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Since the Efimov effect was introduced, a detailed theoretical understanding of Efimov physics has been
developed in the few-body context. However, it has proven challenging to describe the role Efimov correlations
play in many-body systems such as quenched or collapsing Bose-Einstein condensates (BECs). To study the
impact the Efimov effect has in such scenarios, we consider a light impurity immersed in a weakly interacting
BEC, forming a Bose polaron. In this case, correlations are localized around the impurity, making it more feasible
to develop a theoretical description. Specifically, we employ a variational Gaussian state Ansatz in the reference
frame of the impurity, capable of capturing both the Efimov effect and the formation of a polaron cloud consisting
of a macroscopic number of particles. We find that the Efimov effect entails cooperative binding of bosons to
the impurity, leading to the formation of large clusters. These many-particle Efimov states exist for a wide range
of scattering lengths, with energies significantly below the polaron energy. As a result, the polaron is not the
ground state, but rendered a metastable excited state which can decay into these clusters. While this decay is
slow for small interaction strengths, it becomes more prominent as the attraction increases, up to a point where
the polaron becomes completely unstable. We show that the critical scattering length where this happens can be
interpreted as a many-body shifted Efimov resonance, where the scattering of two excitations of the bath with the
polaron can lead to polaron-cloud assisted bound-state formation. Compared to the few-body case, the resonance
is shifted to weaker attraction due to the participation of the polaron cloud in the cooperative binding process.
This represents an intriguing example of chemistry in a quantum medium [A. Christianen et al., Phys. Rev. Lett.
128, 183401 (2022)], where many-body effects lead to a shift in the resonances of the chemical recombination,

which can be directly probed in state-of-the-art experiments.
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I. INTRODUCTION

To describe the properties of a many-body system, an accu-
rate understanding of the relevant interactions and correlations
between its microscopic constituents is crucial. However, even
when the few-body physics is understood, extracting the emer-
gent properties of the system as a whole is not a simple task
[1]. A good example is the Efimov effect [2,3]. This fasci-
nating few-body phenomenon was predicted by Efimov in the
context of nuclear physics. Efimov showed that there exists an
infinite series of three-body bound states close to the unitarity
point of a Feshbach resonance with binding energies obeying
a geometric scaling law. The experimental demonstration of
this effect took more than 30 years, with first observations
in cold atomic gases [4] and later in helium [5]. Driven by
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further experiments, by now a good theoretical understanding
of the few-body physics has been developed [3]. However,
the task to understand the effect Efimov-like correlations have
on quantum many-body systems has proven to be challenging
and has recently attracted particular interest in the context of
quenched or collapsing Bose-Einstein condensates (BECs),
especially at unitary interactions [6—14]. In such systems
the rapid buildup of three-body and higher-order correlations
renders the description a challenge whose solution remains
elusive.

Here we approach this challenge by developing an un-
derstanding of the effect Efimov-like correlations have in a
many-body setting by considering the simpler problem of
a mobile impurity immersed in a weakly interacting BEC.
Such a quantum impurity is dressed by fluctuations in its
environment, leading to the formation of a Bose polaron.
Importantly, this problem exhibits the heteronuclear instead
of the homonuclear Efimov effect and the relevant three-body
processes always involve the impurity. As a result, the most
important three-body correlations are localized around the
impurity, making the theoretical description more feasible.
In particular, this allows the use of variational approaches
[15-17], which is much more difficult when higher-order
correlations throughout a whole BEC have to be accounted
for. Also experimentally, probing the Bose polaron can
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FIG. 1. Illustration of the main results of this work. Here we show the wave number x = —

VMIE]

of the polaron found using Gaussian states

(blue solid line) and mean-field theory (red dash-dotted line) as a function of the inverse scattering length 1/aA. In gray the wave number of
the Efimov trimer (solid line) and larger Efimov clusters (dashed lines) is shown. Note that the dashed lines are only representative and not
all possible Efimov clusters are displayed. For small scattering lengths (green area), the polaron is the ground state of the system and a stable
quasiparticle. For |a| > |a™™|, the smallest scattering length at which an Efimov cluster can be formed, the polaron turns into a metastable
excited state, which can decay into the large Efimov clusters via many-body scattering processes. These scattering processes become more
likely as the absolute value of the scattering length increases. When a critical scattering length a* is reached, the polaron ceases to exist as
a well-defined quasiparticle. At this point scattering of the polaron with one or two more bath particles can lead to the rapid decay into an
Efimov cluster. In contrast, in mean-field theory, the polaron remains stable up to a positive scattering length gy, at which an infinite number

of particles piles up in two-body bound states formed with the impurity.

give new insight, due to the available techniques such as
radio-frequency (rf) spectroscopy [18-20] or Ramsey inter-
ferometry [21].
The concept of the Bose polaron as an impurity immersed
in a bath of bosonic excitations was introduced by Landau
[22] to describe an electron dressed by phonons in a solid.
A model that is commonly used in condensed matter to de-
scribe this scenario is the Frohlich model [23]. However, the
Frohlich Hamiltonian does not contain all necessary terms to
describe bound-state formation, while this is crucial in the
formation of the cold-atom Bose polaron [24]. Therefore,
an extension of the Frohlich model is required. The situa-
tion is further complicated by the fact that the description
of the wave function needs to include the relevant interbo-
son correlations, rendering the Bose polaron problem in the
cold-atom context a challenge. Whereas the Fermi polaron
problem can be understood with relatively simple theoretical
models [25-27], various descriptions of the strong-coupling
Bose polaron have yielded widely varying results [15-17,28—
31]. In Refs. [15,17] variational Ansdtze based on a small
number of excitations were used and a smooth crossover
between the polaron and an Efimov state was predicted, with
energies in agreement with quantum Monte Carlo calculations
in Ref. [28]. However, when using a coherent state variational
Ansatz which is capable of truly describing a mesoscopic
deformation of the BEC instead of only excitations on top of
the homogeneous BEC, one finds that the polaron becomes
unstable due to an infinite number of excitations piling up on
the impurity [16]. This instability is prevented by explicitly
taking into account interboson repulsion [30-35], but still
the polaron cloud will contain a large number of particles.
What the coherent state approach clearly lacks, however, are

interboson correlations, meaning the Efimov effect cannot be
captured. Also, while renormalization-group theory [29] pre-
dicts the polaron to be unstable already for negative scattering
lengths, no clear connection to Efimov physics is evident.

In this work we systematically extend the coherent state
Ansatz by fully including two-body interboson correlations
and three-body correlations involving the impurity. To achieve
this, we use Gaussian states [36] in the reference frame of the
impurity. As a result, we can describe both the many-body
physics of the creation of a macroscopic polaron cloud and
the few-body physics of the Efimov effect. In particular, we
study how these two phenomena affect each other. We focus
on the case of light impurities where the impurity can more
efficiently mediate interactions between the bosons and the
Efimov effect is thus most prominent [3,37—41].

One of our key results, illustrated in Fig. 1, is that the
polaron is no longer the ground state of the extended Froh-
lich Hamiltonian when three-body correlations are taken into
account. This finding is a result of large Efimov clusters that
emerge deeply in the energy spectrum. However, the polaron
remains a metastable excited state up to a critical scattering
length a*, at which an energy barrier protecting the polaron
from decaying into Efimov clusters disappears. This critical
scattering length can be interpreted as a many-body shifted
Efimov resonance.

Our results find an intuitive explanation when first con-
sidering the question of how the heteronuclear Efimov effect
extends to the case of more than three particles. For the
homonuclear case this extension to larger particle numbers
is well understood [3,42] and four- and five-particle Efimov
clusters have been experimentally observed [43,44]. In this
case larger and larger clusters are more and more tightly
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bound. This can be understood from simple dimensional ar-
guments [3]. When the atoms have pairwise interactions the
attractive interaction energy grows with N2, whereas the Ki-
netic energy, counteracting bound-state formation, only grows
with N. The situation is not as clear in the heteronuclear
case. When the bosons only interact attractively with the
impurity, but do not interact or interact only repulsively with
each other, also the interaction energy scales with N. Thus,
a nontrivial competition between the kinetic and potential
energy arises and the simple dimensional argument breaks
down. As a result, there is no general picture for the ex-
istence of clusters with increasing size in the heteronuclear
case.

Here we assume weakly interacting bosons and use a
single-channel model to describe the interactions with the
impurity. We show that in this scenario, similar to the
homonuclear case, clusters of increasing particle number be-
come more and more tightly bound. We will refer to this effect
as cooperative binding. This term originates from chemistry,
where it refers to particles cooperating with each other to lead
to ever stronger binding, such as in the famous example of
oxygen binding to hemoglobin.

Strikingly, we find that the cooperative binding effect has a
profound impact on the stability of Bose polarons. This is also
illustrated in Fig. 1, where we schematically plot the wave
number of the polaron state found from Gaussian (blue solid
line) and coherent states (red dash-dotted line) as a function of
the dimensionless scattering length. The result from coherent
states is referred to as mean-field theory. The gray solid line
indicates the position of the lowest three-body Efimov state
in vacuum, appearing at the three-atom scattering threshold
at a_. The gray dashed lines indicate the lowest Efimov clus-
ters of increasing particle number, which shift to the left as
a function of particle number. Using simple arguments, we
prove that there is a minimum scattering length a™™ needed
to form any Efimov cluster, which is indicated as the boundary
of the green shaded area in Fig. 1.

The background color of the figure indicates the stability
of the polaron. In the green area, no Efimov cluster can be
formed, meaning that the polaron is the ground state of the
extended Frohlich Hamiltonian. When crossing a™™ into the
blue area, the polaron is no longer the absolute ground state,
but becomes a metastable excited state. For scattering lengths
la| < |a*|, the decay of the polaron into Efimov clusters,
indicated by wiggly vertical arrows, is extremely slow and re-
quires the simultaneous scattering of a large number of bosons
on the polaron. However, as the magnitude of the scattering
length increases, the number of particles in the polaron cloud
increases and the number of particles needed to form a bound
state decreases. As a result, the decay processes will become
more and more pronounced. When a* is crossed into the red
area, already scattering of only one or two additional bosons
is sufficient to cause the breakdown of the polaron into an
Efimov cluster. Since these decay processes are included in
our Gaussian state Ansatz, the local energy minimum of the
polaron on our variational manifold disappears, meaning the
polaron is no longer a metastable quasiparticle. Since the clas-
sical field of the background BEC mixes the different particle
number clusters, we find a cascade of the wave function into
ever larger Efimov clusters.

One remarkable outcome of our study is that |a*| is smaller
than |a_|. This is caused by the fact that the polaron can
decay immediately into larger clusters than the Efimov trimer,
requiring smaller scattering lengths due to the cooperative
binding. In experiments, the formation of these large Efimov
clusters will cause rapid chemical recombination into deeply
bound states not included in our model. Furthermore, the
shift of the Efimov resonance means that the experimentally
observed resonant recombination signal will be modified by
the presence of the BEC. This provides a fascinating example
of how chemistry is modified in a quantum medium and how
polaron cloud formation can enhance chemical reactivity [45].

The structure of the paper is as follows. After introducing
our theoretical methods in Sec. II, we prove in Sec. III that our
Gaussian state Ansatz incorporates Efimov physics. Moreover,
we present evidence for the cooperative binding effect extend-
ing to large particle numbers and we elucidate the origin of
this effect. We demonstrate that many-body Efimov clusters
form the ground state of the Hamiltonian. Then, in Sec. IV,
we use the Gaussian state Ansatz to calculate the energy of
the polaron as a function of scattering length and density and
we demonstrate its abrupt instability. In Sec. V we discuss in
detail the relation of our work to other theoretical methods and
how our results can be probed experimentally. We conclude in
Sec. VI with an outlook on future work.

II. THEORETICAL METHODS
A. Hamiltonian

To describe the impurity immersed in a three-dimensional,
homogeneous, weakly interacting BEC at zero temperature,
we use the extended Frohlich model introduced in Ref. [24],
described by the Hamiltonian

a2

. k? P .
Ho = /dk%a,tak + 57 +g/dr8(r —Rala,

+ %B// drdr'8(r —r')alalapa,. (1)

Here we treat the impurity with mass M in first quantization
with position and momentum operators R and P. The bosons
of mass m are described using second quantization, where op-
erators &Z and gy, create and annihilate bosons of momentum k,
respectively. The bosons interact via a contact interaction with
scattering length ap determined by a coupling strength gp.
The boson-impurity interaction is modeled using a regularized
contact interaction of strength g with corresponding scatter-

ing length a. In Eq. (1), [ dk is shorthand for [ % We
have used a single-channel model to describe the interactions,
which provides a good description of the interactions in the
vicinity of a broad Feshbach resonance.

We model the bosons within the Bogoliubov approxima-
tion and introduce the corresponding quasiparticle operators
l;;c and by.. The validity of this approximation will be discussed
in detail in the following sections. After the Bogoliubov rota-
tion, we apply the unitary Lee-Low-Pines transformation [46]
UyLp to translate into the frame of the impurity,

Ouip = exp <—if? / dkkz;;;;k>. @
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Crucially, this transformation reduces the number of de-
grees of freedom by eliminating the impurity operators from

the problem. The transformed Hamiltonian H = ULLP'HOULLP
reads

. vin (P — [dkk D bp)?

i = /dkwkb,tbk+( sz i)

+ gno + gv/no / dk Wi (b} + b_y)
(2) N o
(b*b,;, +b_ib_y )>.

A
+gf/ dkdk’(Vk“k?b by + ——
3)

Since the impurity momentum operator P now commutes with
the Hamiltonian, it has been replaced by a vector P, which is
the total conserved momentum of the system. We set P = 0.
In Eq. (3), ny is the den51ty of the BEC and definitions of the
variables W, Vk( k),, Vi i,, and wy are given in Appendix A.

To regularize the boson-impurity contact interaction g, we
introduce a UV cutoff A on all momentum integrals. The
solution of the Lippmann-Schwinger equation then yields the
renormalization condition

S M A
2ma  w?’

“)
where wu, = rﬁ/dw is the reduced mass. The value of A~!
is related to the effective range of the potential [47] and is
proportional to the van der Waals length [gqw. It therefore
determines the so-called three-body parameter that sets the
position of the first Efimov resonance at negative scattering
length a_. The value of A in our model is chosen so that the
obtained value of a_ matches the experimental value of the
system of interest.

To reduce computational complexity in solving Eq. (3),
we make use of the spherical symmetry of the problem and
transform from plane-wave modes to spherical waves:

bi = m) k! Z iy (@0)b], . (5)

Im

After normal ordering the remaining quartic term in Eq. (3),
giving rise to a modified dispersion of the quasiparticles wy +
the Hamiltonian takes the form

. k2
= Z/k (wk + W) klmbklm
Im

k
+ / / dhrdky = !
T

2712//{ /k <k k2 kl k7 kloobkzOO
1 2

2)
k] k>

2M’

Kyoooneon o
AT
bk, by b b,

k Wi (bl + broo)

(kaOO AkzOO + Bk1005k200)>- (6)

Here we have defined fk = fOA dk. The regularized contact
interaction only acts on the s-wave component of the wave
function.

The second term in Eq. (6) is written without the trans-
formation to spherical waves. Since the full expression after
the transformation is very lengthy, we give its explicit form
in Appendix B. This term plays a critical role in describing
the Efimov effect and we will denote it by 7:lQLLp. Indeed,
7:LQLLp is the only quartic term of the Hamiltonian. It is thus
solely responsible for describing the effective interboson in-
teractions mediated by the impurity. Due to the vector product
k, - k,, it contains the information about the relative motion
of the bosons, allowing them to distribute kinetic energy more
efficiently. In the spherical representation this manifests as a
coupling between consecutive angular momentum terms.

Note that even though we have set P = 0, this does not
mean that the impurity is stationary. Indeed, despite (P) = 0,

A2 . .

(P”) is nonzero in the laboratory frame, and it is these fluc-
tuations in the impurity momentum (and its resulting kinetic
energy) that will be crucially important our findings.

B. Gaussian states

Throughout this work we use a variational method based on
a Gaussian state Ansatz. The use of Gaussian states to describe
the Bose polaron was previously suggested in Ref. [48] in a
perturbative approach. However, the simpler Frohlich Hamil-
tonian was considered, which does not allow the description
of bound-state physics and thus Efimov physics. Here we
use Gaussian states nonperturbatively, applying the formalism
outlined in the review by Shi et al. [36]. Note that since we
use the Lee-Low-Pines transformation, the impurity degrees
of freedom are entangled with the bosons, effectively giving
a beyond-Gaussian Ansatz in the laboratory frame. In the
following, we use notation most similar to the presentation
in Ref. [49].

The variational Ansatz in the impurity frame has the form

W> = exXp (Z/{I\l]jlmazq)khfn)
Im k
X exp( // b kit Vierm /)|BEC)
LU ,m,m k

)

In this equation Wy, = (biim, Ellm)r is the Nambu vector
containing the bosonic creation and annihilation operators, o*
is the Pauli z matrix, @gim = (Viim) = (Puim, ¢}3,,)" is the co-
herent displacement vector, and Z is the Hermitian correlation
matrix. Our Ansatz acts on |BEC), which is the state of the
background BEC. Note that there is no need to further specify
the state of the impurity since, in the transformed frame, the
impurity is stationary at the center of the frame. When E is
set to zero, one is left with the coherent state Ansatz from
Ref. [16], which we will refer to as mean-field theory.

The Ansatz (7) is treated fully variationally with the co-
herent displacement ¢ and the covariance matrix 'y irm =
({8Whim, 8], }) of the fluctuation field 8%y, = Wy —
@y, as the variational parameters. The covariance matrix
I is related to E via the symplectic matrix S = exp(iX*E)
as ' =SS, where ¢ = 0%8(k — k')81.18.mr. TWo comple-
mentary algorithms are employed to optimize the variational
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parameters and to find the energy minima on our variational
manifold. The first is imaginary-time evolution and the second
iterated Bogoliubov theory. Although both algorithms are in
principle equivalent [50], dependent on the situation, either
one may be computationally more efficient.

The equations of motion (EOMs) for the imaginary-time
evolution are given by [36]

a‘ECD = —F(U, U*)T» (8)
0. = 3% —THT. 9)
Here we define
= (GS|H|GS), (10)
oE
Nkim = ——5—> (11)
a(ﬁklm
20E

%{lm,k’l’,m’ = A= (12)

Ot e

and calculate the expectation value of the Hamiltonian using
Wick’s theorem. The EOMs are then solved using standard
numerical algorithms.

Within iterated Bogoliubov theory, one sequentially solves
n =0 for ¢ in order to update the displacement. Follow-
ing that, one diagonalizes ¢ using a symplectic matrix
S, which updates I' = SST. Performing a single iteration of
this algorithm is equivalent to solving the Gross-Pitaevskii
equation (solving for ¢) and calculating the equivalent of
the Lee-Huang-Yang correction (diagonalizing .77) [49]. Re-
peated iteration results in predictions beyond the theory
of Lee-Huang-Yang corrections. We note that the iter-
ated Bogoliubov theory is especially efficient compared to
imaginary-time evolution in the case of very slow dynamics
and when 7 is linear in ¢.

As we will discuss in the following, for some of our calcu-
lations we will fix the expectation value of the particle number
during the optimization. For the imaginary-time evolution this
is achieved by adding a chemical potential term yN to the
Hamiltonian, where N is the particle number operator. Using
the relation [51]

(NF) — (M) (H)
)

(N2) — )2 (4

UN =

the chemical potential wy is dynamically adjusted to keep the
particle number fixed during the time evolution.

III. EFIMOV CLUSTERS AND COOPERATIVE BINDING

Cooperative binding, which describes particles helping
each other to bind to an object, is an important aspect of
the Efimov effect. This is immediately apparent from the fact
that three-particle Efimov states can be formed even when no
dimers can be formed. In this section we demonstrate that this
cooperative binding can in fact persist for an arbitrary number
of particles. In terms of the illustration in Fig. 1, this means
that the gray dashed lines move farther and farther to the left
as the particle number N increases.

A. The two- and three-body problem
1. Variational Ansitze

Before studying the formation of large clusters, it is in-
structive to first consider the two- and three-body problem
(i.e., the case of one or two bosons plus the impurity). In order
to restrict ourselves to the case of fixed particle number, we set
the background density ny in Eq. (6) to zero. Moreover, we
consider noninteracting bosons (ag = 0), yielding the Hamil-
tonian

N Ko . N
_ T
H= E /k o bypubrim + HaoLrp

vo5 / kikab], qobioo- (14)
ky

ka

For the two- and three-body problem, we use the exact
variational Ansdtze

W) = / Bibigol0), (15)
k
W) = Z / (=10 iibl bl 10), (16)

where angular momentum conservation has been taken into
account and the total angular momentum has been set to zero.
In the two-body problem [Eq. (15)], this directly implies that
the single boson always has angular momentum zero, whereas
in the three-body problem [Eq. (16)], the two bosons always
have opposite angular momenta in the frame of the impurity.
Moreover, the wave function « depends only on m with the
sign (—1)", reflecting spherical symmetry.

In the few-body case the eigenenergies, and in partic-
ular the ground-state energy, can be readily obtained by
the diagonalization of the real-time EOMs instead of using
imaginary-time evolution. It turns out that, despite the com-
plex form of 7:LQLLP, the real-time EOMs are relatively simple
when the symmetries are implemented. One finds

. k2 Br
0By = 2 2n2 k BL. a7
; K4k g
lataklkzl :Olklkzl_lzlu 2 g l;) k(k2ak]k0 —+ klakkzo)
kiko
B m[(l + Do ioa+1) + Lotk ioa-n]s

(18)

which can be diagonalized using standard numerical tech-
niques.

2. Noninteracting problem

First, we consider the noninteracting problem (g = 0). In
this case the momentum of each particle is a good quantum
number. As a result, the two-body problem is trivial. Since the
total momentum is fixed to zero, the impurity and the boson
will always have opposite momenta. This directly yields the
energy 2
lem and thus plays no role.

In contrast, for the three-body problem, the EOMs in the
impurity frame [Eq. (18)] are nontrivial, since the 7—AlQLLp
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term couples the different angular momentum modes. This
coupling is indeed crucial since the lowest energy for total
momentum P = 0 and fixed momenta of the two bosons k;
and k, occurs when the two particles move in opposite direc-
tions. This means that the direction of motion of the bosons in
the impurity frame needs to be correlated.

To proceed in this case, one may note that the nonin-
teracting EOMs of the three-body problem can be mapped
to the problem of two coupled harmonic oscillators. This
in turn can be solved exactly using a Bogoliubov rotation.

ki +k3 —k)? .
ity Gk corresponding to an

One obtains the energy =5 5

impurity momentum of k; — k, which shows that the bosons
indeed move in opposite directions. In the corresponding wave
function every angular momentum mode is equally populated.
This implies that an infinite number of modes is required to
solve the usually trivial noninteracting problem in this frame-
work. Fortunately, for finite g < 0, as considered below, lower
angular momentum modes are favored since only the zeroth
angular momentum mode has an (attractive) coupling with the
impurity. In the case of bound-state formation, this means that
in practice convergence can be achieved with a small number
of angular modes.

3. Including interactions

Next we consider the case of a finite negative g. In the
two-body problem, a bound state is formed for positive scat-
tering lengths which vanishes into the scattering continuum
at unitarity, where a — oco. However, for three particles, due
to the Efimov effect, a bound state can already be formed
for finite negative scattering lengths [2,3]. Already for three
particles the Efimov effect can therefore be regarded as an
instance of cooperative binding, which is driven by the ’}-A[QLLP
term of the Hamiltonian. Indeed, when ﬁQLLP is not included
[i.e., omitting the second line of Eq. (18)], the EOMs be-
come separable and the EOMs of the two-body problem are
retrieved. This demonstrates that the 7:LQLLP term must be
crucial for the Efimov effect. Since this term originates from
the kinetic energy of the impurity, it becomes evident that
reducing the kinetic energy of the impurity is the driving force
of the Efimov effect.

The full three-body problem can be solved numerically us-
ing sparse matrix diagonalization employing either linear or,
more efficiently, logarithmic grids in k. In this way, the ground
and low-lying excited Efimov states can be studied. While
the method can be generalized relatively easily to arbitrary
interaction potentials, including boson-boson interactions in
this framework leads to involved expressions for the relevant
matrix elements and removes the sparsity of the matrices
representing the equations of motion, greatly increasing nu-
merical complexity.

Focusing on the ground state, we calculate the Efimov
scattering length a_ following from our model for SLi atoms
interacting with several types of bosons. The results are shown
in Table I. We find that a_ is smallest for light impurities,
meaning that the cooperative binding is the strongest in that
case. This can easily be understood from the underlying mech-
anism: the reduction of the kinetic energy of the impurity
compared to the interaction energy. Because the kinetic en-
ergy of the impurity for a given momentum is larger for

TABLE I. Scattering lengths a_ where the lowest-energy three-
body Efimov states cross the scattering threshold for °Li interacting
with different species of bosons, using a regularized contact interac-
tion in units of the three-body parameter A.

Species a_A

168y —-5.20
13¢Cs —5.69
87Rb —6.91
4K —11.1
BNa -19.0
Li —135

light than for heavy impurities, the reduction of this energy
can have a larger impact. This is directly reflected in the
7:LQLLP term of the Hamiltonian, which scales inversely with
the mass of the impurity. As a result, a_ quickly grows as the
mass ratio m/M decreases. Hence observing Efimov physics
experimentally can most easily be achieved by immersing a
light impurity in a bath of heavy bosons. Motivated by this
fact, for most of the predictions in this work we will focus, as
an example, on the mass ratio of the experimentally available
system of a °Li impurity immersed in a BEC of '3*Cs atoms
[39,40].

B. Many-body Efimov effect

We now have to demonstrate that the cooperative binding
effect driving the Efimov effect also persists for larger particle
numbers. To this end, we need to show that the binding energy
per boson Eyiq/N = |E/N| increases monotonically with the
number N of bound particles.

In order to study N-body bound states, the methods used
in the preceding section need to be extended to higher par-
ticle numbers. However, pursuing the same route of exactly
solving the N-body problem rapidly becomes computationally
intractable. Instead, we adopt a different approach, based on a
variational Gaussian state wave function that is not a particle
number eigenstate, but rather a superposition of states with
different particle numbers. In this Ansatz pairwise correlations
between the bosons are fully taken into account in the frame
of the impurity. This translates to fully including the three-
body correlations between two bosons and the impurity in the
laboratory frame.

We emphasize that the functional form of the correlations
in a Gaussian state is different from the correlation functions
in the Jastrow-formalism [52], often used in condensed-matter
physics, which was, for example, also employed to describe
Bose polarons in Refs. [28,53]. In our case, the covariance
matrix, which characterizes the correlations, is optimized vari-
ationally without restrictions on the functional form of the
correlations.

In the following we will now highlight our various findings.

1. Gaussian states incorporate two- and three-body physics

First, we demonstrate that a Gaussian state combined with
the Lee-Low-Pines transformation captures the Efimov effect
exactly. To this end, we show that the EOMs of the two- and
three-body problem can be retrieved exactly by linearizing the
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EOMs for Gaussian states around the vacuum. The procedure
of linearizing the EOMs is described in detail in Ref. [49] and
here we retrace the main steps.

The EOMs for real-time evolution are given by [49]

0, =, (19)
i3, = X°H#T — T AHZ". (20)

Rewriting, without loss of generality, the correlation matrix E

as
~_ (0 &
a:( ot 0)’ @1

the linearized EOMs of I" can be rewritten in terms of §&,
i0,68 = {D,S§E} — i(Sg&%”So)lz. (22)

In this equation, D is obtained by symplectic diagonalization
of 7 (¢g, Tg) by a matrix S, that satisfies ['g = SOSS. The
subscript 12 in Eq. (22) indicates the off-diagonal block in the
Nambu basis.

Writing

E A
2= ( R 5*), (23)

we can diagonalize the EOMs around the vacuum, which
yields

19,08 = —iA +S8EE" + ESE. (24)
The variables 1, £, and A are functions of the quantities

Giil = (31”2,,”, 8k im) (25)

Fiiot = (=1 8V, 1-mdVkotm) - (26)

Their explicit form is given in Appendix C. Note that despite
the fact that the right-hand sides of Egs. (25) and (26) contain
the angular momentum label m, the matrix elements of G and
F are independent of m.

Finally, expanding to first order in §¢ and § E gives

k26 k
i0,501 = 2/:’”‘ +25 [ s, @7)
r k'
L - ki+k g -
10,6 By ko1 =5Gk1k212—ﬂr + ﬁrsz,okz /kktsmqko
g - kiko(I4+ 1)
+ﬁ51,0k1/k’<55k1¢20+1m kika(41)
kikol
ZMSF/QIQ([,I). (28)

Since §F = i§E after linearizing around the vacuum, it is
evident that these equations exactly correspond to the EOMs
for the two- and three-body problem: Eqgs. (17) and (18). This
shows that Gaussian states indeed fully capture the Efimov
effect.

2. Cooperative binding with Gaussian states

We now turn to demonstrating the cooperative binding ef-
fect. Since a Gaussian state is not a particle number eigenstate,

= 0.00

free particles

- —0.03
-3 ac

bound states

~ —0.06

_7 T T L
0 10 E/N)

FIG. 2. Contour plot of the energy per particle £/(N) as a func-
tion of the number of particles (N) and the scattering length a in
terms of the three-body parameter A for M/m = 6/133. The energy
is given in units of A?/M. The bold line indicates the critical scat-
tering length at which a bound state first appears. The figure is also
shown in our related work [45].

but a superposition of those, we cannot fix the particle number

A

N, but instead we fix its expectation value (N), given by
(GSIN|GS) = |¢]* + Tr(G). (29)

We aim to show that Eyinq/ (]V ) grows monotonically with
(N ), which is a strong indication that also Epinq/N grows with
N. To keep the average number of particles fixed during the
imaginary-time evolution, we include a dynamically changing
chemical potential. We find that during the optimization with
fixed average particle number, the coherent part of the wave
function approaches zero, leaving a purely Gaussian state.
This is not surprising since this allows for the maximum
amount of correlation between the particles.

In Fig. 2 we show a contour plot of the energy per par-
ticle as a function of (N) and a. The bold line indicates the
scattering length a, where the energy per particle becomes
negative and bound-state formation sets in. Note that since
the Hamiltonian conserves particle number, a, is a smooth
line only due to a classical average over different particle
number sectors. As discussed above, in the limit of (N) going
to zero, we recover the three-body Efimov effect. We therefore
observe that in this limit, a, — a_.

As (N) is increased, a. monotonically decreases in mag-
nitude. Importantly, at fixed scattering length the energy
Epina/(N) monotonically increases with (N), as soon as (N)
is sufficient to lead to bound-state formation. This clearly
demonstrates cooperative binding, i.e., the ability of the
bosons to support each other’s binding to the impurity. This
result is in correspondence with recent work based on a
stochastic variational approach by Blume [54] that also shows
a strongly increasing energy as a function of particle number
for an impurity immersed in a Bose gas.

As discussed above, it is important to emphasize that our
method is variational not for fixed N but for fixed (N). This
means that the ground-state energy we find for a given aver-
age N = (N) may be lower than the lowest particle number
eigenstate of N particles. In fact, exactly because of the
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property that Epj,q/N increases with N, it is beneficial in
the optimization of the energy to have a larger spread in the
particle number. The Gaussian form of the wave function
does however restrict the particle number statistics, meaning
not arbitrary superpositions of particle number eigenstates
are allowed. The standard deviation of the particle number
for the Gaussian states scales with (V). This means that the
particle number fluctuations do not become relatively small
for large (N), as is often the case in statistical physics and,
e.g., for coherent states. Thus, even for large N = (N), the
energy found with Gaussian states may be significantly lower
than the particle number eigenstate of N particles. Altogether,
even though there are subtleties to be aware of, none of them
discount our evidence for the cooperative binding effect.

One obvious question is whether a. goes to zero if (N)
goes to infinity, i.e., would an infinitely weak attraction al-
ready enable bound-state formation? A hint of the answer to
this question is provided by the insight that the cooperative
binding effect is fully driven by the 7:lQLLP term originating
from the kinetic energy of the impurity. A lower bound on
|ac|, which is quite general and in particular independent of
the variational method, can therefore be derived by setting
the kinetic energy of the impurity to zero. In this case the
Hamiltonian becomes

. | SIPVR g PO
_ KB b + == kikob' o broo. (30
H %:/kZm Pkl +2n2 /Iq /kz 1k2by gobi,00- (30)

While this formally corresponds to a Hamiltonian of bosons
interacting with a infinitely heavy impurity, there is an im-
portant subtlety. Namely, the relation between the scattering
length and the coupling constant is determined by the reduced
mass of the problem. By solving the two-body problem corre-
sponding to Eq. (30), where the reduced mass is m, one finds
an expression for the scattering length a.g in this effective
model,

_1 m mA

= - —. 31
§ 2maey T2 (3D

In the spectrum of the Hamiltonian (30) a bound state ap-
pears precisely when a. = —o0. Inserting this condition into
Eq. (31) and comparing with Eq. (4) immediately yields a
limiting scattering length in the original model

aM
2mA -’

This is a bound of the lowest possible scattering length for
which a bound state can appear. For Li-Cs this value is given
by aciim = —0.07A~!. As can be seen in Fig. 2, this limit
is only approached extremely slowly and might in fact not
be reached by a Gaussian state Ansatz. In other words, the
scattering length at which the most deeply bound Efimov
state can form fulfills ™™ < dc1im- We again emphasize that
this limit is fundamental and independent of the variational
method. With more advanced Ansdtze the limit can only be
approached faster or more closely. In contrast, the limit will
depend on the form of the interaction potential. The fact that
we find |a.| < A~! with A~! on the order of the van der
Waals length indicates that nonuniversal physics will become
relevant in the description of a..

(32)

dc lim =

2.4
2.2
2.0
<
4
1.8

1.6

1.4

I I
-1 0 1
10 100 10

FIG. 3. Spatial extent R, defined by Eq. (33), of an Efimov cluster
as a function of the number of particles (N) for different scattering
lengths aA (indicated by color). The lines terminate when the bound
states disappear into the continuum (see Fig. 2). The mass ratio is

M/m = 6/133.

From a comparison with Table I, it is evident that a. jim
is approximately two orders of magnitude smaller than a_.
Note that such a minimal required scattering length to form an
Efimov cluster does not exist for the homonuclear case, since
there the pairwise interactions between all of the participating
particles drive the cluster formation.

The increase in binding energy as a function of particle
number and scattering length shown in Fig. 2 is accompanied
by a decrease in the spatial extent of the Efimov clusters,
which we define as

~

R= L (33)
([ dk Kb} by)

As shown in Fig. 3, the size of the Efimov clusters mono-
tonically decreases as a function of a and (N). It is evident
that these cooperative Efimov clusters are tightly bound, with
RA being of order 1. Note that R parametrizes the average
distance of the bosons to the impurity and not the distance
of the particle farthest away. This means that the total extent
of the Efimov cluster wave function can be much larger than
described by R, especially close to a..

Finally, we corroborate our qualitative explanation of the
mechanism underlying cooperative binding with quantitative
numerical results. We have explained before that the impurity-
mediated interaction between the bosons, described by the
7:LQLLP in the Hamiltonian, follows from a reduction of the
kinetic energy of the impurity. In Fig. 4 we plot the relative
values of the energetic contributions to the problem, i.e., the
kinetic energy of the bosons Elg’r(l’ ¥ the kinetic energy of the
impurity Elgnmp) , and the interaction energy Ejy, as a function
of the scattering length for various particle numbers (N).
Whereas the ratio between the bosonic kinetic energy and the
interaction energy only changes marginally when the number
of particles is increased, the kinetic energy of the impurity
relative to the interaction energy can decrease by more than
a factor 2. Thus, it becomes apparent that the reduction of
the kinetic energy of the impurity compared to the interaction
energy is indeed the driving force of the cooperative binding
mechanism. Note that the kinetic energy of the impurity de-
creases in relative but not in absolute terms when more bosons
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FIG. 4. Kinetic energy of (a) the bosons and (b) the impurity
compared to the total interaction energy, as a function of the scat-
tering length a (in terms of A), for several values of (N) and M/m =
6/133. The lines terminate when the bound states disappear into the
continuum (see Fig. 2). The legend in (a) corresponds also to (b).

are added. Indeed, adding more bosons leads to tighter binding
and therefore larger kinetic zero-point energy. Furthermore,
the ratio between the kinetic and the interaction energy is
not universal; it will depend on the shape of the potential.
However, we believe that the general trend of the decreasing
relative impurity kinetic energy for increasing particle number
is a universal phenomenon.

The cooperative mechanism can also be interpreted in
terms of an increase of the reduced mass of the system. For
example, if a boson scatters on an impurity-boson bound state,
this system has a larger reduced mass than the system of a
boson scattering with a free impurity. However, the interaction
potential remains the same, meaning that forming a bound
state in the former system is easier than in the latter. This
is clearly related to our explanation in terms of the impu-
rity kinetic energy. Whereas in the case of a dimer state the
impurity needs to completely compensate for the momentum
of the boson it is bound to, in a trimer the bosons partially
compensate for each other’s momentum. This means that the
impurity kinetic energy per boson is decreased.

3. Further aspects

The Efimov clusters are inherently unstable due to re-
combination into deeply bound molecular states that are not
included in our model. Because of this rapid recombination,
the specific structure of these clusters is not relevant for ex-
periments, which is why we refrained from discussing it in
detail. Instead, the main interest of this work is to show that
the polaron, as discussed in the next section, can decay into
Efimov clusters, a process independent of their microscopic

structure. For this polaronic instability the cooperative binding
effect is essential and this has hence been our main focus here.

The bound states that are formed for N > 1 are very
tightly bound (as shown in Fig. 3) and the results we obtain
in Figs. 2—4 are therefore not universal. Indeed, universality
breaks down due to the piling up of bosons around the impu-
rity. The cooperative binding mechanism ultimately leading to
this breakdown is universal though, since the driving ﬂQLLp
term is independent of the interaction potential.

The accumulation of bosons on the impurity can be pre-
vented or limited by interboson repulsion. Due to the tightly
bound nature of the bound states, not only the interboson
scattering length but also the range of the interboson interac-
tions will play an important role. As a result, a simple contact
interaction will not be sufficient to describe this effect and
more realistic potentials will need to be employed. Whether
ultimately van der Waals universality [55—-61] persists even
for deeply bound states and states with more particles [62]
remains an interesting open question.

Furthermore, also using a two-channel model, where the
interaction between the impurity and the bosons is modeled
by a coupling to a closed molecular channel, may modify
the results. Especially in the closed-channel-dominated limit
only a single boson can interact with the impurity at a time,
resulting in an effective three-body repulsion [17]. Similar to
a direct interboson repulsion, this may limit the size of Efimov
clusters.

Finally, we note that the coherent part of the Gaussian state
may also contribute to cooperative binding, although more
weakly than the Gaussian part. This is due to the mixing
between the coherent and the Gaussian term in the expec-
tation value of ”;QQLLP. In the next section this will become
important, because only the coherent state term couples to the
linear Frohlich term in the Hamiltonian, crucial for polaron
formation.

IV. EFIMOV EFFECT AND BOSE POLARON

We have shown that large and strongly bound Efimov
clusters already form at small negative scattering lengths. The
ground state in our system is therefore not the Bose polaron,
but a state where all particles are bound to the impurity.
This immediately raises questions concerning the fate of the
polaron. Does a polaron state still exist and if yes, will it still
be stable? Can it decay into the cooperative Efimov clusters?
Finding answers to these questions is the aim of this section.

A. Stable and metastable polarons

We are now in the position to discuss the spectrum shown
in Fig. 1 in more detail. Starting at the left of this figure, as
discussed below Eq. (32) in the preceding section, there is

a minimum scattering length a™™ < @ m < 0 required to
(min)

form any Efimov cluster. As aresult, fora > a the polaron

remains the ground state of the Hamiltonian. However, i
can be very small for light impurities, yielding only a small
region where the polaron is truly stable.

The first clusters that form at ¢™™™ contain an exceedingly
large number of particles. Since smaller clusters are not stable

yet, all particles required for the bound-state formation need
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FIG. 5. Illustration of the energy landscape of the extended Frohlich model (1) as a function of the number of excitations Nex surrounding
the impurity at a fixed density and scattering length in the (a) stable polaron, (b) metastable polaron, and (c) unstable polaron regimes, which
correspond to the regimes shown in Fig. 1. In the stable polaron regime, there are no Efimov clusters to decay into, in the metastable regime
there is a barrier protecting the polaron from this decay, and in the unstable regime this barrier has completely disappeared. The black circle
and square in (b), connected by the dashed line, are of relevance for Fig. 7.

to come together without the possibility to cascade through
long-lived intermediate states. Since cold atomic gases are
dilute, the rate of the required N-body scattering processes is
extremely small. Therefore, the polaron state, which at small
scattering lengths is accompanied only by a relatively small
and long-range deformation of the condensate, will not ex-
perience rapid decay into these clusters and remain relatively
long-lived beyond a™™.

It can also be understood in a formal way from the Hamil-
tonian why the polaron should remain a stable state for weak
interactions. For small scattering lengths and a small number
of excitations in the polaron cloud, the contribution of the
ﬁQLLp term in the Hamiltonian is negligible. Moreover, at
negative scattering lengths no two-body bound states can be
formed yet. This implies that the quadratic kinetic energy term
in Eq. (3) dominates over the quadratic interaction terms. The
remaining model thus closely resembles the original Frohlich
model where a linear term drives polaron formation and a
quadratic kinetic energy term counteracts this process. This
model has a minimum of the energy as a function of particle
number, as graphically illustrated in Fig. 5, where the energy
landscape of the Hamiltonian is plotted as a function of the
number of excitations around the impurity for fixed back-
ground density. _

For 0 > a > a™™" [Fig. 5(a)], the polaron is the global
minimum of the energy landscape and hence stable. When
a™™" is crossed the local minimum is not immediately af-
fected, since the barrier protecting it is still large and a
bound state can be formed only for a very large number
of excitations. The correspondence to the original Frohlich
model persists as long as the particle number corresponding
to the local minimum is sufficiently small for the quartic term
to remain of minor importance. This changes, however, for
large scattering lengths or densities. In this case the particle
number at the polaron minimum found from the simplified
model is so large that the quartic term can no longer be ne-
glected. When this occurs [as depicted in Fig. 5(b)], the barrier
protecting the polaron from decaying into Efimov clusters
starts to disappear. Eventually, at the critical scattering length
a* the barrier completely disappears, resulting in the break-
down of the polaron, and one enters the regime illustrated in
Fig. 5(c).

B. Breakdown of the polaron

Now we will discuss in more detail the process leading to
the breakdown of the polaron. At the critical scattering length
a* where the instability occurs, the polaron state is a saddle
point on the variational manifold. Therefore, the polaron state
is no longer stable against a specific type of perturbations.
These perturbations can be identified by computing the tan-
gent vectors [36,63] on the variational manifold. The resulting
processes represent single and double excitations on top of the
Gaussian state. Thus, the polaron becomes unstable when a
single or double excitation (or a linear combination thereof)
can result in the formation of a bound state. Once a bound
state is formed, the cooperative binding effect drives a cas-
cade into more deeply bound states of ever increasing particle
number. In a medium this is possible, since there is a coupling
between the different particle number sectors: The polaron can
draw particles from the medium. Eventually, this leads to the
collapse of the system onto the impurity.

The value of the scattering length a* can be calculated
numerically as a function of the density. To this end, we use
the following procedure. We start at small scattering lengths
where the local minimum corresponding to the polaron can
easily be identified. We then incrementally increase the cou-
pling strength. In every step the polaron energy and wave
function are calculated with iterated Bogoliubov theory, using
the polaron wave function at the previous scattering length as
a starting point. As the critical scattering length a* is reached,
the barrier preventing the polaron from decaying into many-
body bound states disappears, leading to the breakdown of the
impurity.

1. Polaronic instability and shift of the Efimov resonance

In Fig. 6 we show a* as a black solid line as a function of
the interparticle distance n,, 3 A for two values of the inter-
boson scattering length ag A = 0.01 and 0.1. Additionally, we
show the spectral weight Z of the polaron as a colormap. It is
given by the overlap of the wave function with the unperturbed
state, which for a Gaussian state can be written as

_exp[—@" (T + 1)~ @]

det (54

Z (34)
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FIG. 6. Polaron quasiparticle weight Z as a function of the
interparticle distance n, B A and scattering length a for mass ra-
tio M/m = 6/133. Two different interboson scattering lengths are
chosen: (a) agA = 0.01 and (b) agA = 0.1. The black solid line
indicates the critical scattering length a* at which the polaron breaks
down. The dotted line in (b) is a guide to highlight the difference
between (a) and (b) and corresponds to the solid line in (a). The red
region close to the solid line in (a) is a region of dynamic instability.
The dashed lines indicate contours of the quasiparticle weight Zyg
obtained from mean-field theory.

where [ is the identity matrix. Experimentally, Z can be mea-
sured using injection rf spectroscopy [18,19].

First we consider the low-density limit. Here we find that
a* — a_, i.e., the polaron ceases to exist exactly at the three-
body Efimov scattering length. This finding can be understood
as follows. For small densities, the polaron cloud is extremely
dilute, meaning the impurity is practically free. A bound state
for a free impurity plus two excitations from the background
can be formed when the first three-body bound state crosses
the continuum, which precisely happens at a_. This transition
from a free impurity to a three-body Efimov state is accom-
panied by a sharp drop of the quasiparticle weight from 1 to
0.

As the density is increased, the polaron cloud surround-
ing the impurity is established containing excitations from
the BEC. The formation of this polaron cloud has multiple
consequences. First, as can be seen from Fig. 6, it leads to
a reduction of the quasiparticle weight for increasing density.
Second, due to the increased density around the impurity, scat-
tering of two particles on the polaron can lead to the formation
of clusters of more than three particles. Importantly, due to the
cooperative binding effect, these larger clusters can already be
formed at scattering lengths smaller than a_. Therefore, |a*|
shifts to smaller scattering lengths as the density increases.
This argument suggests the interpretation of the polaronic
instability as a many-body shifted Efimov resonance [45],
where the polaron takes over the role of the free impurity as a
collision partner of two additional bosons. This reasoning also
implies that the timescale associated with this instability is on
the same order as the timescale associated with three-body
recombination.

One fascinating aspect of this finding is that the shift of a*
is continuous. While the average over particle number sectors
in our discussion of cooperative binding in Sec. III and Fig. 2
was purely classical, here the Hamiltonian coherently couples
different particle number sectors. This means that instead of

102 -

10t

(Nex)

100 .

'“‘,;61/3/\:
=== 20 ===" 100
10 === 50 = ™

107t o

1072

102 -

0 -1 -2 -3 -4 -5 -6
an

FIG. 7. Quantitative analysis of the polaronic instability mecha-
nism. The number of excitations (Nex) contained in the polaron cloud
(Gaussian state, dashed lines; coherent state, dotted lines) compared
to the critical number of particles needed for bound-state formation
(solid lines) in the presence of a background BEC is plotted versus
the scattering length aA. The interboson scattering length is given
by (a) agA = 0.01 and (b) ag A = 0.1. The black solid line indicates
the critical particle number for bound-state formation in the absence
of a background BEC, corresponding to the line of a. displayed
in Fig. 2. Crosses indicate where the polaron is destabilized in the
Gaussian state Ansatz. Diamonds indicate the position beyond which
a dynamical instability occurs. The legend in (a) also applies to (b).

obtaining a classical average over three-, four-, and five-body
Efimov states, clusters formed in the presence of a background
BEC contain a quantum mechanical superposition of different
particle states. This originates from the quantum coherent
nature of the BEC giving rise to the linear Frohlich term in the
Hamiltonian and highlights an intriguing aspect of chemistry
in a medium of a quantum nature.

2. Mechanism of the polaronic instability

We now study quantitatively the mechanism underlying the
polaronic instability. To this end, it is useful to introduce the
relevant length scales of the problem: the size of the Efimov
trimer, which is on the order of a_; the average interparticle
distance, parametrized by n; '3, and the size of the polaron
cloud, which is determined by the modified healing length of
the BEC & = (SJTnOaB,u,/m)_l/2 [30].

In Fig. 7 we show the number of excitations in the polaron
cloud computed with a Gaussian (coherent) state Ansatz as
a function of the scattering length as dashed (dotted) lines.
As solid lines (color indicating various background densities)
we show the critical particle number needed to form a bound
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state with an energy lower than the polaron energy at the given
scattering length and background density. In terms of the
illustration in Fig. 5(b), we compare the number of particles
contained in the polaronic excitation cloud (black circle) with
the number of particles that is needed to form a bound state of
at least the polaron energy (black square).

The crosses at the end of the dashed lines indicate the
scattering length a* of the polaron instability. This instability
is not captured by the coherent state Ansatz. In between the
crosses and the diamonds appearing on some lines we find
regions of dynamical instability, discussed in more detail be-
low. The black line in this figure shows the critical scattering
length for bound-state formation as a function of particle
number in the absence of a background BEC, such as shown in
Fig. 2.

First we compare the results from the coherent and Gaus-
sian state Ansdtze (dotted and dashed lines). While they
coincide for small a and (N, ), for larger a the particle number
of the polaron calculated using Gaussian states grows much
more rapidly. This leads to a difference of one to two orders of
magnitude close to the critical scattering length. Next we con-
sider the solid lines, corresponding to the onset of bound-state
formation. Based on the simplified illustration in Fig. 5(b),
one would expect that the polaron instability would occur
precisely when the dashed lines cross the solid lines. However,
this is not the case. In the low-density regime, the dashed lines
in fact continue after crossing the solid lines, meaning that
the polaron remains stable even when containing more than
enough particles to form a bound state. The crucial insight
to understand this behavior is that in this regime & > a_.
Thus, even though the particle number in the polaron cloud
is very large, the cloud is so extended that the number of
particles within a volume set by a_ is still too small to fa-
cilitate bound-state formation. In contrast, in the high-density
regime we find that the instability exactly occurs when the
dashed lines hit the solid lines. In this regime the healing
length &g that determines the size of the polaron cloud is
comparable to or smaller than the extent of the Efimov state.
Therefore, a bound state can be formed immediately when the
polaron cloud contains the required number of particles. In
the intermediate-density regime, there is a crossover between
these two regimes. Consistent with this interpretation, we find
that the larger the ap, and thus the smaller the &g, the lower
the density at which the transition occurs.

We see that the scattering length of the instability |a*|
(indicated with the crosses in Fig. 7) shifts towards smaller
values for larger densities. From Fig. 7 it appears that the
main mechanism of this shift is an increase of the number of
excitations in the polaron cloud as a function of background
density (horizontal shift of dashed lines). Another contribu-
tion comes from the vertical shift of the solid lines. This shift
is due to the linear Frohlich term in the Hamiltonian, which
leads to the stabilization of the coherent polaron cloud due
to the background density. This coherent part of the wave
function also participates in the cooperative binding, leading
to a downward shift of the solid lines. This effect is in turn
slightly counteracted by interbosonic repulsion and the asso-
ciated modification of the Bogoliubov quasiparticle dispersion
[compare Figs. 7(a) and 7(b)], which plays the strongest role
for large densities and agp.

0
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FIG. 8. Relative energy difterence (E — Eyr)/Emr between the
energy E obtained from the Gaussian state and mean-field theory
EyE as a function of the density ny and scattering length a for mass
ratio M/m = 6/133. Two different interboson scattering lengths are
chosen: (a) agA = 0.01 and (b) agA = 0.1. The black solid lines
indicate a*. The dotted line in (b) corresponds to the solid line of
(a) and is shown to more clearly indicate the difference between
(a) and (b). Note that the color scale is not linear but cubic.

We note that in our framework the most important role of
ap is to determine the healing length. If we compare Figs. 7(a)
and 7(b) we see that the healing length mainly determines the
number of particles in the polaron cloud. This is also reflected
in the quasiparticle weight Z in Figs. 6(a) and 6(b).

C. Further aspects
1. Properties of the metastable polaron

Above we have focused on the instability of the polaron
described by Gaussian states. Another interesting question is
how much the properties of the polaron are altered compared
to the coherent state approach [16] in the regime where the
polaron is metastable. In Fig. 8 we plot the energy difference
AE = E — Eyr between the polaron energy calculated from
Gaussian states E and coherent states Eyr, which is given by

2 no

wola =) >

Evr =

The resonance shift parameter ap [16] is defined in Ap-
pendix A.

Remarkably, the effect on the energy appears to be very
small. A significant correction to the polaron energy only ap-
pears close to the instability, although still limited to less than
10%. Hence, while introducing correlations in the variational
Ansatz leads to a decrease in spectral weight and destabiliza-
tion at some point, the energy of the polaron is still very well
described using mean-field theory. This reflects the general
notion that while variational energies may work well, the same
may not apply for the wave functions.

We have already seen by comparing the dashed and dotted
lines in Fig. 7 that the numbers of excitations in the polaron
cloud obtained from coherent or Gaussian states are very
different. While they still coincide for small particle numbers
and scattering lengths, where the quartic 7:[QLLP term has
only a small contribution, this term starts to be important for
scattering lengths approaching a*. As a result, the difference
between Gaussian and coherent states rapidly increases. This
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finding is also directly associated with the much smaller Z
factor for the Gaussian state result (see Fig. 6).

2. Dynamical instability

Our numerical results show a region of dynamical insta-
bility [red area in Fig. 6(a)]. A dynamical instability occurs
when the variational parameters correspond to a minimum on
the variational manifold, but to a saddle point with respect to
its tangent space. To identify the presence of the dynamical
instability, we linearize the real-time EOMs around the min-
imum found from iterated Bogoliubov theory. The system is
stable when the symplectic diagonalization of the linearized
time-evolution operator yields only positive real eigenvalues.
However, in the case of a dynamical instability, one finds
imaginary eigenvalues corresponding to a negative direction
in the Hessian. In the real-time evolution the imaginary eigen-
values manifest as an instability with exponentially growing
populations of the excitation modes.

Importantly, the dynamical instability indicates that the
variational manifold is no longer suitable to describe the state
of the system. Hence, to fully describe the dynamics in this
regime, even higher-order correlations would need to be in-
corporated in the model.

In Fig. 6 the dynamical instability occurs in the small red
region attached to the solid line at intermediate densities for
agpA = 0.01. This is exactly the region where the polarons
are very large in number of particles and extent, but where
the density at the impurity is too small to lead to bound-state
formation. A dynamic instability was also found for the Bose
polaron within the coherent state description in Ref. [64]. Al-
though the character and position of this instability is different
from the one we find here, the origin may be related.

A dynamical instability can also be found when extending
our plots to higher density. Here our results are however
no longer valid, because when n, B3A > 1, one can no
longer speak of universal long-range physics, and short-range
physics will dominate the behavior of the system. This corre-
sponds to interparticle distances comparable in scale to the
length scale of the interaction potentials. In gases of cold
atoms the typical densities are orders of magnitude away from
this limit.

3. Dependence on the mass of the impurity

Finally, we study the mass dependence of our results. To
this end we investigate a significantly different mass ratio by
choosing a °Li-**Na system as an example. In this case we fix
the interboson scattering length to ag A = 0.1. We show a*,
the polaron energy, and the quasiparticle weight as a function
of the interparticle spacing ~n, Y3 in Fig. 9.

The most obvious difference compared to the °Li-'33Cs
case is the change in the scale of the relevant scattering
lengths. Already from the few-body problem we know that
la_| increases strongly when the mass ratio m/M decreases
(see Table I). As evident from Fig. 9, we find that the same
holds in the many-body case. This behavior is also reflected
in a change in the scale of the relevant densities. This is not
surprising, however, considering that it is the dimensionless
ratio between the interparticle distance and the size of the
Efimov state (scaling with a_), which is relevant for the
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FIG. 9. (a) Quasiparticle weight Z and (b) fractional energy dif-
ference (E — Emr)/Ewmr as a function of the density ny and scattering
length a for mass ratio M/m = 6/23 and azA = 0.1. Solid lines
indicate the critical scattering length a*.

physics. Except for these changes in scale there are no striking
physical differences between the Li-Na and Li-Cs systems.
One small quantitative difference is the difference between the
polaron energy predicted by the Gaussian state and mean-field
approaches. This difference is slightly larger for the Li-Na
mass ratio than for Li-Cs.

V. DISCUSSION AND EXPERIMENTAL PROPOSAL

A. Limitations of our approach

Now we consider the limitations of our approach. First,
we have limited ourselves to scattering lengths ap sufficiently
small to preserve the validity of the Bogoliubov approx-
imation. To ensure this, we tested that going beyond the
Bogoliubov approximation with these interboson scattering
lengths only leads to small deviations from our results (less
than 10% for a*). Going beyond the Bogoliubov approxima-
tion comes with the challenge of greatly increasing numerical
complexity and the necessity and difficulty to properly reg-
ularize the interboson interactions. Detailed studies dealing
with these issues are left for future work. We expect that
for light impurities experimental regimes can be found where
our results qualitatively hold, despite the fact that for real-
istic experiments ag A will be of order one. In the case of
large ap, however, we expect that the cooperative binding
will be strongly suppressed due to the interboson repulsion.
Furthermore, for heavier impurities the cooperative binding
effect is much weaker, meaning that the value of ag A needed
to suppress the effect is also much smaller than for light
impurities. This makes it unlikely that the polaronic instability
can be observed experimentally for heavy impurities. In these
scenarios, we expect a smooth crossover from the attractive
polaron into dimers or small Efimov clusters [15,17].

Second, we have studied the properties of local energy
minima on our variational manifold only using imaginary-
time evolution. For that reason we could in particular not go
beyond a* to study, e.g., higher-order Efimov states or the
repulsive polaron. Furthermore, calculating spectral functions
with a Gaussian state variational manifold is challenging for
various reasons. Therefore, the fate of the polaron branch in
our model beyond the instability remains an important open
direction of study. We consider it unlikely that the polaron
branch will completely disappear and we hypothesize that it
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will be broadened due to the decay into the Efimov clusters.
We expect that the resulting width of the spectral line will
be inversely proportional to the timescale of the decay, likely
determined by, and similar to, the timescale of three-body
recombination.

Third, our approach considers up to three-body correla-
tions between two bosons and the impurity. It is thus a natural
question to ask how our results would generalize when in-
cluding even higher-order correlations. We expect that when
up to N-body correlations are included, the value of a* would
asymptotically connect to the resonance of the N-body Efimov
cluster. Due to the cooperative binding effect, its absolute
value would in turn be smaller than |a*| obtained in this
work. As discussed before, however, we do not expect the
polaron branch in the spectrum to suddenly disappear at the
point of instability, but rather expect it to be broadened by the
timescale associated with its decay. Since cold atomic gases
are typically very dilute, rates for N-body scattering in exper-
iments are typically highly suppressed for N > 3 [43]. As a
result, we expect that the inclusion of beyond-three-body cor-
relations should not have a strong effect on most observables.

Finally, we note that our results may not fully apply to
closed-channel dominated Feshbach resonances, because we
use a single-channel model. Effective repulsive three-body
interactions present in such systems [17,35] could counteract
the cooperative binding, but are not included in our model.

B. Comparison to other theoretical approaches

We have already quantitatively compared some of our
results with the mean-field approach using coherent states
[16,30,53,64]. On the conceptual side, the most drastic dif-
ference is that the coherent state approach does not include
three-body correlations. Since these are crucial to describe
the Efimov effect, the coherent state approach completely
misses the cooperative binding effect and the presence of the
Efimov clusters. In the coherent state model, the polaron is
the ground state for all negative scattering lengths and even
beyond unitarity [16]. The polaron energy then diverges at the
positive scattering length ag as a result of a large number of
excitations piling up on the impurity. The scattering length ag
can be interpreted as defining a shifted version of the unitarity
point, i.e., the point where a two-body bound state enters the
continuum.

In contrast to the Gaussian state approach, where a* is
shifted to smaller coupling strengths compared to a_, the
defined aop implies a shift to stronger coupling strengths.
This highlights also the different mechanisms governing these
shifts. For Gaussian states the shift is predominantly caused
by the cooperative binding effect, whereas the interboson re-
pulsion on the Bogoliubov level is responsible for the shift in
the case of coherent states.

Interboson interactions play an important role in our model
as they set the healing length of the BEC, and hence the
extent of the polaron cloud. Guenther et al. [30] showed that
explicitly including interboson interactions can prevent the
collapse of an infinite number of bosons onto the impurity
(see also Ref. [31]). However, this effect only plays a role
for sufficiently high densities in the polaron cloud. In prin-
ciple, the full inclusion of explicit interboson repulsion will

also limit the number of particles that an Efimov cluster can
host. However, for the light impurities and small interboson
scattering lengths considered in this work, the size of Efimov
clusters for which this effect would play an important role is
much larger than the size of the Efimov clusters into which the
polaron will initially decay. Therefore, we expect that explicit
interboson repulsion will not qualitatively change the critical
scattering length at which the polaron instability occurs.

Using a renormalization-group approach [29], it was pre-
dicted that the polaron becomes unstable for a finite negative
scattering length. This was attributed to phase and particle
number fluctuations and no connection to the Efimov effect
was made. Since the general picture of a polaronic instability
at negative scattering lengths agrees with our results, it re-
mains an interesting open question how the two pictures might
be related.

In Refs. [15,17,41] the interplay between Efimov physics
and Bose polaron formation was studied for a limited number
of excitations from the BEC. For a mass ratio m/M =1 a
smooth crossover between the Bose polaron and the lowest-
energy Efimov cluster was found [15,17], consistent with
quantum Monte Carlo results [28]. In these studies the most
deeply bound Efimov state contained a limited number of
particles. In contrast, in our case the lowest-energy Efimov
cluster contains an infinite particle number, and there can
hence be no smooth crossover from the polaron into this state.
This qualitative difference can be explained by the different
mass ratios used and the effective three-body repulsion that is
implicitly part of the two-channel model used in Refs. [15,17].
In Ref. [41] radio-frequency injection spectra were predicted
for the same mass ratio we considered. However, since the
number of possible excitations from the BEC in the employed
diagrammatic approach was limited, the possibility of forming
many-particle Efimov clusters was not included.

C. Experimental implementation

Our predictions have not yet been tested experimentally
[18-20]. In experiments performed so far the impurities were
at least as heavy as the bosons of the BEC, leading to a strong
suppression of the Efimov effect. As a result, any Efimov fea-
tures would only have been observable at very large negative
or positive scattering lengths. In this work we focus on the
example of °Li impurities in a BEC of '*3Cs, but for Li in
Rb or K BECs, as also available in experiments [65,66], the
results should be very similar.

The typical densities of BECs vary in the range of 10'3—
10> cm™3 [67]. Assuming the three-body parameter A ~
lv’dlW and a van der Waals length of Li-Cs of 454y, this gives
a regime of n;'/> A ~ 40-200. This implies that the low-
and intermediate-density regime of our results can readily be
probed, and a clear shift of the Efimov resonance should be
observable. In practice, tuning the density in the experiment
for a given BEC may be difficult. However, the resonance
position in a BEC could be compared with the resonance
position in a thermal gas. The latter could then serve as a ref-
erence that should give results comparable to our low-density
predictions.

For the specific case of the Efimov resonances observed
for Li-Cs at positive Cs-Cs scattering length [59,68], an in-
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teresting subtlety comes into play. In this case the resonance
corresponding to the lowest-energy Efimov state is suppressed
due to coupling to a shallow Cs, bound state. Therefore, the
first observed Efimov resonance actually corresponds to the
second Efimov state and it appears at a scattering length of
around —2000ay. If we use this Efimov resonance as the
lowest resonance in our model, we find a larger three-body
parameter A~! =8 Iygw. By virtue of the larger size of the
Efimov state, this implies that in fact the high-density regime
of our results could be probed: ng 13\ ~ 52025, Moreover, for
smaller mass ratios m/M such as °Li in a BEC of *Na, the
value of a_ is naturally larger. As a result, n;, a_is larger
and higher dimensionless densities can be reached as well.

We propose combining two experimental approaches to
test our predictions. The first approach would be to perform
loss measurements such as regularly used to observe Efimov
resonances [4,39,40,43,44,59,68]. In this case the magnetic
field should adiabatically be ramped from weak to stronger
interactions to form a polaron. Then, at a given final scattering
length a, the magnetic field should be kept fixed and the loss
arising from recombination should be measured. As this final
scattering length is varied, one should observe an enhance-
ment of the loss when a* is reached. Whether this appears as a
resonant feature or as the onset of a regime where three-body
recombination is enhanced is an open question and subject
of further study. Loss measurements may be more efficiently
performed by using the recently introduced photoassociative
ionization technique [69].

The second approach would be to perform rf injection
spectroscopy such as used in Refs. [18,19] for lighter impu-
rities. A clear drop in quasiparticle weight and a broadening
of the polaron spectral line of the polaron should be ob-
servable as the scattering length of the polaron instability is
approached and crossed. When doing ejection spectroscopy as
in Ref. [20], the ground-state polaron is prepared in the initial
state. In this case enhanced three-body loss due to Efimov
cluster formation will be the most important observable. The
formation of tightly bound Efimov clusters may also give rise
to higher-frequency tails in the rf spectrum because of their
large amount of kinetic energy.

In conclusion, observation of our theoretically predicted
phenomena is in reach with current state-of-the-art experi-
mental techniques.

VI. CONCLUSION AND OUTLOOK

In this work we used a variational Gaussian state Ansatz to
describe the Bose polaron problem and the Efimov effect. We
found that the cooperative binding caused by the Efimov effect
leads to the formation of many-particle Efimov clusters. The
cooperative binding is driven by the reduction of the kinetic
energy of the impurity. Since the Efimov clusters are lower in
energy than the Bose polaron, the polaron is not the ground
state of the extended Frohlich Hamiltonian but rather exists as
a metastable excited state. This excited state loses its stability
at a critical scattering length a* that can be interpreted as a
many-body shifted Efimov resonance.

We predicted that while the mean-field energy of the po-
laron is reliable up to the point where the polaron becomes
unstable, the inclusion of interboson correlations leads to a

strong decrease in the spectral weight. Our results can be ex-
perimentally probed by a combination of rf spectroscopy and
three-body loss measurements of light impurities immersed
in BECs. The parameter regimes discussed in our work are
experimentally feasible, requiring systems that feature both a
small interboson scattering length and a large boson-impurity
scattering length. We expect our results to also hold, up to
quantitative shifts, for slightly larger interboson scattering
lengths.

Future interesting directions include the study of the real-
time dynamics of the polaron [53,64,70] using Gaussian
states. Certainly one aim should be to understand how Efi-
mov cluster formation occurs in real time and whether indeed
resonant behavior can be observed at the scattering length
a*. Furthermore, the scope of our results can be extended
to multichannel models, finite polaron momentum [71,72],
or explicit interboson repulsion. This will allow the study of
closed-channel dominated resonances, the dispersion relation
of the polaron, and the repulsive side of Feshbach resonances,
respectively. Our methods can also be extended to rotating
impurities [73-75] or bipolarons [76-78] to study the effect
of induced interboson correlations in those systems.

It would be fascinating to explore further the connection to
quenched BECs [6-14]. In the present work we have shown
that the formation of a polaron cloud around an impurity can
lead to a modification of Efimov physics. One natural question
to ask is whether a similar effect occurs in BECs quenched to
negative scattering lengths. While one can certainly not em-
ploy the language of polarons or polaron clouds in this case,
it is still two-body and higher-order correlations between the
bosons that make them cluster together more closely, which is
also the essence of polaron physics. Hence, it will be interest-
ing to explore whether a shift of Efimov resonances can also
be observed in said scenarios. One way to explore such effects
could be the application of the cumulant expansion method as
described in Ref. [13,14] to negative scattering lengths.

Finally, it remains an interesting open question how similar
the polaron instability is to the collapse of a BEC. In our
model with bosonic interactions included on the Bogoliubov
level, the single impurity induces a first-order phase transition
of the entire system at a™™. Even though this is prevented
in practice by explicit interboson repulsion, it still indicates
that the impurity can have a profound effect on the medium.
Furthermore, the study of how large an Efimov cluster in a
medium can become before it leads to recombination and loss
remains another open question. These questions highlight how
the study of impurity physics can give new insights into the
dynamics of quenched or collapsing BECs.
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APPENDIX A: DEFINITIONS OF VARIABLES The variables concerning the interaction of the impurity, W,
Vk(j()/, and Vk(i?, appearing in the Hamiltonian, as well as ag
providing a mean-field shift of the scattering length due to the
modified quasiparticle dispersion, are given by

In this Appendix we provide the definitions of the variables
that are introduced in Eq. (3) by replacing the original bosons
by Bogoliubov quasiparticles. The dispersion relation and op-

k
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APPENDIX B: THE QUARTIC LEE-LOW-PINES TERM

Here we give the explicit expression for the quartic 7:[QLLP term which originates from the Lee-Low-Pines transformation
acting on the impurity momentum operator in the spherical wave basis. It reads

HoLr = f/ dkldkz
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This expression only changes [/ and m one at a time, thus coupling (/, m) modes only to (I &= 1, m) or (I £ 1, m & 1). Together
with angular momentum conservation, this allows for an efficient numerical implementation.

APPENDIX C: RELEVANT VARIABLES FOR THE TIME EVOLUTION OF GAUSSIAN STATES

Here we present the relevant variables required to perform the time evolution of the Gaussian state in the case of ng = 0. We
find that even though the Hqpip term defined in Appendix B is complicated, it simplifies due to the spherical symmetry of the
problem, and we have

_'k2¢ +'ﬂ»/AdFH¢ L X /ka«; b — Fi bi) (Cl)
= 2y KT o2 LYY 0 kk'(I=1) Pk kk'(I=1) Py
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The definitions of G and F are given in Egs. (25) and (26).
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