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ABSTRACT
The next generation of detectors will detect gravitational waves from binary neutron stars at cosmological distances,
for which around a thousand electromagnetic follow-ups may be observed per year. So far, most work devoted to
the expected cosmological impact of these standard sirens employed them only as distance indicators. Only recently
their use as tracers of clustering, similar to what already proposed for supernovae, has been studied. Focusing on the
expected specifications of the Einstein Telescope (ET), we forecast here the performance on cosmological parameters
of future standard sirens as both distance and density indicators, with emphasis on the linear perturbation growth
index and on spatial curvature. We improve upon previous studies in a number of ways: a more detailed analysis of
available telescope time, the inclusion of more cosmological and nuisance parameters, the Alcock-Paczynski correction,
the use of sirens also as both velocity and density tracers, and a more accurate estimation of the distance posterior.
We find that the analysis of the clustering of sirens improves the constraints on H0 by 30% and on Ωk0 by over an
order of magnitude, with respect to their use merely as distance indicators. With 5 years of joint ET and Rubin
Observatory follow-ups we could reach precision of 0.1 km/s/Mpc in H0 and 0.02 in Ωk0 using only data in the range
0 < z < 0.5. We also find that the use of sirens as tracers of density, and not only velocity, yields good improvements
on the growth of structure constraints.

Key words: cosmological parameters – large-scale structure of Universe – cosmology: observations – methods: data
analysis – techniques: radial velocities

1 INTRODUCTION

Since the breakthrough of gravitational wave (GW) astron-
omy with the first direct detection in 2015 (Abbott et al.
2016) by the LIGO/Virgo collaboration (LVC) (Aasi et al.
2015; Acernese et al. 2015), several events have been reported.
The total number is changing fast, and currently approaches
one hundred detections (Abbott et al. 2019, 2021b,c). Among
those, of special importance was the binary neutron star
(BNS) GW170817 (Abbott et al. 2017a), which was accompa-
nied by an electromagnetic (EM) counterpart (Abbott et al.
2017d). This breakthrough multimessenger observation pro-
vided a precise determination of the GWs redshift, allowing
its use for the first time as standard siren, and in particular
to measure the Hubble constant H0 independently (Abbott
et al. 2017b).
However, the constraint on the luminosity distance dL of

the single event GW170817 translates into a large uncer-
tainty on H0. Better constraints will be achieved with ad-

ditional GW detections, but only one additional EM coun-
terpart candidate has been reported so far, to wit for the bi-
nary black hole (BBH) coalescence GW190521 (Abbott et al.
2021b; Graham et al. 2020), and moreover this association
is still uncertain (Ashton et al. 2021; Bustillo et al. 2021).
Though this slightly improves the error on H0 (Mukherjee
et al. 2020; Chen et al. 2022; Bustillo et al. 2021), the latter
remains much larger than the one obtained indirectly with
the cosmological microwave background (CMB) (Aghanim
et al. 2020) or clustering (Philcox et al. 2020), or directly
with Cepheids (Riess et al. 2021) measurements and the Tip
of the Red Giant Branch methods (Freedman et al. 2019).

The need for strong and independent constraints on H0
nevertheless cannot be overestimated. As well-known, the
long standing discrepancy between some (mostly low-z) es-
timates of H0 and other (mostly high-z) estimates, did not
disappear, and in fact intensified, with more and more precise
measurements (for a recent review, see Abdalla et al. 2022).
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This tension might well be the first indication of a failure
of the standard cosmological model, and deserves the most
intense scrutiny. Moreover, with future upgrades and observ-
ing runs of the LVC instruments there are great expectations
that standard sirens might clarify the H0 conundrum.
Other methods to measure cosmological parameters with

GWs have been proposed which preclude the need of an elec-
tromagnetic counterpart (Abbott et al. 2021a). For instance,
one can use the existence of sharp features in the mass dis-
tribution of BBHs such as a characteristic mass scale or a
mass-gap (Chernoff & Finn 1993; Taylor et al. 2012; Farr
et al. 2019; Leyde et al. 2022; Ezquiaga & Holz 2022), corre-
late GW measurements with catalogues of galaxies in order
to constrain the GW redshifts (Schutz 1986; Del Pozzo 2012;
Chen et al. 2018), or if thousands of BBHs are available, one
can rely also purely on the redshift distribution of sources in
order to constrain cosmology (Leandro et al. 2022). But it
is still unclear how competitive these methods will be in the
future when compared to using BNS mergers, and we will not
consider these possibilities in this work.
In the next decade, third generation GW detectors, such as

the Einstein Telescope (ET) (Hild et al. 2011; Punturo et al.
2010; Ballmer & Mandic 2015) and Cosmic Explorer (CE)
(Abbott et al. 2017c; Reitze et al. 2019), will detect BNS
mergers at high redshifts and most BBH coalescences in the
Universe with total massesM ∼ 2−2000M� (Maggiore et al.
2020). This will greatly increase the number of candidates for
multimessenger observations, allowing us to perform precise
measurement of cosmological parameters.
Traditionally, standard candles such as type Ia super-

novae (SN) and standard sirens have been primarily consid-
ered as tools to build a Hubble-Lemaître diagram, and thus
to constrain the background expansion of the universe. More
recently, it has been realized that standard candles can also
be powerful tools to measure cosmological perturbation pa-
rameters, which model the amount of structure in the uni-
verse and its growth. For higher redshift sources, Quartin
et al. (2014) showed that the non-Gaussianities in the Hub-
ble diagram residuals introduced by weak-lensing can yield
precise constraints with the upcoming LSST survey. For low
and intermediate redshifts, Gordon et al. (2007) proposed
instead the measurements of the correlations between the su-
pernova Hubble residual points as a probe of the peculiar
velocity field. Both techniques have since been refined (John-
son et al. 2014; Macaulay et al. 2017; Howlett et al. 2017),
and low-precision constraints from real data already been es-
tablished (Castro et al. 2016; Qin et al. 2019; Macaulay et al.
2020).
Since the energy in EM waves obeys the inverse-square

law but GW amplitudes decay instead with a single power
of the distance, in relative terms it is simpler to detect high-
redshift BNS GWs than to observe their EM counter-parts. It
is thus expected that standard sirens observed with the help
of third-generation GW facilities will have higher complete-
ness at lower redshifts. This is precisely the range in which
peculiar velocity effects are more relevant, and therefore in
this work we will neglect lensing and instead focus on the
peculiar velocity measurements made possible by this next
generation of GW observatories.
Palmese & Kim (2021) made the first forecasts for this sci-

ence case. In this work we will revisit this idea improving it
in a number of ways. In particular, we will: (i) make more

detailed estimates of the amount of telescope time it takes to
perform the EM follow-ups with different current and upcom-
ing telescopes following Chen et al. (2021); (ii) investigate the
benefits of the 6× 2pt method recently proposed by Quartin
et al. (2022), which makes use of the standard sirens as both
velocity and density tracers; (iii) include a larger number of
cosmological and nuisance parameters to account for both
linear bias and non-linear redshift-space distortions (RSD);
(iv) include the Alcock-Paczynski (AP) corrections (Alcock
& Paczynski 1979); (v) make joint forecasts for clustering
and traditional distance measurements; (vi) perform a more
accurate determination of the distance posterior by adopting
the analytical expressions in Chassande-Mottin et al. (2019).
As discussed in Torres-Orjuela et al. (2019, 2021), the ana-

logue of the “beaming effect” for GWs, due to the peculiar
velocity of the source relative to the observer, affects the re-
sponse the response of the detector to the + and × polar-
izations in different manners and in addition leads to a mix-
ing between the harmonics of the GW signal. This translates
into a phase shift, which would potentially be detectable and
would allow to break the degeneracy between source-frame
mass and redshift and to measure the peculiar velocity of
the source. However, for low peculiar velocities and nearly
equal mass ratio systems as we are interested here, this effect
should be subdominant and we will therefore neglect it in
what follows.
This paper is divided as follows. In Section 2 we discuss the

construction of our simulated GW catalogs. This is followed
by calculations of the required amount of telescope time in
order to perform the EM follow-ups, in Section 3. The fi-
nal cosmological forecasts are presented in Section 4, and the
conclusions are discussed in Section 5. Details on the dis-
tance posterior approximations, on the effect of simultaneous
BNS mergers, and on how the results depend on the distance
uncertainties are covered in three appendices.

2 GRAVITATIONAL WAVE OBSERVATIONS

2.1 Catalogue generation

In this work we will focus on GWs observations accompanied
with EM counterparts, that is called “bright sirens”. For sim-
plicity, we will consider that the bright sirens are generated
only by the BNS mergers, ignoring the contribution of NS-BH
binaries since the estimate of its merger rate is much lower
than that found for BNS (Abbott et al. 2021d). In order to
construct a mock catalog of the BNS mergers observed by
ET, we first assume that the BNS merger population is dis-
tributed within the cosmological volume through the redshift
distribution p (z) that is written as a function of the merger
rate per redshift, in the observer frameR (z) (≡ dN

dtobsdz
, i.e. is

the number of mergers per redshift and observer-frame time):

p (z) = AR (z) = A
dVc
dz
Rm (z)
1 + z

, (1)

where A is a normalization constant ensuring that the inte-
gration of p (z) goes to unity over 0 < z < zmax, dV/dz is
the comoving volume element, and Rm (z) is the merger rate
per comoving volume in the source frame. We assume that
Rm follow the Madau-Dickinson star formation rate (Madau
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& Dickinson 2014):

Rm (z) = R0
1.00257(1 + z)2.7

(1 + (1 + z/2.9)5.6 , (2)

with a local volumetric rate of R0 = 300 Gpc−3yr−1, that
agrees with the latest results of the LVC (Abbott et al.
2021d).1 To reduce computational time, we truncate the vol-
ume integral at z = 5, which is enough to cover the ET
detection range as we will show.
We draw NS masses m1 and m2 from a Gaussian

distribution with mean 1.4 M� and standard deviation
0.2 M�, restricted to the range 1–3 M�, which is in
agreement with the limit inferred by the third observ-
ing run of LIGO–Virgo (see section V.B of Abbott et al.
2021d). Due to propagation in a Universe described by
the Friedmann–Lemaître–Robertson–Walker metric, the ob-
served masses in the detector frame are redshifted relative to
the source-frame ones:m1,2 → m1,2(1+z). We recall that the
chirp mass is defined asM = (m3

1m
3
2/(m1 +m2))1/5, this is

the parameter that drives the evolution of the binary at lead-
ing post-Newtonian order (Blanchet 2014). It is redshifted in
the same way as the individual masses. Spins are isotropically
oriented with magnitudes ≤ 0.05 and tidal deformabilites are
distributed according to a uniform distribution U(0, 5000).
The events are assumed to be isotropically distributed and
randomly oriented. Finally, the coalescence phase (ϕc) and
the polarization angle (ψ) are both distributed according to
a uniform distribution U(0, 2π).
The total number of BNS mergers N can be simply com-

puted using the definition N = ∆obstobsRmax, where Rmax =´ zmax
0 R (z) dz, ∆obs is the duty cycle, and tobs is the obser-
vation time. Assuming the flat ΛCDM model with Ωm0 = 0.3
and H0 ≡ 100h km/s/Mpc = 70 km/s/Mpc as our fiducial
cosmological model, we find that the total number of BNS
mergers is N ≈ 8 × 105 per year of observation, assuming
∆obs = 0.8 for the ET (Belgacem et al. 2019).

2.2 Detection

Here we will consider the prospects for detecting BNS merg-
ers with third generation GW detectors, which are expected
to take over Advanced Virgo in the 2030’s. We will use the
Europe-based ET specifications as our baseline third gener-
ation configuration, but similar results are expected for the
USA-based CE. Both the number of events and the GW pa-
rameter estimation could be further improved by combining
both detectors, or a combination of second and third gener-
ation facilities, but we will conservatively focus only on ET
forecasts here.
ET consists of three Michelson interferometers arranged

in a triangular shape, with 10-km-long arms and 60◦ open-
ing angle, and can be seen as a combination of three noise-
uncorrelated detectors. ET is sensitive to GWs in the 1− 104

Hz band, with a level of noise an order of magnitude lower
than current detectors. This improvement will be achieved
thanks to the longer arms, but also to the use of cryogenic

1 This merger rate is however still poorly constrained if one ac-
counts for model systematics. Its 95% confidence interval is very
broad: 10− 1700 Gpc−3 yr−1.

technologies to reduce thermal noise and quantum technol-
ogy to reduce the high-frequency quantum shot noise. As a
result, ET will observe BNS mergers for much longer, up to
tens of hours, improving on the parameter estimation. More-
over, combining the three noise-uncorrelated detectors will
allow us to triangularise the signal, providing an accurate
sky localization (Mills et al. 2018; Chan et al. 2018).
For each BNS merger in our mock catalogue, we simulate

its GW signal using the frequency domain approximant IM-
RPhenomPv2 (Dietrich et al. 2017), which includes a 5PN
modification to the phase due to tidal effects (Damour 1984;
Flanagan & Hinderer 2008; Wade et al. 2014). The signal
in each ET detector is given by a combination of the two
GW polarisations, weighted by the antenna pattern functions
(Schutz & Tinto 1987; Tinto 1987):

hi = F+
i h+ + F×i h×. (3)

The expressions for F+,×
i can be found in Regimbau et al.

(2012). The total network signal-to-noise-ratio (SNR) is de-
fined as

ρnet =

[
3∑
i=1

ρ2
i

]1/2

, (4)

where

ρ2
i = 4

ˆ ∞
0

|hi (f)|2

Sn (f) df (5)

is the SNR in the i-th ET detector. The power spectral den-
sity, Sn(f), measures the level of noise (assumed to be sta-
tionary and Gaussian) in the detector at each frequency. We
consider an event to be detectable if ρnet ≥ 12. We compute
SNRs using the Bilby package (Ashton et al. 2019).

2.3 Parameter estimation

The parameters of a source are estimated using Bayes’ theo-
rem to obtain their posterior distribution from observed data.
For our analysis, we are mostly interested in the accuracy of
the sky localization for each event, in order to determine if
there should be an EM follow-up, as well as the measurement
error on the luminosity distance, which will be combined with
EM measurement of redshift to infer cosmological parame-
ters. Therefore, instead of performing computationally ex-
pensive Bayesian analyses, we use the analytic approach of
Cutler & Flanagan (1994); Chassande-Mottin et al. (2019)
to estimate the error on dL. Assuming the sky localization is
known from an EM counterpart and that intrinsic parame-
ters (masses and spins) are not strongly correlated with in-
clination and distance, it provides the posterior distribution
for the latter marginalised over polarization and phase. As
illustrated in Chassande-Mottin et al. (2019), this is a very
good approximation in most cases, except for very few events
where the GW polarization becomes degenerate. These ex-
pressions are very convenient to perform forecasts, while at
the same time being more accurate than simpler fits which
relied exclusively on the relative distance errors of a given
GW event (Zhao et al. 2011). In Appendix A we review BNS
distance estimations and illustrate the performance of these
expressions for the case of the ET.
Moreover, the observation of an EM counterpart provides

an additional constraint on the inclination angle, which helps
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4 Alfradique, Quartin, Amendola, Castro & Toubiana

to break the typical degeneracy with the luminosity distance,
reducing in turn the uncertainty on dL (Dhawan et al. 2019).
Therefore, we consider a scenario where this information is in-
corporated via a Gaussian prior on the inclination. The Gaus-
sian is centred at the true value and with a standard devia-
tion of 10◦ (Dhawan et al. 2019). As for the sky localization,
we assume ∆Ω ∝ 1/ρ2

net, using the full Bayesian results for
observations of BNSs with LIGO/Virgo network (Del Pozzo
et al. 2018) to calibrate the proportionality constant. Since
triangularisation can be performed using the three ET detec-
tors, we expect such a scaling with the SNR should hold.

2.4 Comparisons between kilo and supernovae
distances

It is interesting to compare the capabilities of both super-
novae (SN) and kilonovae as standard candles. The former
has a much higher expected rate, to wit rIa = 21000 (1 +
z)1.95/(yr Gpc3) (Cappellaro et al. 2015; Amendola & Quar-
tin 2021). On the other hand, by themselves SN cannot mea-
sure H0 due to their unknown absolute magnitudes MB , and
instead rely on calibration methods with external data such
as Cepheids. Moreover, SN surveys indicate the presence of
an intrinsic scatter which in the best cases, with infrared ob-
servations, is around 0.1mag (Avelino et al. 2019). KN on the
other hand, as far as currently known, have precision limited
only by the GW SNR. This means that as GW detectors im-
prove, we should find some high SNR events with distances
which are more precise than those of SN. Moreover, both the
large number of already identified possible sources of system-
atic effects on SN (see, e.g., Howell 2011) and in general the
empirical nature of the SN light-curve fitting mean that it
will be difficult to keep systematic effects subdominant in
upcoming SN data.
In Section 4 below we make quantitative comparisons be-

tween KN and SN as cosmological probes when combining
GW and EM measurements, under the assumption of no rel-
evant systematic sources of uncertainties in either one.

3 ELECTROMAGNETIC OBSERVATIONS

BNS coalescences are expected to originate various types of
EM counterparts across the spectrum. The most promising
counterparts for obtaining redshifts for the number of BNS
mergers expected to be detected by the ET are the kilono-
vae (KN). These are optical/near-IR emissions caused by the
decay of heavy ions via the r-process, which occurs in the
mass ejecta of the BNS merger (Li & Paczynski 1998; Met-
zger et al. 2010; Barnes & Kasen 2013). This emission can
be viewed up to days-weeks after their production. Besides
the optical/near-IR radiation, the ejected KN can still inter-
act with the interstellar medium, producing a forward shock
that emits radiation in the radio waveband. Another expected
counterpart are gamma ray bursts (GRBs). However, those
emissions are highly beamed along the binary’s orbital axis.
As discussed in Chen et al. (2021), this high collimation to-
gether with the typical brightness of these GRBs mean that
the observable number of these multimessenger events are
considerably smaller than those involving the kilonovae. We
will therefore for simplicity only consider the latter in this
work.

Current and forthcoming wide-field telescopes, such as the
Rubin Observatory (Rubin)2, Wide Field Survey Telescope
(WFST)3, Multi-channel Photometric Survey Telescope
(Mephisto)4 and the Zwicky Transient Factory (ZTF) (Masci
et al. 2019)5, will be able to detect a considerable fraction of
kilonovae counterparts to BNS events which are well localised
by the ET and/or CE. Since these GW detections are still
more than a decade away, other telescopes and cameras may
still come online in the meantime.
In our analysis we will start by comparing the capabilities

of all four telescopes: Rubin, WFST, Mephisto and ZTF. Us-
ing the published sensitivities of each one, we compute the
required exposure time making use of the power-law fits de-
rived in Zhu et al. (2021) in order to use a fixed amount of
the total available telescope time. This calculation follows the
one performed for the case of Rubin by Chen et al. (2021).
Fixing a priori a fraction of telescope time dedicated to BNS
GW follow-up allows a better comparison of all four facili-
ties. Moreover, Rubin scans mostly the southern hemisphere
whereas the other telescopes cover the northern region, so
their data will complement Rubin’s. We quote results for two
different fraction of telescope time (Ftime) needed to observe
all the events. To wit, we assume either Ftime = 10% or 50%,
with the latter being our baseline case. Although dedicating
up to half of all usable telescope time for kilonova follow-ups
may sound excessive, the third generation of GW detectors
here considered are not expected to come online before the
second half of the 2030s, therefore after the completion of the
original proposed surveys for these instruments.
For each scenario, following Chen et al. (2021) we select

events with sky localization ∆Ω . 20 deg2 to ensure a small
number of pointings needed to identify that event in the sky.
We also make the conservative simplifying assumption that
the average number of pointings p for these events will be
given by

p = 40 deg2

FoV , (6)

where FoV is the telescope effective field of view in squared
degrees. The FoV values for each telescope used here are
shown in Table 2. We also assume that the observable sky
area for all four telescopes are equal in size, and that the
fraction fobs of events followed-up is given in all cases by
fobs = 0.4. Although the observable sky area in each night
is larger than this for all four telescopes, this lower number
is supposed to already take into account unfavorable mete-
orological conditions and instrument downtime. We remark
that this is a conservative choice, and that other authors as-
sume a more aggressive choice of p = ∆Ω/FoV (McGee et al.
2020). Nevertheless this also takes into account the fact that
the GW search area may be elongated which leads to wasted
area in the borders of the FoV.
Finally, we consider two changes to the analysis of Chen

et al. (2021): (i) we do not adopt a sharp cutoff in the detec-
tion horizon dL,lim, and instead consider the full extension of
the efficiency curve without ignoring its smooth tail; (ii) for
each efficiency curve we propose that the exposure time is

2 https://www.lsst.org/
3 https://wfst.ustc.edu.cn/
4 http://www.mephisto.ynu.edu.cn/site/
5 https://www.ztf.caltech.edu/
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Figure 1. Kilonova efficiency ε as a function of dL for the tele-
scopes used in this work (Rubin, WFST, Mephisto and ZTF), and
two exposure time: texp. = 300 s (solid curve) and texp. = 600 s
(dashed curve).

adjusted so that less time is spent in closer events, which are
brighter and easier to spot. One can thus maximize the num-
ber and distance of observable kilonovae while maintaining
maximum completeness for the closer events. This advanced
strategy will be better described in the next subsection.
For the kilonovae program, we use the results presented

in Zhu et al. (2021). They assume that all the simulated
kilonovae are AT2017gfo-like, adopt a total ejecta mass of
Mej = 0.04M�, a half-opening angle equal to Φ = 60◦, and
ignore the viewing-angle dependence. In our program, we as-
sume that the electromagnetic counterparts will be identified
by three epochs of observations in two filters (gr, that are
typically used by the surveys we consider). Although other
filters will be available that could be added to the analysis,
we choose not to include them since the information added
on the magnitudes PDFs would not compensate the increase
of the observation time for the identification of the kilonova.
The KN efficiency curves were found using the PDFs for the
apparent magnitude and the absolute magnitude presented
in Zhu et al. (2021). For each band we convolve these PDFs
to find the PDF Pµ of distance modulus µ, and then find the
luminosity distance PDF PdL :

Pµ ≡ Pmapp ⊗ P(−mabs) , (7)

PdL = 5
(dL/pc) ln 10Pµ . (8)

The kilonova detectability will basically depend on the fil-
ter selection and the survey sensitivity that is characterized
through the limiting magnitude. All the limiting magnitude
values were calculated using their relation to the exposure
time presented in Table 2 of Zhu et al. (2021). The KN effi-
ciency curves are shown in Figure 1.
Our simulations predict 5498 BNS merger detections

(events with ρnet ≥ 12) per year with ET. This number rep-
resents only ∼ 1% of our whole mock catalog (z ≤ 5). Af-
ter imposing the cutoff for detection of an EM counterpart,
this number is reduced according to the kilonova observation
scenario (as will be shown below in Tables 2 and 3). As an
example, in Figure 2 we show the distribution of event pa-

rameters before and after imposing GW and EM selection
cuts in a given scenario. The GW selection curves show that
the detections occur in a reduced redshift range, as expected,
selecting sources up to zlim ∼ 1.06; this value shows that
the choice of zmax = 5 as the threshold of the BNS GW
distribution is enough to ensure that all relevant events are
considered. This selection effect also impact the distribution
of Mz, that prefers events with low redshifted chirp mass.
The distribution of ρnet for all injections has a mean equal to
≈ 2.7, and we can see that most of the events are distributed
in ρnet < 10 which explain the computed low fraction of BNS
GW which are detected.

3.1 Exposure time as a function of luminosity
distance

BNS coalescences that are closer to us require shorter ex-
posure times to have their electromagnetic counterpart de-
tected, when compared to similar events at larger distances.
This implies that the dedicated exposure time should be a
function that grows with the luminosity distance. Often, how-
ever, a simplified analysis disregards this fact by considering
that the exposure time is constant for all kilonovae, regard-
less of their distances (e.g. Chen et al. 2021). Here we will
propose instead that since BNS GW events themselves al-
ready constrain the luminosity distance, dedicated follow-up
programs could use this information to adjust exposure times
to be a function of the luminosity distance.
A simple estimation indicates that to maintain a constant

signal-to-noise ratio, the exposure time should be propor-
tional to d4

L. The reason is that the flux (i.e. the signal)
decreases with the square of the distance, and that the in-
strumental noise decreases roughly with the inverse square
root of the exposure time. In practice, instrumental noise
may not follow exactly this simple rule, but in any case the
limiting magnitude of a given telescope as a function of ex-
posure time is well understood. For the four telescopes here
considered, Zhu et al. (2021) approximates the limiting mag-
nitude in different bands as a power law of the exposure time.
Making use of this we adjusted iteratively the exposure time
in order to stretch the efficiency curves of the instruments
to the maximum possible distance dmax

L , defined as the lumi-
nosity distance where the detection efficiency is larger than
99%. This guarantees that basically all kilonovae up to that
distance will be detected.
We then fit a power law in the form:

texp = a

(
dL

400 Mpc

)n
, (9)

where the constants {a, n} provide the best fit to the data.
Figure 3 illustrates the result, showing that in all cases a
power law is a very good fit. Clearly a power-law exposure
time program is problematic when the distances involved are
too low or too high. When dL is too low, the total telescope
time becomes dominated by the slewing time when changing
pointings. For very far away sources, on the other hand, the
time to be spent on a single object becomes prohibitive, not
to mention the inherent challenges of performing very long
exposures in astronomy. We therefore set a minimum and
maximum exposure times: the former is fixed to be 30s, a
standard exposure time in surveys, while the latter is set by

MNRAS 000, 1–14 (0000)



6 Alfradique, Quartin, Amendola, Castro & Toubiana

Figure 2. Distribution of a subset of GW parameters from our original catalog (blue curves) and after the GWs selection criteria adopted
(ρnet ≥ 12 - beige curves) and EM counterpart selection considering Ftime = 0.5 for the Rubin survey (see Table 3 - olive green curves).
HereMz is the redshifted chirp mass defined asMz = (1 + z)M.

Rubin

WFST

Mephisto

ZTF

200 500 1000 2000

30

100
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3000

dL (Mpc)

t e
xp

(s
)

Figure 3. Required telescope exposure time texp as a function of
the minimum luminosity distance with 99% telescope efficiency for
the surveys here considered. The data are well fitted by power-laws
with exponents not too different from the naive expectation of 4
[see text]. We assume a minimum texp of 30s.

the allocated fraction of yearly telescope time. We then have

texp
(
dL, t

max
exp
)

=

{ 30 s, adnL < 30 s
adnL, 30 s < adnL < tmax

exp
tmax
exp , adnL > tmax

exp

(10)

where tmax
exp is the maximum exposure time.

Table 1 presents the values of {a, n} that represent the
best fit for each of the surveys. The exponents n are not too
far from the value 4, the simple expectation discussed above
which assumes the limiting magnitudes scale as 1/

√
texp.

As expected, we find that adjusting the follow-up exposure
time using the distance estimate from GW observations al-
lows the telescope to spend less time in finding nearby (and
brighter) events and longer times in those farther away. The
total observing time tsource required per source was computed
using:

tsource = p texpNepochsNfilters + 120s , (11)

where texp is the exposure time, Nepochs is the number of
epochs, which we assume to be 3, Nfilters is the required num-
ber of filters, which we assume to be 2 and p is calculated
by equation (6). The last term is a two minutes overhead re-

Telescope a(s) n

Rubin 1.4 4.6
WFST 45 4.7

Mephisto 78 3.2
ZTF 5000 4.4

Table 1. The optimized exposure time parameters of Eq. (9) for
the different telescopes considered in this work.

Telescope FoV fobs scenario NSS/yr Ftime

Rubin 9.6 0.4 texp = 300s 1194 0.66
texp ∝ d4.5

L 0.47

WFST 6.6 0.4 texp = 300s 307 0.26
texp ∝ d4.7

L 0.20

Mephisto 3.1 0.4 texp = 300s 298 0.54
texp ∝ d3.2

L 0.46

ZTF 47 0.4 texp = 300s 11 0.0015
texp ∝ d4.4

L 0.0012

Table 2. Comparison of different wide field telescope properties
and of different exposure time strategies. FoV is the field of view
in squared degrees, fobs is the assumed fraction of the sky that
observed, NSS/yr is the number of gravitational waves that will
have their counterparts observed per year, and Ftime is the fraction
of telescope time needed to observe all the events. As can be seen,
adjusting the exposure time to be a power of the estimated distance
decreases the needed amount of survey time.

quired for slewing and for filter changes, following Chen et al.
(2021). Table 2 compares a scenario in which fixed 300s ex-
posure times are used with our proposal, fixing the maximum
exposure in each case to ensure the observation of the same
amount of kilonovae. We assume that all surveys will have a
total of 3600 hours available per year. In all cases, the same
number of events are observed while consuming in between 20
and 30% less telescope time. In what follows we will therefore
assume the observational program described in Eq. (10).
With the observational method established, the next inter-

esting forecast is on the total number of expected observed
events for a fixed fraction of the total telescope time available
each year. We compare two cases: using 10% and 50% of each
telescope time. Table 3 shows the results. Clearly Rubin is the
performance winner. Nevertheless, the other telescopes com-
bined are still able to observe a good amount of events, albeit
at lower redshifts. Since they cover the northern hemisphere
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Telescope tmax
exp (s) zmax f20 deg2 fobs NSS/yr Ftime

Rubin 90 0.49 0.89 0.4 819 0.1
WFST 200 0.27 0.94 0.4 244 0.1
ZTF 3200 0.17 0.98 0.4 78 0.1

Mephisto 140 0.23 0.96 0.4 157 0.1
Rubin 315 0.61 0.86 0.4 1196 0.5
WFST 550 0.34 0.92 0.4 404 0.5
ZTF 8500 0.22 0.96 0.4 152 0.5

Mephisto 320 0.30 0.93 0.4 306 0.5

Table 3. Similar to Table 2 but for the same fixed fractions of
survey time. Here f20deg2 is the fraction of GW sources that have
localization area < 20 deg2, and tmax

exp is the maximum exposure
time.

it shows that they may perform an interesting complemen-
tary follow-up to Rubin in this hemisphere.
Dedicating a large fraction of telescope time to observe

transients such as kilonovae with long expositions may lead
to some events being lost due to their overlap in the time
domain. In Appendix B we investigate this and show that
with the possible exception of ZTF, in all other cases this
would be a negligible effect.

4 COSMOLOGICAL FORECASTS

In this section we will discuss the advantages of using KN
measurements as tracers of both density and velocity fields,
besides only as distance indicators. Since EM counterparts
from BNS are expected mostly in z ≤ 0.5, as can be seen in
Figure 2, we will split our forecasts in lower redshift (z ≤ 0.5)
and intermediate/high redshifts (z ≥ 0.5). This is a simple yet
useful separation in light of the recent framing of the Hubble
tension as a tension between lower and higher redshifts (see
e.g. the review Abdalla et al. 2022). We will assume as our
baseline survey a 5-year observational run of the ET and the
follow-up facilities.
We use the symbols g for galaxies and c for standard can-

dles in general. When we need to specify which standard
candle we will use s for supernovae and k for kilonovae (as-
sumed to be measured jointly with the associated GW). From
standard sirens we extract directly the luminosity distance
dL(zt). The observed redshift is the sum of a cosmological
redshift z̄ plus a small redshift induced by peculiar velocity:
1 + zt = (1 + z̄)(1 + zp) → zt = z̄ + (1 + z̄)zp, with vc = zp.
Then we can write

dL(zobs) ≈ dL(z̄) + ddL
dz (1 + z̄)vc , (12)

where z̄ is the cosmological redshift. Therefore

vc = ∆dL
dL

1
d log dL/d log(1 + z) . (13)

As stated above, we will neglect the specificities of the beam-
ing effect for GWs discussed in (Torres-Orjuela et al. 2019,
2021) and model the velocity effects like that on photons. In
the CMB rest frame (i.e. neglecting our own peculiar veloc-
ity) we have that (Hui & Greene 2006; Davis et al. 2011)

dL(zobs) ≈ dL(z̄)(1− 2vc) + ddL
dz (1 + z̄)vc , (14)

which leads to

vc = ∆dL
dL

[
d log dL

d log(1 + z) − 2
]−1

. (15)

The statistical uncertainty in the velocity field is thus (Amen-
dola & Quartin 2021):

σ2
v,eff≡

[
∆dL
dL

]2[
2− d log dL

d log(1 + z)

]−2

+
σ2
v,nonlin

c2
. (16)

Since we assume for our fiducial case Ωk0 = 0, we can write
d log dL/d log(1 + z) = 1 + (1 + z)2/[dLH(z)].
We have therefore three random fields: vc, δg and δc. We

use subscripts v, g, s to refer to the three fields, respectively.
These give rise to six linear auto- and cross-power spec-
tra (Quartin et al. 2022)

Pgg(k, µ, z)= Υ
[
1 + βgµ

2]2 b2g S2
g D

2
+Pmm(k) + 1

ng
, (17)

Pcc(k, µ, z)= Υ
[
1 + βcµ

2]2 b2c S2
c D

2
+Pmm(k) + 1

nc
, (18)

Pgc(k, µ, z)= Υ
[
1 + βgµ

2][1 + βcµ
2] bg bc Sg Sc D

2
+Pmm(k)

+ ngs

ngnc
, (19)

Pgv(k, µ, z)=Υ Hµ

k(1 + z)
[
1 + βgµ

2]bgSgSvfD
2
+Pmm(k), (20)

Pcv(k, µ, z)=Υ Hµ

k(1 + z)
[
1 + βcµ

2]bcScSv fD
2
+Pmm(k), (21)

Pvv(k, µ, z)= Υ
[

Hµ

k(1 + z)

]2

S2
v f

2 D2
+Pmm(k) +

σ2
v,eff

nc
, (22)

where Υ ≡ (Hd2
L,r)/(Hrd2

L), βi ≡ f/bi, µ ≡ k̂·r̂, with i = g, c,
Sg,c,v are damping terms, D+ is the growth function, ng,c are
the densities of galaxies and sirens, ngc is the fraction of sirens
in galaxies belonging to the survey (here assumed to vanish
for simplicity), and Pmm is the matter power spectrum at
z = 0. We also take into account the fact that the values
of k and µ depend on the cosmological model (the Alcock-
Paczynski effect) through H and dL (for more details, see
Amendola & Quartin 2021). As in Quartin et al. (2022), the
smoothing factors are modeled as

Sg,c,v = exp
[
−1

4(kµσg,c,v)2
]
, (23)

with fiducial values chosen as σg = σc = 4.24 Mpc/h and
σv = 8.5 Mpc/h (see Koda et al. (2014); Howlett et al. (2017);
Dam et al. (2021) for the choice of these values).
The full analysis using all six spectra for supernovae was

dubbed the 6×2pt g–s–smethod in Quartin et al. (2022). For
sirens we can instead refer to it as a 6 × 2pt g–k–k method,
but we will often refer to it as simply 6× 2pt for short. Like-
wise, using sirens only as velocity but not density tracers (i.e.,
dropping the Pcc, Pgc and Pcv terms), we have a 3× 2pt g–k
method (or simply 3× 2pt for short). Finally, using only Pgg
consists of a traditional full shape galaxy power spectrum
approach.
For the sirens, the distance error estimates were obtained

with the method discussed in Section 2.3, both including or
not EM information on the BNS orbit inclination (through
the addition of a prior). For supernovae, which we will also
employ to forecast performance as distance estimators for
comparison, we assume distances are measured with mag-
nitude uncertainties given by the sum in quadrature of the
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8 Alfradique, Quartin, Amendola, Castro & Toubiana

intrinsic scatter σint = 0.13 mag with the lensing-induced
scatter of σlens = 0.052z (Quartin et al. 2014). For the num-
ber of events for lower redshifts we follow Quartin et al. (2022)
assuming 15% SN completeness, for a total of 239k SN. For
higher redshifts we use the expected number of SN with the
Nancy Grace Roman Space Telescope as computed by Rose
et al. (2021). Finally, for the CMB we quote the results found
in Quartin et al. (2022), which comes from a combination of
Planck 2018 TTTEEE (Aghanim et al. 2020) without lens-
ing and an analysis on σ8 and γ performed by Mantz et al.
(2015).
For galaxies, we produce two different forecasts. For z ≤

0.5 we use the predicted values for the DESI Bright Galaxy
Survey presented in Aghamousa et al. (2016), which has an
expected linear bias of bg = 1.34/D+(z). Converting their
numbers to volumetric density, we find ng = {38.50, 17.63,
6.439, 1.937, 0.3571} 10−3(h/Mpc)3 in the z bins of ∆z =
0.1 centered on {0.05, 0.15, 0.25, 0.35, 0.45}, respectively.
For 0.5 < z < 1.5 we will forecast the performance of the
traditional 1×2pt using only galaxies. We will use as baseline
the DESI Emission Line Galaxy (ELG) survey, which covers
well this redshift range. The assumed linear bias in this case is
bg = 0.84/D+(z) (Aghamousa et al. 2016), and the number
densities are {0.1778, 1.099, 0.8130, 0.7940, 0.5007, 0.4384,
0.4097, 0.1532, 0.1316} 10−3(h/Mpc)3 for the bins centered
on {0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25, 1.35, 1.45}. Finally,
since the kilonova bias as density tracers has not been studied
in detail, we assume for simplicity that bk = 1.0/D+(z), and
likewise for SN.
The 6×2pt Fisher matrix (FM) for a set of parameters θα,

in a survey of volume V and for an interval ∆k of k-modes,
is (Tegmark 1997; Abramo & Amendola 2019)

Fαβ = 1
(2π)3 2πk2∆kV F̄αβ = V VkF̄αβ , (24)

where Vk = (2π)−32πk2∆k is the volume of the Fourier space
integrated over the azimuthal angle but not over the polar
angle, and where

F̄αβ = 1
2

ˆ +1

−1
dµ ∂Pab

∂θα
P−1
ad

∂Pcd
∂θβ

P−1
bc , (25)

to be evaluated at the fiducial value. The elements of the data
covariance matrix Pab, with a, b standing for g, c, v, are the six
power spectra (17)–(22). Denoting with V (z) the volume of
the z-shell, the k-cells are chosen with size ∆k = 2π/V (z)1/3

between kmin(z) and kmax. Following Garcia et al. (2020), we
take kmin = 2π/V (z)1/3.
The choice of kmax is more delicate. The amount of in-

formation grows rapidly with kmax but so do the modeling
uncertainties due to non-linear effects. Ideally, one would like
to select the highest kmax that does not introduce significant
non-linear effects: this, however, depends clearly on the cos-
mological model. In Amendola et al. (2022), the dependence
of Fisher matrix forecasts for a non-linear power spectrum
on kmax has been explored. The conclusion was that, if one
does not employ a specific cosmological model, one needs to
have independent strong prior constraints on the linear and
non-linear bias parameters to decide which kmax is safe to
use. In this paper, however, we restrict ourselves to ΛCDM
(but with a free growth index γ) and in this case the standard
choice kmax = 0.1 h/Mpc is likely to be sufficient to ensure
we remain within the linear regime. This is also a value close

to 0.08h/Mpc, which was found in retrospect to be the one
for which Fisher matrix precision calculations best matched
that of current real data analysis (Foroozan et al. 2021). Note
also that since non-linearities are stronger at lower redshifts,
one is expected to be able to reach higher kmax at higher red-
shifts (Nishimichi et al. 2009; Tomlinson & Jeong 2022), but
here we adopt a fixed value for simplicity.
The fiducial values of the parameters that are varied in the

6× 2pt Fisher matrix are

{σ8, γ, H0, Ωm0, Ωk0} = {0.83, 0.545, 70 km/s/Mpc, 0.3, 0}.
(26)

We also fix ns = 0.96 and τ = 0.066. When analysing
the combined constraints of clustering and distance meth-
ods, we simply sum the 6 × 2pt FM with the usual distance
FM for KN or SN (Amendola & Tsujikawa 2015). For KN,
the distance parameters are just the background ones, to
wit Ωm0, Ωk0, H0, while for SN we have an extra parame-
ter MB to account for their unknown absolute magnitude.
We marginalize over this when combining with the clustering
FM, but for the distance constraints alone this makes the SN
FM degenerate. So, for this case alone, instead of MB and
H0 separately we use one single parameter which accounts
for the combination MB − 5 logH0 and marginalize over it.
In practice, this can be achieved by simply fixing MB and
marginalizing over H0 (or vice-versa).
Following Quartin et al. (2022) we also employ three

global nuisance parameters to account for the non-linear RSD
(σg, σc, σv) and two bias nuisance parameters in each red-
shift bin (bzi

g and bzi
c ). We adopt a Gaussian prior with 0.5

uncertainties for Ωm0, Ωk0, and with 50% errors in all bias
and RSD damping parameters. For σ8, γ and H0 we use un-
informative priors.
Table 4 summarizes our forecasts for 5 years of observation.

All uncertainties are fully marginalized over all other param-
eters. Results are divided into three redshift ranges. For lower
redshifts, where sirens will be useful, we compare the tradi-
tional full-shape (linear) power spectrum analysis with those
of clustering combining galaxies and sirens, and with stan-
dard candle distance estimates. Additionally, we also sepa-
rate the results to include (i) the contribution of the ι prior
on the measurement of dL, and (ii) assuming the scenario
in which a second Rubin-like survey operate simultaneously
in the northern hemisphere, doubling the observed sky area
and consequently the number of galaxies and standard sirens
measured. For the former, we find that the inclusion of a 10◦
ι prior on the 6×2pt has only a very small effect. In fact, the
uncertainty on γ decreases by only 1.5%, even though such a
prior results in improvements on their distance measurements
by over 15%. In Appendix C we explore why this is the case.
Nevertheless for their use as traditional distance indicators,
such a prior does lead to important improvements, reduc-
ing uncertainties by 20–25% in each of the three background
parameters.
Due to the expected low volume density of these objects,

compared to traditional galaxy (full shape) power spectrum
measurements, the performance gains achieved when com-
bining them with density and velocity spectra measurements
from KN are only modest. Peculiar velocity from sirens re-
duce modestly uncertainties in σ8 and γ (' 5% and 16%,
respectively). The addition of sirens as density tracers fur-
ther decreases the uncertainties in γ and σ8 by almost 10%.
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1σ uncertainties in: σ8 γ H0 Ωm0 Ωk0

Low z (0 ≤ z ≤ 0.5)
DESI BGS gg 0.081 0.165 2.1 0.0095 0.171
Rubin 3× 2pt g–k 0.079 0.137 2.1 0.0094 0.168
Rubin 6× 2pt g–k–k 0.070 0.129 2.1 0.0093 0.167
Rubin 6× 2pt + ι prior 0.070 0.127 2.1 0.0093 0.166
Rubin full-sky (“FS”) 6× 2pt 0.057 0.105 1.6 0.0067 0.127
Rubin BNS distances - - 0.12 0.24 0.41
Rubin BNS dist + ι prior - - 0.097 0.18 0.31
Rubin BNS dist + 6× 2pt 0.069 0.128 0.085 0.0063 0.018
Rubin as above + ι prior 0.069 0.126 0.071 0.0062 0.015
Rubin FS BNSdist+ 6×2pt 0.056 0.104 0.060 0.0046 0.013

Table 4. Marginalized absolute forecast uncertainties in each
cosmological parameter for different instrument capabilities and
5 years of observation. The combination of clustering measure-
ments using BNS to their distances shrinks H0 uncertainties by
around 30%, and constrains curvature to within 2%. Rubin full-
sky assumes a second equivalent Rubin coverage in the north, for
a total coverage of 80% of the sky. All results assume kmax =
0.10h−1Mpc. H0 is given in units of km/s/Mpc.

Since sirens provide absolute distance indicators, they can
also measure H0 as is well known. The use of sirens sim-
ply as distance measurements results in better precision in
H0 than the 6 × 2pt method. Nevertheless, the combined
measurements of spectra and distances is able to reduce the
uncertainties in H0 by a significant 30%. Moreover, such a
combination improves the measurements on curvature by an
order of magnitude, and reaches the level of 2% in Ωk0.
Table 5 compares the performance of sirens with other

probes, in particular with those of type Ia supernovae at
the same redshift range, with supernovae and clustering at
higher redshifts, and with the CMB constraints. At interme-
diate/high redshifts as discussed before we rely on DESI ELG
forecasts for clustering, and the Roman Telescope for super-
novae. Finally, we also show the CMB constraints. As can be
seen, when combining clustering and distances, KN can out-
perform SN in H0 due to their capabilities of measuring ab-
solute distances. For the other cosmological parameters, SN
perform similarly, with their higher number densities com-
pensating for the extra degeneracies with H0. In any case it
will be very useful to have two independent distance probes
with comparable performance potential, as this will be of
great use in highlighting any possible systematics.
Figure 4 illustrates the forecasts above by showing the 1σ

and 2σ confidence regions for different parameter combina-
tions. We depict different methods: 1×2pt applied to galaxies
as matter tracers, 3×2pt, 6×2pt, the use of the siren distances
alone (the usual Hubble diagram fit), the combination of dis-
tances and 6 × 2pt and Planck TTTEEE CMB results. We
see that the influence of peculiar velocities is greater on γ and
σ8, while in the other parameters (Ωm0,Ωκ0, H0) the effect
is minimal. The same occurs when comparing the 3×2pt and
6×2pt methods, where we see a modest improvement over γ
and σ8 (the 2D figure-of-merit in the σ8 − γ plane increases
by 12%), while the other parameters have almost identical
results.
It is also interesting to note that although siren distances

alone produce highly degenerate constraints in the Ωm0−Ωk0
plane, this is distinctively different from the degeneracies on
the clustering measurements, and this high complementarity
result in very tight constraints in the background parame-

1σ uncertainties in: σ8 γ H0 Ωm0 Ωk0

Low z (0 ≤ z ≤ 0.5)
Rubin BNS distances - - 0.12 0.24 0.41
Rubin BNS dist+ 6×2pt g–k–k 0.069 0.128 0.085 0.0063 0.018
Rubin SN distances - - - 0.050 0.092
Rubin SNdist+ 6×2pt g–s–s 0.065 0.115 1.5 0.0068 0.013

Intermediate and high z (0.5≤z≤1.5)
DESI ELG gg 0.032 0.181 1.4 0.0057 0.066
Roman SN distances - - - 0.084 0.232
DESI ELG gg+Roman SN 0.031 0.181 0.98 0.0048 0.022

Last scattering surface
Planck CMB (?) 0.18 0.34 3.7 0.064 0.017

Table 5. Similar to Table 4, but comparing the performance with
BNS with SN and with probes in other redshift ranges. SN forecasts
assume a spectroscopic catalog in the same area of the sky. The
higher number densities make supernovae better probes of relative
distance and clustering, but KN are capable of measuring H0 much
better.

ters when combining both methods. This in turn leads also
to modest improvements in the perturbation forecasts from
the 6 × 2pt baseline, and to the 30% improvements in H0
from the distance-based results mentioned above. We also re-
mark the almost orthogonal degeneracies exhibited by both
the distance method and the CMB, in the H0 − Ωk0 plane,
and by the 6×2pt method and the CMB in the σ8−γ plane.
The latter was first noticed by Quartin et al. (2022) in the
case of supernovae, but the former is particular to standard
sirens.
Finally, Figure 5 illustrates the effect of including exter-

nal EM information on the inclination ι (as a 10◦ prior) on
the cosmological results. The ι prior reflects this possible ad-
ditional information from the electromagnetic counterpart,
which helps to break the inclination angle–distance degen-
eracy, and consequently reduces the uncertainty of dL. This
induces improvements on the uncertainties of H0, Ωm0, and
Ωκ0 found with the distance method of 19%, 25%, and 24%,
respectively. The effect on the 6×2pt method alone is almost
negligible, as discussed above, so this is not depicted. But still
we get interesting improvements for the combined 6× 2pt +
distances case, as can be seen.

5 DISCUSSION

The next generation of ground-based GW detectors predict
to detect gravitational waves from BNS at cosmological dis-
tances. Here we revisited their use as observables both in the
traditional distance measurements as well as in the use as
tracers of the velocity and density field. We consider that
there are three main results of our work.
First, we propose a method to optimize the use of telescope

time in BNS GW follow-ups, which uses the preliminary GW
information on the distance to the source to allocate tele-
scope time accordingly. This means longer integration times
on further objects, and can result in a reduction of needed
telescope time by 20–30% for the same number of kilonova
observations in a given redshift range. This is relevant as by
the next generation of GW facilities the number of observed
standard sirens will be limited by telescope time.
Second, we find that using clustering in the full-shape
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10 Alfradique, Quartin, Amendola, Castro & Toubiana

Figure 4. Marginalised contours for {σ8, γ,Ωm0,Ωm0, h}, assuming kmax = 0.1 h/Mpc and zmax = 0.5. Results are separated according
to the method used. Purple: 1× 2pt of galaxies; red: 3× 2pt; green: 6× 2pt; orange: siren distances only; blue: 6× 2pt + distances.

power spectrum method, using sirens both as velocity and
density tracers, their expected low number density results
for the sirens means that the gains are smaller than those
obtained when using supernovae as tracers. Nevertheless, we
obtain modest gains on the growth of structure precision
when compared to the constraints arising purely from galaxy
clustering. To wit, we obtain a 14% (24%) reduction on the
uncertainties in σ8 and γ.
Finally, we show that the combination of distance and clus-

tering of standard sirens (using the full 6 × 2pt method) re-
sults in massive improvements in the amount of background
cosmological information that can be inferred. For the curva-
ture density parameter Ωk0, we find that percent-level preci-
sion is possible using only siren and galaxy data in z ≤ 0.5.
Given the limited available volume observed at lower red-
shifts, it is crucial to try to explore the data there to the
fullest. For H0, in the same redshift range the inclusion
of clustering information considerably improves the results
arising from distance measurements only, resulting in 30%
smaller uncertainties. Given the current efforts to better un-
derstand the reasons behind the Hubble tension, this is an im-
portant possible gain, and has the advantage of only relying

on data in this redshift range. Moreover, sirens should then
also outperform the precision on H0 from either galaxy power
spectrum measurements at higher redshifts or the CMB by
an order of magnitude. And together with higher redshift
measurements, we should be able to perform precise mea-
surements of this parameter at different redshift ranges.
We also find that the inclusion of priors on the inclination

of the orbital plane from electromagnetic observations have
little impact on the clustering performance alone, but do lead
to important improvements on the inferred KN distances and
thus also on the combined 6×2pt + distance approach, which
fully explores the cosmological information from KN.
Our forecasts for σγ are less promising than what was found

in Palmese & Kim (2021), to wit σγ ∼ 0.02 − 0.03, even
though they only assume a 3×2pt method. This discrepancy
seems to be due to the analysis of the EM follow-ups adopted,
as our predictions for the capabilities of EM counterpart ob-
servations with future telescopes resulted in a much lower
number of joint GW+EM measurements.
We remark that in our forecasts we have made a number

of conservative assumptions. We have assumed that for each
event the EM follow-up search area is 40 deg2, instead of sim-
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Figure 5. Possible improvements due to the addition of external
information on the BNS inclination.

ply the smaller ∆Ω, and also required three epochs of follow-
up observations for each KN. We also limited the follow-up
at any given time to only 40% of the sky. The total accessi-
ble area in the sky at any given night is larger, specially if
follow-ups could be conducted at lower altitudes. Finally, we
restricted ourselves to the Einstein Telescope alone, but the
Cosmic Explorer or other concurrent GW facilities may be
operational at the same time, which would increase both the
amount of events observed and the precision and the precision
in the area determination. Together, these assumptions may
result in similar constraints being obtained with less than the
5-year observational period here considered. Nevertheless, the
still very large uncertainty in the rate of BNS mergers means
that the number of years needed to reach our forecast preci-
sion could change significantly when this quantity is better
understood in the course of the next observational runs of
the LVC.
In any case, the 6× 2pt method applied to standard sirens

can provide competitive clustering measurements when com-
pared to SN, being better than the configuration labeled as
conservative in Quartin et al. (2022), especially when it comes
to H0. The results are also more sensitive to the number den-
sity of BNS, so if we improve further on our follow-up capa-
bilities even more cosmological information can be obtained.
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APPENDIX A: SHORT REVIEW ON DISTANCE
POSTERIOR APPROXIMATIONS

In this appendix we briefly review the Cutler and Flanagan
(CF) approximation Cutler & Flanagan (1994) for the poste-
rior distribution on luminosity distance, which was rederived
and corrected in Chassande-Mottin et al. (2019).
Under the following assumptions that:

• the noise is Gaussian, stationary and uncorrelated be-
tween detectors,
• we work at leading post-Newtonian order,
• the sky localisation is known from an EM counterpart,
• redshifted chirp mass and time to coalescence are very

precisely measured and do not impact the measurement of
distance, inclination ι, polarization and phase at coalescence,

the posterior distribution on distance and inclination,
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marginalised over polarization and phase, can be written as:

p
(
d′, v′|~θ

)
∝

π (d′, v′) exp
[
− ρ2

0σd

2

[ (
1− εd cos 4Ψ

) (
v − d′−1v′

)2
+
(
1 + εd cos 4Ψ

) (
χ+ − d′−1χ′+

)2 ]]
, εd 6= 0

π (d′, v′) I0 (z+) I0 (z−)
exp
[
− ρ

2
0σd

2

[(
χ2

+ + v2)+ d′−2
(
χ

′2
+ + v′2

)]]
, εd = 0

(A1)
where π (d′, v′) is the prior, d = dL/d

true
L with dtrue

L

being the true luminosity distance, v = cos ι, χ+ =
0.5
(
1 + v2), z± = ρ2

0σd

2 (χ+ ± v) (χ′+ ± v′), and Ψ = Ψ +
arctan

[
2Θ+×/Θ++ −Θ××

]
/4. I0 is the modified Bessel

function. Unprimed quantities refer to the true values, and
primed ones to where the posterior is evaluated at. We made
use of the tensor ΘAB , defined for A,B = +,× over a network
of detectors as

ΘAB =
FAa F

B
b δab

´∞
0 f−7/3S−1

n,a (f) df´∞
0 f−7/3S−1

n,aver (f) df
, (A2)

where Sn,a is the power spectral density in detector a and
S−1

n,aver is the average of the inverse of the power spectral
densities over all detectors, in our case the three detectors
that make ET. We define

ρ2
0 = 5GM5/3

6π4/3c3

ˆ ∞
0

df
f−7/3

Sn,aver (f) , (A3)

which can be seen as the SNR squared for an overhead face-
on source in the case of a single detector. From the tensor
ΘAB , εd and σd are defined as

σd = 0.5TrΘAB , (A4)

εd =

√
2Tr (ΘAB)2

(TrΘAB)2 − 1
. (A5)

The quantity εd takes values in the range from 0 to 1 and
measures the detector’s ability to distinguish the two polar-
ization amplitudes. In the limit εd → 1 the detector can only
estimate one of the polarization tensor components, which
makes it difficult to estimate the parameters of the gravi-
tational wave (see discussion in section IV.A of Chassande-
Mottin et al. (2019)). σd is called the amplitude sensitivity
and is related to the loudness of the signal in the network of
detectors. large values being favorable. Figure A1 shows how
σd and εd changes with the sky position for the ET detectors.
Comparing this figure with Figures 1, 2 of Chassande-Mottin
et al. (2019) we can observe the improvement in the sen-
sitivity achieved by the ET over the detectors currently in
operation.
We validate our results produced with the CF approxima-

tion by comparing with those found by a Bayesian analysis
performed with the Bilby package (Ashton et al. 2019). For
the Bayesian inference, we use emcee as our sampler, with
100 steps, 200 walkers, and the IMRPhenomPv2 waveform
as our signal template. The MCMC was performed varying
{Mz, q = m2/m1, dL, ϕc, ψ, ι} and fixing the remaining pa-
rameters at their injection values. The analysis shows that
the results of the CF approximation are equivalent to the
one obtained with MCMC when εd . 0.85, which is in agree-
ment with what was found in Chassande-Mottin et al. (2019)

Figure A1. Amplitude sensitivity σd and polarization sensitivity
εd over the sky for the ET detectors.

Survey Overlapping Fraction
δ t = 12 h δ t = 24 h δ t = 48 h

LSST 16.1± 0.5% 0 0
Mephisto 36.1± 1.2% 3.8± 0.5% 0
WFST 30.6± 1.1% 1.4± 0.3% 0
ZTF 69.6± 1.5% 63.7± 1.4% 0

Table B1. The fraction of overlapping events estimated generating
100 random time-series for each configuration assuming kilonovae
are detectable δ t hours after the event.

(εd . 0.8). To correctly describe the uncertainty on dL we
imposed this cut in our catalog. The fraction of events with
εd . 0.85 is approximately 0.85 of the BNS mergers, but for
the detected events (i.e., with ρnet > 12) this fraction is 0.98.
Thus, the selection cut εd has an almost negligible impact the
number of events in our analysis.

APPENDIX B: FRACTION OF OVERLAPPING
EVENTS

We assessed the impact of overlapping events on the number
of observed objects presented in Tables 2 and 3 by Monte-
Carlo sampling a time series of events and assuming that the
events are observed serially and that kilonovae are detectable
during a total of δ t hours after the event. The fraction of
overlapping events are depicted in Table B1. The overlap-
ping fraction variance was estimated to generate 100 random
time series for each configuration. The number of expected
kilonovae would be only strongly affected in all surveys if

MNRAS 000, 1–14 (0000)
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Figure C1. Dependency of the 3 × 2pt method on the standard
candle distance uncertainty. The Figure of Merit (FoM) used is
the inverse area of the ellipses in the σ8 − γ plane. Solid (dashed)
lines are the results for our BNS (SN) forecasts. Also shown are
dotted gray lines with example power laws that roughly fit the
BNS and SN curves for 0.2 < z < 0.4. As can be seen, the low
number density of BNS means that the influence of Pvv is smaller
and thus its contribution to 3 × 2pt and 6 × 2pt are also smaller,
which explains the lower sensitivity to σint. The uncertainties due
to Pvv alone scale instead roughly as σ−2

int .

kilonovae happened to be detectable during only a fraction
of a day. Only ZTF would still be significantly affected if
kilonovae lasted only for 24 hours.
In our simulations we did not find any scenario where an

event could not be observed if kilonovae lasted at least two
days. The detectability and best strategy to observe kilonovae
have been already studied (see, for instance, Cowperthwaite
& Berger 2015; Mochkovitch et al. 2021; Chase et al. 2022).
The exact details for the best observation strategy go be-
yond the scope of our work; still, we can neglect the impact
of overlapping events for two reasons. Due to the slow decay-
ing of kilonovae in certain magnitudes, the detectability of a
large fraction of the sample will be larger than two days. Sec-
ondly, our simulation assumed that the observation strategy
followed the events serially; any strategy optimization will
reduce the overlapping fraction presented in Table B1.

APPENDIX C: DEPENDENCE ON THE
DISTANCE MEASUREMENT UNCERTAINTIES

The inclusion of information on the inclination of the BNS
orbit, which can be independently obtained from EM obser-
vations, is capable of improving the precision of the sirens
distance measurements. A 10◦ constraint on this inclination
leads to improvements on the relative distance of a given
source by between 15–25%. Nevertheless as discussed in Sec-
tion 4, this leads only to very minor improvements on the
clustering results from BNS. This is also in opposition to
what was found for the case of supernovae by Amendola &
Quartin (2021), where a much stronger dependency of the
3× 2pt and 6× 2pt methods on σint was found. And neglect-
ing the small extra lensing scatter, σint = (5/ ln 10)σdL/dL.
The reason for this small effect is basically the low ex-

pected number density of BNS, when compared to that of

LSST supernovae. To understand this, we remark first that
the uncertainties due to Pvv alone scale instead roughly as
σ−2

int . However, the weight of the velocities on the full 3× 2pt
and 6× 2pt methods depend on the number density of veloc-
ity tracers. The low number density of BNS means that the
influence of Pvv is small and thus its contribution to 3× 2pt
and 6 × 2pt are also smaller, which explains the lower sen-
sitivity to σint. Figure C1 illustrates this, and compares the
inverse area of the ellipses in the σ8 − γ plane, which is our
Figure of Merit (FoM), as a function of σint, assumed con-
stant and the same for all sources (contrary to our baseline
KN analysis in Section 4). For illustration purposes we nor-
malize all results to the one obtained for σint = 0.1 mag. For
very low redshifts both SN and KN clustering exhibit small
dependencies on σint, but for 0.2 < z < 0.4 the SN Figure of
Merit scale as σ−0.27

int , whereas the KN clustering one only as
σ−0.06

int .
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