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Abstract The China Fusion Engineering Test Reactor (CFETR), currently under in-
tensive physics and engineering designs in China, is a major project representative
of the low-density steady-state pathway to the controlled fusion energy. One of the
primary tasks of the physics design for CFETR is the assessment and analysis of
the magnetohydrodynamic (MHD) stability of the proposed design schemes. Com-
prehensive MHD stability assessment of the CFETR baseline scenarios have led to
preliminary progress that may further benefit engineering designs. For CFETR, the
ECCD power and current required for the full stabilization of NTM have been pre-
dicted in this work, as well as the corresponding controlled magnetic island width. A
thorough investigation on RWM stability for CFETR is performed. For 80% of the
steady state operation scenarios, active control methods may be required for RWM
stabilization. The process of disruption mitigation with massive neon injection on
CFETR is simulated. The time scale of and consequences of plasma disruption on
CFETR are estimated, which are found equivalent to ITER. Major MHD instabili-
ties such as NTM and RWM remain challenge to steady state tokamak operation. On
this basis, next steps on CFETR MHD study are planned on NTM, RWM, and SPI
disruption mitigation.

Keywords magnetic fusion · CFETR · macro-instability ·MHD model

1 Introduction

Based on the extrapolation from the empirical scaling laws obtained from decades
of research efforts on tokamaks, for a sufficiently large size and a sufficiently strong
magnetic field, the tokamak plasma may achieve steady-state self-sustained ignition.
The complexity and economic cost associated with the tokamak size is expected to
far exceed the existing tokamak devices in the world, often requiring collaborative ef-
forts of multiple countries and unions for many years. For example, the ITER, jointly
constructed by nine international governments, will reach a height of 30 meters after
completion, costing more than 10 billion euros. Since the launch of the ITER program
in 2006, after nearly 15 years of international cooperation and efforts, the construc-
tion of the main unit of the device is close to completion, and it is expected that the
experimental operation will begin in 2025.

Besides being a partner in International Thermonuclear Experimental Reactor
(ITER) [1], China has recently proposed to design and potentially build China Fusion
Engineering Test Reactor (CFETR) [2]. The goal is to address the physics and engi-
neering issues essential for bridging the gap between ITER and DEMO (DEMOnstra-
tion Power Station), including achieving tritium breeding ratio (TBR) > 1 and explor-
ing options for DEMO blanket and divertor solutions [3–5]. During the past several
years, significant progress has been made in CFETR conceptual physics and engi-
neering design [6,5,7]. Since 2018, a new design version of CFETR has been made,
by choosing a larger machine with major radius R= 7.2m, minor radius a= 2.2m and
axis toroidal magnetic field BT = 5−7T [7,8]. The primary missions of the CFETR
project are proposed to demonstrate the fusion energy production of 200–1000MW ,
generate the steady-state burning plasmas with duty time of about 50% and test the
self-sustainable burning state with fusion gain, Q, about 20–30.
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The China Fusion Engineering Test Reactor (CFETR), currently both under in-
tensive physics and engineering designs in China, is one of the major projects repre-
sentative of the low-density steady-state pathway to controlled fusion energy. One of
the primary tasks of the physics designs for CFETR is the assessment and analysis
of the magnetohydrodynamic (MHD) stability of the proposed design scenarios. This
includes the determination of the parameter boundary for major MHD instabilities,
the prediction of pre-cursor signals and saturation level of nonlinear MHD instabil-
ities, and the evaluation of their control and mitigation schemes. Over the past few
years, a comprehensive efforts have been devoted to such a task as a part of the phys-
ical design activities for CFETR, and considerable progress has been made towards
the task goal. This paper reports these collective progresses as a snapshot of their
current status. In particular, on the side of CFETR, analyses on the error field toler-
ance, ECCD suppression of neoclassical tearing mode (NTM), stability of resistive
wall mode (RWM), and the effectiveness of disruption mitigation using massive gas
injection (MGI) are presented and discussed. The results reported here in the paper
are by no means final; most of the results are preliminary in nature, partly because
of the constantly evolving nature of design scenarios, and partly because of the com-
plexity of the tasks themselves. Nonetheless, the current report is meant to serve as
an overall and initial assessment on one of key components, i.e. the MHD stability
prospects, of the physical designs for one of the major magnetic fusion projects as
the potential next significant step of the China fusion energy program.

The rest of the paper is organized as follows. In Sec. 2, the equilibrium scenarios
of CFETR are introduced. In Sec. 3, progresses on the analyses of error field toler-
ance, ECCD suppression of neoclassical tearing mode (NTM), stability of resistive
wall mode (RWM), and the effectiveness of disruption mitigation using massive gas
injection (MGI) are reported respectively. We conclude with a summary and discus-
sion in Sec. 4.

2 MHD equilibria of baseline scenarios for CFETR

To achieve the mission goal of fusion power production of 1GW , the self-consistent
steady-state scenarios for CFETR with fully sustained non-inductive current drive as
well as the hybrid scenarios are developed using a multi-dimensional code suite with
physics-based models as shown in [9–11], where the tokamak equilibria are obtained
with sufficiently low convergence error and expected to provide the bases for reliable
ideal and resistive MHD stability analysis [12,13]. In particular, the equilibrium pro-
files for the steady-state and hybrid scenarios presented in Figs. 1 and 2 respectively
are the bases of our MHD stability analyses for CFETR reported later in this paper.
A dominant bootstrap current together with auxiliary extra heating current drive is
required in the steady-state scenarios. As a result, safety factor q-profiles with re-
versed magnetic shear in the core region and a minimum q value (i.e. qmin) larger
than 2 or 3 characterize the equilibria of steady-state scenarios. This feature shall
benefit the stability of the dangerous internal kink modes and tearing modes with
low poloidal numbers, whereas the external kink modes may still grow. The hybrid
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scenarios, however, have much lower qmin, that may give rise to the internal MHD
modes.

3 Assessments and analyses of the MHD stability of CFETR

3.1 Ideal MHD mode and RWM stability

The steady-state plasmas in the large tokamak devices, such as ITER and CFETR,
should operate in regimes where the resistive wall mode (RWM) is stable or marginal
stable. Thus, an unstable RWM with low toroidal mode number limits the opera-
tional space of tokamak devices. The RWM can be viewed as the residual instability
of the external kink mode, which is a low toroidal mode number MHD instability
with global structure along the plasma torus, and can be driven by plasma current
or pressure. For a pressure gradient driven external kink mode, it becomes unsta-
ble when βN exceeds the Troyon no-wall limit [14], where βN is the normalized β .
Fortunately, this kind of external kink mode can be stabilized by a closed-fit perfect
conducting wall outside the plasma torus. However, the presence of the resistivity in
the conducting wall will lead to the penetration of the perturbed magnetic field, thus
the external kink mode can still be unstable, and its growth rate depends on the field
penetration time through the conducting wall, hence the name of RWM. Generally
speaking, if no other control methods are considered, the unstable RWM can be sta-
bilized by sufficiently rapid plasma rotation and certain kinetic effects such as those
from trapped particles [15–17]. However, CFETR is designed to operate in scenarios
with low plasma rotation, where the passive stabilization from kinetic effects are ex-
pected to work together with active stabilizing schemes in order to achieve a robust
control of RWMs, as successfully demonstrated on many major tokamaks [18–20].
Therefore, for the initial operation phase of CFETR, we shall design the plasma sce-
narios along with the consideration of active control schemes for RWM.

The ideal MHD instabilities are evaluated using the single-fluid MHD models
implemented in the MARS-F [21] and the AEGIS [22] codes. The details on the
ideal MHD and the computational models in these two codes are briefly reviewed
in Appendix 1 and Appendix 2. The passive kinetic stabilization has been established
experimentally for years, which should be taken into account to fully determine the
RWM stability (see e.g. [17,16,23,24]), using the kinetic-MHD eigenvalue codes
such as MARS-K and AEGIS-K for examples, among others [25–28]. As the first step
towards the more complete kinetic-MHD analyses, here we limit our calculations to
the single-fluid MHD models in order to evaluate the most unstable MHD instabilities
and the required active control schemes for their stabilization, leaving the passive
kinetic stabilization to serve as a potential source of additional margins of MHD
stability for the designed CFETR scenarios.

3.1.1 Instabilities of ideal MHD modes without wall

As aforementioned, for the steady state CFETR operation with high plasma pressure,
Troyon no-wall limit is one of the first critical factors to consider for the stability of
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the ideal MHD modes. The ideal MHD growth rates of the n = 1 toroidal mode are
scanned over βN for all five CFETR SSO equilibria in absence of flow or wall using
both MARS-F and AEGIS codes, including the corresponding target plasma pressure
or βN value of each equilibrium (Figs. 3 and 4).

Generally speaking, the results reported in Figs. 3 and 4 show a good agreement
between MARS-F and AEGIS codes. Both results find that only the equilibrium 2
plasma with its design target βN is stable to ideal MHD modes in absence of perfect
conducting wall. For all other four equilibria with their corresponding target βN , the
ideal MHD modes are unstable. Note that the no-wall βN limits of equilibria 1 and
2 are different, even though the two equilibria are similar, especially the q95 and
the target βN-values. This difference may derive from the different values of internal
inductance li in scenario 1 and 2, which are 0.90 and 0.96 respectively, where the
plasma internal inductance is computed using CHEASE code [29] with the following
definition,

li =
4π

I2R0

∫ |∇ψ|2

R2 J dψdχ (1)

with J being the Jacobian J = |(∇ψ ×∇χ) ·∇φ |−1. As a result, the no-wall βN
limits for the n = 1 modes of equilibria 1 and 2 are obtained as 2.1 and 2.95 from
MARS-F calculations, in comparison to the 2.21 and 2.33 from AEGIS calculations.
Whereas the MARS-F calculation on the no-wall βN limit seems more sensitive to the
difference in equilibria, both MARS-F and AEGIS calculations agree on whether the
design target βN is above or below the no-wall βN limit for all the CFETR equilibria
considered.

Thus both MARS-F and AEGIS results in Figs. 3 and 4 indicate that the ideal
MHD modes in CFETR scenarios 1,3,4 and 5 are unstable in absence of an ideal wall.
Next we calculate and compare the instabilities of RWM among these four scenarios,
assuming different models of CFETR wall. Based on the CFETR structure design
including the first wall, the Tritium breeding module (TBM) blanket, and the vacuum
vessels [30], their sketch and the corresponding plasma shape is plotted in Fig. 5(a) as
one of the wall models considered in this study. The minor radius of vacuum vessel
(VV) has been fixed to be double of plasma minor radius away from the plasma
boundary, i.e. dVV = 2a. However, here the TBM resistivity remains unknown, due to
the unknown material and structure of the TBM. Thus in another model, an artificial
conducting wall is imposed and shown in Fig. 5(b), where its shape conformal to the
plasma shape and its resistivity based on the design for ITER are assumed in order to
assess the most probable effects from wall.

3.1.2 Instabilities of RWMs with conformal wall

In this subsection, we shall assume an artificial conformal wall outside the plasma
torus as shown in Fig. 5(b). The minor radius of wall is denoted as dwall . Here, only
an ideal plasma is considered without taking into account of plasma flow or resistivity.

The growth rates of the external kink modes in presence of an ideal wall or re-
sistive wall as functions of the wall minor radius are computed using MARS-F code
(Fig. 6). Here, the effective wall time is estimated to be τw = 104τA. The vertical
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dashed lines denote the minor radius of the TBM and VV in CFETR. One should
keep in mind that the TBM and VV here used in the MARS-F calculation are the
conformal walls instead of the actual walls with more realistic structures. Thus the
γτA in Fig. 6 is in general expected to be slower than the actual mode growth rate in
presence of the more realistic TBM and VV. If the VV is designed to stabilize the
ideal external kink modes, it can be found from these results that the VV may be
located too far away from the plasma boundary, such that there is nearly no effect of
VV on the growth rate of those modes, except for the equilibrium of scenario 4. Al-
though the q profile of Equilibrium 4 is quantitatively different from other equilibria,
all the 5 equilibria share the common feature of having a wide core region with flat q
profile. More importantly, a closer survey of Fig. 1 indicates that the current and the q
profiles of Equilibrium 4 is well within the range of the continuous profile variations
from Equilibrium 1 to Equilibrium 5. Thus even though the MARS-F calculation re-
sults for the equilibrium of scenario 4 in Fig. 6 show that the conformal walls at the
TBM and VV radii appear to be far more stabilizing to the ideal and resistive wall
modes that all other equilibrium cases, the equilibrium of scenario 4 itself can be
readily obtained and sustained from the middle of the achievable range of equilibria.
Therefore, in the following discussion, we shall take this scenario 4 as an example to
investigate on the RWM control scheme for CFETR.

The marginal stability boundaries of the five SSO equilibria in presence of the
perfectly conducting wall are also obtained from AEGIS calculations, along with the
explicit effects of the equilibrium flux surface domain truncation (Fig. 7). Note that
a small fraction of plasma edge region is truncated off in AEGIS computation do-
main in order to avoid the X-point singularity in the flux coordinate representation of
tokamak equilibria, a practice similarly adopted in the MARS-F calculations as well.
The qa values and the corresponding normalized magnetic flux ψ at the truncated
surface used to calculate the RWM growth rates of the equilibria eq1 to eq5 are listed
in Table 2, respectively. In all these cases, the truncated surfaces extend sufficiently
far out towards the separatrix so that all the dominant resonant mode components are
included in integration to obtain maximal accuracy and convergence. For a fixed wall
location, the ideal MHD mode growth rate in presence of a resistive wall in scenario
4 is the smallest. Furthermore, the radial profiles of the real part of the perturbed nor-
mal displacement computed using MARS-F and AEGIS codes are compared for the
same target plasma β and resistive wall location at dwall = 1.2a, which show similar
global mode structures (Fig. 8).

3.1.3 Instabilities of RWMs with designed wall

In this sub-section, we consider the model for designed wall including both TBM
and VV components, and evaluate the contribution of these structures to the growth
rate of the ideal MHD modes. Based on the findings from previous subsection, here
the analysis is focused on the equilibrium of scenario 4 as an example. In addition,
because the VV is so far away from the plasma torus that the TBM has to be also
taken into account. However, the exact properties of material of the TBM remains
unknown at this stage. A parameter C for the ratio of resistivities between TBM
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and VV is introduced as C = τT BM/τVV , and the VV wall time is assumed to be
τVV = 1865.3ms.

Fig. 9 compares the RWM growth rates as functions of the TBM location from
MARS-F calculations for several different values of the ratio parameter C, as well as
the case with a single ideal conducting wall, where the dependence of growth rate
is on the ideal wall location. The ratio C designed for ITER is 0.05. As shown in
Fig. 9, the growth rate of ideal MHD modes is higher with lower C-value due to
higher resistivity of TBM. However, if TBM can achieve to the condition of blanket
designed for ITER, this ideal MHD mode can become nearly marginal stable with
the synergistic effect of TBM and VV.

3.1.4 Effect of plasma shaping on instabilities of RWM

Based on the geometry design for CFETR, we note that the VV boundary is far away
from the plasma-vacuum interface, so that the effect of conducting wall on the growth
rate of unstable MHD modes is expected weak. In this section, we shall gradually
modify the shape of VV in the lower outboard corner. Only CFETR scenario 4 with
the designed wall model, is evaluated in this section.

Our primary concern is the effect of the lower triangularity of VV shape, which
is designed shaping feature mainly out of engineering considerations, on the growth
rate of the ideal MHD modes. We introduce an analytic model for systematically
scanning the lower triangularity, which can be written as

ρ
′
= ρ

{
1+δ exp

[
− (φ −φm)

4

2κ2

]}
, φ ∈ [φA,φB] (2)

where R
′
= ρ

′
cosφ and Z

′
= ρ

′
sinφ . A sketch of this model in the (R,Z) plane is

shown in Fig. 10(a). The black curve L is the original VV shape designed for CFETR.
The red curve L

′
is the new shape obtained from varying parameter δ along the

poloidal circumference between points A and B. In this analysis, other parameters
are fixed as φm = 0.8 and κ = 0.2, and only the value of δ is varied to obtain a fam-
ily of new VV shapes (Fig. 10(b)). For the new family of VV shape and TBM with
C = 0.05, the growth rates of the ideal MHD modes are shown to decrease with the
magnitude of δ , indicating a stabilizing effect as the VV draws closer to the plasma
surface. However, such a stabilizing effect is rather limited (Fig. 10(c)).

3.1.5 Stabilization of RWM based on plasma flow

As mentioned earlier, the designed CFETR scenarios except scenario 2, are unstable
to the ideal MHD modes in presence of resistive wall or in absence of wall. In this
section, we evaluate the potential stabilization of these unstable RWMs by plasma
flow. The conformal resistive wall is assumed to be located at dwall = 1.2a.

In MARS-F calculations, the equilibrium of scenario 1 along with a uniform ro-
tation profile is considered. The RWM growth rates are shown to decrease with ro-
tation frequency, and such a rotational stabilization is also enhanced with higher ion
Landau damping rate κ‖ (Fig. 11(a)). Similar calculations using AEGIS code for
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all five CFETR scenarios indicate that the unstable RWMs can all be stabilized by
plasma rotation at a few percent (1.5%-2%) of Alfvén speed (Fig. 11(b)), where the
shear-Alfvén continuum resonance in the rotating plasma leads to the stabilization of
resistive wall modes.

3.1.6 Active control of RWM based on feedback

In addition to the passive stabilization of RWMs by wall design and toroidal rota-
tion, we continue to evaluate active control scheme for the RWM in CFETR based on
feedback coils, considering for example the equilibrium of scenario 2 with a confor-
mal conducting wall. Three rows of feedback coils, the upper, middle and lower rows
along the toroidal angle, are shown in Fig. 12, where θc, normalized by π , denotes
the poloidal angle of the coil location and the resistive wall is assumed to locate at
rw = 1.3.

For the feedback relation Ms f I f = −Gψs(t) and the transfer function P(s) =
ψs/Ms f I f , the characteristic equation with proportional feedback satisfies 1+GP(s)=
0, where s is the Laplace variable representing the mode eigenvalue. Here G = |G|eiΦ

is feedback gain, and |G| and Φ represent its amplitude and phase respectively. ψs(t)
is magnetic signal. And Ms f is the free-space mutual inductance between the feed-
back coil and the sensor loop, used largely to normalize the feedback gain. I f is the
current in active control coil.

Analysis indicates that the RWM can be stabilized by such a feedback coil system.
Assuming only a set of middle active coils (θc = 0) are used, as shown in Fig. 13,
the minimum critical gain is obtained to be |G| = 0.3, when the poloidal covering
width of active coil W = 45◦, normalized by π . And the critical gain decreases as the
radial position of active or sensor coils becomes closer to plasma surface. Normally,
with a single set of active coils, we do not consider the phase of the feedback gain,
since the feedback with real gain values produces the best stabilization. If only a set
of upper and lower symmetric active coils are employed as in Fig. 14, when the gain
amplitude |G| = 0.1 is same for both upper and lower active coils and the poloidal
covering width of active coils are W = 2|θc|, the effectiveness of feedback system
is best at the poloidal positions |θc| = 11.7◦ for upper and lower active coils, in the
absence of phase angle. The smaller poloidal coverage indicates that the system of
upper and lower symmetric active coils is more effective than the system of middle
active coils alone for the stabilization of RWM. For the same feedback parameter of
|θc| as shown in Fig. 14(b), the critical gain is |G| = 0.2. Fig. 14(c-d) show that the
RWM stabilization sensitively depends on the feedback gain phase. The best phases
for reducing the RWM growth rate are ΦU ∼ 50◦ and ΦL ∼−50◦.

3.2 CFETR error field tolerance

The estimate on error field tolerance for CFETR is based on the design parameters
that the major radius is R = 7.62m, the minor radius a = 2.25m, and the toroidal field
BT = 6.5T , and the assumptions that the safety factor at the 95% of magnetic flux
q95∼ 5.5, the electron density ne = 8.94×1019m−3, and the rotation frequency f =
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2.34×104/(2π)Hz in the hybrid scenario. For comparison, we assume that in ITER
the toroidal field BT = 5.3T , the safety factor at the 95% magnetic flux q95 ∼ 3.2, the
rotation frequency f = 3kHz, and the electron density is same as that in CFETR. We
evaluate the error field tolerances for both CFETR and ITER by extrapolation using
theoretical scaling laws [31–34] and the experimental ones on the basis of the EAST
error field penetration threshold data [35–39] (Table. 3).

According to the theoretical extrapolation [31–34], the error field tolerance (br/BT )
of CFETR is similar to that of ITER, from both MHD and two-fluid models. Most
extrapolation results on the error field tolerance using the experimental scalings [35–
39] are similar for CFETR and ITER as well. However, when the safety factor at the
95% magnetic flux q95 is taken into account, such as in the case of EAST experimen-
tal scaling, the error field tolerance is larger than that in ITER where the q95 ∼ 3.2
in ITER is much lower than the q95 5.5 in CFETR. That is to say if q95 is higher in
CFETR than that in ITER, then the CFETR operation would be less susceptible to
error field. At present the correction field coils are designed for ITER. If CFETR op-
erates in the ITER-like operational scenario, then the correction field coils are needed.
If CFETR operates in much higher safety factor at the 95% magnetic flux than that
in ITER, then the correction field coils may not be absolutely necessary.

3.3 Control of the neoclassical tearing modes by electron cyclotron current drive in
CFETR

Neoclassical tearing mode (NTM), if uncontrolled, limits the performance of ad-
vanced tokamak devices such as CFETR. The NTM induced large magnetic islands
can significantly degrade the plasma confinement or even lead to the plasma disrup-
tion. Thus, the control of NTMs is necessary for the steady operations of CFETR. To
suppress NTMs, extra current drive can be deposited near the magnetic island region
to compensate the loss of bootstrap current caused by the flattening of pressure in-
side the magnetic island. In the tokamak experiment, it has been verified that electron
cyclotron current drive (ECCD) is an effective method to for that purpose. Here we
numerically investigate the ECCD control schemes for NTMs in the hybrid scenarios
of CFETR.

3.3.1 Benchmark between MD and NIMROD on nonlinear tearing mode in hybrid
scenario

For the purpose of investigating tearing instability of CFETR hybrid scenario, we first
use polynomials to fit the original equilibrium profiles. Then we use the equilibrium
solver NIMEQ to generate a new equilibrium on the NIMROD simulation mesh based
on the fitted pressure and safety factor profiles, along with the CFETR boundary
shape. Toroidal mode components n = 0−1 are included in the nonlinear NIMROD
simulation here. Plasma parameters are set as following: S = 105, Prm = 0.26, τA =
5×10−7s.

For the hybrid scenarios EQ3 shown in Fig. 2, the resistive tearing mode is
found linearly unstable before nonlinear saturation from the time evolution of the
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perturbed magnetic energy, as indicated by both MD and NIMROD simulation re-
sults in Fig. 15. The corresponding magnetic island and plasma flow patterns in the
saturation phase given in the sub-figures of Fig. 15, show that the saturated island is
dominated by the m/n=2/1 structure, whose width is near 20% (33%) of the minor
radius from the MD (NIMROD) simulation result.

3.3.2 MD simulation results on ECCD control of NTMs

For the MD simulations, Westerhof-Pratt’s closure relation [40] is employed for the
ECCD density jd appearing in the Ohm’s law Eq. (11), which can be calculated based
on the following equations

∂ jd1

∂ t
=− jsc−ν1 jd1 +υ‖,res∇‖ jd1 (3)

∂ jd2

∂ t
=− jsc−ν2 jd2 +υ‖,res∇‖ jd2 (4)

jd = jd1 + jd2 (5)

Here, ν1 and ν2 denote the collision rates near the electron cyclotron waves driven
’hole’ and ’bulge’ at small and high perpendicular velocities respectively. υ‖,res is the
parallel velocity of the resonant electrons. The source term for ECCD jsc is assumed
to be of the Gaussian distribution as

jsc = jd0 exp{−4[(
r− r0

∆rd
)2 +(

χ−χ0

∆χ

)2]}

where r0 and χ0 are the center of the Gaussian distribution in the radial and helical
angle directions respectively, jd0 is the peak value of ECCD source, ∆rd and ∆χ are
the half deposition width of the distribution in the radial and helical angle directions
respectively. Unless otherwise stated, the ECCD is aimed at the center of the O-
point of the magnetic island. Other ECCD related parameters are set as ∆rd = 0.05,
∆χ = 0.2, ν1 = 2.5×10−3, ν2 = 0.5×10−3 and υ‖,res = 2, all in SI units.

For the hybrid scenario EQ1 shown in Fig. 2, the classical m/n = 2/1 tearing
mode with fb = 0 is stable. However, the fraction of bootstrap current for the hy-
brid scenarios in CFETR is nearly 50%. Thus, the evolution of magnetic island with
various fractions of bootstrap current is calculated and given in Fig. 16. It is found
that the width of the saturated magnetic island is about 0.2a, i.e. near 40cm for the
size of CFETR. This big magnetic island is very dangerous and can obviously lead
to the major disruption of discharge. Therefore, ECCD must be employed to control
the growth of the NTMs for CFETR.

If the ECCD is turned on after the magnetic island is saturated, as shown in
Fig. 17(a), it is found that the magnetic island can be suppressed completely when the
driven current Icd is larger than 2% of the total plasma current (Ip = 13MA). However,
if the ECCD is turned on before the magnetic island is saturated, the strength of the
driven current Icd required for the suppression of NTM can be reduced. For instance,
the required Icd is near 1% of Ip, when the ECCD is turned on at t/τa = 15000, as
shown in Fig. 17(b). In fact, the required Icd can be less than 1% of Ip, if the ECCD
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can be turned on before t/τa = 15000 when the magnetic island width is smaller
than 0.025a or 5cm. Dependence of the driven current for the suppression of NTM
on the magnetic island width is given in Fig. 17(c). It can be clearly observed that
the required Icd is proportional to the width of magnetic island at the time when the
ECCD is turned on. However, the required Icd for NTM suppression levels out when
the island size increases above a certain threshold.

To summarize, MD simulations find that the saturated island width in the hybrid
scenarios of CFETR is about 0.2a. The required ECCD for the suppression of the
saturated NTM is just above 2% of the total plasma current Ip = 13MA. However, if
the ECCD is turned on when the magnetic island width is less than a critical value,
the required ECCD for the suppression of NTM can be reduced. Both the numerical
and theoretical results indicate that the required ECCD is proportional to the size of
magnetic island at the time when ECCD is turned on in the small magnetic regime,
and becomes independent of island size in the large magnetic island regime.

3.3.3 TM8 simulation results on ECCD control of NTMs

The evolution of neoclassical tearing mode and its stabilization by electron cyclotron
current drive for the hybrid scenario of CFETR are also numerically performed using
the reduced MHD code TM8. The parameters of our numerical calculations are set as
the following if not mentioned elsewhere: a localized distribution of current density
from ECCD is applied at the resonant surface with wcd/a = 0.04, χ⊥ = 12.5a2/τR
and χ‖/χ⊥ = 108, where a is the minor radius, wcd the half width of driven current,
τR = a2µ0/η the resistive time, χ‖ and χ⊥ are the parallel and perpendicular heat
transport coefficients, respectively. The Lundquist number S = τR/τA is taken to be
5.56× 106, where τA is the Alfvén time. And rs = 0.51a is the minor radius of the
q = 2 surface. The local bootstrap current density fraction at the resonant surface is
set to be jb/ jp = 0.3 initially. The inverse aspect ratio ε = a/R' 0.31 as designed.

For the hybrid scenario, the time evolution of the normalized 2/1 magnetic island
width, w/a, is shown in Fig. 18. The solid curve is for the case without applying
ECCD. The modulated current drive (MCD), which is in phase with the island’s O-
point, is applied at t/τR = 0.05 with Icd/Ip = 0.059 (dashed curve) and Icd/Ip = 0.06
(dot-dashed curve), where Icd is the current driven by electron cyclotron wave (ECW),
and Ip is the plasma current. Similar to Fig. 18a, the case for non-modulated current
drive (NMCD) is also shown in Fig. 18b. It can be seen that there is a threshold in the
driven current for mode stabilization.

When ECCD is applied during the island growth before nonlinear saturation, less
driven current is expected to be required for mode stabilization. The time evolution
of the island width is shown in Fig. 19a with MCD applied when the island width
w = 0.01a is reached. The solid curve is for the case without ECCD. The dashed and
dot-dashed curves are for Icd/Ip = 0.017 and 0.018, respectively, which indicate that
less driven current is required for the stabilization of a smaller magnetic island. The
required Icd/Ip for fully stabilizing the 2/1 mode is shown as a function of the island
width in Fig. 19b, in which ECCD is applied when the island width w grows to the
value shown by the horizontal axis. The solid (dashed) curve is for MCD (NMCD).
For both MCD and NMCD, when applied before the nonlinear mode saturation, the
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required driven current for mode stabilization increases with w, suggesting the advan-
tage of applying ECCD earlier in time. For a smaller island width, the MCD scheme
is much more effective than NMCD for stabilizing the NTM.

In the analyses using both MD and TM8 simulations reported above, the range of
Lundquist number S = 105 ∼ 5.56×106, which is lower than the S values in more re-
alistic regimes. Currently both MD and TM8 simulations on NTMs may have to rely
on the less realistically large viscosity values to avoid numerical difficulties within
the capability of affordable computing resource. Thus one should keep this limit in
mind when applying the NTM analysis results here as potential guidance for the cor-
responding engineering design. Meanwhile, these analyses are subject to continued
updates as the reliable S regimes of MD and TM8 simulations expand further upward.

3.4 Disruption mitigation simulation with massive neon injection on CFETR

Simulation evaluation of the disruption mitigation scheme with massive neon injec-
tion on CFETR using the 3D nonlinear MHD code NIMROD, which incorporates
a radiation and atomic physics model taken from the KPRAD code, has been per-
formed and the main findings are reported here. The time evolution of the several
key discharge parameters are shown in Fig. 20. During the pre-thermal quench (pre-
TQ) phase before t = 2ms, the thermal energy is dissipated gradually due to radiation
cooling by the injected impurity (Fig. 20(b)), however, the core electron and ion tem-
peratures remain relatively unchanged and even increases to a peak value by the end
of the pre-TQ phase (Fig. 20(c). Here the single-fluid MHD model is used in the sim-
ulation, where the ion and temperatures are the same, i.e. Ti = Te = T . Although the
temperature at magnetic axis T (0) itself decreases slowly during the pre-TQ phase
(i.e. t = 0−2ms) as shown in Fig. 20(c), the edge temperature and the major portion
of the temperature profile drop much more rapidly during the same phase as clearly
demonstrated in Fig. 22(a). Since the thermal energy is an integral over the entire
plasma volume, this explains why the thermal energy decreases much faster than the
temperature at magnetic axis T (0) itself, as can be seen in Fig. 20(b)-(c). Meanwhile,
MHD activity grows to nonlinear saturation and the n = 1 mode dominates from be-
ginning (Fig. 20(a)). The thermal quench (TQ) phase starts when the core electron
temperature starts to collapse at t = 2ms. By the end of TQ phase at t = 3.1ms, the
thermal energy is almost totally dissipated and the core electron temperature drops to
zero. Soon after the start of TQ phase, the n = 1 mode reaches its peak magnitude and
the magnetic field becomes completely stochastic (Fig. 21), leading to loss of plasma
confinement entirely. The current quench (CQ) sets on after t = 3.1ms, i.e the end of
TQ phase.

Profile evolution of ion temperature, impurity number density, electron number
density, toroidal current density, radiation power and Ohmic heating during the neon
injection process are obtained respectively from the simulation (Fig. 22(a)-(f)). The
impurity density gradually penetrates into the core region from boundary as shown
in Fig. 22(b), and the corresponding total electron density increases accordingly as a
result of impurity ionization (Fig. 22(c)). The radiation power profile rises and shifts
towards the core region along with the impurity penetration over time (Fig. 22(e)),
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leading to the drop of the core ion temperature profile as shown in Fig. 22(a). At the
same time, the plasma resistivity increases and the current density profile contracts
as a consequence (Fig. 22(d)), which contributes to a strong localized deposition of
Ohmic heating power at the cold region (Fig. 22(f)).

The plasma current drop beyond the end of the TQ phase shown in Fig. 20(d) is
significantly slower than what would be expected from experiments. This is mostly
the consequence of the realistically and relatively low resistivity value based on the
collisional Spitzer model adopted in the simulation. Since the NIMROD code used
in simulation here does not include the model for the necessary mechanisms that
contribute to the more realistic current quench phase, the current decay shown in
Fig. 20(d) is not used for the estimate of the CQ time scale, but only included and
shown here for the completeness of simulation results. The simulation has been able
to reproduce many key features of the thermal quench phase that are much more real-
istic in comparison to experiments, as also reported in other MGI simulation studies
using NIMROD (e.g. [41–45]). Thus the simulation results on the TQ phase are the
base of estimate for the CFETR scenario.

4 Summary and discussion

In summary, the CFETR physics and engineering designs have provided unprece-
dented opportunities to the advancement in MHD theory and simulations. Compre-
hensive efforts on the assessment of MHD stability of the CFETR baseline scenarios
have led to following preliminary progresses that may further benefit engineering
designs.

For CFETR, the ECCD power and current required for the full stabilization on
NTM have been predicted in this work, as well as the corresponding modulated mag-
netic island width. A thorough investigation on RWM stability for CFETR is per-
formed. For 80% of the SSO scenarios, active control methods may be required for
RWM stabilization. The process of disruption mitigation with massive neon injection
on CFETR is simulated. The time scale of and consequences of plasma disruption on
CFETR are estimated, which are found equivalent to ITER. Major MHD instabilities
such as NTM and RWM remain challenge to steady state tokamak operation. On this
basis, next steps on CFETR MHD study are planned. Further analysis on NTM con-
trol with ECCD system will be processed with TM8 code and NIMROD code, along
with TORAY code, in order to provide more detailed and quantitative information on
the required ECCD current amplitude and distribution and optimized injection angle
for NTM stabilization. More careful prediction on RWM stability boundaries with
kinetic effects included will be performed using MARS-K and AEGIS-K codes. On
the other hand, the design and feasibility analyses on the RWM active and feedback
control systems are also necessary for the unstable RWM scenarios. A new task of
simulation on the disruption mitigation based on the shattered pellet injection (SPI)
of impurity gas is expected to start, so that we can evaluate on the corresponding time
scale, gas injection depth, MHD modes, and current distribution in vacuum chamber.



14 Ping Zhu1,2,∗ et al.

5 Acknowledgments

This work was supported by the National Key Research and Development Program of
China (under contract Nos. 2017YFE0301805, 2017YFE0300500, 2017YFE0300501,
2017YFE0301100, 2017YFE0301104, and 2019YFE03050004), the National Natu-
ral Science Foundation of China (NSFC) (Grant Nos. 11905251, 11475225, 11805054,
11875098, 11905067, 11847219, 11775221 and 51821005), the Fundamental Re-
search Funds for the Central Universities at Huazhong University of Science and
Technology Grant No. 2019kfyXJJS193 and Donghua University Grant No. 2233019G-
10, the U.S. DOE Grant Nos. DE-FG02-86ER53218 and DE-SC0018001, and the
China Postdoctoral Science Foundation under Grant No.2019M652931. This research
used the computing resources from the Supercomputing Center of University of Sci-
ence and Technology of China, and the ShenMa High Performance Computing Clus-
ter at the Institute of Plasma Physics, Chinese Academy of Sciences. The authors
are very grateful for the supports from J-TEXT team, the NIMROD team, and the
developers of AEGIS, MARS, and TM8 codes.

Appendix 1 MARS code

MARS-F code [21] is based on the single fluid, linearized resistive MHD model,

(γ + inΩ)ξξξ = vvv+(ξξξ ·∇∇∇)R2
∇φ (6)

ρ(γ + inΩ)vvv = −∇∇∇p+ jjj×BBB+ JJJ×bbb

−ρ[2Ω Ẑ× vvv+(vvv ·∇∇∇Ω)R2
∇∇∇φ ]−∇∇∇ ·ΠΠΠ

(7)

(γ + inΩ)bbb = ∇∇∇× (vvv×BBB−η jjj)+( jjj ·∇∇∇Ω)R2
∇∇∇φφφ (8)

(γ + inΩ)ppp =−vvv ·∇∇∇P−Γ P∇∇∇ · vvv (9)
jjj = ∇∇∇×bbb (10)

where R and φ are the plasma major radius and geometric toroidal angle, and Ẑ is unit
vectors along the vertical direction in the poloidal plane, respectively. The variables
(ξξξ ,vvv, jjj,bbb,ρ, p) represent the plasma perturbed displacement, velocity, current, mag-
netic field, density and pressure, respectively. The corresponding equilibrium quanti-
ties are denoted by (JJJ,BBB,P). Ω is the angular frequency of the plasma flow along the
toroidal angle, and n is the toroidal harmonic number. ΠΠΠ is a viscous stress tensor,
which is associated with the viscous force damping, such as the parallel sound wave
damping.

Although the growth rate of the RWM is very slow, it eventually sets the upper
limit on plasma pressure for the long pulse or steady-state advanced tokamak opera-
tions. MARS code is designed to compute the growth rate of the RWM and how to
control it by the passive (the plasma rotation and drift kinetic resonances) and active
(the feedback control system) methods.

MARS code has been benchmarked and extensively applied to model RWM and
compare with the experimental observation. For examples, a kinetic version of MARS
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found low-rotation threshold when applied to model a DIII-D discharge with bal-
anced beam injection, agreeing with experimental observations [46]. MARS-F and its
coupling to CARIDDI (CarMa) found quantitative agreement between the computed
RWM growth rate and the experiments in RFX [47]. MARS-F has also modeled the
resonant field amplification for a series of JET plasmas which agrees with experimen-
tal measurements [48]. [49] has compared the unstable RWM regime obtained using
MARS-K with that in DIII-D experiments, revealing the impact of energetic parti-
cle losses and toroidal rotation drop in destabilizing the mode. Finally, the MARS-K
modeling of stable RWM induced resonant field amplification quantitatively agrees
with DIII-D experiments [50].

Appendix 2 AEGIS code

The Adaptive Eigenfunction Independent Solution shooting (AEGIS) code employs
the adaptive shooting method in the radial direction and Fourier decomposition in
the poloidal direction [22]. Therefore, the AEGIS code has high resolution near the
singular surfaces for the study of MHD instabilities. The AEGIS code has been used
to study the linear behaviors of RWMs in ITER and the earlier smaller-sized design
of CFETR scenarios [51,52].

The following perpendicular MHD equation was solved in AEGIS,

−ρm(ω +nΩ + iγp)
2
ξξξ⊥ = δJJJ×BBB+δBBB× JJJ−∇∇∇δP

where ρm is the total apparent mass density, ω the mode frequency, n the toroidal
mode number, Ω the toroidal rotation frequency, γp is a small parameter used to heal
the numerical singularity while calculating the Alfvén damping, ξ is the fluid dis-
placement, with subscript ⊥ denoting the perpendicular component to the magnetic
field, and JJJ, BBB, and P are the equilibrium current density, magnetic field, and plasma
pressure, respectively.

Appendix 3 MD code

The reduced MHD model implemented in the MD code is given as follows [53]

∂ψ

∂ t
= [ψ,φ ]−∂zφ −S−1

A ( j− jb− jd)+Ez0 (11)

∂u
∂ t

= [u,φ ]+ [ j,ψ]+∂z j+R−1
∇

2
⊥u (12)

∂ p
∂ t

= [p,φ ]+χ‖∇
2
‖p+χ⊥∇

2
⊥p+S0 (13)

where ψ and φ are the magnetic flux and electrostatic potential, j = −∇2
⊥ψ and

u = ∇2
⊥φ are the current density and vorticity in the axial direction, respectively. The

bootstrap current density is proportional to the pressure gradient as in jb =− f
√

ε

Bθ

∂ p
∂ r ,

with f measuring the strength of bootstrap current fraction, which is defined as
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fb =
∫ a

0 jbrdr/
∫ a

0 jzrdr. SA = τη/τA and R = τν/τA are the magnetic Reynolds num-
ber and kinematic Reynolds number, respectively, where τη = a2µ0/η , τν = a2/ν

and τA =
√

µ0ρa/B0 are the resistive diffusion time, the viscous diffusion time, and
the Alfvén time, respectively. χ‖ and χ⊥ are the parallel and perpendicular transport
coefficients. The source terms Ez0 = S−1

A ( j0− jb0) and S0 =−χ⊥∇2
⊥p0 in equations

(11) and (13) are chosen to balance the diffusion of equilibrium Ohm current and
pressure, respectively. The length, time and velocity are normalized by the plasma
minor radius a, Alfvén time τA and Alfvén velocity VA = B0/

√
µ0ρ respectively. The

Poisson bracket is defined as [ f ,g] = ẑ ·∇ f ×∇g.

Appendix 4 TM8 code

The TM8 code has been used to model the physics of the ECCD stabilization of
NTM [54], the drift-tearing modes [55], the double tearing modes [56], the mode
coupling [57], the stochastic field [58], the resonant magnetic perturbation [59], and
the error field [60]. The corresponding simulation results compare well with experi-
ments.

The reduced MHD model implemented in the TM8 code includes the Ohm’s law,
the plasma vorticity equation, and the plasma pressure evolution equation [61]

∂ψ

∂ t
+ vvv ·∇∇∇ψ = E−η( jp− jb− jd) (14)

ρ(
∂

∂ t
+ vvv ·∇∇∇)∇2

Θ = eeet · (∇∇∇ψ×∇∇∇ jp)+ρµ∇
4
Θ (15)

3
2
(

∂

∂ t
+ vvv ·∇∇∇)p = ∇∇∇ · (χ‖∇‖p)+∇∇∇ · (χ⊥∇⊥p)+Q (16)

where vvv = ∇∇∇Θ × eeet , Θ is the stream function, eeet the unit vector in the toroidal direc-
tion, and jp = −∇2ψ − 2nB0t/(mR), jb = −cb

√
ε

Bθ

∂ p
∂ r , and jd are the plasma current

density, the bootstrap current density, and the current density driven by electron cy-
clotron wave (ECW) in the eeet direction, respectively.

Appendix 5 NIMROD/KPRAD code

In the NIMROD code [62], the 3D extended MHD model is coupled with an atomic
and radiation physics model from the KPRAD code [41,42,63], and the implemented
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equations for the coupled impurity-MHD model are as follows:

ρ
d~V
dt

=−∇p+ ~J×~B+∇ · (ρν∇~V ) (17)

dne

dt
+ne∇ ·~V = ∇ · (D∇ne)+Sion/rec (18)

dni

dt
+ni∇ ·~V = ∇ · (D∇ni)+Sion/3−body (19)

dnZ

dt
+nZ∇ ·~V = ∇ · (D∇nZ)+Sion/rec (20)

ne
dTe

dt
= (γ−1)[neTe∇ ·~V +∇ · ~qe−Qloss] (21)

~qe =−ne[κ‖b̂b̂+κ⊥(I − b̂b̂)] ·∇Te (22)
~E +~V ×~B = η~j (23)

Here, ni, ne, and nZ are the main ion, electron, and impurity ion number density re-
spectively, ρ ,~V , ~J, and p the plasma mass density, velocity, current density, and pres-
sure respectively, Te and ~qe the electron temperature and heat flux respectively, D,
ν , η , and κ‖(κ⊥) the plasma diffusivity, kinematic viscosity, resistivity, and parallel
(perpendicular) thermal conductivity respectively, γ the adiabatic index, Sion/rec the
density source from ionization and recombination, Sion/3−body also includes contribu-
tion from 3-body recombination, Qloss the energy loss, ~E(~B) the electric (magnetic)
field, b̂ = ~B/B, and I the unit dyadic tensor.

All particle species share a single temperature T = Te and fluid velocity ~V , which
assumes instant thermal equilibration among the main ions, the impurity ions, and
the electrons. Pressure p and mass density ρ in momentum equation (17) include
contributions from the impurity species. Each charge state of impurity ion density
is tracked in the KPRAD module and used to update the source/sink terms in the
continuity equations due to ionization and recombination. Both convection and dif-
fusion terms are included in each continuity equations where all the diffusivities are
assumed same. Quasi-neutrality is maintained through the condition ne = ni +∑Znz,
where Z is the charge of impurity ion. The energy loss term Qloss in equation (21) is
calculated from KPRAD module based on a coronal model, which includes contribu-
tions from bremsstrahlung, line radiation, ionization, recombination, Ohmic heating,
and intrinsic impurity radiation. Anisotropic thermal conductivities are temperature
dependent, i.e. κ‖ ∝ T 5/2 and κ⊥ ∝ T−1/2. Similarly, the temperature dependence of
resistivity η is included through the Spitzer model.
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Fig. 1 (a) Equilibrium plasma current density and (b) safety factor as functions of normalized minor radius
in five CFETR steady-state scenarios (Other equilibrium parameters are shown in Table 1).
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equilibrium R0 B0 a qmin q0 q95 qa βN

1 7.2 6.53 2.2358 1.2443 2.3663 6.0235 7.45 2.3799
2 7.2 6.53 2.1990 1.2049 1.9571 5.4053 7.45 2.3277
3 7.2 6.53 2.2117 3.0493 4.6612 6.8730 9.05 3.0751
4 7.2 6.53 2.1833 3.2566 6.2540 5.7156 7.2912 2.3781
5 7.2 6.53 2.2273 2.4089 5.4913 7.3602 9.0954 2.8720

Table 1 Summary of key design parameters for the five CFETR SSO scenarios considered in this study.
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Fig. 2 (a) Safety factor, (b) plasma pressure, (c) normalized β , and (d) toroidal plasma current density as
functions of normalized minor radius for the equilibria of the three CFETR hybrid scenarios considered in
this study.
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Fig. 3 (a-e) Growth rates of the ideal MHD mode as functions of the plasma pressure βN in absence of
conducting wall for five different CFETR SSO scenarios from MARS-F calculations, where the vertical
lines denote the designed plasma pressure βN for each corresponding equilibrium.
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Fig. 4 (a-e) Growth rates of the ideal MHD mode as functions of the plasma pressure βN in absence of
conducting wall for five different CFETR SSO scenarios from AEGIS calculations, where the vertical red
lines denote the designed plasma pressure βN for each corresponding equilibrium.
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Fig. 6 Growth rates of the n = 1 ideal MHD modes from MARS-F calculations as functions of the wall
minor radius, in presence of an ideal wall (blue curves) or a resistive wall (red curves), where the effective
resistive wall time is fixed at τw = 104τA. Here, the vertical dashed lines denote the minor radius of the
TBM and VV designed for CFETR, at 1.3a and 2.0a, respectively.
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eq1 eq2 eq3 eq4 eq5

ψ@ truncated surface 99.40% 99.67% 99.75% 99.70% 99.60%

qa@ truncated surface 7.1 7.1 8.1 9.1 9.1

Table 2 Normalized magnetic flux ψ and safety factor qa at edge truncated surfaces for the equilibria eq1
to eq5.
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Fig. 8 Radial profiles of the real normal component of plasma displacement computed using (a) MARS
code (with the geometric configuration shown in Fig. 5(b)), and (b) AEGIS code for equilibrium 4.
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Fig. 11 RWM growth rates as functions of the uniform toroidal rotation frequency obtained using (a)
MARS-F and (b) AEGIS codes, for various values for the damping coefficient, κ‖. The rotation frequency
is normalized by the Alfvén frequency at the magnetic axis.
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Fig. 12 Geometry of a CFETR configuration including the RWM feedback coils, the plasma boundary,
and a single resistive wall (rw = 1.3 and τw = 104τA). Two sets of active coils, referred to as the middle
and upper-lower symmetric coils, respectively, are located inside the wall. The sensor coil is located inside
the wall, measuring the poloidal field perturbation.



MHD analysis on the physics design of CFETR baseline scenarios 35

20 30 40 50 60 70 80

W
[o]

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

|G
c
r
i|

(a)

(a)

1.1 1.15 1.2 1.25 1.3 1.35 1.4

 Position of Active coils (r
f
)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

|G
c
r
i|

r
s
=1.177

(b)

(b)

1.1 1.15 1.2 1.25 1.3 1.35 1.4

Position of Sensor coils (r
s
)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

|G
c
r
i|

r
f
=1.2

(c)

Fig. 13 (a) The critical gain required for stabilization of the RWM as a function of the poloidal covering
width of active coil W with fixed r f = 1.283 and rs = 1.257. (b) and (c) are the critical gains as functions
of the positions of active coils (r f ) and sensor coils (rs), respectively, with fixed W = 45◦. The feedback
system is assumed to be a set of middle control coils with zero polar angle and zero phase angle.
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Fig. 14 (a) Growth rate of RWM as a function of the poloidal location (θc) of the upper and lower sym-
metric active coils with the fixed gain |G| = 0.1 and the poloidal covering width W = 2θc. The optimal
poloidal location is θc = 11.7◦. (b) The growth rate of RWM as a function of the gain with fixed poloidal
angles of coils. The critical gain is |G| = 0.2 smaller than the middle active coil. Contours of (c) growth
rate and (d) real frequency of RWM in the 2D space of the proportional feedback gain phases ΨU −ΨL,
respectively.
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Extrapolation Physical Regime/Device scaling(br/BT) ITER(1e-4/BT) CFETR(1e-4/BT)

Theory

SOC

visco-resistive neˆ(7/12)BTˆ(-7/6)R0ˆ(1/2)f0 1.20 1.30
Rutherford neˆ(3/5)BTˆ(-6/5)R0ˆ(11/15)f0 1.61 1.82
transition neˆ(1/2)BTˆ(-1)R0ˆ(1/3)f0ˆ(4/5) 0.91 0.94
Waelbroeck neˆ(7/16)BTˆ(-7/8)R0ˆ(1/3)f0ˆ(5/8) 0.85 0.87
polarization neBTˆ(-9/5)R0ˆ(-1/4) 0.37 0.24
Sci+NTV neBTˆ(-13/10)R0 3.12 2.94

LOC

visco-resistive BTˆ(-7/6)R0ˆ(1/2)f0 0.35 0.38
Rutherford neˆ(-1/60)BTˆ(-6/5)R0ˆ(11/15)f0 0.44 0.50
transition BTˆ(-1)R0ˆ(1/3)f0ˆ(4/5) 0.32 0.33
Waelbroeck BTˆ(-7/8)R0ˆ(1/3)f0ˆ(5/8) 0.34 0.35
polarization neBTˆ(-9/5)R0ˆ(-1/4) 0.37 0.24
Sci+NTV neˆ(1/2)BTˆ(-13/10)R0 1.09 1.03

Experiment

EAST neˆ(0.55)BTˆ(-1.0)q95ˆ(1.66)f0 0.62 1.54
JET-2000 neˆ(0.58)BTˆ(-1.274)f0ˆ(0.5) 1.29 1.10
JET-98 neˆ(0.97)BTˆ(-1.2)f0 2.84 2.76
COMPASS-C neˆ(0.55)BTˆ(-2.2)f0 0.19 0.12
COMPASS-D neˆ(1.0)BTˆ(-2.9)f0 0.16 0.09
DIII-D neˆ(0.99)BTˆ(-0.96)f0 2.02 1.68

Table 3 Extrapolation of error field tolerance towards ITER and CFETR using theoretical and experimen-
tal scalings. SOC indicates the assumption using saturated Ohmic confinement (energy confinement time
independent with electron density, we assumes that the viscous diffusion time approaches to the energy
confinement time here), whereas LOC indicates the assumption using linear Ohmic confinement (energy
confinement time linear dependent with electron density).
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(a)

(b)

Fig. 15 (a) Nonlinear evolution of the m/n = 2/1 resistive tearing mode in the hybrid scenario EQ3,
together with the corresponding magnetic island and the plasma flow pattern in the saturation phase from
the MD simulation. (b) Evolution of n = 1 component of magnetic energy, together with the Poincare plot
in the saturation phase from the NIMROD simulation.
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Fig. 16 Evolution of magnetic island width for various fractions of bootstrap current from the MD simu-
lations.
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(a)

(b)

(c)

Fig. 17 Evolution of magnetic island width from the MD simulations for different ECCD amplitudes,
with ECCD being turned on at (a) t/τa = 80000 and (b) t/τa = 15000, respectively. (c) Dependence of the
driven current required for the suppression of NTM on the magnetic island width at the time when ECCD
is turned on.
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(a)

(b)

Fig. 18 Time evolution of the normalized island width w/a from the TM8 simulations in absence (solid
curve) or presence (dashed and dot-dashed curves) of ECCD for (a) MCD and (b) NMCD with Icd/Ip =
0.059 (dashed curve) and 0.06 (dot-dashed curves).
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(a)

(b)

Fig. 19 (a) Time evolution of the island width from the TM8 simulations in absence (solid curve) or
presence (dashed curves) of ECCD. MCD is turned on when the island width w = 0.01a is reached, with
Icd/Ip = 0.017 (dashed curve) and 0.018 (dot-dashed curve). (b) The required Icd/Ip for mode stabilization
as a function of the normalized island width. The solid (dashed) curve is for MCD (NMCD).
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Fig. 20 Time evolution of (a) normalized magnetic energy of each primary toroidal component (in unit
(Wmag,n/Wmag,0)

1/2), (b) plasma thermal energy (kJ), (c) core temperature (keV), and (d) plasma current
(kA) during an MGI process from a NIMROD simulation.
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Fig. 21 Poincare plot at the end of the TQ during an MGI process from a NIMROD simulation.
‘
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Fig. 22 Profile evolution of (a) ion temperature, (b) impurity number density, (c) electron density, (d)
toroidal current density, (e) radiated power density, and (f) Ohmic heating power during an MGI process
from a NIMROD simulation.


