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Abstract: In this paper, we consider the structure-preserving model order
reduction problem for multi-input/multi-output bilinear control systems by
tangential interpolation. We propose a new type of tangential interpolation
problem for structured bilinear systems, for which we develop a new structure-
preserving interpolation framework. This new framework extends and gen-
eralizes different formulations of tangential interpolation for bilinear systems
from the literature and also provides a unifying framework. We then derive
explicit conditions on the projection spaces to enforce tangential interpolation
in different settings, including conditions for tangential Hermite interpolation.
The analysis is illustrated by means of three numerical examples.
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Novelty statement: We propose a new formulation of the tangential in-
terpolation problem for structured multi-input/multi-output bilinear con-
trol systems. We formulate conditions on the projection spaces to enforce
structure-preserving tangential interpolation in this new framework, which
also allow for Hermite interpolation, and generalize established formulations
of tangential interpolation from the literature.
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1 Introduction

Modeling of various real-world applications, e.g., biological, electrical or population dy-
namics, results in bilinear control systems [1,19,20,22,27]. Those bilinear systems usually
inherit special structures based on their underlying physical meaning. For example, in the
case of bilinear mechanical models, one obtains a second-order bilinear control system of
the form

m

Mij(t) + Dg(t) + Kq(t) Z Npja(t)u; () + Y Ny jd(t)u;(t) + Byu(t), "
7=1

y(t) = CpQ( ) + Cyvi(t),

where ¢(t) € R™ are the (internal) degrees of freedom; u(t) € R™ and y(t) € RP are,
respectively, the inputs and outputs of the system; M, D, K, N, ;, Ny ; € R™™" for all
j=1,...,m, By € R"™" and C,,C, € RP*". Due to the usual request for high-fidelity
modeling, the number of differential equations, n, describing the dynamics of systems as
in (1), quickly increases. This often results in a high demand for computational resources
such as time and memory. One remedy is model order reduction: a new, reduced, system
is created, consisting of a significantly smaller number of differential equations than the
original one while still accurately approximating the input-to-output behavior. Then one
can use this lower order approximation as a surrogate model for faster simulations or
within algorithms for design optimization and controller synthesis.
In the case of unstructured bilinear systems with the state-space form

Ex(t )+ Njz(t)u;(t) + Bu
(t) Z (t), )

y(t) = Ca(t),

where E,A,N; € R™" for all j = 1,...,m, B € R"™™ and C € RP*", there already
exist different model reduction methodologies, e.g., bilinear balanced truncation [1,9,
17], different types of interpolation approaches for the underlying multi-variate transfer
functions in the frequency domain [2,4,11-13], complete Volterra series interpolation [7,
14,30], and the bilinear Loewner framework [3,16]. For structured bilinear control systems
as in (1), recently [10] developed the structure-preserving interpolation framework where
interpolation for multi-input/multi-output (MIMO) systems was enforced as for single-
input /single-output (SISO) systems, i.e., using full matrix interpolation. One of our major
contributions in this paper is to devise a proper interpolation framework for structured
MIMO systems.

Reduction of MIMO bilinear systems is an intricate problem and only a few of the afore-
mentioned approaches provide suitable extensions for model reduction of MIMO structured
bilinear systems. The lack of a proper extension is especially persistent for subsystem in-
terpolation since enforcing matrix interpolation results in quickly increasing reduced-order
dimension. For MIMO linear dynamical systems, the concept of tangential interpolation
resolves this issue [15] by interpolating the matrix-valued transfer function along selected
direction vectors. It is important to note that the optimal approximation in a specific,
namely the Ho-norm, satisfies tangential interpolation, not matrix interpolation, [2]. For
interpolatory model reduction of bilinear systems, it is not clear so far what the proper
extension of tangential interpolation would be. For the unstructured case, [8,23] pro-
vide one potential extension where only certain blocks of the subsystem transfer functions
are employed in tangential interpolation. In this paper, we will introduce a new unifying
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framework for tangential interpolation of structured bilinear systems, inspired by the orig-
inal ideas of tangential interpolation for matrix-valued functions [5]. This new framework
will cover different extensions of tangential interpolation to bilinear systems under one um-
brella. Especially, it will allow us to formulate a direct extension of the ideas from [8,23]
to the structured system case.

Parts of the theoretical results presented here were derived in the course of writing the
dissertation of the corresponding author [28].

The rest of the paper is organized as follows: In Section 2, we briefly recall the theory of
bilinear systems and Volterra series, introduce the structured transfer functions considered
in this paper and revisit the tangential interpolation problem for linear dynamical systems.
In Section 3, we will motivate our new unifying tangential interpolation framework and
provide conditions on underlying projection spaces to satisfy interpolation conditions in
this framework. Three benchmark examples are presented in Section 4 that illustrate the
established theory by comparing different interpolatory model reduction approaches for
(structured) MIMO bilinear systems, followed by the conclusions in Section 5.

2 Mathematical preliminaries

In this section, we briefly review various system-theoretic concepts for bilinear systems
and the idea of tangential interpolation for linear systems.
2.1 Frequency-domain representation of structured bilinear systems

For the unstructured bilinear system (2), define N = [Ny ... Np]. Assume E to be
invertible and zero initial conditions, i.e., (0) = 0. Then, the output of (2) can be
expressed, under some mild assumptions, in terms of a Volterra series [24], i.e.,

0o bt te—1 j
y(t)ZZ//.../gk(tl,...,tk) <u<t_zti)®"'®u(t—t1)>dtk"-dtl,
0 0

0 =1

where gg, for k > 1, is the k-th regular Volterra kernel given by

k—1
gu(tr, ... t) = Ce A% | T] (Lo @ BETIN) (I @ B A09) (3)
j=1
x (In-1 @ E71B),

where I,,; denotes the identity matrix of size m’ and ® is the Kronecker product. Using the
multivariate Laplace transform [24], the regular Volterra kernels (3) yield a representation
of (2) in the frequency domain by the so-called multivariate regular transfer functions

k—1
Gr(s1,..osk) = ClspE— A7 [T @ N) (L @ (56— E — A)7) @
j=1
X (Ie-1 ® B),

with s1,...,s; € C.
Motivated by the structured linear case [6] and structured bilinear systems as in (1),
[10] introduced the frequency domain representation of structured bilinear systems in
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terms of the structured reqular subsystem transfer functions of the form

k1
Gr(s1,..sk) = Clsi)K(sk) ™ [ ] (Zi-1 @ N (s5—j)) (L @ K(s5—5)") 5)
j=1
X (Imkﬂ ® B(Sl)),

for k > 1, where C(s): C — CP*"  K(s): C — C"*", B(s): C — C"*™, and N;: C — C"*"
for j = 1,...,m are matrix-valued functions, and N(s) = [Ni(s) ... Np(s)]. This
general frameworks contains the unstructured bilinear systems (2) as its special case where

C(s)=C, K(s)=sE—A, B(s)=B, N(s)=[N1 ... Ny,
Also, it recovers the bilinear second-order system (1) by choosing
C(s) =Cp+5Cy, K(s)=s*M+sD+K, B(s)=DB,, N(s)=N,+sN,,

where N, = [Np,l Np,m] and N, = [Nv’l Nv,m]. We refer the reader to [10]
for a more detailed derivation of structured multivariate transfer functions and other
structured examples.

For the full-order structured bilinear control system with subsystem transfer func-
tions (5), we will construct structure-preserving reduced bilinear systems using Petrov-
Galerkin projection: Given two model reduction basis matrices W,V € C™*" for the test

and trial spaces, respectively, with » < n, the reduced-order quantities are given by

C(s) =C(s)V, K(s)=WHK(s)V, B(s)=W"B(s), and Nj(s) = WHN;(s)V  (6)

for j =1,...,m, where (-)" denotes the conjugate transpose. The corresponding reduced-
order system G is then given by the underlying reduced-order matrices from (6) and the
corresponding multivariate transfer functions

k—1

Gr(s1,y...,8;) = C(sk)la(sk)fl H (Imj—l ®./(\/.<3k7j>) ([mj ® /e(skfj)fl) 1)
j=1

X (I k-1 ® B(s1)),

for k > 1. For example, for the mechanical bilinear system in (1), the reduced-order model
will have the form

where M’ﬁ7k7ﬁpvj’ﬁv7j € RTXT fOI’j = 17 , M, B\u S RT‘Xm, and ap:é’\v € RPXT are
given by

M=w"mv, D=whpv, K=w"kv, B,=Ww"B,,
Nyj =WHN,;V, N,;=WHN,,;V, C,=0C,V, and C, =C,V.

We will construct the model reduction bases W and V' such that the reduced-order subsys-
tem transfer functions Gy, in (7) are multivariate (tangential) interpolants to the full-order
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ones Gy at some selected frequencies {01, 09,...,0,} C C. Below, we will make it precise
what we mean by tangential interpolation in this setting. But first, it is worth noting
the dimension of Gi. For a MIMO bilinear system with m inputs and p outputs, G,
evaluated at given frequencies, is a p x m* matrix, i.e., it has a polynomial growth in
the input dimension. Then, full matrix interpolation of G by c?k imposes a rather large
number of interpolation conditions to satisfy, leading to rapid growth of the reduced order.
We will resolve this issue via tangential interpolation. It will help to recall the tangential
interpolation problem for the linear case first.

2.2 Tangential interpolation for linear dynamical systems

The tangential interpolation replaces the full matrix interpolation of a matrix-valued func-
tion with interpolation along selected directions and can be interpreted as adding con-
straints to the matrix interpolation problem [5]. For given interpolation points o1, ...,0) €
C, given function values hq,...,h;r € CP and right tangential directions by,...,b, € C™,
the task of the right tangential interpolation is to find an interpolating function H: C —
CP*™ guch that

H(O’j)bj:hj fOI‘jZl,...,k‘. (8)

The left interpolation problem is defined similarly.

It was then proposed in [5] and utilized in [15] to employ tangential interpolation for
model reduction of linear unstructured multi-input/multi-output systems by restricting
the interpolant (8) to a rational matrix-valued function and using the system’s transfer
function evaluations along certain directions as function values to interpolate. In other
words, given the original linear system’s transfer function G(s) = C(sE — A)~1 B, the goal
is to construct a reduced-order system with transfer function G(s) = C(sE — A)~'B such

that for given interpolation points o1, ..., 0% € C and directions b, ..., b(*) € C™ as well
as ¢, ... ¢®) € CP, the right or left tangential interpolation conditions

G(o)bD = G(abD, or (cN"G(o;) = (¢D)G (o), 9)
for j = 1,...,k, hold. It has been shown via numerous examples that tangential inter-

polation yields accurate reduced-order models while allowing to choose the size of the
reduced-order model independent of the input and output dimensions (unlike in the ma-
trix interpolation framework) and thus results in smaller reduced-order models. Indeed,
tangential interpolation, not the matrix interpolation, forms the necessary conditions for
optimal model reduction of linear systems in the o norm [2]. The tangential interpo-
lation problem (9) (and the projection-based solution framework) was later extended to
structure-preserving Hermite interpolation in [6] of structured transfer functions of the

form G(s) = C(s)K(s)~1B(s).

2.3 Blockwise tangential interpolation for unstructured bilinear systems

Extending tangential interpolation to unstructured bilinear systems of the form (2) was
first considered in [8,23], using the observation that multiplying out the Kronecker prod-
ucts in (4) yields

Gi(s1,....s5) = [C(skE— A)"'Ny -+ Ni(s1E — A)™'B,
C(spE — ANy - No(s1E — A)7'B,

c ey

C(skE — A) "Ny -+ Np(s1E — A)7'BJ.
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Each block entry in this formula is then considered as separate transfer function, which
will be interpolated along the same chosen directions. For example, with a right tangential
direction b € C™, the blockwise evaluation of the transfer function along b is given by

Gi(s1,- .., 86)(Im ®@b) = [C(sg B — A)"'Ny -+ Ni(s1E — A) "' Bb,
C(spE — ANy - No(s1E — A) "' Bb,

ey

C(skE — A) "Ny -+ Npp(s1E — A) ' Bb],

leading to the concept of the blockwise tangential interpolation problem: Given inter-
polation points o1,...,0r € C and tangential directions b € C™ and ¢ € CP, find a
reduced-order model such that

Gk(O'l, .. .,O'k)(Im (=) b) = ék(Ul, - ,Uk)(fm ®b) or (10)

MGi(ov,... . on) = MGy(on,...,0p) (11)
hold. Also, the bi-tangential interpolation condition,
CHGk(Ulv M 70k)(Im X b) = CHék(Uh Tty Uk)(Im ® b)7 (12)

will be of high interest in the bilinear system case. While, in principle, (10) and (11)
imply (12), we will see later that it is possible to match subsystem transfer functions
of higher level k in the sense of (12) by enforcing (10) and (11) on lower level transfer
functions.

The blockwise tangential interpolation problem can be viewed as a mixture of tangen-
tial interpolation, as it is done for the linear system case (9), combined with the blocks of
multivariate transfer functions. While in the case of linear systems, the tangential inter-
polation restricts the problem to vectors or scalars of fixed sizes to be interpolated, this
is not true anymore for the blockwise approach in the bilinear system case. As already
observed in [8,23], the blockwise approach still leads to the interpolation of an exponen-
tially increasing number of vectors or matrices, making it only marginally better than the
matrix interpolation method for model reduction.

2.4 Notation
To simplify notation in this work, we will use:

it

01 oty 20) = CRUNEA) (13)

s T g1 Jk
1 881 . ask

to denote the differentiation of an analytic function f: C¥ — C’ with respect to the
complex variables s1, ..., s; and evaluated at z1,..., 2z € C. We denote for matrix-valued
functions K: C — C™*", which map complex scalars onto square matrices, the inverse of
their evaluation by =1 := KC(.)~!. This notation of the inverse of evaluated matrix-valued
functions will occur together with the notation of partial derivatives (13). For example,
given two matrix-valued functions B: C — C™*™ and K: C — C™*™, we denote the partial
derivative of the product of B with the inverse of K evaluated in the points z1, 2o € C by

3j1+j2/q.)—13(‘)

J19.J2
0s7' 0sy

3531‘1 8532-2 (IC_IB)(Z]_,ZQ) = (21, 22)
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Also, we will use the notion of the Jacobi matrix given by

Vi=1[0af ... 0sf], (14)

denoting the concatenation of all partial derivatives of an analytic function f: C*¥ — C*
with respect to the complex variables s, ..., sg.
For bilinear systems, we have already introduced the notation

N(s) = [NMi(s) ... Nn(s)]

to denote horizontally concatenated matrix functions corresponding to the bilinear terms.
Additionally, we use

Ni(s)
N(s)=1]
Nin(s)

for denoting the vertical concatenation of the matrix functions corresponding to the bilin-
ear terms. We denote the vector of ones of length m by 1,,.

3 Generalized structured tangential interpolation framework

In this section, we will start with two different interpretations of tangential interpola-
tion (9) and their corresponding interpolation problems for bilinear systems. Motivated
by these formulations, we introduce a unifying framework for tangential interpolation of
structured bilinear systems and give subspace conditions for structure-preserving model
reduction of the corresponding bilinear systems. As a special case of the unifying frame-
work, we derive the theory for structure-preserving blockwise tangential interpolation as
reviewed in Section 2.3 and previously employed in the literature for standard (unstruc-
tured) bilinear systems.

3.1 Tangential interpolation in the frequency domain

Examining the original formulation of tangential interpolation (8) and the multivariate
transfer functions (5), a first natural approach to tangential interpolation for bilinear
systems would be to choose an appropriately sized vector b € (ka, where

h— [(8(11...1)>H (3(21...1)>H o (B(mm...m))H:| "

and bUL-Jk) € C™ for all 1 < ji,...,ji < m, as right tangential direction and to consider
interpolating
m m
Gr(st, . os)b=Y_ ... Y Clsw)K(sk) "Ny, (sk-1)K(sp-1)""
=l jea=1 (15)

X ... X Afjl (Sl)K(Sl)le(Sl)g(jl...jk)'

This general approach comes along with a computational drawback. For every new transfer
function level k, a different part of b is multiplied with the input functional B(s) in each
term of the sum (15). Then, the corresponding basis for model reduction would grow
according to the different block entries of b and, thus, even faster than for the blockwise
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tangential interpolation problem (Section 2.3). A remedy to this problem is to restrict the
full direction vector to the repetition of a single small direction b € C™, i.e.,

b
b=T,1@b=|:|. (16)
b

With this particular choice of b in (16), the right tangential interpolation problem can be
written as

Gk(gh R ,O’k>(]lmk71 ®b) = @k<0'17 ... 7Uk)(]lmk71 ®b), (17)

for given interpolation points o1, ...,0, € C. This restricts the interpolation problem to
a vector of constant length with respect to the transfer function level and thus allows for
an efficient construction of the projection basis.

For the left tangential interpolation problem, a direct extension of the classical ap-
proach (8) would lead to the same results as in the blockwise tangential interpolation
case (11) since the first dimension of the transfer function is constant for all transfer func-
tion levels. To consider a dual formulation of (15) for the left tangential interpolation
problem (one for which the basis dimension does not grow exponentially), we choose

NGr(or, ..., 00) (01 @ I) = HGrlon, ... 00) (101 @ Iy), (18)
for a given direction ¢ € CP and interpolation points o1,...,0; € C. Consequently, we
consider

CHGk(O'l, e ,O'k)(]lmk—l & b) = CHG\'k<01, cey o) (1,01 ®b) (19)

as the bi-tangential interpolation problem.

3.2 Time domain interpretation of tangential interpolation

A different way to look at tangential interpolation of transfer functions is its interpreta-
tion in the time domain. We start with the tangential interpolation problem for linear
dynamical systems (9). For simplicity, we consider only the case of linear unstructured
first-order systems as given in the time domain by

(20)
with £, A € R™*" B € R™*™ and C' € RP*" and in the frequency domain by the transfer
function

G(s) = C(sE— A)"'B.

We note that the following derivations work for all structured linear systems as well [6].
The multiplication with tangential directions in the frequency domain can be considered
independent of the chosen interpolation points, which gives new systems in the frequency
domain described by the transfer functions

Gh(s) = G(s)b and Ge(s) = HG(s), (21)
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with the tangential directions b € C™ and ¢ € CP. Those new systems (21) allow now
for re-interpretation in the time domain. In fact, the resulting tangential systems can be
seen as embedding the original linear system G into single-input or single-output systems.
We set the outer inputs and outputs as u(t) = ba(t) and §(t) = cHy(t), respectively, and
obtain the new systems:

~ Eix(t) = Az(t) + Bbu(t),
@ { Jit) = Cal), =
for embedding the inputs, and
G {Ey'f(t) = A:;(t) + Bu(t), (23
y(t) = c"Cx(t),

for the outputs. Thereby, in the setting of tangential interpolation, we are restricting
the system inputs to a single input signal that is spread along a given direction b to be
fed into the original system (20) or we restrict the output to a linear combination of the
observations of the original system (20) using the direction c.

Now, we consider the bilinear unstructured systems (2) and make use of the time domain
interpretation of tangential interpolation we have done for the linear case (22) and (23).
Using the same tangential directions as before and the embedding strategy for the bilinear

system (2), with b = [bl by ... bm]T we obtain
_ | Bi(t) = Ax(t) + ) Njz(t)bjalt) + Bbi(t),
Gb : j=1 (24)
y(t) = Cx(t),
for the embedded inputs,
_ | Bi(t) = Aw(t) + Y Nja(t)u;(t) + Bu(t),
GC . j=1 (25)

g(t) = MCx(t),

for embedding the outputs. Additionally, we consider here the fully embedded system

m

_ | Bit) = Az(t) + Y Njz(t)bja(t) + Bba(t),
Gy (t) (t) ; ()bju(t) (t) 26)

g(t) = MCua(t),
as it relates to the bi-tangential interpolation problem. These new bilinear systems (24)—

(26) will be used to derive a new concept of tangential interpolation for bilinear systems.
The corresponding regular transfer functions for the embedded systems are given as fol-
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lows:

k—1 m
Gok(s,..ys) = Clseln — A7 [ ] (Z biNi> (sk—jIn — A~ | Bb, (27)

7j=1 \i=1
k—1
éqk(sl, - ,Sk) = CHC(SkE — A)_l (Im]’—l X N)(Imj X (Sk,jE — A)_l)
j=1
X (I,,k—1 @ B), (28)
k—1 m
écb,k(sl, - ,Sk) = CHC(SkIn — A)il H (Z szz> (Skijn — A)fl Bb, (29)
j=1 \i=1

for kK > 1. These new transfer functions (27)—(29) can now be combined with our structured
transfer function setting (5). For a given direction vector b € C™, we denote the scaled
summation of the structured multivariate transfer functions by

Grl(s1,..ys8) = C(si)K(sk) ™" | D biNG(su—1) | K(sp—1) ™" x ...
j=1

< [ D biNG(s1) | K(s1)7'B(s1).
j=1

The bilinear terms in (30) collapsed from large concatenated matrices in (5) to simple
n-dimensional matrices. Therefore, the Kronecker products become classical matrix mul-
tiplications such that Gy : CF — CP*™,

R Denoting the scaled and summed transfer function of the reduced-order model by

ék(sl, ..., 8k), the corresponding right tangential interpolation problem is given by

ék(O’l,...,O'k)b:ék(al,...,()'k)b, (31)

for given interpolation points o1,...,0, € C. As before, motivated by duality, the left and
bi-tangential interpolation problems are chosen to be

cHék(al,...,ak) :CHék(O'l,...,O'k) and (32)

cHék(al,...,ak)b:cHék(al,...,ak)b, (33)
respectively.

Remark 1 (Relation to other control systems). The idea of time domain interpretation
of tangential interpolation can easily be extended to other types of control systems, e.g.,
to systems with polynomial nonlinearities. This might lead to new efficient tangential
interpolation approaches for nonlinear multi-input/multi-output control systems.

3.3 Structured tangential interpolation framework

Now, employing the scaled and summed transfer functions we introduced in (30), we
develop a generalized framework for tangential interpolation of multivariate transfer func-
tions that unifies the different approaches to bilinear tangential interpolation discussed
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in Sections 2.3, 3.1 and 3.2. The new framework will encompass all these different ap-
proaches under one umbrella and thus give one formulation to cover all these different
interpretations of bilinear tangential interpolation, filling an important gap in the inter-
polatory model reduction theory of bilinear systems. Moreover, we will develop this new
framework for the structured bilinear dynamical systems for which tangential interpolation
has not been studied yet.

We start by defining the modified multivariate transfer functions

Gi(s1,.--, 8k |d(1), .. .,d(k_l))

e e 3
= C(sk)K(sk) ™" | T] N(saej | d* ) (s5—j) " | B(sa),
j=1
for k > 1, with frequency points s1,. .., s; € C and scaling vectors d), ..., d*1D e C™,
where
N(s; | d9) = N(s)(dD @ L) = 3 i Ni(s;)
i=1

denotes the scaled sum of the bilinear terms. Note that the first modified transfer function
does not depend on a scaling vector and it holds that

Gl(sl) = Gl(sl).

In this setting, ak(sl, oSk | dD, 0 d*1) denotes the modified transfer functions of
the reduced-order model. For the modified transfer functions, we define the following
tangential interpolation problem:

Problem 1 (Tangential modified transfer function interpolation). For given interpolation
points o1,...,0;r € C, scaling vectors dV, ..., d*1D e Cc™, and tangential directions
be C™ and c € CP, find a reduced-order model such that

Gr(or,...,o%|dD, ... d* D) =Gy(o,... 0% dV, ... d*D)p, (35)
cHGk(Ul,...,ak|d(1),...,d(k_1)):cHak(al,...,ak|d(1),...,d(k_1)), or (36)
CHGk(Ul, e, Ok ’d(l), .. .,d(kfl))b = CHak(Ul, e, Ok ’d(l), .. .,d(kfl))b (37)

hold.

Before we present our results that show how to construct the reduced bilinear systems
to solve the structure-preserving tangential interpolation problem in the new generalized
framework, we formally state in the following corollary that the earlier bilinear tangential
interpolation frameworks are special cases of the proposed unifying framework. Due to its
significance in the literature and its more complex formulation in the unifying framework,
the case of blockwise tangential interpolation is treated separately in Section 3.4.

Corollary 1 (Choices of the scaling vectors). Consider the proposed tangential interpo-
lation problem (Problem 1) with the corresponding scaling vectors d9) in (34). Then:

(a) Choosing dV = .. = d*V = 1,, yields the extension of classical tangential in-
terpolation to the multivariate transfer functions of bilinear systems (17)—(19) from
Section 3.1.
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(b) Choosing dV) = ... = d*=D = b, with b € C™ as the right tangential direction,
yields the re-interpretation of tangential interpolation in time domain (31)—(33) from
Section 3.2.

The following theorem establishes the subspace conditions on the model reduction bases
V and W to construct the reduced-order model (6) that satisfies the tangential interpola-
tion conditions (35)—(37).

Theorem 1 (Modified structured tangential interpolation). Let G be a bilinear system,
associated with its modified transfer functions Gy in (34), and G the reduced-order bilin-
ear system, constructed as in (6) with its modified transfer functions Gi. Given sets of

interpolation points o1, ...,0, € C and ¢1,...,s; € C such that the matrix functions C(s),
K(s)™t, N(s), B(s), K(s)~! are defined for s € {o1,...,0k,51,-.-,5}, two tangential
directions b € C™ and ¢ € CP, and two sets of scaling vectors dV, ... d*=1 e C™ and

s, ..., 606D e C™, the following statements hold:

(a) If V is constructed as

v = ’C(O‘l)_lg(dl)b,
vj = K(o;)""N(oj—1 [dVD)w; 1, 2<j<k,
span(V) D span ([v1,...,vg]),

then the following interpolation conditions hold true:

Gi(o1)b= E;1(01)57
Ga(a1, 00 | dM)b = Gy(oy, 00 | M),

Gilor,...,00|dD, ... d* Db =Gy(or,... 0| dDV, ... d* Db,
(b) If W is constructed as

w1 = Ic(gn)_HC(gm)Hca
wi = K(su—it1) PN(geipr |67y, 2<i<k
span(W) D span ([wy, ..., wg]),

then the following interpolation conditions hold true:

CHGI (k) = CHal(%)v

MG (61,60 [ 007Y) = MGy (Gor, 6 | 657,

MGu(st, 5| 00, 6 ) = MGty 0D, 6D,

(c) Let V' be constructed as in Part (a) and W as in Part (b). Then, additionally to the
results in (a) and (b), the following interpolation conditions hold:

cHG,H_n(Ul, e Oy Skt s - Sk | dV .. qla) st 5(”71))6

= CHanrn(O'l, ey Oy Skt s -+ Sk | dV, .. gl o st ,5(“_1))6,

for1 <q <k, 1<n<k and an additional arbitrary scaling vector z € C™.
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Proof. For brevity of the presentation, we restrict ourselves to prove Part (c) of the theo-
rem. Parts (a) and (b) can be proven analogously using the same projectors constructed
in the following. The modified transfer functions of the reduced-order model are given by

cHanrn(al, ey Oy Sk s - Sk | dV . e o st ,5(”_1))1)

MC60)K (s (H N(go—i |6~ (Gn—z’)1> N(oq | 2)

=0

for 1 < g <k,1<n<k, and an arbitrary vector z € C™. The right-most product of the
right-hand side can then be rewritten using the construction of V' such that

q—3
Vig=V K(og—3)"'N(og—j—11d"771) | K(o2)"'N(o1 |dV)K(01) " B(o1)b

q—3
v( R(04-5)" " N(ogj11d45D) | R(on) " WHN(oy |dO)
V

7=0
x VK(o1) "' WHK (1) K(o1) ' B(o1)b
Z Py, Zu

q—3

=V K(og—)""N(og—j—1d9771) | K(o2) ' WHN(or | dD)vy
j=0

= VK(og) "WHN(0y_1 | d9 V)0, s

= Vﬁ(aq)_IWHIC(Uq) K(Uq)_lN(f’qfl | d(q—l))qu

=: =
~PVq q

where Py,, ..., Py, are projectors onto span(V'), i.e., it holds P, ;v = v for all v € span(V')
and their recursive application gives the identity above. Analogously, one can show that

Wb, = wy,
where wy, ..., w, € span(W). Combining this last equality together with Vo, = vy yields

cHanm(ol, e Oy Skt 1y Sk | dV .. qla) st 6(“*1))6
= 0 WHN(oy | 2)Vdg

= w,l;'N(aq | 2)vg
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= cHGqun(al, ey Oy Skl -+ Sk | d, ..., daD 4 gt ,5(”_1))b,
which proves Part (c). O

Remark 2 (Implicit realization of blockwise interpolation). Part (c¢) of Theorem 1 high-
lights an interesting interpolation property: The modified bilinear term in the middle
between the interpolation by left and right projection allows for a completely arbitrary
scaling vector z. Especially, by concatenation of higher-order transfer functions with re-
spect to z, blockwise interpolation conditions hold true corresponding to the centering
bilinear term. To further illustrate this point via a simple example, construct span(V)
and span(W) as in Theorem 1 such that G1(c)b and ™Gy (c) are actively interpolated for
chosen interpolation points ¢,¢ € C, and tangential directions b € C™ and ¢ € CP. Then,
by two-sided projection it holds additionally (Part (c) of Theorem 1) that

Ga(0,|2) = Ga(0,¢ | 2),
. T T
for all z € C™. Choosing z = [1 0] and z = [O 1]
interpolation condition by concatenation:

yields the blockwise bi-tangential

MG (0,¢)(Im @ b) = MGa(0,<)(Im @ b),

More details on structure-preserving blockwise tangential interpolation and its relation to
the unifying framework are shown later in Section 3.4.

In addition to matching transfer function values, in practice, the interpolation of sen-
sitivities with respect to the frequency points, i.e., partial derivatives, is crucial. The
following theorem extends the interpolation results for modified transfer functions to Her-
mite interpolation.

Theorem 2 (Modified structured tangential Hermite interpolation). Let G be a bilinear
system, associated with the modified transfer functions Gy, in (34), and G the reduced-order
bilinear system, constructed by (6) with its modified transfer functions Gi. Given sets of

interpolation points o1, ...,0, € C and 1,...,s; € C such that the matriz functions C(s),
K(s)™Y, N(s), B(s),K(s)"! are analytic in s € {o1,...,06,51,-..,5x}, two tangential
directions b € C™ and ¢ € CP, and two sets of scaling vectors dV, ... d*=1) e C™ and

W ., 66=D e €™, the following statements hold:

(a) If V is constructed as

V1,1 = Sjl(lcilg)(o-l)l% jl :07"')£15
V2,52 = astIC_l(Oé)aszl (N( | d(l))K:_IB)(O-l)b? jQ = 07 s 7£2a

k—2
Uk?yjk = asjk K_l(gk) H aszk—j (N( | d(k_]))lc_l)(o‘k_j)
7=1

X 8,00 <N(. | d<1>)/c43) (o1)b, =0, Ly,
span(V) 2 span([vio, ..., Vk])s

then the following interpolation conditions hold true:
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88{-1G1(01)b:65{161(01)b, 1=0,....0,

041 2 Ga(01, 09 | dD)b =D 4, jy Ga (01,02 |dV)b, J2=0,...,0,
1 °2 1 °2

8@1 L1 ]'ka(O'l,...,O'k-|d1,...,dk_1)b
S1 7 Skp—1 Sk

Il
o
\.()\
¥

:821 L1 jka(Ul)"wO-k’dla"'vdk—l)ba jk?
S1 7 Sk—1 Sk

(b) If W is constructed as

w1 i, = Ogin (IC_HCH> (CN)C, e =0,..., 0%,
(’C‘HN<- | 6“‘”)*‘) (- 1)Dsmn (KMCM) (6)e, i1 = 0,y w1,

W 4,1 = 88%,1

% (H Dgvi (ic—HN(. | 5(“)”) (q))
X D (/C—HCH) (co)e, ih=0,.. ..,
span(W) D span([wi 0, ..., Wku,.]),

then the following interpolation conditions hold true:

CHasinGl(Cﬁ) = CHaszi,gGl(Q{), in = 0, ey Vg
CHa i—1 v G2(§n717 Sk | 5(5_1)) = CHa io—1 v G2(§,{,1, Sk | 5(N_1))7 te—1=0,...,V_1,
S1 82 St S
CHasilsgzmszn Gn(gla A ’ Oy 75n—1)
= CHasilsV2.”SyN Gﬁ(q, .oy Sk ‘ (51, e ,5,4_1), il = 0, NN AR
1 S2 K

(c) Let V' be constructed as in Part (a) and W as in Part (b). Then, additionally to the
results in (a) and (b), the following conditions hold:

H
C 8 41 qul Jq imfnﬁ»l Ve—n+2 vg Gq+n(017 e 7UQ7 gli-?’]-‘rl? e 7<K, ‘
S17Sg—1 Sa Sqq1 Sqt2 Sqtn

d(l)’ T 7d((I*1)’ 2, 5(%*7]4»1)7 e 75(H71))b

_H A G
=c'0 0 Lg—1 Jq ir—n+l Ye—n+2 e GquTi(Ulv < 0g; Sk—n+15- -+ Sk |
S1 Sq—1 Sq Sq41 Sq42 q+n

dV L dla) g gt sty
forjq=0,... . 4g; i1 =0,..., vk yt1; 1 < q <k, 1 <n < kK, and an additional
arbitrary scaling vector z € C™.
Proof. The proof works analogously to Theorem 1, using appropriate projectors onto

span(V') or span(W) and the ideas from the proof of [10, Thm. 9] for fixed scaling vectors
d(l), .. ,d(k_l) and 5(1), . §=1) -
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To complete the theory for our new unifying interpolation framework, we consider the
special cases of Theorems 1 and 2 by using identical sets of interpolation points and scaling
vectors in the bi-tangential interpolation case. As in [6, 10], this allows interpolation of
partial derivatives implicitly. Due to the dependency of the modified transfer functions
on the scaling vectors, we will also interpolate now derivatives with respect to those
scaling vectors. Therefore, the notion of the Jacobian matrix (14) for the modified transfer
functions will be given as

va = [881Gk7 e 7aska) 8d(1) Gk7 e 7ad(1) Gk7 e 78d(k*1)Gk) s 78d(k*1> ij| .
1 m 1 m

Theorem 3 (Modified structured bi-tangential interpolation with identical point sets).
Let G be a bilinear system, associated with the modified transfer functions G in (34), and
G the reduced-order bilinear system, constructed by (6) with its modified transfer functions
ék. Given a set of interpolation points o1, . ..,or € C such that the matriz functions C(s),
K(s)™L, N(s), B(s), K(s)™ are analytic in s € {o1,...,01}, two tangential directions
be C™ and ¢ € CP, and scaling vectors dV), ..., d*=1) e C™, the following statements
hold:

(a) Let V and W be constructed as in Theorem 1 Parts (a) and (b) for the interpolation
points o1 = <1, ..., o) = s and the scaling vectors dV = ¢V, .. dk=1) = §k-1),
Then, in addition to the interpolation conditions in Theorem 1, it holds

v (CHGkb> (01,---,0k ‘ d(l), e ,d(k_l))
=V (CHakb) (01, 0k d(l), e ,d(kil)).
(b) Let V and W be constructed as in Theorem 2 Parts (a) and (b) for the interpolation
points 01 = <1, ..., O = Gk, the derivative orders {1 = v1, ..., £y, = vy, and the

scaling vectors dV =50 dk=D = §&=1) " Then, in addition to the interpolation
conditions in Theorem 2, it holds

Vv (cHa o G]J)) (01y--,0k ’d(l), e d(k—l))
splees)

=V (cHa A e,ﬁkb> (0’1, e | d(l)7 o ,d(kfl)),
81 “.Sk

Proof. First, we consider the partial derivatives with respect to the scaling vectors. For
arbitrary 1 < j <k —1and 1 <i: < m, we obtain

8d§j> (CHakb) (o1,...,08]dM, ... d*D)

k—j—1
= cMC(o)K (o)~ ( N(Uk—eld(k_@)lc(ak—e)_l> (3d(j>N(Uj|d(J))>
=1 ’
—.oH
=Wp g
Bl ~ -
x | I N(or—e|d* K (or-0)~" | B(s1)b
=j+1
:'Dk—j—l

= Bj_j_q <3d1<_j>ﬁ(0j !d(j))) Up—j—-1
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= afl W (9,0 N(; 1 d9)) Vi

such that only the modified bilinear term corresponding to the scaling vector d\9) needs
to be differentiated. Using the same approach as in the proof of Theorem 1 and the
construction of span(V') and span(W) yields the two equalities

V@k,j,1 = Vk—j—-1 and W’UA}]C,]',1 = Wk—j—1,
which gives

Oy (CHakb> (o1,...,0%|dD), ... d*1)

—J
= wi <5d5j>N(0j Id(j))) Vk—j—1

=04 (CHGkb) (01, o |dY, ... dk=D)y,

= WM (9,0N(oy [d9)) Vi

forall 1 < j < k—1and 1 < ¢ < m. Therefore, the interpolation condition holds
for all partial derivatives with respect to the scaling vectors. The results for the partial
derivatives with respect to the frequency arguments can be proven analogously and in
principle follow the ideas from [10, Cor. 2]. This proves Part (a). Part (b) can be proven
analogously to Part (a) by replacing the simple interpolation by the Hermite version from
Theorem 2. For brevity of the paper, we skip those details. O

Remark 3 (Using multiple sets of interpolation points). While all results in this section
are formulated for a single set of interpolation points o1, ..., 0, € C, they can be extended
to multiple sets by concatenation of the model reduction bases. Consider, for example,
Part (a) of Theorem 1. Let 051), . ,o,(cl), — U%ns), o ,a,(gns) € C be ng sets of interpolation
points and V..., V(") be the corresponding basis matrices such that the corresponding
reduced-order models (tangentially) interpolate the original model for the given sets of
interpolation points. Then, another reduced-order model can be constructed to satisfy all
interpolation conditions associated with V), ... V(1) by choosing

span(V) 2 span([V, ... V)],

as the new truncation matrix V, and any W of appropriate dimension and full column
rank.

3.4 Special case: Structured blockwise tangential interpolation

As mentioned in Section 3.3, the new unifying tangential interpolation framework can also
be used to obtain results for blockwise tangential interpolation. Due to its relevance and
common use in model reduction of MIMO bilinear systems, we will state the corresponding
results in this section in more detail.

First, we will generalize the idea of blockwise tangential interpolation introduced in
Section 2.3 to the structured case. Therefore, we start by analyzing the multivariate
transfer functions (5). Multiplying out the Kronecker products, we observe that (5) is
actually given as concatenation of products of the linear dynamics and the bilinear terms

Gr(s1,- -, s6) = [C(sk)K(sk) N1 (sp—1)K(sp—1) " - Ni(s1)K(s1) ' B(s1),
C(Sk)K(Sk)_lNl(Sk_l)IC(Sk_l)_l c 'NQ(Sl)K(Sl)_lB(Sl), (38)

C(Sk)K(Sk)71Nm(8k_1)’C(Sk_1)71 N 'Nm(sl)]C(Sl)le(Sl)] .
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Extending on the ideas from Section 2.3, we consider each block entry of (38) as sepa-
rate transfer function and for each of them use tangential interpolation with the same
directions. In other words, given the right tangential direction b € C™, we consider

Gk(sl, ce Sk)(fm X b) = [C(Sk)IC(Sk)lel(Skfl)]C(Skfl)*l .. .Nl(sl)]c((gl)*l[j’(sl)b’
Cs1)K(sk) "N (k1)K (sp—1) 7"+ Na(s1)K(s1) " B(s1)b,

C(Sk)K(Sk)_le(Sk_l),C(Sk_l)_1 N 'Nm(Sl)IC(Sl)_lB(Sl)b]

as blockwise evaluation of the transfer function in the direction b. This formulation extends
the blockwise tangential interpolation problem from (10)—(12) to the structure-preserving
setting.

The modified tangential interpolation framework can now be used to obtain the subspace
conditions on the blockwise tangential interpolation. Choose the scaling vectors d¥) in (34)
to be columns of the m-dimensional identity matrix. Then, the single block entries of (38)
are given as the modified transfer functions (34) for specific choices of scaling vectors. For
example, choosing dV) = ... = d*~1 = ¢; to be the first column of the m-dimensional
identity matrix yields

Gk<81, .oy Sk ‘ €1,..., 61) = C(Sk)IC(Sk)_lNl(Skfl),C(Sk,ﬂ_l c 'Nl (Sl)IC(Sl)_lB(Sl),

which is the first block in (38). By column concatenation of these modified transfer
functions, (38) can be completely recovered:

Gk(sl,...,sl) = [Gk(sl,...,8k|€1,...,61),
Gi(S1,..., 8k |€1,...,€2), (39)
Gk(sl,...,sk|em,...,em)].

Consequently, the blockwise interpolation results are given by concatenation of the corre-
sponding model reduction bases constructed for all necessary modified transfer functions
and the tangential directions. Due to the significance of the blockwise tangential interpola-
tion in the literature [7,23] and the complexity of its recovery from the unifying framework,
we will state in the following the structure-preserving interpolation results for blockwise
tangential interpolation. Note that the proofs directly follow from the previous section
and by concatenation as discussed above.

Remark 4 (Matrix interpolation). It should be noted that the matrix interpolation results
from [10] can also be recovered from the modified tangential interpolation framework. As
the relation (39) shows, removing the tangential directions in the construction of the
projection spaces will yield the matrix interpolation results. Thus matrix interpolation is
also a special case of the modified tangential interpolation framework.

The first result follows from Theorem 1.

Corollary 2 (Structured blockwise tangential interpolation). Let G be a bilinear system,
described by its subsystem transfer functions in (5), and G the reduced-order bilinear sYs-
tem, constructed by (6) with the corresponding subsystem transfer functions @k Given
sets of interpolation points o1,...,0, € C and <1,...,5s € C such that the matriz func-
tions C(s), K(s)™1, N'(s), B(s),K(s)~! are defined for s € {o1,...,0%,51,- .. 5}, and two

tangential directions b € C™ and c € CP, the following statements hold:
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(a) If V is constructed as

j
span(V) D span ([Vi,...,Vi]),

Gr(or, ..., o6) I k1 ®@b) = Gr(or,...,00) Ix1 @ D).
(b) If W is constructed as

Wl - K(Cﬁ)iHC<§5)Hca

Wi = K(Se—is1) N (hoiv) " (I @ Wiz1), 2<i<k
span(W) D span ([W1,...,W.]),

then the following interpolation conditions hold true:

MG () = MGi(sn),

MGo(Gu1,50) = MGa(Sn1, 0),

~

CHGR(Q, ce 79‘{) = CHG/{(gla cee 7§n)~

(¢) Let V be constructed as in Part (a) and W as in Part (b). Then, additionally to the
results in (a) and (b), the following conditions hold:

cHGq+n(01, ey Ogs Skt 1y - - > Sk) (Lpatn—1 @ D)

~

= CHGq+77(O'1, . e 70‘q,§,§_77+1, ceey g,.i)(.[mqunfl ® b),
for1<qg<kandl <n<k.

The next corollary corresponds to Theorem 2 stating the results for Hermite interpola-
tion.

Corollary 3 (Structured blockwise tangential Hermite interpolation). Let G be a bilinear
system, described by its subsystem transfer functions in (5), and G the reduced-order
bilinear system, constructed by (6) with the corresponding subsystem transfer functions ék.
Given sets of interpolation points o1,...,0, € C and <1,...,s: € C such that the matriz
functions C(s), K(s)™, N'(s), B(s), K(s)™! are analytic in s € {o1,...,0%,51, .- S},
and two tangential directions b € C™ and ¢ € CP, the following statements hold:
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(a) If V is constructed as

Vi, = O (K™'Bb) (o), J1=0,....0,
‘/QJQ = a33'2 K71(02)83e1 (N(Im & ’Cile))(Ul)y jo=0,... o,

k—2
Viejr = 05 K™ (0k) (H 9t ((Umi—1 @N) Iy & ’C))(Uk—j))
j=1

X Oger (I —2 @ N)(Ipr—1 @ KBb))(01), Jk=0,... C,
span(V) 2 span([Vio,-- -, Vie]),

then the following interpolation conditions hold true:

0.1 Gi(o1)b = asjl-l@l(al)b, J1=0,...,01,

6821“. [k—ls]'k Gk(O’l, s 70-]6)(1777,’“71 ® b)

Il
o
\:’\
¥

:8%. Zk71sjkék(0'17”-vak)(Imk—l ®b), Tk
1 -1 5k

(b) If W is constructed as
Wl,in = Ugix (IC_HCHC)(Q{), Z',{ = 0, ceey Vg
Wajinoy = Qs (KA (1) (T @ B (CHCRO)(61) ) s it = 0,1y,

k—1
Wiy = 0 (K"HA ) (a1) (H Osvi (Ippicr ® /c-“ﬁ“xcz-))

=2
X (Im,H ® Dy (/c—Hch)(gn)) , ih=0,...,0,
span(W) D span([Wi, ..., Wio,]),

then the following interpolation conditions hold true:

H H A -
c 85§HG1(§,{) =c GsiﬁGl(gH), i =0,..., V4,
H H A ,
c 8silsu2”_sunG,€(§1,...,gn) =c 881'15,,2.”8%GH(§1,...,g,.i), 11=0,...,01.
1 °2 K 1 °2 K

(¢) LetV be constructed as in Part (a) and W as in Part (b). Then, additionally to the
interpolation conditions in (a) and (b), the following conditions hold:

H
& a 21“. eq—l Jjq in—n-&-l Vn—n+2.“ Vi Gq+?7(017 e 7O-Q7 gﬂ*n‘f’l’ AR gn)(lmq+’7_1 ® b)
81 7%q—1 %a Fq+1 Sq+2 Sq+n
_ H A~
=c'0 0 tq—1 Jq fr—mt1l Vr—nm+2 vk Gq—i—n(o'ly <o 0gs Sk—m+1s - - - Sk ) (Lpa+n—1 @ b)),
S178q—1 Sa Sqp1 Sq+2 Sqtn

for jg=10,... 44 i1 =0,..., Vs py1; 1 <qg<kand1 <n<k.

Last, we give the results on implicit blockwise tangential interpolation of additional
partial derivatives by using two-sided projection, corresponding to Theorem 3.
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Corollary 4 (Structured blockwise bi-tangential interpolation with identical point sets)A.
Let G be a bilinear system, described by its subsystem transfer functions in (5), and G
the reduced-order bilinear system, constructed by (6) with the corresponding subsystem
transfer functions (A?k Given a set of interpolation points o1,...,0r € C such that the
matriz functions C(s), K(s)™L, N'(s), B(s), K(s)™ are analytic in s € {o1,...,04}, and

two tangential directions b € C™ and c € CP, the following statements hold:

(a) Let V and W be constructed as in Corollary 2 Parts (a) and (b) for the interpolation
points o1 = G, ..., O = Sk. Then, in addition to the interpolation conditions in
Corollary 2, it holds

V(MGr (o1 @ 1)) (01, -y 0x) = V(MNGr(L i @ b)) (01, . ., 0%).

(b) Let V and W be constructed as in Corollary 3 Parts (a) and (b) for the interpolation
points o1 = 1, ..., O = G and deriwative orders {1 = v, ..., € = vi. Then, in
addition to the interpolation conditions in Corollary 3, it holds

\Y% (cHaszlwszk Gp(I k1 ® b)) (01y...,0%)
1S

=V (CHasfl,,,sek@k(Imk*1 &® b)) (01, R ,Jk).
1Sk

Remark 5 (Projection space dimensions). It will be useful to understand the growth of
the size of the model reduction bases and thus the order of the resulting interpolatory
reduced-order model for the different interpolation approaches. Let ng be the number of
sets of interpolation points and tangential directions at which we want to enforce interpo-
lation. Also, assume w.l.o.g. the recursively generated columns in V' and W are all linearly
independent (since otherwise, the dimensions of the corresponding projection spaces can be
reduced while still enforcing interpolation). Then, for the matrix interpolation approach
from [10, Thm. 8], we obtain

k k
dim(span(Viytx)) > ns Z m* | and dim(span(Wm)) > ne mek_l (40)
j=1 j=1

for the right and left projection spaces, respectively. The blockwise tangential approach
from Corollary 2 reduces those dimensions to

k
dim(span(Viyt)) = dim(span(Whyt)) > ns ka_l . (41)
j=1

Comparing (40) and (41) shows that the blockwise tangential interpolation approach,
similar to matrix interpolation, has exponentially growing dimensions of the projection
spaces. In contrast, the new modified tangential interpolation approach as in Theorem 1
yields

dim(span(Vy)) = dim(span(Wy)) > ngk,

which now grows only linearly. This gives more freedom in the choice of the order of
interpolating reduced-order models, as well as more possibilities to adapt the choice of
interpolation points to the problem.
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4 Numerical examples

In this section, we will compare different structure-preserving interpolation frameworks.
We compute reduced-order models by:

MtxInt the structure-preserving matrix interpolation from [10],
BwtlInt the structure-preserving blockwise tangential interpolation as in Section 3.4,

Sftint the modified structure-preserving tangential interpolation framework motivated in
the frequency domain (Section 3.1), and

SttInt the generalized structure-preserving tangential interpolation framework motivated
in the time domain (Section 3.2).

In the experiments, we use MATLAB notation to define the interpolation points: We
write logspace(a, b, k) to denote k logarithmically equidistant points in the inter-
val [10%,10°].

For the qualitative analysis of the computed reduced-order models, we will consider
approximation errors in time and frequency domains. In time domain, we consider the
point-wise relative output error for a given input signal, i.e.,

ly(@) — 9(@)]2
ly(@) ]2

where y and ¢ denote the original and reduced-order system outputs, respectively, in the
time range t € [0, t7]. Additionally, we compute the maximum error over time by

S VO
et ly(®)]l2

In frequency domain, the point-wise relative error of the first and second transfer functions
on the imaginary axis in the spectral norm is considered, i.e.,

|G1(iwy) — G1(iwt)|2 |Ga(iwy,iws) — Galiwy,iws)]2
and
|G1(iwr)l]2 |Ga(iwr,iws)ll2 ’

in the frequency range wi,ws € [Wmin, Wmax] together with the corresponding maximum
errors over the frequency of interest defined as

|G (iwr) — Gi(iwr)]la

errg, = max ,

Wle[wmin,wmax] ||G]_ (1 CU]_) ”2
— [G2(iwr,iwz) — Ga(iws,iws)|2
errg, 1= max CA—
w1 7W2€[wmin,wmax] ||G2 (1 W]_, 1 U“)Q) H2

Note that the time and frequency domain errors reported are actually approximated by
evaluating the above expressions on a fine grid covering [0, tf] or [Wmin, Wmax], respectively.

The experiments reported here have been executed on machines with 2 Intel(R) Xeon(R)
Silver 4110 CPU processors running at 2.10 GHz and equipped with either 192 GB or
384 GB total main memory. The computers run on CentOS Linux release 7.5.1804 (Core)
with MATLAB 9.9.0.1467703 (R2020b). The source code, data and results of the numerical
experiments are open source/open access and available at [29].
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Figure 1: Time domain simulation results for the steel profile.

4.1 Cooling of steel profiles

We first consider a classical, unstructured bilinear system as in (2). For the optimal
cooling of steel profiles, the heat transfer process is described by the two dimensional heat
equation

Cp(?ﬂ)(t, C) - )‘Av(ta C) =0,
U(Oa C) = vO(C)a

with (¢,¢) € (0, ) x €, the initial value vo(¢) € €, and the Robin boundary conditions

qiui(t)(l —v(t, C)), onl;,i=1,...,6,
Q7(U7(t) —v(t, C)), on I'7,

such that Ui?:l I'j = 0Qand I'; NT; = 0 for ¢ # j, where 0, denotes the derivative
in direction of the outer normal v and wu;(t) are the exterior cooling fluid temperatures
used as controls. The spatial discretization of the rail shaped domain and parameters are
chosen as described in [21,25]. As a result, we consider a system of structure (2) with
n = 5054209 states, m = 7 inputs, non-zero bilinear terms corresponding to the first 6
inputs, and p = 6 outputs. The data for this example is available in [26].

The reduced-order models are constructed as follows:

A0,u(t, ) = {

MtxInt with the interpolation points t+logspace(-8, 2, 3)i for the first and second
subsystem transfer functions. Due to the rank deficiency in the generated columns,
a rank truncation is performed to compress the model reduction basis, which yields
a reduced-order model size of rmix = 146.

BwtInt with the interpolation points +logspace(-8, 2, 8)i for the first and second
subsystem transfer functions resulting in the reduced order 7, = 112.

Sftint with the interpolation points +logspace(-8, 2, 28)i and the scaling vectors
d® = 1,, for the first and second subsystem transfer functions resulting in the
reduced order r¢p = 112.

Sttint with the interpolation points +logspace(-8, 2, 28)i and the scaling vectors
d® = b for the first and second subsystem transfer functions such that the reduced-
order model size is rg = 112.
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Figure 2: Frequency domain results of the first transfer functions for the steel profile.

Table 1: Maximum relative errors for the steel profile.

MtxInt Bwtlint Sftint Sttint

errgi;m  4.0019e-01  1.6248e-02  3.2016e-04  3.3950e-04
errg, 6.3977e-01  2.0925e-01  2.3971e-02  1.9581e-02
errg, 2.1258e+00  5.0533e+00  3.1073e+00  2.6049e+00

For all reduced-order models, we have chosen the same interval for the interpolation points.
However, since the reduced-order dimension grows differently for different approaches, the
number of interpolation points over the same interval differs so that the reduced-order
models have the same (or at least comparable) order. For all directions, normalized
random vectors from a uniform distribution on [0,1] have been used. For all reduced-
order models only one-sided projections (W is set to W = V') have been applied resulting
in reduced-order models having asymptotically stable linear parts. Note that the matrix
interpolation has a much larger reduced order as anticipated.

Figure 1 shows the results for a time simulation using a unit step signal as input.
All reduced-order models yield accurate approximations. The relative errors reveal that
overall, Sftint and Sttint perform best, while MtxInt and BwtInt are several orders of
magnitude worse in accuracy over the whole time interval. The maximum errors attained
are given in Table 1. There, the two new tangential approaches Sftint and Sttint are both
three orders of magnitude better than MtxInt for the time domain simulation.

The frequency domain analysis (Figures 2 and 3) illustrates similar conclusions. In the
case of the first subsystem transfer function, MtxInt performs overall worst followed by
BwtInt. The new approaches Sftint and SttInt again show the smallest errors over the full
frequency range. For the second transfer function level, all approaches behave comparable.
The tangential approaches provide better errors than MtxInt if both frequency arguments
are close to each other and MtxInt is more accurate for very small frequencies. For both
transfer function levels, the maximum errors are given in Table 1.
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Figure 3: Frequency domain results of the second transfer functions for the steel profile.

4.2 Time-delayed heated rod

Here, we consider the single-input/single-output structured bilinear system from [10, 16]
that models a heated rod with distributed control and homogeneous Dirichlet boundary
conditions, which is cooled by a delayed feedback. The underlying dynamics are described
by the one dimensional heat equation

O(t,¢) = Av(t,¢) — 2sin(Q)v(t, ¢) + 2sin(Q)v(t — 1,¢) + u(t), (42)

with (¢,¢) € (0,) x (0,7) and boundary conditions v(¢,0) = v(t,7) = 0 for all t € [0, ¢].
As extension of (42) to the MIMO case, we consider independent control signals on equally
sized sections of the rod as well as analogous measurements. Using centered differences
for the spatial discretization, we obtain the bilinear time-delay system

B(t) = Az(t) + Aq(t — 1) + Y Npz(tug(t) + Bu(t),
k=1

y(t) = Cu(t),

with A, Ag, N, € R™*"™ for k=1,...,m, B € R"™™ and C € RP*"™, For our experiments,

we have chosen n = 5000, m =5 and p = 2.
The reduced-order models are constructed as follows:
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Figure 4: Time domain simulation results for the time-delayed heated rod.

MtxInt with the interpolation points 41i for the first and second subsystem transfer
functions. To overcome stability issues, only a one-sided projection was applied.
The generated columns for the basis are rank deficient, therefore, a rank truncation
has been performed to compress the model reduction basis resulting in the reduced
order rmix = 36.

BwtlInt with the interpolation points +logspace(-4, 4, 3)i for the first and second
subsystem transfer functions with two-sided projection yielding the reduced order
Tbwt — 36.

Sftint with the interpolation points +logspace (-4, 4, 9)iand the scaling vectors d(®) =
1,,, for the first and second subsystem transfer functions with two-sided projection
to get a reduced-order model of size rs; = 36.

SttInt with the interpolation points +1logspace (-4, 4, 9)iand the scaling vectors d =
b for the first and second subsystem transfer functions with two-sided projection
to get a reduced-order model of size rq = 36.

For all directions, normalized random vectors from a uniform distribution on [0, 1] have
been used. Note that all reduced-order models have the same time-delay structure as the
original system (42). All reduced-order models are chosen to be of the same size.

Figure 4 shows the results in time domain for the input signal

u(t) = [0.05(cos(10t) + cos(5t)) 0.05(sin(10¢) + sin(5¢)) 0.01 0.01 0.01]T.

This time, MtxInt is a few orders of magnitude better than the other methods in the
overall behavior closely followed by Sttint, then Bwtlnt and Sftint. But in terms of the
maximum errors (Table 2), SftInt and Sttint are almost one order of magnitude better
than MtxInt. The results are different in frequency domain. Figure 5 shows the results for
the first subsystem transfer functions. While BwtlInt still performs worst, Sftint performs
now better than MtxInt, which is also shown in Table 2. The error of SttInt is mainly
following MtxInt over the whole frequency range and only minorly diverging at the end.
This changes for the second transfer functions in Figure 6. Here, MtxInt performs best
with Sttint having comparable accuracy. BwtInt and Sftnt are worse than the other two
approaches but both with a comparable error. In terms of the maximum errors (Table 2),
BwtiInt and MtxInt perform the best.

Further results for tangential interpolation of a related example using different choices
of interpolation points can be found in [28, Sec. 5.6.5.2].
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Figure 5: Frequency domain results of the first transfer functions for the time-delayed
heated rod.

Table 2: Maximum relative errors for the time-delayed heated rod.

MtxInt Bwtint Sftint Sttint

erTgim  1.2251e-06  1.2111e-05  2.1393e-07  5.2099e-07
errg, 5.0048e-03  4.2078e-02  5.1565e-04  3.6159e-02
errg, 8.6292e-03  8.3005e-02  4.2940e-02  2.0130e-01

4.3 Damped mass-spring system with bilinear springs

As the third and final example, we consider the MIMO bilinear damped mass-spring system
from [10]. The system has a mechanical second-order structure as the example (1) and
takes the form

Mi(t) + Di(t) + Ka(t) = Ny qa(t)us(t) + Npoz(t)uz(t) + Bau(t),

y(t) = Cy(t), 43

where M, D, K € R™™ are symmetric positive definite matrices chosen as in [18]. The
external forces are applied to the first and last masses, B, = [e1, —ey], the displacement
of the second and fifth masses is observed, C}, = [ea, es]T; thus the system has m = p = 2
inputs and outputs. The bilinear springs are chosen to be

Np71 = *Slel and Np72 = SQKSQ,

where 57 is a diagonal matrix with entries 1inspace(0.2,0,n) and Sy a diagonal matrix
with linspace(0,0.2,n). For the experiments, we chose n = 1000.

It has already been shown in [10] that only the structure-preserving approximations give
reasonable results for this example. Therefore, we only compare the structured approaches
in this paper, i.e., all reduced-order models also have the mechanical system structure
as (43). The reduced-order models are constructed as follows:

MtxInt with the interpolation points +logspace(-4, 4, 2)i for the first and second
subsystem transfer functions, which yields the reduced order rmni, = 24.
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Figure 6: Frequency domain results of the second transfer functions for the time-delayed
heated rod.

BwtInt with the interpolation points +logspace(-4, 4, 4)i for the first and second
subsystem transfer functions such that the reduced order is rp,: = 24.

Sftint with the interpolation points +1ogspace (-4, 4, 6)iand the scaling vectors d¥) =
1,, for the first and second subsystem transfer functions such that the reduced order

is rs = 24.

SttInt with interpolation points +1ogspace (-4, 4, 6)iand the scaling vectors d®) = b(?)
for the first and second subsystem transfer functions such that the reduced order is

T'stt — 24.

To preserve the symmetry of the system matrices, only one-sided projections have been
used for the construction. For all directions, normalized random vectors have been gen-
erated by drawing their entries from a uniform distribution on [0, 1]. All reduced-order
models have the same order.

Figure 7 shows the time simulation results for

u(t) — | #n(2000) 4200
| —cos(200t) — 200|

All reduced-order models yield accurate results with practically the same approximation
quality. As Table 3 shows, the new tangential approaches perform a little bit better than
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Figure 8: Frequency domain results of the first transfer functions for the damped mass-
spring system.

MtxInt but still have the same order of accuracy. Also, in the frequency domain, the
tangential interpolation as well as the matrix interpolation behave in principle all the
same, where the matrix interpolation is again a bit worse than the tangential approaches
as it can be seen in Figures 8 and 9, and Table 3.

Further results for tangential interpolation of a related example using different choices
of interpolation points can be found in [28, Sec. 5.6.5.1].

5 Conclusions

We developed the tangential interpolation framework for structure-preserving interpo-
lation of multi-input/multi-output bilinear control systems. By revisiting the classical
tangential interpolation in frequency domain and its interpretation in time domain, we de-
veloped a new unifying tangential interpolation framework for structure-preserving model
reduction of MIMO bilinear systems and proved conditions on the model reduction sub-
spaces to satisfy interpolation conditions in this new framework. We also used the new
framework to obtain results on the blockwise tangential interpolation approach and ex-
tended the theory from the literature to structured bilinear systems. While the new
framework was motivated by classical tangential interpolation in frequency domain and
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Figure 9: Frequency domain results of the second transfer functions for the damped mass-
spring system.

its interpretation in time domain, the generality of this new approach and the correspond-
ing theorems is that not only the existing framework to tangential interpolation can be
obtained as a special case of the new framework but also it offers even more flexibility
and options in the model reduction procedure than explored in this paper. The numerical
examples illustrate that the new approach is as good as and even better in many situation
than the full matrix or the blockwise tangential interpolation methods. In other words, the
new approach gives sufficiently accurate results while allowing more freedom in choosing
the order of the reduced-order model compared to the existing approaches.

While we used a rather simple choice for interpolation points (logarithmically equidistant
on the imaginary axis), the question of better or even optimal choices of interpolation
points remains open. Other choices for interpolation point selections, heuristically inspired
by the linear system case, have been used in numerical examples in [28]. Also, in the
setting of tangential interpolation, the question of appropriate tangential directions needs
to be answered. For our new framework, we gave two approaches for choosing the scaling
vectors. Still the influence of the choice of the scaling vectors needs to be investigated as
well as the question of an optimal choice. These issue will be considered in future works.
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Table 3: Maximum relative errors for the damped mass-spring system.

MtxInt Bwtlint Sftint Sttint

eIlgim  3.0779e-03  4.0813e-03  2.8056e-03  1.9722e-03
errg, 6.3187e-05  5.0642e-05  5.7109e-05  3.2660e-05
errg, 4.5523e-04  4.3227e-04  4.2240e-04  2.8460e-04
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