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Similar to an electron in a solid, an impurity in an atomic Bose-Einstein condensate (BEC) is dressed by
excitations from the medium, forming a polaron quasiparticle with modified properties. This impurity can
also undergo chemical recombination with atoms from the BEC, a process resonantly enhanced when
universal three-body Efimov bound states cross the continuum. To study the interplay between these
phenomena, we use a Gaussian state variational method able to describe both Efimov physics and
arbitrarily many excitations of the BEC. We show that the polaron cloud contributes to bound state
formation, leading to a shift of the Efimov resonance to smaller interaction strengths. This shifted scattering
resonance marks the onset of a polaronic instability towards the decay into large Efimov clusters and fast
recombination, offering a remarkable example of chemistry in a quantum medium.
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Studying chemical solvent effects on a fundamental level
is challenging. The process of solvation plays an important
role in chemistry, but typical solvents prohibit clean and
controllable experiments or theoretical descriptions. Most
experiments with the aim to understand collisions and
reactions from first principles [1–14] are therefore carried
out in gases, which are usually too dilute for medium
effects to play a role.
Degenerate quantum gases [15–17], while not being

solvents commonly found in chemical laboratories, offer a
unique way to overcome these limitations. Here, the wave
functions of the particles overlap even though the density is
low. As a result, medium effects can be studied in a clean
and controllable setting.
In this Letter, we consider an impurity atom immersed in

an atomic Bose-Einstein condensate (BEC). In this sce-
nario, the chemical medium effects are reminiscent of
condensed matter physics. The impurity is namely dressed
by excitations from the BEC to form a quasiparticle called
Bose polaron [18–20], similar to the paradigmatic polarons
found in solids [21–28]. At the same time, the impurity can
undergo chemical reactions in the form of three-body
recombination with BEC atoms [15]. This reaction forms
one of the predominant loss mechanisms in BECs. The
process involves two atoms decaying into a dimer state

while a third atom takes away the released energy, leading
to the expulsion of the reaction products from the trap.
In collisions and reactions at low temperatures, scattering

resonances play a key role [29]. Such resonant enhance-
ments of the scattering rate occur when the energy of a
quasi-bound state matches the collision energy.
Experiments probing scattering resonances [9–14] provide
stringent tests for quantum chemistry methods [10] and
their manipulation has important applications such as
quantum simulation [30] or controlled chemistry [31,32].
In the case of three-body recombination, resonances are
caused by a universal type of three-body bound states
[33–39], that arise due to the Efimov effect [40,41].
The aim of our work is to describe how polaronic

dressing of the impurities affects their Efimov scattering
resonances and vice versa. The simultaneous description of
both the correlations leading to the Efimov effect [42,43]
and the formation of a macroscopic polaron cloud con-
taining a large number of excitations [44,45], has so far
remained an open challenge. We approach this problem
using a variational method based on Gaussian states [46]
in the impurity reference frame. We focus on the case of
light impurities, where the Efimov effect is particularly
prominent [36,37,41,47].
We find that the medium shifts the three-body scattering

resonance to smaller interaction strengths because the
polaron cloud assists bound state formation. Furthermore,
we show that this shifted resonance marks the onset of a
polaronic instability: when a bound state is formed this leads
to a cascade into ever larger Efimov clusters, many-particle
bound states forming due to the Efimov effect. Their
existence has been theorized and demonstrated experimen-
tally in the homonuclear case [41,48–50]. Here we predict
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that this extends to the heteronuclear case. In experiments
the polaronic instability is heralded by rapid chemical
recombination.
Model.—We consider an impurity of mass M immersed

in a three dimensional, weakly interacting, homogeneous
BEC of density n0 at zero temperature, consisting of bosons
of mass m. The interboson and impurity-boson scattering
lengths are denoted by aB and a, respectively, and
correspond to coupling constants gB and g. We use a
single-channel Hamiltonian (ℏ ¼ 1) with contact inter-
actions, valid close to broad Feshbach resonances [9,51]:

Ĥ0 ¼
Z

d3k
ð2πÞ3
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The â†k are bosonic creation operators and the impurity
is described with operators P̂ and R̂. After Bogoliubov
transformation, introducing Bogoliubov quasiparticles
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, we move to the reference

frame of the impurity using the Lee-Low-Pines (LLP)
transformation [52]. The total momentum of the system
is set to zero, yielding the extended Fröhlich
Hamiltonian [44,53]:
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Λ. A uv cutoff Λ is introduced to regularize the impurity-
boson interaction and it serves as the three-body parameter.
It is proportional to the inverse of the van der Waals length
of the realistic scattering potential and can be fixed by
matching the scattering length of the first Efimov resonance
a− to the experimentally observed value. We take the
regularized contact interaction to only act on the s-wave
components of the wave function.
We describe the bosonic excitations of the BEC by a

variational Gaussian state ansatz [46]. This ansatz allows
for an arbitrary number of excitations and pairwise inter-
boson correlations. Importantly, by virtue of the LLP
transformation also three-body correlations between two
bosons and the impurity are fully included. The Gaussian
state Ansatz can be written as
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with Nambu vector Ψ̂k ¼ ðb̂†k; b̂kÞT, coherent displacement
Φk ¼ hΨ̂ki, correlation matrix Ξ, and σz the Pauli z matrix.
Both Φ and Ξ are variational parameters which are
optimized using imaginary time evolution [46]. Keeping
only the coherent part of Eq. (3), one retrieves the
mean field results from Ref. [44], that do not account
for Efimov physics. We consider an exemplary mass ratio
M=m ¼ 6=133 of a 6Li impurity in a 133Cs BEC.
Qualitative picture.—Our key result is illustrated by

Fig. 1, showing the energy landscape of the extended
Fröhlich Hamiltonian at fixed background density and
negative scattering length as a function of the number of
excitations Nex ¼ hRk b̂†kb̂ki forming the dressing cloud of
the impurity. At small excitation numbers we find a local
minimum corresponding to the polaron, but for larger
particle numbers there are lower energy states in the form
of Efimov clusters. We predict that such Efimov clusters
exist for a large range of interactions strengths and even in
regimes where two- and three-body bound states are absent
in the few-body problem (jaj < ja−j). There is a barrier
protecting the polaron from decaying into these clusters,
whose height decreases as a function of interaction
strength. At a density-dependent critical scattering length
a� the barrier completely disappears and the polaron breaks
down. Below we show that the onset of this polaronic
instability represents a many-body shifted Efimov scatter-
ing resonance. Beyond the instability, polarons quickly
decay into Efimov clusters. Because these clusters contain
many particles in close proximity, they in turn rapidly
disintegrate due to recombination.

FIG. 1. Qualitative energy landscape. Illustration of the energy
E of an impurity immersed in a BEC as a function of the number
of excitations Nex surrounding it. The local minimum corre-
sponds to the polaron. It is separated by a barrier from states
much lower in energy, represented by bound clusters containing a
large number of particles. Experimentally, the formation of these
clusters leads to fast recombination and loss. The barrier height is
dependent on the density of the BEC and the scattering length.
The barrier disappears at the density-dependent critical scattering
length a�, leading to a complete instability of the polaron. The
black circle and square are discussed in the context of Fig. 4.
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Formation of Efimov clusters.—First we demonstrate the
existence of the deeply-bound, many-body Efimov clusters
illustrated in the right part of Fig. 1. For identical bosons a
simple dimensional argument suffices to show that Efimov
clusters containing more and more particles get ever more
strongly bound: the binding energy scales with N2 while
the counteracting kinetic energy only scales with N [41].
In our heteronuclear case, where the bosons interact
with the impurity but not with each other, the situation
is not as obvious since now also the binding energy scales
with N.
We now demonstrate that the same trend as in the

homonuclear case persists in our model for noninteracting
bosons (aB ¼ 0); i.e., we show that the binding energy
keeps increasing as the number of particles in the bound
state increases. To tackle this problem, instead of exactly
solving the N-body problem for which the complexity
grows exponentially with N, we employ a variational
Gaussian state (without its coherent part) which greatly
reduces computational complexity.
Gaussian states consist of a superposition of states of

even boson number, and we thus derive a variational bound
on the energy for fixed average particle number hN̂i. The
minimization is performed using imaginary time evolution
[46] including a dynamically changing chemical potential
to keep hN̂i constant [54].
In Fig. 2 we show a contour plot of the energy per

particle E=hN̂i as a function of hN̂i and a, at n0 ¼ 0. We
find that jEj=hN̂i increases monotonically with hN̂i and jaj.
The purple solid line shows the critical scattering length ac
at which bound state formation, signaled by E=hN̂i < 0,
sets in. Beyond this point all particles in the system are
bound to the impurity. For small hN̂i ≪ 1, ac approaches
the three-body result a− ≈ −5.7Λ−1. In this regime, the
Gaussian State can be approximated by

jψi ≈
�
1þ i

2
Ψ̂†ΞΨ̂

�
j0i; ð4Þ

and the energy of the state is thus entirely determined by the
N ¼ 2 component of the wave function. Hence, the Efimov
scattering length a− is recovered. For increasing hN̂i, jacj
decreases and slowly converges to a small but nonzero
value determined by zero-point motion [55].
Altogether we see that the more particles the cluster

contains, the more strongly it becomes bound. Similarly,
the more particles in the cluster, the smaller the scattering
length required for its formation. This “cooperative bind-
ing” effect is caused by impurity-mediated interactions
between the bosons, governed by the second term in
Eq. (2). Since this term originates from the LLP trans-
formation acting on the impurity momentum operator
[44,55], the driving force of the cluster formation can be
understood as arising from an increasingly efficient use of
the kinetic energy of the impurity.
Since the binding energy per particle increases mono-

tonically with hN̂i, also the total energy grows without
bound. Therefore, the ground state of the Hamiltonian is a
bound state containing all particles in the system. Because
such states are tightly bound on scales much smaller than
the typical interparticle distance in the BEC, the effect of
the medium on their energy is relatively small [55].
Including interboson repulsion will limit both the energy
and the number of bound particles, and modify the spatial
structure of the clusters. However, as long as the repulsion
is small, these effects are negligible for a description of
typical cold atom experiments, where recombination reac-
tions will occur long before a large particle number has a
chance to build up. Note that on a Bogoliubov level the
inclusion of a interboson repulsion only modifies the long-
wavelength behavior of the bosons and thus barely affects
the tightly bound states.
Metastable polaron.—We have now established that the

ground state of the extended Fröhlich Hamiltonian is not a
polaronic, but a many-body bound state. However, to
dynamically form such a many-body bound state from a
homogeneous BEC, all participating atoms need to simulta-
neously come together into a small volume. Since this is an
extremely unlikely process, it can be expected that thepolaron
remains a metastable excited state of the Hamiltonian.
To corroborate this picture quantitatively, we start by

finding a local energy minimum on the variational manifold
at small a < 0 and constant background density. This is
simple, since this local minimum is close to the mean field
solution and even captured by the original Fröhlich model.
The wave function and energy of the local minimum are
then updated for increasing jaj. Crucially, we find that as a
critical scattering length a� is reached, the minimum turns
into a saddle point, leading to a divergence of the particle
number and energy: the polaron has become unstable.

FIG. 2. Efimov cluster formation. Contour plot of the binding
energy per particle E=hN̂i (in units of Λ2=M) as a function of the
expectation value of the number of particles hN̂i and scattering
length a, for mass ratio M=m ¼ 6=133. The bold line indicates
the critical scattering length ac at which a bound state first
appears. The noninteger particle numbers follow from our
variational wave function being a superposition of different
particle number eigenstates.
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In Fig. 3 we plot a� as a function of the average
interbosonic distance n−1=30 Λ as a solid black line. We
have used an interboson scattering length aB ¼ 0.1 Λ−1

that keeps the size of the polaron cloud finite [45], but
which is small enough for the Bogoliubov approximation to
remain valid. In the background of Fig. 3, the quasiparticle
weight Z ¼ jhψ jBECij2 is shown as a color map. The
dashed lines show contours of Z obtained from mean-field
theory. While the polaron energy only experiences a small
shift (< 10%) compared to the mean field result [55], the
quasiparticle weight is drastically affected by introducing
interboson correlations, especially close to the instability,
where Z drops to zero.
Polaron instability and shifted Efimov resonance.—We

now consider further the origin of the instability at a�,
corresponding to the black solid line in Fig. 3. In contrast to
the vacuum case, the background medium can take away
energy and add particles. Together with the cooperative
binding effect this means that as soon as a bound state can
be formed, this will cause a cascade into ever larger Efimov
clusters, and hence an instability.
The onset of the instability found using Gaussian states

can be interpreted as a shifted Efimov resonance. The
instability, namely, occurs when the polaron is no longer
stable against the included perturbations, which are single
and double excitations on top of the BEC. In other words,
the instability happens when a bound state can be formed
between the polaron and one or two additional particles,
immediately showing the connection to the Efimov scatter-
ing resonance. As a confirmation, we see that a� reduces to
a− in the low density limit.
We can thus conclude that Fig. 3 is a quantitative

prediction of the medium-induced shift of the Efimov
scattering resonance. In terms of the scattering length, this
shift is more than a factor 2, demonstrating that a quantum
mechanical solvent can strongly affect ultracold chemistry.

Interestingly, the behavior of the resonance turning into
an instability is qualitatively different from the predic-
tions in Refs. [42,43,56]. There, a smooth crossover from
a polaron into an Efimov state is predicted in the case
of an equal mass impurity in a BEC. This shows that
the effects of a quantum medium can be quite diverse,
depending on the character of the solvent, the solute, and
their interactions.
The origin of the resonance shift in our model can be

explained with the help of Fig. 4. Here we consider the
number of excitations Nex in the polaron cloud (dashed
lines, corresponding to the black dot in Fig. 1) and the
number of excitations needed to form a many-body bound
state lower in energy than the polaron (solid lines, black
square in Fig. 1) as a function a for several values of n0.
The crosses at the end of the dashed lines indicate the points
given by a�. The black solid line corresponds to the
scattering length ac in Fig. 2.
Following the dashed lines, we see that the number of

excitations in the polaron cloud increases as a function
of jaj. For small jaj, Nex is too small to facilitate
cluster formation and the polaron thus remains metastable.
When Nex, however, matches or exceeds the number of
particles needed to form a bound state, the polaron
becomes unstable.
The larger the BEC density, the more excitations the

polaron cloud contains at a given a (upward shift of the
dashed lines) and the sooner the instability occurs. A
smaller contribution to this effect is a shift of the colored
solid lines with respect to the black line, which indicate a
stabilization of the Efimov clusters due to the linear
Fröhlich term. This explains the underlying physical
mechanism of the shift of the Efimov scattering resonance
to smaller interaction strengths as a function of back-
ground density.
Surprisingly, for low densities there is a small regime in

Fig. 4 where the polaron remains metastable even though it

FIG. 3. Polaron instability and shifted Efimov scattering
resonance. The critical scattering length a� at which the polaron
breaks down (black solid) as a function of the mean interparticle
distance n−1=30 Λ, for M=m ¼ 6=133 and aBΛ ¼ 0.1. The color
map shows the quasiparticle weight Z. Dashed lines indicate ZMF
from mean field theory.

FIG. 4. Mechanism of the resonance shift. The number of
excitations in the polaron cloud Nex (dashed lines) as a function
of scattering length aΛ at various densities n0 (indicated by
color). The number of excitations needed to form a bound state
with lower energy than the polaron energy is shown using solid
lines. Crosses indicate the points at which the polaron destabil-
izes. Parameters as in Fig. 3.
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contains enough particles to lead to an instability. Here the
extent of the polaron cloud is much larger than the size of
Efimov clusters, so that the bosons furthest from the
impurity do not participate in the cluster formation [55].
Experimental implementation.—To observe our find-

ings, one may consider using light impurities such as
Li in a BEC of K [57], Rb [38] or Cs atoms [36,37,58],
where the Efimov effect is most prominent. Naturally, our
results can be observed in three-body loss measurements,
extending the observation of the Efimov effect [36,37]
from a dilute thermal cloud to a high density BEC. After
adiabatic preparation of the polaron state by a ramp of the
magnetic field, crossing the instability of the polaron
should lead to a drastic enhancement of atom loss through
recombination reactions. This loss enhancement can then
be measured as a function of the density. The loss
measurement could be complemented by injection spec-
troscopy [18–20] since the strong decrease in quasiparticle
weight close to the polaron instability should be accom-
panied by a significant broadening of the polaron spectral
line. In injection spectroscopy also excited Efimov states,
beyond the scope of the present work, could be observed
when favorable mass ratios are used [47].
Conclusion.—Using a variational method based on

Gaussian states, we have explored an example of chemistry
in a quantum solvent by studying the heteronuclear Efimov
scattering resonance of an impurity in a BEC. We have
shown how Efimov resonances are shifted to smaller
interaction strengths due to polaronic dressing of an
impurity and a cooperative binding effect. Furthermore,
in the medium the Efimov resonance turns into the onset of
a polaronic instability towards Efimov cluster formation
causing subsequent chemical recombination. Our findings
can be probed using three-body loss measurements sup-
ported by radiofrequency spectroscopy.
Access to the real-time evolution would allow the

computation of spectral functions, thus addressing phys-
ics beyond the instability. However, the study of the real-
time dynamics of the polaron [59] with Gaussian states
remains a challenge. Furthermore, studying the quantum
dynamics is key to answering open questions about the
competition between few-body recombination and for-
mation of many-body correlated states. Related venues
include competition between Auger recombination of
excitons in semiconductors and formation of strongly
correlated exciton liquids [60,61]. Our results may enable
further studies of the bipolaron problem [62–64] where
medium-induced polaron-polaron interactions become
crucial, and provide new insight into the role three-body
correlations play in many-body systems such as quenched
BECs [55,65–73].
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