
form. This results in two non-GR parameters of 1PN and
-2PN orders. Section IV contains results and their analy-

sis for GW170817 event. In conclusion we summarise our
results and discuss future prospectives of related work.

II. KINEMATICS OF THE MASSIVE
GRAVITON

As it follows from the dispersion relation (1), more
energetic gravitons move faster. We are interested in
finding a relation between time intervals of emission and
detection of such gravitons. Consider the following situ-
ation: source of massive gravitons and their detector are
mutually at rest and located in Minkowski space-time.
Let a graviton of energy E1 is emitted at time ts1 mea-
sured by the source clock. The graviton moves toward
the detector with 3-velocity v1 and arrives at time td1

measured by the detector clock, which is synchronised
with the source clock. Let another graviton of energy E2

is emitted at time ts2. It moves toward the detector with
3-velocity v2 and arrives at time td2. Space-time diagram
illustrating this process is shown in Fig. 1.

FIG. 1. Propagation of massive gravitons of different energies
from their source (ts, xs) to the detector (td, xd) in Minkowski
space-time. The source and the detector are mutually at
rest and their clocks measuring ts and td are synchronised.
The dotted line represents world line of a photon emitted
at (ts1, xs) toward the detector. The dashed lines represent
world lines of massive gravitons.

Then, from the kinematic relation

D = xs − xd = v1(td1 − ts1) = v2(td2 − ts2) , (4)

where D is the proper distance between the source and
the detector, we derive the following relation between the
time intervals ∆ts = ts2 − ts1 and ∆td = td2 − td1:

∆td = ∆ts −D(v−1
1 − v−1

2 ) . (5)

Using the dispersion relation (1) and assuming that the
gravitons are highly relativistic, that is, γ = E/mg � 1,
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we derive

v−1
g

∣∣
γ�1

= 1 +
m2

g

2E2
+

3m4
g

8E4
+O(γ−6) . (6)

Then, using the graviton wave-particle duality relation
E = hf , where h = 6.62607015 × 10−34J·s and f is the
graviton’s frequency, we derive

∆td ≈ ∆ts−
[
Dm2

g

2h2
(f−2

1s − f
−2
2s ) +

3Dm4
g

8h4
(f−4

1s − f
−4
2s )

]
.

(7)
Note that this relation has to be modified if the source
and the detector are in a relative motion or located suffi-
ciently far, so that one has to take into account cosmolog-
ical redshift. The measured luminosity distance for the
event GW170817 is about 40Mpc, and the correspond-
ing cosmological redshift is z ≈ 0.008 [29]. Thus, we can
neglect the cosmological redshift and use the expression
above [36].

III. PHASE OF GW IN THE MASSIVE
GRAVITON SCENARIO

In this section, we consider GW from an inspiralling
binary system. We describe dynamics of the binary in
the binary frame with the origin at its original centre
of mass location and the binary evolution time tb [37].
Here and in what follows, the subscript b stands for the
binary frame. Assuming that the binary orbit evolves
adiabatically, i.e. its orbital angular velocity change over
the orbital period Tb is very small, the binary energy
rate of change is also small. Then, the following dynamic
equations hold approximately:

dφ(tb)

dtb
=

v3

Mb
, (8)

dv

dtb
= − F(v)

MbE ′(v)
. (9)

Here φ(tb) is the binary phase (azimuthal angle of the
binary reduced mass), Mb is the total mass of the binary,

v = (πMbfb)
1/3 � 1 , (10)

is the typical speed of the binary circular motion, where
fb = 2/Tb is the radiated gravitational wave frequency,
F(v) is the GW power output (GW luminosity), E(v) is
the dimensionless total mechanical energy of the binary,
and E ′ = dE/dv. The first equation (8) is the Kepler’s
third law and the second one (9) is the energy balance
equation.

We shall need to know the binary evolution time tb as
a function of fb. This can be derived by using (10) and
integrating (9),

tb(fb) = tc −
πM2

b

3

∫ fc

fb

E ′(v)

F(v)

dfb
v2

, (11)

where fc is the coalescence frequency corresponding to
coalescence time tc measured in the binary frame. To
compute this integral we need to know the functions E(v)
and F(v). They are given in terms of power series in v
up to 3.5PN order (∼ (v/c)7) [30, 38–41]. Then one can
compute their ratio and expand it in powers of v up to
the 3.5PN order.

Gravitational wave radiated by the binary motion is
observed at the detector frame. We consider GW wave-
form model of the following general form, without speci-
fying its polarisation modes:

h(td) = A(td) cosϕ(td) . (12)

Here td is time measured in the detector frame, A(td)
is the GW amplitude and ϕ(td) is its phase. Here and
in what follows, the subscript d stands for the detector
frame. The Fourier transform of h(td) is defined as

h̃(f̃) ≡
∫ +∞

−∞
h(td)e

i2πf̃tddtd . (13)

For the given problem it is rather impossible to com-
pute the Fourier transform analytically and we shall use
the stationary phase approximation based on the condi-
tion f̃ � 1 (see, e.g. [42] and also [43]). Integration of
(13) by parts and requirement that the derived integral
is negligible as compared to the boundary term impose
the following conditions on its integrant:

d lnA(td)

dtd
� dϕ(td)

dtd
,

d2ϕ(td)

dt2d
�
(
dϕ(td)

dtd

)2

. (14)

These conditions are fulfilled for astrophysical binary sys-
tems during their inspiral and up to their coalescence
(see, e.g. [43]). Then, the method of stationary phase
yields the following leading asymptotic behaviour of the
Fourier transform:

h̃(fd) ≈
1

2
A(fd)

(
dtd
dfd

)1/2

ei(Ψ(fd)−π/4) . (15)

Here t′d is a solution to the the stationary point equation

dϕ(t′d)

dtd
= 2πfd(t

′
d) = 2πf̃ , (16)

where dfd(t
′
d)/dtd 6= 0 and

Ψ(fd) = 2π

∫ fc

fd

[tc − td(fd)]dfd + 2πtcfd − ϕc . (17)

To evaluate the integral we need to know the function
td(fd). The expressions (10) and (11) define the function
tb(fb). Frequencies fb and fd are related through the
redshift factor, which we neglect here, because as it was
said in the previous section, for the event GW170817 it
equals to 1.008 ≈ 1.0. Thus, we consider

fb ≈ fd ≡ f . (18)
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Time intervals in the binary and the detector frame are
related via (7). Defining

∆td = tc − td(fd) , ∆ts = tc − tb(fb) ,
f1s = f , f2s = fc , (19)

we derive

tc − td(fd) ≈ tc − tb(f) (20)

−
Dm2

g

2h2
(f−2 − f−2

c )−
3Dm4

g

8h4
(f−4 − f−4

c ) .

Integrating the first term in (20) gives TaylorF2 approx-
imation of the GW phase (see, e.g. [39]),

ΨGR(f) =

N∑
n=0

(
f

fref

)(n−5)/3 [
Ψn + Ψln

n ln

(
f

fref

)]
,

(21)
where we use the reference frequency fref = 1/πM , where
M = (z+1)Mb ≈Mb. In the series the only non-zero log-
arithmic terms are Ψln

5 and Ψln
6 . The expansion of order

N corresponds to (N/2)PN order. In this expansion the
2.5PN term becomes indistinguishable from the binary
coalescence phase term (−ϕc−π/4) and the 4PN term is
indistinguishable from the binary coalescence time term
2πf tc. For GW170817 the PN terms Ψn are functions
of the binary physical parameters: masses of the stars,
their orbit-aligned dimensionless spin components, and
their tidal deformability parameters.

Integration of the second and third terms in (20) gives
us non-GR terms due to the massive graviton,

δΨ(f) = δΨ2

(
f

fref

)−1

+ δΨ−4

(
f

fref

)−3

, (22)

where

δΨ2 = −
π2MDm2

g

h2
, δΨ−4 = −

π4M3Dm4
g

4h4
(23)

are terms of the 1PN and −2PN order. Thus, the phase
(17) now reads

Ψ(f) = ΨGR(f) + δΨ(f) . (24)

Note that the gravitational wave amplitude A(f) can
also be expanded as a post-Newtonian series, but here
we will keep only terms at Newtonian order and hence
A(f) ∼ f−7/6.

Finally, we discuss PN order (N/2) in the phase ex-
pansion (21) required for consistent measurement of the
graviton’s mass. As we already mentioned in the intro-
duction, massive graviton model implies a Yukawa-type
potential (1). This potential can be derived from the
propagator of a massive meson (in our case it is the
massive graviton), which mediates interaction between
two fermions (in our case between massive objects). The
gravitational force corresponding to the potential (2) is

F = −∇U(r) = −M r̂

r2

(
1 +

r

λg

)
e−r/λg , (25)

where λg = h/mgc is Compton wavelength of the massive
graviton and r̂ is a unit radial vector. It is typical for a
compact binary motion that the characteristic range of
gravitational interaction is much less than the estimated
value of λg ∼ 1015m [19, 21]. Thus we can expand (25)
in powers of r/λg,

F |r�λg
≈ −M r̂

r2

(
1− r2

2λ2
g

)
. (26)

If we now assume that r2/λ2
g � vN holds for N in (21)

then we can neglect the massive graviton effects on the
binary dynamics. As it follows from the Kepler’s law (8),
for a nearly circular binary orbit r ≈ M/v2, while for

a neutron star binary r < 6M , thus v < 1/
√

6. Then
we should have M � 6−N/4−1 × 1015m. This inequality
clearly holds for the binary mass M ∼ M� ≈ 103m and
N = 7. Therefore, one can safely neglect the massive
graviton’s contribution to binary dynamics for 3.5PN or-
der.

IV. RESULTS AND ANALYSIS

FIG. 2. Marginalized 1D posterior distribution for non-GR
parameter δΨ2 for low and high spin priors of the binary
components from the parameter estimation run where only
the leading order non-GR parameter was considered.

According to the Bayes’s theorem, the posterior distri-
bution p(θ|D, I) for the parameters θ of a model, in the
light of observed data D, and prior knowledge I is given
by,

p(θ|D, I) =
L(D|θ, I)π(θ|I)

p(D|I)
, (27)

where L(D|θ, I) is the likelihood function, π(θ|I) is the
prior probability function on the parameters θ, and
p(D|I) is known as Bayesian evidence or marginalized
likelihood. We can ignore the term in denominator if
we are interested only in the posterior probability dis-
tribution for the given model, as this term contributes
to the normalization factor. Assuming detector noise
to be Gaussian and stationary around the event, we
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FIG. 3. Marginalized 2D posterior distribution of the non-GR parameters δΨ2 and δΨ−4 for low and high spin priors of the
binary components.

FIG. 4. Proper mass of the massive graviton posterior from
the parameter estimation run where we consider one non-GR
parameter δΨ2 alone for low and high spin priors of the binary
components. The distribution is constructed from the poste-
rior of δΨ2 with the prior range [−5, 0], which in accordance
with (23).

make use of standard likelihood function for the residual
s̃(f̃) − h̃(f̃), where s̃(f̃) is Fourier transform of the GW

strain s(t), and h̃(f̃) is the Fourier transform of the wave-
form template h(t). To obtain the posteriors of our model
parameters, we make use of the publicly available PyCBC
inference package [44]. We use TaylorF2 waveform model
[30, 38] to generate the waveforms, implemented in LAL-
Suite [45]. We make use of heterodyne likelihood model
described in [46–48]. We use the flat priors on source
frame masses, comoving volume, trigger time tc, tidal

deformability parameters Λ1,Λ2 ∈ [0, 5000], and testing
GR parameters δΨ2 ∈ [−5, 5] and δΨ−4 ∈ [−10−5, 10−5].
We use isotropic priors on polarization, right ascension,
declination, inclination angle, and spins. We use aligned
spin model with priors projected along the spinning axes
from the isotropic spin priors. Furthermore, we use two
prior ranges for spins: i) low spin priors where we restrict
the magnitude of the isotropic spins |s1a,2a| ∈ [0, 0.05],
and ii) high spin priors where we allow the magnitude of
the spins to vary in wider range |s1a,2a| ∈ [0, 0.5]. For
sampling, we use the publicly available implementation
of nested sampling sampler dynesty [49].

We modify the GR waveform for the GW170817 event
by adding the first non-GR parameter δΨ2 and then both
the non-GR parameters δΨ2 and δΨ−4.

We perform various combination of parameter esti-
mation runs: GR run, non-GR run with leading order
non-GR term δΨ2, and non-GR run varying both the
parameters δΨ2 and δΨ−4. We perform all these runs
for low spins and high spins priors. In Fig. 2, we show
the marginalized one-dimensional posterior distribution
for δΨ2 parameter from the runs where only leading or-
der non-GR term was taken along with GR parameters.
Fig. 3 shows the 2D marginalized posterior distribution
from the runs where both non-GR parameters are varied
along with GR parameters.

Using results of our runs we construct the covariance
matrix of the non-GR parameters. For low spin priors
it is We perform various combination of parameter esti-
mation runs: GR run, non-GR run with leading order
non-GR term δΨ2, and non-GR run varying both the
parameters δΨ2 and δΨ−4. We perform all these runs
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(a) (b)

FIG. 5. Proper mass of the massive graviton posterior from parameter estimation run where we vary both the non-GR
parameters δΨ2 and δΨ−4 for low and high spin priors of the binary components. Plot (a) illustrates the distribution constructed
from the marginalized 1D posterior of δΨ2 and plot (b) illustrates the distribution constructed from the posterior of δΨ−4. For
these PE runs, we use the uniform prior for non-GR parameters and restrict them to the negative values: δΨ2 ∈ [−5, 0], δΨ−4 ∈
[−10−5, 0] in accordance with (23).

TABLE I. Constraints on the mass of the graviton from various parameter estimation runs. Here we report the 95% upper
bound on the mg distribution constructed from 1D marginalized posteriors for non-GR parameters as shown in figures 4 and 5.

Varying non-GR Parameter(s)
Parameter Used to

Constrain mg

Upper Bounds on mg

(in g)
Low Spin Priors High Spin Priors

δΨ2 δΨ2 1.305× 10−54 2.996× 10−54

δΨ2, δΨ−4 δΨ2 1.481× 10−54 3.661× 10−54

δΨ2, δΨ−4 δΨ−4 2.45× 10−50 2.98× 10−50

for low spins and high spins priors. In Fig. 2, we show
the marginalized one-dimensional posterior distribution
for δΨ2 parameter from the runs where only leading or-
der non-GR term was taken along with GR parameters.
Fig. 3 shows the 2D marginalized posterior distribution
from the runs where both non-GR parameters are varied
along with GR parameters.

Using the expression (23) we can estimate the gravi-
ton’s proper mass as follows:

m1PN
g ≈ h

π c

(
−δΨ2

MDL

)1/2

(28)

from the 1PN order and

m-2PN
g ≈ h

π c

(
−4 δΨ−4

M3DL

)1/4

(29)

from the −2PN order. Here we take D = DL—the lumi-
nosity distance measured in Mpc, where 1pc = 3.0857×
1016m, the speed of light c = 299792458m/s, and we mea-
sure the total mass M in the units of geometrized solar
mass M� = 1.48× 103m.

Using these expressions we can derive posteriors of mg

from the posteriors of the non-GR parameters. It can

be seen from the equation (23) that only negative values
of non-GR parameters are valid for the expression of the
graviton mass, therefore, to put constraints on mg, we
perform another set of PE runs where we restrict the
prior range to negative values i.e. δΨ2 ∈ [−5, 0], δΨ−4 ∈
[−10−5, 0].

The Fig. 4 plot shows posterior distribution of mg from
δΨ2 alone for low and high spin priors of the binary com-
ponents. The Fig. 5 plots show posterior distribution of
mg from δΨ2 and δΨ−4 for low and high spin priors of
the binary components. The 95% upper bounds on the
graviton’s mass are summarised in Table I. Combining
these results we conclude that the upper bound on the
graviton mass is

mLow Spin

g ≤ 1.305× 10−54g , (30)

mHigh Spin

g ≤ 2.996× 10−54g . (31)

To finalise our analysis we would like to mention first
that including the second non-GR parameter δΨ−4 does
change the posterior of the first (the dominant) one δΨ2

due to their mutual correlation. This can be seen directly
from the figures 2 and 3. Second, the graviton mass up-
per bound derived from δΨ−4 posterior is of four orders
of magnitude larger, as compared to the upper bound
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derived from δΨ2. This is likely due to relatively weak
contribution of the non-GR term δΨ−4 to the waveform
phase. Such a weak contribution is also largely contam-
inated with noise and, as a result, has less constraining
power as compared to the first non-GR term.

V. CONCLUSION

The upper bound estimates on the graviton mass found
here [(30) and (31)] are of the same order of magnitude
as the previously reported value mg ≤ 1.70×10−54g [27].
The main goal of this work was to include the subleading-
order term in the dispersion relation expansion of massive
graviton into GW’s waveform phase. This term alone
gives a few orders of magnitude (mg ∼ 10−50g) larger
upper bound estimate than the leading one. This is ex-
pected due to relatively weak contribution of the non-GR
term δΨ−4 to the waveform phase. Yet, the inclusion of
this term does affect the leading non-GR term poste-
rior due to their mutual correlation. Moreover, one is
motivated to explore the phenomenological model of the
massive graviton in detail, by considering the sub-leading
dispersion terms as well. This is the approach we devel-
oped and explored in this work. We expect that with
the advert of more sensitive future techniques more ac-
curate estimates on the subleading non-GR term(s) can

be derived. The formalism presented here can naturally
be extended by taking into account background space-
time curvature, that allows to include cosmological mod-
els and test the massive graviton model on other GW
events from remote sources which we plan to consider
in our future research. Finally, we would like to mention
that the posteriors of the non-GR parameters confirm va-
lidity of GR, yet one may naturally expect its extension
with new gravity models which encompass GR at certain
gravity scale.
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