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Quantum dot coupled to topological insulators: The role of edge states
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We investigate a system consisting of one or two topological-insulator leads which are tunnel coupled to a
single dot level. The leads are described by the one-dimensional Su-Schrieffer-Heeger model. We show that
(topological) edge states cause characteristic features in the dot spectral function, the dot occupation, and
the finite-bias current across the dot. As the kinetic energy is quenched in the dot region, local two-particle
interactions are of particular relevance there. This motivates us to test whether the aforementioned edge-state
features are robust against such interactions; we report here that they are either robust or even enhanced. We
conclude that the characteristic features can be used to determine if the leads are in their topologically nontrivial
or trivial phase.

DOI: 10.1103/PhysRevB.105.115419

I. INTRODUCTION

Today, the topic of topological phases of matter is om-
nipresent in condensed matter physics research (see, e.g.,
Refs. [1–3]). A topological insulator is gapped, similar to
a normal band insulator, but is further characterized by
topological invariants related to bulk properties. Via the bulk-
boundary correspondence [4–11], these invariants are linked
to topological edge states localized at boundaries or interfaces.
A major focus of research is the identification of the signatures
of such states in theoretical studies and their experimental
detection. A crucial question is how topological edge states
can be distinguished from other in-gap states localized at
boundaries or interfaces. Most prominently, perhaps, this has
been pursued in the case of Majorana bound states in topo-
logical superconductors [12], valued due to their promise in
topological quantum computing applications [13,14].

A prototypical realization of a topological insulator is the
chiral, one-dimensional Su-Schrieffer-Heeger (SSH) model,
originally conceived to study the conductivity of doped poly-
acetylene [15–19]. It is a tight-binding chain with staggered
hopping parameters t1 and t2 that, depending on the ratio
of the two hopping matrix elements, may host a localized
edge state at the interface to a topologically trivial material,
e.g., the vacuum. Apart from the original polymer system, the
SSH model was realized experimentally and the topological
edge states were detected in more controllable settings such
as cold atoms [20–23], electronic states in artificial atomic
lattices [24] or superlattices [25], mechanical chains [26],
and photonic systems [27–29]. Among the theoretically pre-
dicted signatures of the topological edge states are effects
in the entanglement entropy [30], in the decoherence of a
coupled qubit [31], and in transport and noise characteristics
in nonequilibrium settings where a current is driven through
an SSH chain [32–36]. However, to the best of our knowledge,

the archetypal mesoscopic setup of a quantum dot coupled to
leads has not yet been studied if the latter are modeled as SSH
chains.

The aim of the present paper is to study such a setup.
In particular, we investigate the effects of edge states on the
occupation as well as on the spectral and on the transport
properties of a single-level quantum dot that is weakly tunnel
coupled to the boundary of one or two semi-infinite fermionic
SSH chains. In our study of the single-lead (equilibrium)
setup, we complement the results of Ref. [31] regarding edge-
state detection via a coupled dot.

This paper is divided into two parts. Initially, we consider
the fermions to be noninteracting. This allows us to employ
the Green’s function formalism in order to obtain exact re-
sults for the equilibrium dot spectral function and the dot
occupation as well as the steady-state current flowing through
the dot in a two-terminal system with a bias voltage applied
to the SSH leads. We identify signatures of the topological
edge states in the dot spectral function and interpret them in
terms of an effective two-state model that takes into account
the hybridization and repulsion of the dot and the edge state.
These signatures translate to effects in the dot occupation and
the current.

In equilibrium, the occupation of the dot as a function of
its energy is strongly broadened by the presence of the edge
state. While the curve shows a sharp step when the lead is in its
normal phase at zero temperature, the step acquires a width of√

�� when the lead is topological. Here, � characterizes the
tunneling between the dot and the SSH lead, and � is the en-
ergy gap in the lead. In a nonequilibrium setup with two SSH
leads and a bias voltage applied across the dot, the presence
of edge states leads to a shift of the current-voltage curve, the
sign of which (retardation vs early current onset) depends on
the phases of both leads and further system parameters such
as the dot energy.
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FIG. 1. Sketch of the single quantum-dot level coupled to two
semi-infinite Su-Schrieffer-Heeger chains.

In the second part of the paper, we consider a local
two-particle interaction U in the dot region. In this part of
our setup, the two-particle interaction is particularly relevant
because of the quenched kinetic energy (tunnel coupling).
Employing first-order perturbation theory in U , we show that
the aforementioned signatures of edge states are robust against
this perturbation. For the setup and parameters of interest to
us (see below), we can ignore correlation effects typical for
quantum dots, such as the Kondo effect [37] or the physics
of the interacting resonant level model (see, e.g., Ref. [38]).
Therefore, we do not have to use more elaborate quantum
many-body methods.

We conclude that the measurement of the dot occupation
constitutes a simple method to detect an edge state and thus
to determine if the SSH chain is in its topologically nontriv-
ial phase. A single measurement suffices to this end, as the
presence or absence of any broadening (at zero temperature)
directly reveals the lead’s phase. The shift of the current-
voltage curve, on the other hand, can only serve to detect
a phase change of a lead, as the form of the curve itself is
unaltered. Nonetheless, we report it here as a straightforward
signature of edge states in transport experiments, which can
be explained in a simple two-state picture of the dot and the
edge state.

II. THE MODEL

We consider spinless fermions in a system consisting of
a single quantum-dot level with on-site energy ε, described
by Hdot = ε d†d (standard second-quantized notation), that is
weakly tunnel coupled to SSH leads. In solid-state setups, the
fermions would be electrons whose spin degree is polarized
by the application of a Zeeman field large enough to cause an
energy splitting larger than the bandwidth of the leads. The
total system is given by the Hamiltonian H = Hdot + Hleads +
Ht + Hint (see also Fig. 1).

We model the leads as SSH chains of non-
interacting fermions, Hleads = ∑

l Hl , with Hl =∑Ll
j=1[−t l

1 a†
l,2 j al,2 j−1 − t l

2 a†
l,2 j+1 al,2 j + H.c.] + VlNl ,

where t l
1, t l

2 > 0. Here l labels the leads, j the unit cells,
Ll is the number of unit cells, Nl denotes the particle
number operator in lead l , and al,n destroys a fermion on
the nth site of lead l . Furthermore, we have set (here and
in the following) the charge e = 1, similarly h̄ = 1. At the
end of any calculation, we take the thermodynamic limit
Ll → ∞ (semi-infinite chain) to ensure that the leads act
as infinite reservoirs. We exclusively focus on the zero
temperature limit. For the case of two leads we use l = L/R
for the left and right one, respectively. By choosing different
bias-voltage parameters VL and VR, we can tune the system
to nonequilibrium and drive a current through the dot.

The energy spectrum of SSH chain l is symmetric around
Vl with an energy gap of 2�l = 2|t l

1 − t l
2| and bandwidth

2Wl = 2(t l
1 + t l

2). For simplicity, we choose equal gaps and
bandwidths for all leads, �l = � and Wl = W . In order to
keep the chains at half-filling, we set their respective chemical
potentials to μl = Vl .

Depending on the ratio of the staggered hopping param-
eters t l

1 and t l
2, the isolated chain l is either in its normal

phase (t l
1 > t l

2) or in its topological one (t l
1 < t l

2), where it
hosts an edge state |ψ l

e〉 with eigenenergy εl
e = Vl which is

localized near the boundary of the lead [3]. For convenience,
we introduce the index κl that labels the phase of lead l as
κl = 1 (−1) in the topological (normal) phase.

The term Ht = −∑l tla
†
l,1d + H.c. describes the tunnel

coupling between the dot and the first site of each lead.
We define a characteristic tunneling strength � considering
the gapless metallic limit t l

1 = t l
2, where Fermi’s golden rule

yields � = ∑
l �l = ∑

l 4|tl |2/W . This scale shows up as
the typical broadening of both the tunneling resonance in
transport and the resonance in the dot single-particle spectral
function. Note that when we refer to the phase of the SSH
lead l in the full, coupled system throughout the paper, we
always have in mind that of the corresponding isolated chain
with tl = 0.

Finally, Hint = U
∑

l (a
†
l,1al,1 − 1/2)(d†d − 1/2) accounts

for the local two-particle interaction between a fermion on the
dot and fermions on the first sites of the leads. Note the shift
of the involved density operators by 1/2. It ensures that in
equilibrium half-filling implies particle-hole symmetry.

Throughout the paper, we consider the regime in which all
energy scales are much smaller than the bandwidth W , which
renders the high-energy details of the leads irrelevant. In this
limit W drops out of every U = 0 calculation. We thus do not
give a value for W when presenting our noninteracting results.
In contrast, for U > 0, W matters as a reference scale (see
Sec. IV).

III. THE NONINTERACTING LIMIT

We begin with the simpler case of vanishing interaction
U = 0. In this situation, our model can be solved exactly using
the Green’s function formalism. The details on how to obtain
the quantities of interest are discussed in Appendix A, while
only the results are presented and analyzed here.

In this section, we identify signatures of the edge states
in the dot spectral function, the dot occupation, and in the
current across the dot if one or several of the leads are in
their respective topological phase. In order to resolve these
signatures, we set � � �, so that the dot resonance is well
defined, i.e., not smeared out, on the scale �. Specifically, we
set � = 100� in the following numerical calculations. Dif-
ferent choices lead only to quantitative, but not to qualitative
changes, as long as the stated limit is respected. In Sec. IV,
we consider the robustness of the edge-state signatures against
two-particle interaction.

A. The dot spectral function

The dot spectral function is given by

ρ(ω) = 1

π

�(ω)/2

[ω − ε − Re
R(ω)]2 + �(ω)2/4
. (1)
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FIG. 2. The frequency-dependent broadening �(ω) of the dot
single-particle spectral function induced by a single SSH lead in
its normal phase (NP) or its topological phase (TP). It is symmetric
about the frequency ω = Vl , where an edge state resides in the topo-
logical phase, causing a δ peak that is symbolized by an arrow in this
figure. The broadening vanishes for other frequencies in the gap of
the SSH lead, then rises sharply at the two band edges |ω − Vl | � �,
until it flattens out to a constant � at large |ω − Vl |.

Here 
R denotes the retarded lead self-energy. The spectral
function is reminiscent of a Lorentzian; however, the shift of
the peak position with respect to ε and the broadening are
frequency dependent. Neglecting terms of order O(�/W ), we
obtain for the shift

Re
R(ω) =
∑

l

�l

2

⎡
⎣κl

�l

ωl
+ �(�l − |ωl |)

√
�2

l − ω2
l

ωl

⎤
⎦,

(2)

with ωl = ω − Vl . The broadening follows from the SSH
boundary density of states (isolated lead) ρl (ω) via �(ω) =∑

l 2π |tl |2ρl (ω) and is given by

�(ω) =
∑

l

�l (ω)

=
∑

l

�l

[
η + �(|ωl | − �l )

√
ω2

l − �2
l

|ωl |

+ 2π�lδκl ,1δη(ωl )

]
. (3)

In Eq. (3), δη(ω) is a nascent δ function,

δη(ω) = 1

π

η

ω2 + η2
, (4)

and η > 0 is a small artificial parameter that is taken to zero at
the end of any given calculation. The broadening in a single-
lead setup is depicted in Fig. 2.

The presence of the gap and of the edge state has several
effects on the dot spectral function, which ultimately cause
the signatures in the dot occupation and the current that we
discuss in subsequent sections. In the following, we illustrate
these effects by means of two examples. For simplicity, we
assume that the dot is coupled to a single lead with Vl = 0,
and we omit the lead index l in this discussion; a second
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FIG. 3. The dot single-particle spectral function in the presence
of a single lead with � = 100� and V = 0 (right y-axis scale). The
dot energy is located slightly below (ε = ε1 = −102�, green) or
above (ε = ε2 = −99�, pink; multiplied by a factor of 20 to make
the tails visible) the valence band edge. For the dotted (solid) line,
the lead is in the normal (topological) phase. The black, dashed curve
(left scale) shows the broadening �(ω), which is the same for both
phases except for a peak at ω = 0 in the topological phase that is not
visible in this plot (see Fig. 2).

(or further) lead(s) would simply add to the shift and the
broadening in a qualitatively similar fashion.

Let us start with the situation where the dot energy ε is
close to a band edge (see Fig. 3). When ε lies in the band
(green curves in Fig. 3), the dot spectral function consists of
a peak which is broadened by the coupling to the continuum.
The frequency dependence of �(ω) causes an asymmetry of
the peak; however, �(ω) does not vary much on the scale of
the width of the peaks in Fig. 3, so that the asymmetry is
weak. Furthermore, there is a shift between the peaks for the
two different lead phases (topological/normal), which we will
discuss shortly.

For the pink curves in Fig. 3, the dot energy ε lies in the
band gap. The resulting peaks are sharp because the broad-
ening �(ω) vanishes there, while residual broad tails exist in
the band region that vanish ∝�(ω) as ω approaches the band
gap from below. As for ε within the band, we see a difference
in the peak positions between the two lead phases, which we
study in more detail now.

On a technical level, the phase dependence of the peak
position can be traced back to the first term in the brackets
of the shift, Eq. (2). To derive an estimate for the splitting in
the situation depicted in Fig. 3, we can approximate the width
�(ω) as constant on the relevant ω interval around the peak
position. This is equivalent to neglecting the peak asymmetry,
which is well satisfied for the parameters of Fig. 3. The peak
position ε̃ for a given ε then follows from ε̃ = ε + Re
R(ε̃).
Taking furthermore ε̃ ≈ −� in Re
R(ε̃) [39], we obtain an
estimated peak splitting of � between the two phases, which
fits the one observed in Fig. 3 quite well.

We can derive the same estimate from a much more in-
tuitive point of view. We know that the difference between
the two lead phases lies chiefly in the presence or absence of
the edge state |ψe〉 (cf. Fig. 2). This state is coupled to the
dot state |ψd〉 by the tunneling matrix element 〈ψe|ht|ψd〉 =
−t 〈ψe|1〉 = −t

√
4 �/W , where we have labeled by |1〉 the

single-particle state of a fermion on the lead boundary site
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and inserted the weight of the SSH edge state on the boundary
site 〈ψe|1〉 = √

4�/W . Here ht denotes the “first quantized”
(single-particle) version of Ht . Let us consider an effective
model consisting solely of these two states. Diagonalizing the
corresponding two-state Hamiltonian

h =
(

ε −t∗√4�/W
−t

√
4�/W εe

)
(5)

gives the two eigenstates |λ±〉 with eigenenergies

λ± = (ε + εe )/2 ±
√

(ε − εe )2/4 + �� (6)

and weights

| 〈ψd|λ+〉 |2 = (λ+ − εe )2/[(λ+ − εe )2 + ��], (7)

| 〈ψd|λ−〉 |2 = ��/[(λ+ − εe)2 + ��] (8)

on the dot site.
One could now couple these two states to the bands with

the properly transformed (change of basis) tunneling pa-
rameters, and extract the exact solution for the dot spectral
function. For us, however, this is not useful, as we already
have the exact solution. The advantage of the two-state model
is rather to provide an intuitive picture for the interpretation
of the results, which we turn to now.

For the parameters of Fig. 3, we have εe = 0 and ε ≈ −�.
Thus, the peaks that are visible on the depicted ω interval
correspond to the lower energy λ−, which is given by λ− =
ε − � + O(�2/�). That is to say, the dot energy is shifted
downwards by roughly −� by the presence of an edge state.
This fits precisely the shift we have found before by analyzing
the exact spectral function. Now, however, the origin is much
clearer: it is simply the repulsion of the two coupled states
|ψd〉 and |ψe〉 that causes the shift when the lead is in the
topological phase.

What about the high-lying state |λ+〉 that comes out of
diagonalizing the two-state Hamiltonian, Eq. (5)? Its energy
is λ+ = εe + � + O(�2/�) ≈ �, so in Fig. 3 it lies outside
the shown ω window. In any case, it has a negligible weight
on the dot site, | 〈ψd|λ+〉 |2 = �/� + O(�2/�2) � 1.

For sufficiently small energy differences ε − εe ∼ √
��,

though, the two-state calculation suggests that the second state
does have a sizable weight on the dot site, which should
translate to an appreciable second peak in the dot spectral
function. This is indeed the case. In Fig. 4 the exact dot
spectral function is shown for two dot energies that lie rather
close to εe = 0. As the peaks fall in frequency regions with
vanishing broadening �(ω), they are δ peaks; the height of
the arrows in Fig. 4 symbolizes the weight of the peaks. As
a result of the hybridization of the dot and the edge state, we
indeed observe a two-peak structure in the exact dot spectral
function when the lead is in the topological phase, just as the
two-state picture suggests.

The emergence of the second peak can also be shown
formally, starting from the exact formula for the dot spectral
function, Eq. (1). Let us again take �(ω) = const. Technically,
this suppresses the peak asymmetry for peaks lying in the
band region, but we are only interested in the existence of
peaks now, not their detailed line shape. For frequencies in
the gap, �(ω) = 0+ = const is given everywhere except for
ω = V = 0, where �(ω) becomes very large. However, we
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FIG. 4. The dot single-particle spectral function in the presence
of a single lead with � = 100� in the normal (dotted lines) or
topological phase (solid lines). The dot energy is inside the gap,
below (ε = ε1 = −0.2�, green) or above (ε = ε2 = 0.2�, pink) the
edge-state energy εe = 0. As the broadening vanishes here, the peaks
are perfectly sharp δ functions. The height of the arrows represents
their weights.

can safely exclude ω = 0 in the following analysis, as no
peak of ρ(ω) can lie there. This is because the very large
�(ω = 0) appears linearly in the numerator and quadratically
in the denominator [cf. Eq. (1)].

With the assumption of constant broadening, the equa-
tion for the peak position ε̃ of ρ(ω) is ε̃ = ε + Re
R(ε̃).
With the lead in the normal phase, |Re
R(ω)| is bounded
by �/2 and is piecewise strictly monotonic; its derivative
changes sign at ±�. This leads to a single solution for the
peak position at ε̃ = ε + O(�) [40]. In contrast, with the lead
in the topological phase, Re
R(ω) has a ��/ω divergence as
ω → 0, which leads to an additional solution for ε̃ close to
zero (or in general close to V , but never at exactly ε̃ = V = 0;
cf. the discussion above) [41]. Finally, we note that this rea-
soning applies directly to any further edge states if multiple
leads are attached to the dot: for every topological lead l , there
is a �l�l/ωl divergence in Re
R(ω), leading to an additional
peak solution close to Vl .

We conclude that a simple two-state picture of the dot and
the edge state, which hybridize and repel each other, is a very
useful effective model to understand the dominant signatures
of the edge state in the dot spectral function: the shift of the
dot resonance and the emergence of a second peak close to
the edge-state energy. Essentially, the edge state acts as an
additional side-coupled dot. These signatures of the edge state
have an impact on the dot occupation in equilibrium, which
we discuss in the next section, as well as on the current across
the dot when multiple leads are attached and a bias voltage is
applied (cf. Sec. III C).

B. The dot occupation

Without loss of generality, we study again a single SSH
lead at zero chemical potential, i.e., μ = V = 0, coupled to
the dot. The dot occupation n is then given by

n =
∫ 0

−∞
dω ρ(ω). (9)

115419-4



QUANTUM DOT COUPLED TO TOPOLOGICAL … PHYSICAL REVIEW B 105, 115419 (2022)

−0.8 −0.4 0.0 0.4 0.8

ε/Δ

0.0

0.5

1.0
n

ε1 ε2

NP

TP

|〈ψd|λ−〉|2

FIG. 5. The dot occupation as a function of the level position in
the presence of a single SSH lead with � = 100� at μ = 0. The
results of the exact calculations are shown as black dotted (normal
phase) and solid (topological phase) lines; the dashed orange line
corresponds to the prediction of the two-state model with the lead in
the topological phase. The two energies ε1 and ε2 marked by vertical
lines are those for which the dot spectral function is shown in Fig. 4.

The occupation as a function of the dot energy ε is shown in
Fig. 5. It changes from one to zero as ε crosses the chemical
potential of the lead, i.e., around ε = 0.

Consider first the situation of an SSH chain in its normal
phase. For the dot energies shown in Fig. 5, the dot spectral
function consists of a single sharp peak within the gap (cf.
Fig. 4), while the tails in the band regions can be neglected,
as � � �. Crucially, the entire weight of ρ(ω) lies either
below (when ε < 0) or above (when ε > 0) the lead chemical
potential. Therefore, only the values n = 1 and n = 0 are
possible, and a sharp decharging transition occurs between the
two at the particle-hole symmetric point.

When the lead is topological, the two-peak structure of
ρ(ω) discussed in Sec. III A changes the situation drastically.
As ε approaches the chemical potential μ from below, it si-
multaneously comes closer to the edge-state energy εe = μ =
0. This causes the hybridization of the dot and the edge state to
increase, which is accompanied by an increasing peak in ρ(ω)
above εe, and thus above μ. Due to the sum rule

∫
dω ρ(ω) =

1, the weight of the peak below μ must decrease, which causes
the occupation, Eq. (9), to decrease continuously. Similarly, a
peak in ρ(ω) below the chemical potential remains even when
ε > μ = 0, so that n(ε) drops smoothly to zero as the weight
of this peak decreases.

To illustrate this further, let us consider the effective two-
state model calculation of Sec. III A, which gave a state |λ+〉
above and a state |λ−〉 below the chemical potential μ = εe.
The resulting dot occupation is n(ε) = | 〈ψd|λ−〉 |2, given in
Eq. (8). This is shown in Fig. 5 as the orange dashed line.
It almost perfectly fits the exact result. This reinforces our
insight that the principal mechanism causing the broadening
is the hybridization of the dot and the edge state, which is
accounted for in a simple two-state picture. Furthermore, the
results of the two-state calculation, Eqs. (8) and (6), reveal that
the scale of the broadening is given by

√
��.

We stress that the broadening of the dot occupation when
varying the on-site energy results from the hybridization of
the two states, and not from the coupling of the dot level to a
continuum of states such as the leads’ energy bands.
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I
/Γ

(a) ε = −Γ
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V/(2Γ)
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/Γ
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normal → normal

topological → normal

normal → topological

topological → topological

FIG. 6. The current as a function of the bias voltage in a two-
terminal setup with VL = −VR = V/2, �L = 3�/5, �R = 2�/5, and
� = 100�, for (a) a negative or (b) a positive dot energy and varying
lead phases, encoded by the line colors. The arrows in the legend rep-
resent the current direction (from the left lead to the right lead). For
large voltages (not shown here), the current levels off to a constant.

C. The current

Another strong signature of the edge state is found in the
finite-bias current across the dot. To study this, we consider a
setup with two leads [left (L) and right (R)] which are coupled
asymmetrically (�L = 3�/5, �R = 2�/5) to the dot so as to
represent a generic coupling situation one might encounter in
experiments. A bias voltage VL = −VR = V/2 is applied. The
steady-state current I from left to right across the dot is (see
Appendix A)

I =
∫ V/2

−V/2
dω

�L(ω)�R(ω)

�(ω)
ρ(ω). (10)

The factor �L(ω)�R(ω) in Eq. (10) implies that a current
can flow only when the left valence band (with energies below
VL − �) overlaps with the right conduction band (with ener-
gies above VR + �). This happens at voltages V/2 > �. As
ρ(ω) appears in Eq. (10), the current increases significantly
when the broadened peak in the dot spectral function lying
close to ε enters this region of overlap. This occurs at voltages
around V/2 = � + |ε̃|, with the peak position ε̃. Note that any
further peak induced by possible edge states (in the leads) lies
close to VL or VR, as we have found in Sec. III A, and thus can
never enter the overlap region.

Figure 6 shows the current for various lead configurations
and two different dot energies. Let us take the case with two
normal leads as a baseline (black lines in Fig. 6) and denote by
ε̃0 the corresponding peak position in the dot spectral function.
We find that the current onset is shifted relative to the one
in this normal case if any lead is topological. This is easily
understood in terms of the shift of the peak in ρ(ω) discussed
in Sec. III A and exemplified in Fig. 3.

Consider the situation where the left lead is topological
while the right lead is normal (pink lines in Fig. 6). To un-
derstand the difference between this case and the baseline
established in the previous paragraph, we have to examine
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the effect of the edge state that now exists in the left lead.
The edge state pushes the peak position ε̃ downwards from ε̃0

by roughly −�L = −3�/5. The resulting shift in the current
onset depends on ε̃0. If ε̃0 is negative, then |ε̃| is increased
by the edge state, causing the current onset at V/2 = � + |ε̃|
to occur at higher voltages. If ε̃0 is positive (and greater than
approximately �L/2, to be precise), |ε̃| is reduced by the edge
state, which leads to a current onset at lower voltages. The
dot energies in Fig. 6 are such that they reflect these two
possibilities.

If, on the other hand, the left lead is normal while the right
lead is topological (blue lines in Fig. 6), then the right edge
state pushes the peak position ε̃ upwards from ε̃0 by roughly
�R = 2�/5, as the edge state lies at a lower energy than the
dot state in this configuration. As a consequence, the effect is
reversed with respect to the previously discussed configura-
tion, and the magnitude is different because �L �= �R.

Finally, if both leads are topological (green lines in Fig. 6),
the two edge states push the peak in ρ(ω) in opposite direc-
tions. We do not have to carry out the calculation of Sec. III A
with three states—the dot and the two edge states—to see
this. Instead, we can employ perturbation theory in the tun-
nel coupling and find that each edge state |ψ l

e〉 shifts the
dot energy by roughly (ε − εl

e )−1 |tl |2 4�/W = �l�/(ε − Vl )
[42]. Regarding the voltage setup and dot energies considered
in Fig. 6, we can estimate for voltages around the current
onset that ε − Vl ≈ ∓� for l = L, R, which leads to an edge-
states-induced shift of the peak position ε̃ of approximately
�R − �L. With our choice of couplings �L > �R, this shift
is negative, leading to an anticipated current onset if ε̃0 > 0,
and a retarded onset if ε̃0 < 0. The opposite would happen if
�L < �R, while the shifts would approximately cancel out if
one chose equal couplings �L = �R.

In conclusion, with topological leads, the current can have
a retarded, early, or unaltered onset as compared to the case
with normal leads, depending on the precise configuration of
edge states. All cases can be explained and understood by
considering the repulsion of the dot and the edge states.

IV. INCLUDING THE TWO-PARTICLE INTERACTION

We now investigate if the effects of the topological edge
states on the dot spectral function, the dot occupation, and
the finite-bias current across the dot are robust against a local
two-particle interaction U . This will turn out to be the case. In
fact, the effects on the spectral function and the current will
even be enhanced.

To this end we compute the interacting part of the self-
energy, 
int, in first-order perturbation theory in U , employing
either Matsubara (equilibrium) or Keldysh (nonequilibrium)
formalism. Because of the locality of the interaction, only
a few matrix elements of the self-energy are nonvanishing.
In the notation used in Sec. II for the lead lattice sites and
denoting the dot site by the label d, these are 
int

d,d, 
int
(l,1),(l,1),

and 
int
d,(l,1).

To leading order, 
int is frequency independent. Thus,
the matrix elements can be interpreted as interaction-induced
changes of the corresponding single-particle parameters of the
noninteracting Hamiltonian. In this sense, 
int

d,d and 
int
(l,1),(l,1)

−0.2 0.0 0.2

ω/Δ

0.0

0.5

1.0

Δ
ρ
(ω

)

ε1 ε2

NP, U/Δ = 0, 0.5, 1

TP, U/Δ = 0

TP, U/Δ = 0.5

TP, U/Δ = 1

two-state model

FIG. 7. The dot spectral function in the presence of a single
lead with � = 100� = 0.01W for two different dot energies ε =
ε1 = −0.2� (green) and ε = ε2 = 0.2� (pink), analogous to Fig. 4.
Different interaction strengths U/� = 0, 0.5, 1 are considered. As
the peaks lie in the energy gap of the lead, they are perfectly sharp δ

functions; we represent their weight as the height of the arrows. The
data calculated from the two-state model are shown for comparison
(black crosses).

are the interaction-induced changes of the on-site energies of
the dot site (noninteracting value ε) and of the first lead lattice
site (noninteracting value Vl ), respectively. They follow from
the Hartree diagram. The third nonvanishing matrix element

int

d,(l,1) captures the change of the tunnel coupling (noninter-
acting value tl ) and results from the Fock diagram.

It is straightforward to obtain numerical results for 
int

and, based on these, calculate the observables of interest to us.
In contrast to the noninteracting case, W enters as a reference
scale when U > 0, even if the bandwidth is taken much larger
than any other energy scale in the problem. Details on the
calculations and a brief discussion on the explicit appearance
of W can be found in Appendix B.

In the following, we present and discuss numerical results
for the observables in first-order perturbation theory. Because
of the aforementioned W dependence, we shall always specify
the value of W considered. Values of U are chosen such that
the modifications due to the interaction are visible on the
scales of the plots. For a brief discussion on the question if,
for these U , first-order perturbation theory for the self-energy
can be trusted quantitatively, we refer to Sec. V. In addition,
we refrain from tracing back the interaction dependence of
the observables to the formulas presented in Appendix B ana-
lytically, though it is possible in principle. For the robustness
check we are aiming at, a qualitative understanding suffices.

A. The dot spectral function

In discussing the effect of the interaction on the dot spec-
tral function, we limit ourselves to the situation shown in
Fig. 4, where the dot and the edge-state energy are close
to one another, and the dot is coupled to a single lead with
μ = V = 0. In this scenario both the two-peak structure due
to the hybridization as well as the shift of the dot level peak
are visible. We do not discuss the situation with the dot energy
close to the band edge, depicted in Fig. 3, as the interaction
effect can be seen directly in the current in that case (cf.
Sec. IV C). Figure 7 shows the spectral function with the same

115419-6



QUANTUM DOT COUPLED TO TOPOLOGICAL … PHYSICAL REVIEW B 105, 115419 (2022)

parameters as Fig. 4, but with several values for the interaction
strength.

Let us start with the SSH lead being in its normal phase
(dotted arrows). For this the peak is always located at ε and
the weight is U independent as well; the arrows for different
U fully overlap and cannot be distinguished.

In contrast, when the lead is in its topological phase, the
shift of the peaks is enhanced linearly in U for U > 0, while
the distribution of the spectral weight remains independent of
U (to leading order). This holds for both ε < 0 (green arrows)
and ε > 0 (pink arrows).

As in the noninteracting case, the effective two-state
picture, with the bare parameters replaced by those com-
plemented by the self-energy, can be used as well (see
Appendix B for details). As Fig. 7 illustrates, the peak posi-
tions as well as the corresponding weights obtained from this
model (black crosses) agree nicely with those derived from
the full calculation (arrows), which shows that the two-state
model remains a useful intuitive picture in the presence of
interaction.

B. The dot occupation

Regarding the effect of a two-particle interaction on the dot
occupation to leading order in U , we can be very brief: there
is none. For the case of a lead in its normal phase this is ob-
vious from the spectral function discussed in the last section.
The peak position and height is independent of U , which by
Eq. (9) (which also holds for U > 0) directly translates into
an occupation that is interaction independent. If the lead is
topological and features an edge state, the interaction effect
is negligible as well. This is because only the weight of the
spectral function below ω = 0 matters for the dot occupation
[cf. Eq. (9)]. This is unchanged by the interaction (cf. Fig. 7).
Note that the perfect match between the two-state model cal-
culation and the full result for the spectral function implies
that both give the same dot occupation as well.

C. The current

We finally study the bias-voltage-driven nonequilibrium
current in a two-lead setup. For the corresponding relation
between Green’s functions and the current (see Appendix B).
Note that the voltage does not only enter via the boundaries
of the integration as in Eq. (10), but additionally via the self-
energy, which picks up a V dependence due to the interaction.

Figure 8 shows the current for the same single-particle
parameters as in Fig. 6 but with the interaction strength U =
160� in addition to the U = 0 results. The U = 0 data are
shown as solid lines, while those for U > 0 are shown as
dashed lines. Similar to what we have found for the dot spec-
tral function, the interaction enhances the effect caused by the
hybridization between the dot and the edge state: When only
one of the SSH leads is in its topological phase, the current
onset is shifted even further compared to the noninteracting
case. We also find a slight modification of the noninteracting
result in the case of two topological leads. This modification is
largely due to the asymmetric couplings; it would be reduced
in the symmetric case �L = �R. At increased voltages, all
curves approach each other.

0.00

0.05

I
/Γ

(a) ε = −Γ

100 101 102 103 104 105 106

V/(2Γ)

0.00

0.05

I
/Γ

(b) ε = 4Γ

normal → normal

topological → normal

normal → topological

topological → topological

FIG. 8. The current as a function of the bias voltage for voltages
of the order of the gap, with VL = −VR = V/2, �L = 3�/5, �R =
2�/5, and � = 100� = 4.5 × 10−4W , for two different single-
particle dot energies, analogous to Fig. 6. The interaction strength
is U = 0 (solid lines) and U = 160� (dashed lines).

V. CONCLUSION

We have investigated a model consisting of a single-level
quantum dot weakly tunnel coupled to one or two fermionic
SSH leads, focusing on signatures of topological edge state(s)
when the leads are in their respective topological phase. Start-
ing with the dot single-particle spectral function, we have
found two signatures of the edge state(s): a shift of the peak
associated with the dot excitation and the emergence of a
second peak close to the edge-state energy. Employing the
effective two-state model of the dot and the edge state, it is
straightforward to see that both these effects stem from the
hybridization of these two states.

Furthermore, we have identified consequences of this in the
dot occupation and in the electric current. The emergence of
the second peak strongly broadens the step in the dot occu-
pation as a function of the dot energy, which is sharp when
the lead is topologically trivial. The shift of the dot peak, on
the other hand, can be measured in the current across the dot,
where, depending on the parameters, it leads to a retardation
or an early onset of the current when varying the bias voltage.

In the second part of the paper, we have studied whether
these effects are robust against a local two-particle interaction
in the dot region. Our results for the dot single-particle spec-
tral function, the dot occupation, and the small-bias-voltage
current show that all edge-state signatures in these observables
are, to leading order in U , robust or even enhanced. Further-
more, the fact that the full spectral function agrees with the
prediction of the two-state model demonstrates that the latter
remains a valid notion, provided that one inserts parameters
which take into account the interaction-modified self-energy.

Note that our leading-order calculation only serves to en-
sure that the effects identified at vanishing interaction do
not break down at weak interaction. In order to investigate
for which values of system parameters first-order perturba-
tion theory can be trusted quantitatively, one would have to
compare our results to those obtained by employing more
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sophisticated analytical many-body methods that include
higher orders of U , or to those of numerical methods. Us-
ing such methods would also allow studying nonperturbative
correlation effects. For example, one might expect correlation
effects found in the interacting resonant level model (see, e.g.,
[38]) to carry over to the setup studied here, as � cuts off the
renormalization flow similar to other model parameters like ε

or V [see Eq. (B5)] [43].
The edge-state signatures in the current and the dot occupa-

tion can be used to determine the presence of an edge state and
thus to determine the phase of the SSH lead(s). Regarding the
current, the I-V curve looks qualitatively the same between
the two phases. The difference is a relative shift of the curve
and, therefore, well visible only when the phase is switched
between measurements. In contrast, a single measurement of
the dot occupation suffices to determine the phase: a sharp
step corresponds to a normal lead, a broadened step to a
topological one. Therefore, the occupation—measurable via
the current flowing through a quantum point contact close to
the dot region [44]—constitutes a simple experimental probe
and an alternative to the method presented in Ref. [31], where
the decoherence of a double dot has been proposed as an
edge-state detector. We note that spectral and transport char-
acteristics of quantum dots were also used in the context of
Majorana bound state detection [45–50].

We emphasize that we do not expect the discussed edge-
state effects to be specific to the topological nature of the
edge states. However, it would be interesting to investigate
this in the future by considering, for example, Rice-Mele
model leads [51] instead of SSH ones, in which edge states
are not directly related to topological properties. Furthermore,
it would be interesting to study a dot with multiple levels, e.g.,
including the spin degree of freedom, and to investigate how
a local interaction on the dot influences the effects we have
found in this paper.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) via RTG
1995. D.M.K. acknowledges support from the Max Planck–
New York City Center for Non-Equilibrium Quantum Phe-
nomena. The numerical calculations have been performed
with computing resources granted by RWTH Aachen Univer-
sity under Project No. rwth0444.

APPENDIX A: DETAILS ON THE
NONINTERACTING CASE

Here we give a brief summary of the relevant quantities
for our noninteracting model. In this case all observables of
interest to us can be expressed in terms of the dot Green’s
function. It is defined as

GR/A(t ) = ∓i�(±t )〈{d (t ), d†}〉 (A1)

= 1

2π

∫
dω e−iωt GR/A(ω). (A2)

The Fourier transform can be written in the usual way in terms
of a lead self-energy 
(ω),

GR/A(ω) = 1

ω − ε − 
R/A(ω)
. (A3)

The lead self-energy can be expressed as


R/A(ω) =
∑

l



R/A
l (ω) =

∑
l

〈ψd|hl
t gR/A

l (ω) hl
t |ψd〉

=
∑

l

|tl |2 〈1l |gR/A
l (ω)|1l〉 , (A4)

with the free retarded/advanced lead Green’s function

gR/A
l (ω) = 1

ω − hl ± iη
. (A5)

Here hl
t and hl denote the “first quantized” (single-particle)

versions of Hl
t and Hl , respectively, and the convergence fac-

tor η > 0 is taken to zero at the end of any calculation.
The lead boundary Green’s function can be computed as

follows. In matrix representation the single-particle Hamilto-
nian of a single SSH lead (without loss of generality Vl = 0,
and the index l is suppressed) is given as

h =

⎛
⎜⎜⎜⎜⎜⎝

0 −t1
−t1 0 −t2

−t2 0 . . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎠. (A6)

Due to the periodic tridiagonal structure of this semi-infinite
matrix, one can find the top left entry of the inverse analyti-
cally to obtain the boundary Green’s function,

〈1|gR/A(ω)|1〉 =
(

1

z − h

)
11

= 1

2z t2
2

{
z2 − t2

1 + t2
2

− √
z + W

√
z − W

√
z + �

√
z − �

}
,

(A7)

with z = ω ± iη for the retarded/advanced Green’s function.
In the limit ω,� � W , we can write

Re 〈1|gR(ω)|1〉 = 2

W

[
κ

�

ω
+ �(� − |ω|)

√
�2 − ω2

ω

]
,

Im 〈1|gR(ω)|1〉 = − 2

W

[
η + �(|ω| − �)

√
ω2 − �2

|ω|

+ 2π�δκ,1δη(ω)

]
, (A8)

where κ = 1 (−1) labels the topological (normal) phase. The
broadened δ function δη(ω) is defined in Eq. (4). The ad-
vanced Green’s function is obtained by complex conjugation:
gA(ω) = gR(ω)∗.

When the chain is in its topological phase, the boundary
Green’s function has a pole at ω = 0 corresponding to the
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zero-energy edge state,

〈1|gR(ω)|1〉 ω→0−−→ |〈1|ψe〉|2 1

ω + iη
, (A9)

with the weight 〈1|ψe〉 = √
4�/W on the boundary site.

From the knowledge of the retarded dot Green’s function
we can calculate the dot spectral function

ρ(ω) = − 1

π
Im GR(ω). (A10)

Decomposing the retarded lead self-energy into a real and
imaginary part,


R(ω) = Re 
R(ω) − i�(ω)/2, (A11)

we obtain Eqs. (1)–(3).
The steady-state current flowing from left to right in a two-

terminal setup is given by [52]

I =
∫

dω T (ω)[ fL(ω) − fR(ω)], (A12)

with the transmission coefficient

T (ω) = 1

2π
�L(ω)GA(ω)�R(ω)GR(ω)

= �L(ω)�R(ω)

2π
|GR(ω)|2

= �L(ω)�R(ω)

2π

1

[ω − ε − Re 
R(ω)]2 + �(ω)2/4

= �L(ω)�R(ω)

�(ω)

[
1

π

�(ω)/2

[ω − ε − Re 
R(ω)]2 + �(ω)2/4

]

= �L(ω)�R(ω)

�(ω)
ρ(ω). (A13)

Inserting this into (A12) together with fL(ω) − fR(ω) =
�(V/2 − ω) − �(−V/2 − ω) at zero temperature and sym-
metric bias, we obtain Eq. (10) for the current.

APPENDIX B: FIRST-ORDER PERTURBATION THEORY

Here we present the basic equations to compute the inter-
acting part of the self-energy 
int to first-order perturbation
theory in U and, from this, the observables of interest to us.
Equilibrium as well as the bias-voltage-driven nonequilibrium
steady state are considered.

1. Equilibrium

We first consider the setup of a single lead coupled to the
dot level in equilibrium. Suppressing the lead index l , the three
nonvanishing and frequency-independent matrix elements of

int in Matsubara formalism read


int
d,d = −U

π

∫ ∞

0
dω Geq

1,1(iω), (B1)


int
1,1 = −U

π

∫ ∞

0
dω Geq

d,d(iω), (B2)


int
d,1 = U

π

∫ ∞

0
dω Geq

d,1(iω). (B3)

Here 
int
d,d and 
int

1,1 are the change of the dot-level energy
(noninteracting value ε) and the first lead lattice site (nonin-
teracting value V = 0), respectively. The off-diagonal matrix
element 
int

d,1 is the interaction correction to the tunnel cou-
pling (noninteracting value t). The propagator Geq(iω) on the
right-hand sides of Eqs. (B1)–(B3) is given by

[Geq(iω)]−1 =
(

iω − ε t
t iω − 
eq(iω)

)
, (B4)

with 
eq(iω) being the Matsubara frequency lead self-energy
on the second site of the SSH chain; the first site is treated
explicitly as part of the interacting system. Here 
eq(iω) is
obtained from Eq. (A4) by the Wick rotation ω → iω as well
as κ → −κ in Eq. (A8). The integrations in Eqs. (B1)–(B3)
can be performed numerically.

To illustrate that, in contrast to the noninteracting case, W
appears explicitly even if it is taken to be much larger than
any other scale, we present the analytical result for the change
of the tunnel coupling 
int

d,1 for the case ε = 0, � � � � W ,
and for a lead in its normal phase:


int
d,1

t
= − 2U

πW
ln

(
�

W

)
. (B5)

The explicit W dependence visible here explains why we have
to give the value of W in Figs. 7 and 8.

To obtain the dot spectral function in first-order perturba-
tion theory for the self-energy, we replace the single-particle
parameters ε, V = 0, and t on the right-hand side of Eq. (B4)
by those complemented by the interacting self-energy ε +

int

d,d, 
int
1,1, and t + 
int

d,1, invert the resulting matrix, perform
the Wick rotation iω → ω + i0, and use Eq. (A10) for the
(d,d) matrix element. The occupation follows from the spec-
tral function via Eq. (9).

2. Nonequilibrium steady state

We next consider a setup with two SSH leads in the
bias-voltage-driven nonequilibrium steady state and use the
Keldysh formalism to obtain the self-energy to first order in
U .

We combine the first sites of the left and right lead with
the dot site into an interacting subsystem. In the correspond-
ing subspace the diagonal matrix elements as well as those
associated with tunnel couplings of neighboring sites are non-
vanishing. They are given as (l = L/R)


int
d,d = −iU

4π

∫ ∞

0
dω1

∫ ∞

−∞
dω2

∑
l=L/R

SK
(l,1),(l,1)(ω1, ω2),

(B6)


int
(l,1),(l,1) = −iU

4π

∫ ∞

0
dω1

∫ ∞

−∞
dω2SK

d,d(ω1, ω2), (B7)


int
d,(R,1) = iU

4π

∫ ∞

0
dω1

∫ ∞

−∞
dω2SK

d,(R,1)(ω1, ω2), (B8)


int
(L,1),d = iU

4π

∫ ∞

0
dω1

∫ ∞

−∞
dω2SK

(L,1),d(ω1, ω2), (B9)
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with

SK(ω1, ω2) = −∂ω1 [G̃R(ω1, ω2)
K(ω1, ω2)G̃A(ω1, ω2)]
(B10)

and the superscript K stands for the Keldysh component. The
nonvanishing matrix elements of [G̃R(ω1, ω2)]−1 are

[G̃R(ω1, ω2)]−1
(l,1),(l,1) = iω1 + ω2 − 
R

l (ω2) − Vl , (B11)

[G̃R(ω1, ω2)]−1
d,d = iω1 + ω2 − ε, (B12)

[G̃R(ω1, ω2)]−1
d,(l,1) = [G̃R(ω1, ω2)]−1

(l,1),d = tl , (B13)

and [G̃A(ω1, ω2)] = [G̃R(ω1, ω2)]†. Moreover, the Keldysh
component of the lead self-energy 
K(ω1, ω2) is a diagonal

matrix, and the corresponding matrix elements read

[
K(ω1, ω2)](l,1),(l,1) = −2π iρ̄l (ω2)
(
t l
1

)2
[1 − 2 fl (ω2)]

− 2iω1sgn(ω2), (B14)

[
K(ω1, ω2)]d,d = −2iω1sgn(ω2), (B15)

where fl (ω) is a Fermi function for the lead l and ρ̄l (ω) is the
boundary density of states of an SSH chain that has the same
parameters as chain l , but with t l

1 and t l
2 exchanged. More

details can be found in Ref. [38].
Finally, one can obtain the inverse of the effective

retarded/advanced Green’s function GR/A,int with the single-
particle parameters changed by the interaction εint

d = ε +

int

d,d, εint
l = 
int

(l,1),(l,1), and t int
l = tl + 
int

(l,1),(l,1), as

[GR/A,int(ω)]−1 =

⎛
⎜⎝

ω ± iη − εint
L − 
R/A

L (ω) t int
L 0(

t int
L

)∗
ω ± iη − εint

d t int
R

0
(
t int
R

)∗
ω ± iη − εint

R − 
R/A
R (ω)

⎞
⎟⎠. (B16)

After the matrix Eq. (B16) has been inverted, the cur-
rent can be computed employing Eq. (A12) but replacing
the bare transmission coefficient by the effective one,
i.e., the bare broadening and retarded/advanced Green’s
function in the first line of Eq. (A13) by the effective
one, �l (ω) → �int

l (ω) = −2π |t int
l |2Im[GR,int

(l,1),(l,1)(ω)]/π and

GR/A(ω) → GR/A,int
d,d (ω).

3. The effective two-states picture

In the case of a topological lead, one can, as for U =
0, employ the intuitive, effective two-states picture to de-
scribe the effective dot spectral function and the occupation
in first-order perturbation theory. We consider a single lead
in its topological phase in equilibrium. Without loss of gen-
erality we set Vl = 0 and suppress the lead index l in the
following.

As a new element compared to the noninteracting case, we
have to consider a nonvanishing on-site energy on the first site
of the lead given by εint

1 = 
int
1,1. As a consequence, the edge-

state energy and its weight on the first site 〈1|ψe〉 is changed.
The latter enters the two-state calculation via the tunneling
between the dot and the edge state. To find the effective edge
state and its energy, we have to solve the SSH Hamiltonian,
including εint

1 as a boundary impurity.
We treat the first site as an impurity site with single-particle

state |1〉 and energy εint
1 . This site is coupled with the hopping

matrix element −t1 to the first site (with corresponding state
|2〉) of the remaining SSH chain, which starts with the hopping
−t2 between its first and second sites. It follows that this chain
is in its trivial phase. We take the thermodynamic limit and
refer to the single-particle Hamiltonian of this SSH chain as
h̃. The total single-particle Hamiltonian of the system under
consideration is then

h̄ = h̃ + εint
1 |1〉 〈1| − t1(|2〉 〈1| + |1〉 〈2|). (B17)

We search for an effective edge state |ψeff
e 〉 localized near

the boundary that fulfills the Schrödinger equation h̄ |ψeff
e 〉 =

εeff
e |ψeff

e 〉. We make the following ansatz:∣∣ψeff
e

〉 = A |ψ̃π+iξ 〉 + c1 |1〉 , (B18)

|ψ̃π+iξ 〉 =
∞∑

n=1

[− εeff
e ei(π+iξ )n |2n〉

+ (t1 − t2eξ )ei(π+iξ )(n+1) |2n + 1〉 ], (B19)

with ξ > 0 for normalizability. The ansatz has been made
with a piecewise solution of the Schrödinger equation in mind.
The state |ψ̃π+iξ 〉 is the (unnormalized) projection of the most
general form of an SSH edge-state wave function onto the
chain starting at site |2〉. This directly gives us the energy
up to a sign; we just need to insert k = π + iξ into the SSH

dispersion εk = ±
√

t2
1 + t2

2 + 2t1t2 cos(k). Squaring on both
sides, we obtain(

εeff
e

)2 = t2
1 + t2

2 − t1t2(eξ + e−ξ ). (B20)

In the following, we now have to solve for ξ , or equivalently
e−ξ . Inserting our ansatz into the Schrödinger equation leads
to the two equations

A(t1e−ξ − t2) + c1 = 0, (B21)

−At1ε
eff
e e−ξ + c1ε

int
1 = c1ε

eff
e . (B22)

After a lengthy but straightforward calculation one obtains the
following solution [53]:

e−ξ = 1

2

(
t2
t1

− t3
2

t1
(
εint

1

)2

)

+
√√√√1

4

(
t2
t1

− t3
2

t1
(
εint

1

)2

)2

+ t2
2(

εint
1

)2 . (B23)
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The condition ξ > 0 (or equivalently e−ξ < 1) requires
|εint

1 | < t2; otherwise, there is no bound-state solution. The
effective edge-state energy can be obtained most easily from
Eqs. (B21) and (B22). It reads

εeff
e = εint

1

2
+ t2

2

2εint
1

− sgn
(
εint

1

)√1

4

(
εint

1 − t2
2

εint
1

)2

+ t2
1 .

(B24)

From the normalization of the effective edge state,

〈ψeff
e |ψeff

e 〉 != 1, we can find its weight on the first site

∣∣ 〈ψeff
e

∣∣1〉 ∣∣2 = |c1|2 = (1 − e−2ξ )(t1 − t2eξ )2(
εeff

e

)2 + (t1 − t2eξ )2
.

(B25)

Finally, the effective two-states Hamiltonian is given as

heff
two-states =

(
εint

d −(t int )∗
〈
1
∣∣ψeff

e

〉
−t int

〈
ψeff

e

∣∣1〉 εeff
e

)
. (B26)

One can easily diagonalize Eq. (B26) to obtain the two
effective eigenstates |λeff

± 〉 with eigenenergy λeff
± . The corre-

sponding effective two-states spectral function and effective
dot occupation are given as

ρeff
two-states(ω) = | 〈ψd|λeff

+ 〉 |2δ(ω − λeff
+ )

+ | 〈ψd|λeff
− 〉 |2δ(ω − λeff

− ) (B27)

and

n =
∫ 0

−∞
dω ρeff

two-states(ω), (B28)

respectively.
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