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In the last decade, first-principles-based microkinetic modeling has been developed into an important
tool for a mechanistic understanding of heterogeneous catalysis. A commonly known, but hitherto
barely analyzed issue in this kind of modeling is the presence of sizable errors from the use of
approximate Density Functional Theory (DFT). We here address the propagation of these errors to
the catalytic turnover frequency (TOF) by global sensitivity and uncertainty analysis. Both analyses
require the numerical quadrature of high-dimensional integrals. To achieve this efficiently, we utilize
and extend an adaptive sparse grid approach and exploit the confinement of the strongly non-linear
behavior of the TOF to local regions of the parameter space. We demonstrate the methodology on a
model of the oxygen evolution reaction at the Co3O4 (110)-A surface, using a maximum entropy error
model that imposes nothing but reasonable bounds on the errors. For this setting, the DFT errors lead
to an absolute uncertainty of several orders of magnitude in the TOF. We nevertheless find that it is
still possible to draw conclusions from such uncertain models about the atomistic aspects controlling
the reactivity. A comparison with derivative-based local sensitivity analysis instead reveals that this
more established approach provides incomplete information. Since the adaptive sparse grids allow
for the evaluation of the integrals with only a modest number of function evaluations, this approach
opens the way for a global sensitivity analysis of more complex models, for instance, models based
on kinetic Monte Carlo simulations. Published by AIP Publishing. https://doi.org/10.1063/1.5004770

I. INTRODUCTION

In recent years, we have seen an increasing interest in
first-principles-based microkinetic models for surface reactiv-
ity.1 In these approaches, an elementary reaction mechanism
and the corresponding energetic information on adsorption
energies and reaction barriers are derived from predictive-
quality electronic structure calculations. Besides the possibil-
ity to reduce the number of resource-intensive experiments,
this provides mechanistic insight without being biased by
fitting an approximate model to experimental results. We
are then able to predict the material’s performance, e.g., the
turnover frequency (TOF, product molecules per active site
and time) of a catalyst, and can address questions which
cannot be answered solely on the basis of experimental
data.2–6

However, in practice, first-principles electronic structure
theory calculations have to rely on some intrinsic approxima-
tions to arrive at tractable computational costs. The resulting
energetics then necessarily contain some error. For extended
systems like solid surfaces, the most accurate methods that are
presently still feasible are based on Density Functional The-
ory (DFT) in the generalized gradient approximation. Errors
in the energetics for this class of density functionals are

a)Electronic mail: matera@math.fu-berlin.de

commonly believed to be around 0.2 eV.1 Especially in low to
intermediate temperature catalysis, this energetic uncertainty
leads to sizable errors in the rate constants, i.e., at room tem-
perature, the rate constants might be wrong by a factor 10 000.
In principle, this uncertainty could fully propagate to the cen-
tral observables of microkinetic modeling like TOF or surface
coverages.

Large impacts of DFT errors have indeed been reported
in the literature.7–10 However, in general, we do not know
the uncertainty of the microkinetic model output. Correspond-
ingly, we are faced with corollary questions like which qualita-
tive conclusions can still be drawn from the model? Or which
uncertainties in the input energy parameters (mostly) affect the
results? Answering the latter question would allow for selec-
tive refinement of the model by determining the corresponding
input parameters with higher accuracy, either by employing a
higher-level electronic structure theory (such as hybrid DFT
functionals or embedded wave function approaches11,12) or
by resorting to experimental data. In the context of com-
putational materials screening, such information would also
help us to identify descriptors for the material’s performance.
As the parameters entering a microkinetic model typically
have an atomistic interpretation, this sensitivity information
additionally provides important mechanistic insights into the
details of the catalytic operation. For instance, the concept
of rate-determining steps is directly linked to sensitivity
analysis.13,14
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034102-2 Döpking et al. J. Chem. Phys. 148, 034102 (2018)

Most prevalent approaches for assessing the importance
of parameters are based on local sensitivity analyses, i.e.,
on the derivatives of the model response with respect to
the parameters.13,15,16 However, microkinetic models are usu-
ally highly non-linear and the DFT uncertainty is not small.
Thus, derivative-based approaches assuming linear behavior
are likely to assign incorrect importance to the parameters.
This is even more severe when one considers that the local
sensitivity can easily change from zero to some sizable value
within reasonable variations of the input parameters.8,10,16

Therefore, global approaches that can fully account for non-
linearities are required to obtain a meaningful sensitivity
analysis.

In this study, we present an approach to such a global
sensitivity analysis using adaptive sparse grids.17 Specifi-
cally, we address the so-called total sensitivity index and the
related Analysis Of Variance (ANOVA) decomposition.18,19

This kind of sensitivity analysis has the benefit that the sen-
sitivity measures have the interpretation of an induced uncer-
tainty. Furthermore, it does not require any derivative infor-
mation. Therefore, it is also directly applicable to models
for which it is not possible, or at least very cumbersome,
to obtain this kind of information, e.g., kinetic Monte Carlo
models.20

Sparse grids (SGs) have recently gained popularity in the
context of uncertainty and sensitivity analysis, mostly in the
context of partial differential equation models.21–23 This popu-
larity results from the possibility to achieve high convergence
rates even in higher dimensions, i.e., SGs are not so much
affected by the curse of dimensionality. Being based on a
basis set expansion, they also form a surrogate model of the
underlying function and thereby also allow for the estimation
of complex functional dependencies like the Total Sensitivity
Index (TSI). This is particularly challenging for approaches
based on Monte Carlo sampling of the parameter space, for
which the most advanced approaches for estimating the TSI
scale unfavorable with the number of relevant sensitivities.19,24

These advantages of SGs come at the disadvantage that the
classical sparse grid construction rules are only affordable in
moderately high-dimensional parameter spaces. For microki-
netic models with often dozens of elementary steps, adaptive
grid refinement strategies are needed which exploit the prop-
erties of the investigated parameter response. For instance, we
expect that only a subset of all parameters actually influence the
response in a microkinetic model. Approaches exploiting this
property are high-dimensional model representations22 (also
termed anchored ANOVA or, in the physics literature, multi-
body expansion25), which try to represent the response as a
sum of low-dimensional functions. An alternative is dimension
adaptive SG,26 which additionally adjusts the degree of reso-
lution for each dimension. Also, we would expect that highly
non-linear behavior appears only locally and therefore local
refinement is desirable.27 To exploit both properties, Jakeman
and Roberts23,28 have combined local and dimension adap-
tivity. We have modified this approach in order to allow for a
larger number of parallel kinetic model evaluations and employ
this throughout the study.

We demonstrate our approach on a recently developed
model of the electrochemical oxygen evolution reaction (OER)

on cobalt(ii,iii) oxide.29,30 This material has received a sig-
nificant attention recently as a low-cost and earth-abundant
catalyst for the OER, which is the reaction that is respon-
sible for most of the overpotentials required for electrocat-
alytic or photocatalytic water splitting.31,32 We specifically
investigate the active site on the (110)-A termination that con-
sists of two redox-active Co cations sharing a bridging oxo
species. For this system, we examine the sensitivity of the cat-
alytic activity with respect to all energetic parameters of the
model at room temperature and at varying applied potential.
We find that the local sensitivity analysis tends to severely
overestimate the impact of certain parameters, while other
globally more important parameters are completely missed
out by only considering derivative information. Still, we find
that overall only a small subset of parameters controls the
activity at a given overpotential. However, we also find that
this subset changes significantly within the range of applied
overpotentials.

The manuscript is organized as follows: In Sec. II, we
shortly explain the model for the OER. We then continue with
a summary of the basic concept of uncertainty and sensitivity
analysis in Sec. III. The adaptive SG methodology is out-
lined in Sec. IV. Our results for the OER are presented in
Sec. V, where we focus on three representative values for the
overpotential and investigate the sensitivity of the TOF.

II. OXYGEN EVOLUTION ON THE COBALT(ii,iii) OXIDE
(110)-A SURFACE

We consider the oxygen evolution on the Co3O4 (110)-A
surface, employing the model presented in Refs. 29 and 30.
We have chosen this model due to its easily comprehensible
analytical form, which makes it perfectly suited for a demon-
strator application of global sensitivity analysis and the SG
approach.

The OER reaction mechanism at arbitrary applied poten-
tials on the (110)-A surface of Co3O4 can be described
by a general mechanism consisting of two irreversible non-
electrochemical steps: (1) O–O bond formation by nucle-
ophilic addition of water to a bound oxo species to form a
bound hydroperoxo and (2) elimination of a bound super-
oxo as O2 followed by adsorption of water on the resulting
vacancy,30

H2O + O–Sa(Hx)–O→ HO–Sa(Hx)–OOH, {1}

H2O + O–Sa(Hx)–OO→ HO–Sa(Hx)–OH + O2. {2}

Here, Y–Sa(Hx)–X represents an arbitrary state of the active
site Sa to which species X and Y are bound, with 0 ≤ x
≤ 12 being the number of hydrogen atoms on the surface (as
hydroxyl species). Of these two steps, only the O–O bond for-
mation reaction is kinetically relevant. Between reactions {1}
and {2}, the active site exists in a quasi-equilibrated ensemble
of states Ai = HyO–Sa(Hx)–OOHz, with y, z = 0, 1. Likewise,
the active site exists in a quasi-equilibrated ensemble of states
Bi = HyO–Sa(Hx)–OHz (also with y, z = 0, 1) between reac-
tions {2} and {1}. The states in each ensemble are connected
by quasi-equilibrated electrochemical reactions involving the
coupled transfer of electrons to the bulk electrode and protons
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to the bulk electrolyte,

Ai 
 Aj + (nj − ni)(H
+ + e−), {3}

Bi 
 Bj + (nj − ni)(H
+ + e−), {4}

where ni = 14 � x � y � z is the degree of oxidation of the
state Ai or Bi, varying from 0 to 14. The degree of oxida-
tion of state Ai or Bi is defined as the number of protons
and electrons (only neutral surfaces are considered) that must
be removed to obtain this state from a reference state A0 or
B0. The electrons are removed from each of the 12 Co(iii)
cations in the surface layer, oxidizing them to Co(iv) (the final
two are removed from surface oxygens). Reactions {3} and
{4} are assumed to be quasi-equilibrated due to the typically
low activation barriers of proton/electron transfer processes.33

Since reaction {2} is irreversible and kinetically irrelevant, it
is only necessary to consider reactions {1} and {3} in a kinetic
model.

Since reaction {1} is the only kinetically relevant step
in the catalytic cycle, the TOF is equal to the total rate of
this reaction. There are several transition states TSi through
which reaction {1} can occur, each corresponding to one of
the intermediate states Ai. The TOF is given as the sum of
the rates ri of this reaction through all such transition states
TSi,

TOF =
∑

i

ri =
∑

i

kiθi, (1)

where ki is the rate constant for reaction {1} proceeding from
Ai through TSi, and θi is the probability of the system being in
intermediate state Ai. According to the transition state theory,
the rate constant is given as

ki =
kBT

h
exp

(
−

Gact,i

kBT

)
, (2)

with T being the temperature, while θi is given by the
Boltzmann distribution,

θi =

exp *
,
−

Gint,i − nieη

kBT
+
-∑

j

exp *
,
−

Gint,j − njeη

kBT
+
-

. (3)

The activation free energy Gact,i is defined as the difference in
free energy between the transition state TSi and the interme-
diate state Ai. The quantity Gint,i is defined as the free energy
of intermediate state Ai with respect to the reference state A0,
with the free energy of a proton/electron pair taken with respect
to the equilibrium potential of the OER at standard conditions
(1.23 V vs. SHE). The term �nieη appearing in the exponen-
tials in Eq. (3) accounts for the changes in the free energies of
the intermediate states as the applied electrochemical poten-
tial deviates from the OER equilibrium potential; this deviation
is the applied overpotential η, and e is the unit of electronic
charge.

The particular kinetic model that we employ considers a
single intermediate state, the one with the lowest free energy,
for each degree of oxidation from 0 to 14. These states are
labeled with the index i = 0, . . ., 14 equal to the degree of
oxidation. In the kinetic model in Ref. 30, pathways for reac-
tion {1} are considered from intermediate states 4, 6, 8, 10,

and 12. These activation free energies, along with the free
energies of the intermediate states, are given in Table I. For
the most of this study, we will concentrate on this model.
However, the reaction pathways from odd-numbered states
5, 7, 9, 11, and 13 are also possible, with similar activa-
tion barriers as for the even-numbered states. They were not
included in the original model in Ref. 30 because, at the nom-
inal parameter settings, the odd-numbered intermediate states
are not significantly populated over the range of conditions
that were examined. When varying the energies within reason-
able bounds, this situation could change, and we will address
the addition of the pathways from odd-numbered states in the
discussion.

The nominal intermediate free energies Gint,i and acti-
vation barriers Gact,j (of the even-numbered states) are taken
from Ref. 30, where these have been determined using Den-
sity Functional Theory (DFT) with a + U correction34–36

applied to the Co 3d electrons. The +U correction is necessary
because the typically used semi-local exchange-correlation
functionals over-delocalize the 3d electrons due to a spuri-
ous self-interaction error.37 The DFT + U method requires
the specification of an effective on-site Coulomb interaction
U, which leads to some ambiguity in the method as there is
no widely agreed-upon technique for determining its value.
This leads to an increased uncertainty in the resulting ener-
getics, which we take into consideration during the sensitiv-
ity analysis by employing a higher value of the uncertainty.
We refer to Ref. 30 for a more complete discussion of this
aspect.

Figure 1 shows the TOF obtained from this model as a
function of the applied overpotential η. The temperature is kept
fixed to 298.15 K and all energies were set to their nominal
values. Below an applied overpotential of η ≈ 0.7 V, the TOF
increases exponentially with increasing η. Above this value,
the TOF remains relatively constant around a value of approxi-
mately 103 s�1. At applied overpotentials above 1.1 V, the TOF
begins to rapidly decrease with overpotential. This decrease
however may not be physical, as it arises from the absence
of a reaction pathway in the kinetic model from the highly

TABLE I. Intermediate energies and activation barriers for the model for
oxygen evolution on the Co3O4 (110)-A surface, taken from Refs. 29 and 30.

Intermediate energies Activation energies

Gint ,0 0.00 eV . . . . . .

Gint ,1 0.44 eV . . . . . .

Gint ,2 0.88 eV . . . . . .

Gint ,3 1.64 eV . . . . . .

Gint ,4 2.33 eV Gact ,4 0.60 eV
Gint ,5 3.09 eV . . . . . .

Gint ,6 3.79 eV Gact ,6 0.59 eV
Gint ,7 4.59 eV . . . . . .

Gint ,8 5.38 eV Gact ,8 0.62 eV
Gint ,9 6.22 eV . . . . . .

Gint ,10 7.05 eV Gact ,10 0.60 eV
Gint ,11 7.88 eV . . . . . .

Gint ,12 8.71 eV Gact ,12 0.56 eV
Gint ,13 9.77 eV . . . . . .

Gint ,14 10.83 eV . . . . . .
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FIG. 1. Turnover frequency (TOF) as a function of the applied overpotential
η for T = 298.15 K for the nominal energy values (blue line). The green area
depicts the standard deviation of the model output by assuming uniformly
distributed DFT-errors in a range of [�0.3, 0.3] eV (see the text).

oxidized surface state A14 which is present at high applied
overpotentials.

The kinetic model just described has two types of input
parameters: external reaction conditions, i.e., overpotential η
and temperature T, and the material parameters Gint,i and Gact,i.
These material parameters can carry an error due to the approx-
imate DFT functional used for determining them. The TOF
curve should be complemented by error bars indicating the
uncertainty of the model prediction due to the uncertainty in
the energies. These error bars are represented by the green
shaded area in Fig. 1, for which we have chosen the standard
deviation (STD) of the logarithm of the TOF. The basic con-
siderations behind such uncertainty analysis and the particular
error model are discussed in the next Sec. III.

III. UNCERTAINTY AND SENSITIVITY ANALYSIS

The objective of uncertainty and sensitivity analysis is the
quantification of the influence of parameter variations on the
model response. For a deterministic input-output relation, we
can write the model response f : RD 7→ R as

y = f (x1, x2, . . . , xD), (4)

where we use y to represent the output and~x = (x1, x2, . . . , xD)
to represent the inputs, and where D is the number of input
parameters. In our case, the input parameters are the free
energies of the intermediate states Gint,i and the activation
barriers Gact,j, and the output is the TOF, or more precisely
the logarithm of the TOF (to base ten). That is, f results from
inserting Eqs. (3) and (2) into Eq. (1). For more complex prob-
lems, the input-output relation might be only implicitly given
by some computational model, e.g., by the numerical solu-
tion of microkinetic rate equations or by kinetic Monte Carlo
simulations.

Additionally to the response, uncertainty and sensitivity
analyses require a model of the parameter variation, i.e., a joint
probability distribution on the D-dimensional parameter space
usually given in terms of a probability density function (PDF)
p : RD 7→ R+

0 ,

p(x1, x2, . . . , xD). (5)

The PDF p might represent the statistical errors in param-
eters, which originate from experiment. If obtained directly
from independent experiments, the PDF is often taken as a
product of Gaussian distributions with means and standard
deviations adjusted to the experimental findings. By contrast,
the DFT error is not statistical but systematic, resulting from
the use of a necessarily approximate functional. Repeating the
computational experiment will not lead to improved parameter
estimates. The PDF must therefore be interpreted in an infor-
mation theoretical sense. It reflects our knowledge about the
possible outcomes of the parameters. For constructing the PDF,
we follow the common assumption that DFT energies carry
an uncertainty of ∼0.2–0.3 eV.1 Considering the somewhat
larger uncertainty in the DFT + U method used for calculat-
ing the energetics, we would therefore expect that an upper
bound for the errors would be in the range of 0.3 eV. A sim-
ilar value was also deduced in Ref. 29 by comparison with
more accurate correlated wave function calculations. Based
on this limited knowledge, information theory yields that the
energy parameters are uniformly distributed on the hyper-
cube Ω = ~xnom. + [−0.3 eV, 0.3 eV]D, centered at the nominal
parameter settings ~xnom. (compare Table I),

p(~x) =




1
(0.6 eV)D

if ~x ∈ Ω

0 else

. (6)

This PDF maximizes the entropy among all PDFs which obey
the bound constraints, i.e., we minimize the information con-
tent of the PDF. In reality, the errors of a particular DFT
functional might show a trend for a certain class of materi-
als, e.g., overbinding. Also there might be a certain degree
of correlation, e.g., Brønsted-Evans-Polanyi relations might
approximately apply.38 However, in the lack of more detailed
information, we here consider the worst case scenario, with
completely uncorrelated errors, and employ no other infor-
mation on the errors than the bounds. Constructing a more
detailed PDF for DFT energetics is a cumbersome task8,9,39

and beyond the scope of this study.
Having a PDF, we can now estimate the mean E(y) and

the variance V (y) of the output

E(y) =
∫

f (~x)p(~x)dxD,

V (y) =
∫

(f 2(~x) − E(y))2p(~x)dxD,

(7)

where the latter serves as a measure of the uncertainty. The
green shaded area in Fig. 1 indicates the resulting standard
deviation (STD) σ =

√
V (y) for the TOF of the OER model

and the outlined PDF (6), where y = log10 TOF. With our error
model, i.e., our choice of the PDF, the STD for log10 TOF is
between three and five, i.e., the TOF could, in principle, be
five orders of magnitude larger or smaller than the nominal
TOF obtained from the model. The difference of the mean
E(y) and the nominal log10 TOF values can be as large as two
(i.e., two orders of magnitude). However, we have refrained
from displaying the mean. The “true” curve will be obtained
from a certain set of parameters and cannot be deduced by
statistical averaging as the uncertainty of y cannot be regarded
as fluctuation.
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Other statistical quantities, like covariances between dif-
ferent model outputs, might provide additional information.
In the following, we focus on the variance and its decom-
position into contributions of each individual (energy) error.
Such decomposition will provide us with the information, on
which parameters the response depends sensitively. Combined
with the atomistic interpretation of the parameters, this allows
us to deduce which microscopic aspects are likely to control
the catalytic activity taking into account that our parameters
might be uncertain. If the PDF is in product form p(x1, x2,
. . ., xD) = p1(x1) × p2(x2) × · · · × pD(xD), i.e., the errors are
statistically independent, and if we can safely assume a linear
dependence of the response f (~x) on the parameters~x, the vari-
ance naturally decomposes into contributions of the different
parameters

V (y) =
∑

i

Si,LSA with Si,LSA = |
∂f
∂xi

(~xnom.)|
2V (xi), (8)

where V (xi) is the variance of xi.
The decomposition (8) is the motivation behind Local

Sensitivity Analysis (LSA). The local sensitivity index Si , LSA

provides that part of the variance which is caused by the uncer-
tainty of parameter xi and therefore measures the importance
of the uncertainty of xi in this linear setting. If the deriva-
tive with respect to xi and the uncertainty (the variance) of
xi are small, Si , LSA will be small and the uncertainty of xi is
not very important. If both are large, Si , LSA will be large and
the uncertainty of xi has a large impact. For all other cases,
the balance between (local) dependence of f (~x) on xi and the
corresponding error will determine the local sensitivity index.
Specifically, if f (~x) is locally independent of xi, or xi has very
small variance, Si , LSA will be close to zero and improving on
the accuracy of xi does not lead to any improvement in the
model output.

However, LSA assumes a linear dependence. For a gen-
erally nonlinear response f (~x), LSA provides therefore only
good estimates on the importance of errors for small param-
eter uncertainties. As might be expected from the results on
the uncertainty in Fig. 1, 0.3 eV is far off from being small.
In order to overcome the limitations of the LSA, Global Sen-
sitivity Analysis (GSA) approaches are therefore appealing
(see Ref. 18 for an overview). Here, we will specifically focus
on the variance based methods, which allow us to interpret
the sensitivity measures in terms of an induced uncertainty
and for which there exist an easily comprehensible connec-
tion between GSA and LSA. The non-linear equivalent to
the decomposition Eq. (8) is the so-called Analysis Of Vari-
ances (ANOVAs).19 That is, given a product PDF p(x1, x2, . . .,
xD) = p1(x1) × p2(x2) × · · · × pD(xD), we can decompose f
into a sum of functions with increasing dimensionality of the
respective argument

f (~x) = f0 +
D∑
i

f1,i(xi) +
D∑

i=1

D∑
j,j>i

f2,ij(xi, xj) + · · · + fD(~x), (9)

where the terms f 0, f 1,i, f 2,ij, etc., are pairwise orthogonal,
with respect to the scalar product (f, g) = ∫ fgpdxD. There-
fore f 0 is the mean and all other f 1,i, f 2,ij, etc., have a mean
of zero. Equation (9) and the orthogonality also imply the

decomposition

V (y) =
D∑
i

V1,i +
D∑

i=1

D∑
j,j>i

V2,ij + · · · + VD (10)

of the variance, where the contributions V1,i, V2,ij, etc., are the
variances of the corresponding terms f 1,i, f 2,ij, etc., in Eq. (9).
As mentioned, the ANOVA relies on a product PDF. Exten-
sions for more general PDFs exist;40,41 however, our error
model, Eq. (6), is a product PDF. The ANOVA decomposi-
tion, Eqs. (9) and (10), allows us to address the impact of the
parameter xi. Only the terms f 1,i, f 2,ij, etc., where i appears in
the index, actually depend on xi and only the corresponding
contributions V1,i, V2,ij, etc., will therefore be affected by the
uncertainty of xi. The contribution V1,i is called the first order
index (also termed the main effect) and V2,ij are second order
indices representing the “interaction” between two parameters
and so on. If all but the first order effects are zero, the function
can be represented as a sum of one-dimensional functions and
we arrive at a similar decomposition as in the case of LSA. If
f (~x) is linear, SLSA,i and V1,i will agree.

The number of variance contributions V i< j<k · · · grows
exponentially fast with the dimension D. For large D, an
ANOVA not only challenges the computational resources but
also the myriad of resulting numbers makes an interpretation
difficult. In addition, we are only interested in the effective
impact of the uncertainty of the parameters~x and not in all the
details of their interaction. However, considering only the first
order effects V1 is not sufficient because significant portions
of the output variance might result from higher order effects.
In fact, the first order effect V1,i might be zero, even though the
parameter xi has a large impact. Not withstanding, if we sum
over all ANOVA terms in which xi appears, we will account
for all possible interactions. This leads to the Total Sensitivity
Index (TSI)42

ST,i B V1,i +
∑
j,i

V2,ij + · · · + VD

= E(V (y|~x∼i)).

(11)

Here we omitted the common normalization with the total
variance V18,19,42 because we want to compare LSA and GSA
sensitivities in the context of induced uncertainty. V (y|~x∼i) ) is
the variance which results from varying xi when we fix all other
parameters, i.e., it is a function of the remaining parameters
~x∼i. The TSI ST,i is therefore the resulting variance, if only
xi would be uncertain, averaged over all other parameters. In
other words, the TSI allows for the targeted interpretation of
an induced uncertainty. Yet, in general, nonlinear setting, the
TSIs are not a decomposition of the total variance, as their
sum can be larger. Only in the case, when the function f is a
sum of only one-dimensional functions, the TSIs sum up to the
total variance and an interpretation as for Eq. (8) can strictly
be made. In this case, TSI and the first order effect agree, and,
for linear f, Si ,LSA, and ST,i will therefore agree.

IV. SPARSE GRIDS

Unlike the linear case, the variance and the TSI need
to be obtained by averaging over the parameter distribu-
tion. For reaction models with often dozens of elementary
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reactions and corresponding ∆Gi, this requires the solution
of high-dimensional integrals. This integration needs to be
performed numerically, as analytic solutions might not be
available or, in the general case, the response is only implicitly
given by some simulation. The prevalent approaches for such
high-dimensional integration are Monte Carlo or quasi Monte
Carlo methods. Here, we follow a different route using sparse
grids (SGs),17 which offer a number of advantages like higher
convergence rates or the construction of a surrogate model.
Specifically the estimation of the ANOVA decomposition and
the TSI can be performed efficiently from a given SG expan-
sion, while Monte Carlo approaches for this scale unfavorably
with the dimension.19,24

As classical full grid approaches, SGs solve the inte-
gration problem by constructing a D-dimensional interpola-
tion based on products of one-dimensional basis functions.
The difference is that the SG approach omits “higher order
cross-terms” and the corresponding grid points, which do not
increase the accuracy. Thereby, it reaches a convergence of
O(N−r(log N)r(D−1)) with the number of grid points N, when
the underlying one-dimensional formula has a convergence of
O(N−r). It thus overcomes the curse of dimensionality of the
classical approaches which converge as O(N−r/D), i.e., very
slowly for high-dimensional problems.

In this study, we adopt a local and dimension-adaptive SG
approach using locally supported piecewise linear basis func-
tions. We expect this approach to be particularly suited for our
purpose. First, we expect that we will have only significant
variability of the TOF in just a few directions (dimension adap-
tivity). Second, in the logarithmic representation for the TOF,
we also expect an almost linear behavior for the largest parts of
the parameter space, which implies the use of piecewise linear
basis functions. These domains of almost linear behavior are
connected by narrow regions where the TOF changes rapidly
(local adaptivity). It is due to this latter property, why we also
refrain from employing higher order basis functions to avoid
artificial oscillation close to the regions of rapid change.

As the employed h-adaptive Generalized Sparse Grids (h-
GSGs) have been detailed by Jakeman and Roberts,23,28 we
only provide a coarse overview of the method and the main
ideas behind the method and our modifications. For this, we
assume that we can find a coordinate transformation such that
the parameters are uniformly distributed on [�0.5, 0.5]D. This
is definitely possible for the PDF (6), but also many other PDFs
allow for such a transformation.

A. Hierarchical basis and sparse grid construction

The starting point for the approach is a one-dimensional
interpolation rule, i.e., we approximate a given one-
dimensional function f (x) with

f (x) ≈ u(x) =
∑

i

νiϕi(x), (12)

where the basis functions (BFs) ϕi are given and the expansion
coefficients νi are determined by the interpolation requirement
u(xi) = f (xi) for some given grid points xi. Usually, the grid
points are determined by the choice of the basis and each BF
corresponds to a certain xi. For an adaptive interpolation (and
quadrature), we employ a so-called hierarchical basis.

The idea behind hierarchical bases is to start with a coarse
resolution (i.e., low number of grid points) and the basis func-
tions which would lead to a, in our case, piecewise linear
interpolation between these points. If we now find that the
function is not well represented, we keep the old BFs, add new
points, and then add only those new BFs which are needed to
interpolate the refined set of points.17,27 The new BFs thus only
interpolate the difference between the coarse and the refined
interpolation. If the refined interpolation is still too bad, we can
proceed in the same way. We repeat this until two subsequent
interpolations show only a reasonably small difference, i.e.,
the new BFs will have only a small contribution in the basis
set expansion of the original function. The space W l+1 spanned
by the BFs added during the (l + 1)-th refinement can thus be
regarded as the refinement of the space W l spanned by the BFs
added in the refinement step before. In the following, we will
call the number of refinements l needed to reach a certain reso-
lution, the level index. For brevity, we also use it to identify the
set of BFs added in the lth refinement. In the following, we use
the abbreviation parent (level) and child (level) for levels l and
l + 1. Of course, every level usually contains a number of BFs
and corresponding grid points. We identify these by providing
their level index l and a count index i and write ϕl ,i for a BF
and xl ,i for the corresponding grid point.43,44 In practice, we
employ the basis set depicted in the left panel of Fig. 2. The
BFs are defined by45

ϕl,i(x) B



1 for l = 0

max(1 − 2l−1 |x − xl,i |, 0) for l > 0
(13)

FIG. 2. Illustration of the hierarchical interpolation in one dimension with
increasing level index. Left: Basis functions added at the corresponding levels
l. Middle: The original function f (x) and the hierarchical interpolation u(x)
=

∑
l ,iνl ,iϕl ,i(x). Right: Illustration of the contribution of the basis functions

added at each level νl ,iϕl ,i(x). The contributions decrease with increasing
level, and, at the finest level, only those basis functions close to the sharp
non-linearity still have significant contributions to the interpolation.
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with x0,0 = 0, x1,0/1 = ∓0.5, x2,0/1 = ∓0.25, and xl,i = xl−1, bi/2c −

(−1)i/2l. This choice of the basis dictates the following refine-
ment strategy. At l = 0, we have only a single constant BF
and the corresponding grid point x0, 0 is in the center of the
interpolation interval. For l = 1, the points x1,0 and x1,1 on the
boundary need to be created. The corresponding BFs decay lin-
early towards the midpoint and are zero afterwards. For every
higher level, new grid points are created in the center between
two existing points. The BFs take the value 1 at these new
points, decay linearly towards neighboring (old) grid points,
and are zero outside this interval. If we add all points up to
a level l, we end up with a linear interpolation on 2l+1 + 1
equidistant grid points. An important property of this hierar-
chical basis is thereby that the support of ϕl ,i(x) is covered only
by ϕl+1,2i(x) and ϕl+1,2i+1(x). Therefore any improvement on
the interpolation on this interval must come from these two
basis functions and thus ϕl+1,2i(x) and ϕl+1,2i+1(x) somewhat
refine ϕl ,i(x)(l > 1). We therefore have a parent-child relation
not only for level indices but also for BFs and corresponding
grid points.

The behavior of this hierarchical basis during refinement
is depicted in Fig. 2 for the refinement levels l = 0 to l = 3.
The left panel shows the BFs added at each refinement level.
The middle panel shows the target function and the interpola-
tion. The right panel displays the contributions from the added
BFs (the expansion coefficient times the BF). When refining
from l = 1 to l = 2, most of the new BFs have an almost zero
contribution except ϕ2,1, and the interpolation captures the
main characteristics of the original. The functions from
l = 3 have therefore only vanishing or very small contribu-
tion. Indeed, ϕ3,0 and ϕ3,1 could have been neglected and we
could have seen this in advance as their parent ϕ2,0 already
did not contribute much. An adaptive refinement would there-
fore proceed as follows: in the first step, we add all grid points
and basis functions up to a level l0. We then look at the basis
functions with the highest level index and, if their expansion
coefficient is above a predefined threshold, we add their child
functions and corresponding grid points. We then proceed in
the same way for the BFs we have just added. We repeat this
until we find no BFs above our threshold.

If we deal with D-dimensional functions on a hypercube,
we employ the product BFs resulting from the one-dimensional
basis

ϕ~l,~i (~x) =
D∏

j=1

ϕlj ,ij (xj). (14)

The level ~l and count index ~i have become D-dimensional
integer vectors, with the one-dimensional level and count
indices for each direction as entries. A SG interpolation is
then obtained by the expansion

u(~x) = f0 +
∑
|~l |1=1,~i

ν~l,~i ϕ~l,~i (~x) +
∑
|~l |1=2,~i

ν~l,~i ϕ~l,~i (~x) . . .

=
∑

|~l |1≤lmax ,~i

ν~l,~i ϕ~l,~i (~x), (15)

where the expansion coefficients ν~l,~i are also called the hierar-
chical surplus. In Eq. (15), only those BFs (and grid points) are
employed, for which the 1-Norm of the level index~l (the sum

over all entries) does not exceed a predefined maximum refine-
ment level lmax. This is in contrast to the full grid approach
where all combinations of 1D BF up to a maximum refinement
lmax are used for the interpolation. In Eq. (15), this would sim-
ply mean replacing the 1-norm |·|1 with the maximum norm
|·|∞. By the choice of a maximum refinement level for all direc-
tions together, the SG strategy thus overcomes the curse of
dimensionality.

Given the SG interpolant, we can now efficiently approxi-
mate expected values, variances, and the TSI. For the assumed
uniform distribution on Ω = [�0.5, 0.5]D, we have for the
expected value

E(y) ≈
∫
Ω

u(~x)dx =
∫
Ω

∑
~l,~i

ν~l,~i ϕ~l,~i (~x) dxD

=
∑
~l,~i

ν~l,~i

∫
Ω

ϕ~l,~i (~x) dxD

︸          ︷︷          ︸
w~l,~i

=
∑
~l,~i

ν~l,~i w~l,~i,
(16)

where w~l,~i is the integration weight attributed to the basis
function ϕ~l,~i(x). For the variance, we need to approximate the
second moment, which we can compute from an existing SG
as

E(y2) ≈
∫
Ω

u(~x)2dxD =

∫
Ω

*..
,

∑
~l,~i

ν~l,~iϕ~l,~i(~x)
+//
-

2

dxD

=
∑
~l,~i;~l′,~i′

ν~l,~iν~l′,~i′w~l,~i;~l′,~i′ , (17)

where w~l,~i;~l′,~i′ = ∫
[−0,5,0.5]D

ϕ~l,~i (~x)ϕ~l′,~i′(~x)dxD. Finally, we utilize

the SG representation to estimate the TSI for the sensitivity
with respect to the parameter xα,

ST ,α ≈

∫
Ω∼α

*..
,

0.5∫
−0.5

u(~x)2dxα
+//
-

dxD−1
∼α −

∫
Ω∼α

*..
,

0.5∫
−0.5

u(~x)dxα
+//
-

2

dxD−1
∼α

=

∫
Ω

*..
,

∑
~l,~i

ν~l,~iϕ~l,~i(~x)
+//
-

2

dxD

−

∫
Ω∼α

*..
,

0.5∫
−0.5

∑
~l,~i

ν~l,~iϕ~l,~i(~x)dxα
+//
-

2

dxD−1
∼α , (18)

where ∫
Ω∼α

. . . dxD−1
∼α represents the integration over all vari-

ables except xα. Exploiting the product form of the BFs (14),
we arrive at

ST ,α ≈
∑
~l,~i;~l′,~i′

ν~l,~iν~l′,~i′
∏
β,α

w
β

~l,~i;~l′,~i′
(wα
~l,~i;~l′,~i′

− wα
~l,~i
wα
~l′,~i′

), (19)

where

wα
~l,~i
=

0.5∫
−0.5

ϕlα ,iα (x) dx

and
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w
β

~l,~i;~l′,~i′
=

0.5∫
−0.5

ϕlβ ,iβ (x)ϕl′β ,i′β
(x) dx.

Similar expressions can be derived for the first order, second
order, etc., indices in the ANOVA decomposition.

B. Adaptivity

In addition to the potentially fast convergence, the SG
approach also allows for adaptive refinement because the
BFs, Eq. (14), inherit the hierarchical structure of the one-
dimensional BFs, Eq. (12). As in the one-dimensional case,
the space W~l+~ek

, spanned by the BFs ϕ~l+~ek ,~i, can be considered
as a refinement of the space W~l, where ~ek is the unit vector
in the kth direction. Analogously, the BF ϕ~l,~i has two chil-

dren in W~l+~ek
.23,28 The corresponding grid points are located

at x~l,~i ± (hlk/2)~ek , where hlk is the grid spacing for the (one-

dimensional) level index lk , i.e., hlk = 1/2lk for the considered
interpolation domain [�0.5, 0.5]D. A local adaption strategy
could now be based on creating only the children of BFs whose
surplus exceeds a certain threshold. However, one of the main
characteristics of catalytic TOFs is rapid local changes with a
large gradient, whose approximation has a slowly decreasing
hierarchical surplus, while producing BFs with only limited
contribution to the targeted integrals. We therefore employ the
error criterion22,28

γ~l,~i B |ν~l,~i w~l,~i |. (20)

This avoids that the method refines too often, when the original
function has characteristics that are close to behaving discon-
tinuously. The locally (h-)adaptive strategy works as in the
one-dimensional setting. We visit every grid point (BF) and
calculate the criterion γ~l,~i for every point. For those points,
where γ~l,~i exceeds a predefined threshold tol, we add the child
points (and BFs) x~l,~i ± (hlk/2)~ek ,∀k for all directions to the
interpolation (if they do not already exist). On the basis of the
now extended point set and function values, we create a new
interpolant and repeat the refinement. We stop when no new
points are identified in the refinement step.

The h-adaptive approach is in principle also dimen-
sion adaptive. Yet, it still creates children in every direction.
For kinetic TOF data, where most directions require only a
coarse resolution, most of these children will not contribute
to an increase in accuracy. The Generalized Sparse Grids
(GSGs) method26 adaptively chooses which direction should
be resolved finer. It is based on the following consideration: A
given level index~l is usually the child of multiple parent levels
~l −~ek (max. D levels) and can be regarded as a refinement of
all of them. If one of the parent levels ~l −~ek has only small
contributions to the SG interpolant u(~x), we do not need to
add its children and thus we can omit the BFs and correspond-
ing grid points from~l. In the original approach of Gerstner and
Griebel, the GSG procedure selects the level~l among the exist-
ing ones with highest contributions, measured by γ~l B

∑
~i∈~l

γ~l,~i.

Then those child levels ~l + ~ek are selected for which all par-
ents exist. As in the locally adaptive scheme, the grid points
corresponding to BFs in these child spaces are then added to

the interpolation. This is repeated until a predefined criterion
is met. The GSG is not locally adaptive. To achieve this, the h-
GSG combines it with the h-adaptive strategy by only adding
the points, which have been proposed for refinement by both
approaches.23,28

For this study, we have modified the h-GSG in order to
allow for more parallel function evaluations, i.e., we do not
only select a single level ~l but multiple levels in the level
adaption. For this, we consider the (level) refinement criterion

γ~l B max
i
γ~l,~i . (21)

Then, we mark all existing levels l for refinement, for which
γ~l is above the threshold tol. Those child levels~l +~ek are pro-

posed to be added, for which all parent levels~l +~ek −~em meet
the criterion γ~l+~ek−~em

> tol. This dimension adaptive strat-
egy is then combined with the h-adaptive approach, by adding
only the intersection between the two proposed point sets in
each refinement step. The refinement naturally stops, when the
intersection is empty. The use of the maximum norm for the
level refinement criterion allows us to employ the same thresh-
old for both refinement strategies. Thus, in each refinement
step, we add those grid points and BFs for which one parent
BF has a γ~l,~i above the refinement tolerance and for which
there is at least one BF above the threshold in each parent
level.

In the sparse grid setting, our (as well as the h-GSG and
the GSG) approach can be regarded as a generalization of
the multibody expansion approach (also called the anchored
ANOVA or high-dimensional model representation).22,25,46

As in ANOVA, these approaches represent the function of
interest as a sum of functions with increasing dimensional-
ity, albeit without the orthogonality constraint. The idea is to
truncate the expansion at some point. Each of these functions
is then independently interpolated, for instance, by h-adaptive
SGs.22,25 Thus all level indices li in one of these terms will
have the same maximum lmax, except those which correspond
to the discarded dimensions in the respective term. The here
employed dimension adaptivity, on the other hand, expands the
function into terms with different resolutions for each direc-
tion, i.e., in one term of the anchored ANOVA, the maximum
level indices are allowed to differ. This allows for a further
reduction of the number of BFs compared to a multibody
expansion.

We depict the dimension and local adaptivity for a func-
tion f (x, y) in a two-dimensional system Ω = [�0.5, 0.5]2

in Fig. 3. The function is assumed to vary only for x < 0
and to be independent of y (seen in the middle panel). The
SG method starts with an initial set of points, which would
include 5 points, one central point and two additional ones
for each dimension (upper left). A full SG would produce
eight refinement points (red crosses) for the next step (upper
right). The dimension adaptivity exploits that the impact of
l(0, 1) is zero because we have no variation in this direction,
removing 6 of the potential candidates (circles, lower right). As
the function only varies in the left half, the subsequent local
adaptivity removes a further grid point, resulting in a single
point that needs to be added (lower left). For the considered
function, the surplus of the adaptively removed grid points
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FIG. 3. Dimension and local adaptivity of the SG method for a two-
dimensional space. The middle picture displays the function defined on the
space Ω = [�0.5, 0.5]2 with variation only along the x-axis in the left half of
the space and constant behavior in the right half. The refinement starts with an
initial grid of 5 points (picture top left), one center point and two according to
each level index. A full refinement step would produce 8 points (red crosses,
top right), but the dimension adaption identifies no change along the y-axis
and drops 6 points (black circle, bottom right). In the last step, the local adap-
tivity reduces the amount of points to 1, exploiting that the variation happens
only in the left half of the domain.

would actually be zero as would be the case for all their child
nodes.

In practice, the performance of any adaptive scheme relies
on a sufficiently sampled initial grid, which resolves features
well enough such that the adaptive strategy recognizes these
and does not suffer from a too early termination. The initial grid
of the above example would, for instance, be insufficient if the
function would only vary in the upper left corner, while being
zero everywhere else. This could be solved by employing a
full SG of level two as starting point. However, trying to have
a well enough resolved (full) SG as a starting point might
soon become impractical in high dimensions. We therefore
generate an initial grid by employing a very low threshold
for the error of tol = 10�5, while limiting the maximum norm
of the level indices to one, |l|∞ = 1. As a result, we include
all interactions between the dimensions in the first refinement
step (for each dimension). Hence, with this method, our initial
grid already adapts to important features on a coarse level,
which makes the subsequent SG algorithm more effective. This
high accuracy is only needed for the adaptive algorithm to
sufficiently explore the domain. Using the resulting grid as a
starting point, the actual refinement without limitations of the
level indices can then be performed with higher thresholds tol
∈ = [10�1, 10�3]. These then provide sufficient accuracy for
the targeted statistical measures.

V. RESULTS

We now turn to a detailed analysis of the OER on the
Co3O4 (110)-A surface termination, employing the nominal
model where reaction {1} is only allowed to occur from
even numbered states, cf. Sec. II. Specifically, we address the
uncertainty and sensitivity of log10 TOF with respect to all 20
uncertain free energies Gint,i and Gact,i using the error model
of Eq. (6), with a maximum error of 0.3 eV for each energy.

Choosing the logarithm instead of the linear TOF allows us to
connect to the established local sensitivity measures of chemi-
cal kinetics,13 which consider the derivatives of the logarithm.
From a practical point of view, this makes the interpolation
easier because we expect that log10 TOF has an almost piece-
wise linear behavior in most of the interpolation domains.
Strong non-linear dependence is expected to appear only in
narrow regions connecting kinetic regimes with different linear
dependencies.

The top image in Fig. 4 shows the log10TOF as a func-
tion of the errors in ∆Gint,4 and ∆Gact,4 for η = 0.7 V and
T = 298.15 K, while all other energies are fixed to their nomi-
nal values. Within the interpolation domain, the function shows
three dominant regimes: (I) for medium to high ∆Gint,4 and
∆Gact,4, the response is independent of these two variables,
(II) at low ∆Gint,4, the TOF depends only on ∆Gact,4, and
(III) at low to medium ∆Gact,4 and high to medium ∆Gint,4,
the derivative with respect to both energies is non-zero. In a
smaller sub-domain IV (medium to low Gint,4 and medium
to high Gact,4), the response solely depends on the intermedi-
ate energy. Within each of these regimes, log10 TOF behaves
almost linear, as expected. The non-linear transitions (indi-
cated by dotted lines in Fig. 4) between these regimes are
not really sharp but still rather local. The bottom two images
in Fig. 4 show the SG grid points in this two-dimensional

FIG. 4. Upper panel: Two-dimensional dependence of the turnover frequency
on energy errors ∆Gint,4 and ∆Gact,4 at an overpotential of η = 0.7 V. The
dotted lines indicate the borders between the four regimes: (I) no dependence
on ∆Gint,4 and ∆Gact,4, (II) only depending on ∆Gact,4, (III) depending on
both, and (IV) only depending on ∆Gint,4. Lower panel: Adaptive grid for two
applied tolerances: tol = 0.1 (left) and tol = 0.001 (right). In the upper panel,
dotted lines indicate borders between the four regimes. Refinement primarily
happens close to the origin, where the four regimes meet.



034102-10 Döpking et al. J. Chem. Phys. 148, 034102 (2018)

plane from the full 20-dimensional adaptive interpolation. The
left grid corresponds to a threshold of tol = 0.1, while the
right grid was obtained by setting tol = 0.001. Refinement
mostly happens close to the origin, where the four regimes
meet.

For our analysis, we concentrate on three representative
values for the overpotential η: (i) 0.4 V corresponding to the
kinetic regime at low η where the TOF increases exponentially
at nominal parameter settings, cf. Fig. 1, (ii) 0.7 V correspond-
ing to the start of the kinetic regime at higher η where the TOF
is relatively constant at nominal parameter settings, and (iii)
1.0 V corresponding to the end of this kinetic regime. For all
three values of η, we obtain the initial grid from an adaptive
run with very low tol = 10�5 but fixed maximum resolution for
each direction as described in Sec. IV B.

For these three values for the applied overpotential, we
find the variances of log10(TOF) to be 20.9 (η = 0.4 V), 9.5 (η
= 0.7 V), and 11.3 (η = 1.0 V). For the TOF, this corresponds
to uncertainties between three and five orders of magnitude.
Reasonably accurate estimates are already found for a refine-
ment tolerance tol = 0.1 in the adaptive strategy. Reducing
the tolerance to tol = 0.001 leads to only minor changes of
these numbers. But, even for the latter tolerance, the number
of grid points stays moderate, between 1000 (η = 0.4 V) and
14 000 (η = 0.7 V). Convergence tests with respect to tol for
the expectation E(log10 TOF), the variance V (log10 TOF) and
the sensitivities can be found in the supplementary material.

A. Sensitivity analysis

We now investigate which errors are responsible for the
reported uncertainties. Figure 5 shows the TSIs for the three
considered values of the overpotential η (top 0.4 V, middle
0.7 V, bottom 1.0 V). We also show the outcome of a LSA in
order to address the impact of non-linearities and to scrutinize
this more common approach to sensitivity analysis.13 In each
panel, the 20 input parameters are separated into the two differ-
ent classes, intermediate free energies Gint,i and activation free
energies Gact,i. The gray-shaded areas correspond to the inter-
mediate states from which no reaction pathway was considered
in the kinetic model in Ref. 30, i.e., no corresponding Gact,i is
included in the kinetic model. Working on a logarithmic scale
and with variances, the sensitivity indices might be interpreted
as follows: a value of 1 corresponds roughly to a factor ten for
the TOF induced by the respective parameter. A value of 4
corresponds to an induced STD of 2 for the log10(TOF) result-
ing in a multiplicative error of 100 on the linear scale for the
TOF. Correspondingly, values of 0.5, 2 and 8 are responsible
for multiplicative errors in the TOF of roughly 5, 25, and 700,
respectively.

When comparing the three values of η, both LSA and
GSA show a similar rough trend: at low η, parameters cor-
responding to states with low degrees of oxidation (i < 5)
are most important and when increasing η, this importance
shifts to states with higher degrees of oxidation. This corre-
sponds to what we would expect from physical intuition. At
low applied overpotential (η < 0.4 V), the system will predom-
inantly exist in the state with the lowest degree of oxidation
(A0). All intermediate states with higher degrees of oxidation

FIG. 5. Local and global sensitivity indices ST,i for the 20 input parameters
for the (110-A) structure of the oxygen evolution reaction at three different
overpotentials η ∈ {0.4, 0.7, 1.0} V. The gray-shaded fields describe interme-
diate states that are not considered for a reaction in the model (see the text).
Shown are the sensitivities of log10(TOF × s) with respect to the errors in
Gint,i and Gact,i.

are thermodynamically unfavorable. The reaction {1} there-
fore happens from the state with the lowest possible degree
of oxidation, A4. Within the range of values examined in the
sensitivity analysis, the free energies of the states with higher
degrees of oxidation never become low enough to result in a
significant probability for the surface to exist in these states.
As a result, the kinetics are always controlled by the states
with low degrees of oxidation over the entire range of param-
eter space explored in the sensitivity analysis at this applied
overpotential.

At higher applied overpotentials, states with higher
degrees of oxidation begin to dominate the probability distri-
bution [cf. Eq. (3)]. Under these conditions, the surface does
not have a significant probability of occurring in states with
lower degrees of oxidation so that the free energies associated
with these states do not have any influence on the kinetics.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024803
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Besides this common trend captured by both the LSA
and GSA, we also find notable differences. Most noticeably,
LSA assigns zero significance to many important energies,
as identified by the TSI. For η = 0.4 V, LSA returns non-
vanishing sensitivities for four energies, whereas GSA finds
non-zero sensitivities for five parameters. For the applied over-
potential of η = 0.7 V, LSA identifies only three energies with
non-vanishing sensitivities. GSA instead shows that there are
nine energies with non-vanishing TSIs, of which eight have
a TSI around 0.5 or above. At the highest applied overpo-
tential of η = 1.0 V, the LSA identifies only one energy with
non-vanishing sensitivity, while the GSA identifies seven such
energies.

The origin of the non-linearities leading to the discrepan-
cies between the LSA and GSA can be traced to the non-linear
form of the equation for the TOF, which can be expressed as

TOF =
kBT

h

∑
i

exp *
,
−

Gact,i + Gint,i − nieη

kBT
+
-∑

j

exp *
,
−

Gint,j − njeη

kBT
+
-

, (22)

using Eqs. (1)–(3). At most values of η, one exponential term
will dominate each of the sums in the numerator and denom-
inator so that the logarithm of the TOF will approximately
resemble a piecewise-linear function,

log10 TOF ≈ log10

(
kBT

h

)
−

log10 eEuler

kBT
(Gact,i + Gint,i − Gint,j)

+
log10 eEuler

kBT
(ni − nj)eη, (23)

where eEuler is Euler’s number, in Eq. (23), i corresponds to the
transition state with the lowest free energy Gact,i + Gint,i � nieη,
and j corresponds to the intermediate state with the lowest free
energy Gint,j � njeη. From this analysis, we can see that as long
as the uncertainty window lies within a single linear kinetic
regime [i.e., i and j in Eq. (23) do not change], LSA and GSA
should give identical results. In this situation, both methods
would predict non-vanishing sensitivities for Gact,i, Gint,i, and
Gint,j. If the uncertainty window encompasses multiple linear
kinetic regimes, however, the GSA will predict non-vanishing
sensitivities for the energies Gact,i, Gint,i, and Gint,j in all of the
these kinetic regimes. By contrast, the LSA will only indicate
non-vanishing sensitivities for those energy parameters corre-
sponding to the kinetic regime in which the nominal values lie.
At η = 0.4 V, these correspond to i = 0 and j = 4, at η = 0.7 V
i = 2 and j = 4, and at η = 1.0 V i = j = 12. For this last value
of η, we note that the LSA indicates no significant sensitivity
with respect to any of the intermediate states because i = j, and
therefore Gint,i � Gint,j = 0 in Eq. (23).

Additionally, even when the LSA correctly identifies the
energies with non-vanishing sensitivities, it tends to overesti-
mate these sensitivities. This is due to the fact that LSA falsely
assumes that these energies have high sensitivities over the
entire range of uncertainty. By contrast, the GSA correctly
captures transitions to different linear kinetic regimes at large
enough deviations from the nominal values, which is associ-
ated with a shift in sensitivity towards different energies of

different states. At η = 0.4 V, this concerns only Gint,0. Gint,4

and Gact,4 are accurately estimated by the LSA because the
reaction occurs predominantly through the state with j = 4
over the entire uncertainty window. At η = 0.7 V, all three rel-
evant sensitivities (according to LSA) are overestimated and
we have a shift of the sensitivity to states with higher degrees
of oxidation. For the highest overpotential η = 1 V, the sen-
sitivity of the single important parameter from LSA is only
slightly overestimated. Again, this is due to the fact that the
reaction occurs predominantly through a single state (j = 12)
over the entire uncertainty window.

It should be noted that while a linear f (x) implies an agree-
ment between LSA and GSA for the sensitivities, the opposite
argument is not valid. Whether the function is approximately
linear can be seen however from the SG expansion. If the
function is linear, the surplus of all BFs ϕ~l,~i with |~l |1 > 1
should vanish and the surplus of the two BFs within one level
~l, |~l |1 = 1 must add to zero.

The above reasoning qualitatively explains why GSA pre-
dicts potentially more non-zero sensitivities than LSA and why
important energies according to LSA tend to have too large
sensitivities. Now, this explanation still allows for two inter-
pretations: (i) the one-dimensional functions in the ANOVA
decomposition are non-linear or (ii) there are additional inter-
actions between the parameters. If only (i) is the case, we
would have a perfect variance decomposition and we could
reconstruct the function from one-dimensional scans along
each axis. The disagreement from a linear behavior must
then directly appear in these scans. If we have additional
interactions, this simple procedure will not provide the full
information and may even be misleading. The function might
behave linearly along the axes while globally being strongly
non-linear.

In order to get an idea of the important non-linear
interactions, we have calculated the first order indices

Vi = V (EX∼i (Y |Xi)) (24)

and the second order indices

Vij = V (EX∼ij (Y |Xi, Xj)) − Vi − Vj (25)

for the case η = 0.7 V, as this overpotential leads to the most
complex sensitivity pattern. Performing the respective sums,
we find that first order effects account for roughly 65%–70%
of the total variance, while second order effects are responsible
for ≈25%. About 5%–10% are due to higher order couplings.
The function therefore has an intrinsic multidimensional
character.

The second order index is depicted in Fig. 6 but only for
parameters with non-vanishing TSI, as V ij is never larger than
min(ST,i, ST,j). We find the strongest couplings between pairs,
where one partner is one of the activation energies Gact,4 or
Gact,6. Each activation energy interacts strongest with the cor-
responding intermediate energies. For the intermediate states
2, 3, and 5, which do not allow for the reaction in the con-
sidered model, the intermediate energies couple only with
other intermediate energies but not with the activation ener-
gies. The reason for this can be seen from taking the logarithm
of Eq. (22),
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FIG. 6. Second order indices with respect to the input parameters of the OER
model on the (110)-A surface for an overpotential of η = 0.7 V.

log10 TOF = − log10
*.
,

14∑
j=0

exp

(
−

Gint,j − jeη

kT

)
+/
-

+ log10
*.
,

6∑
j=2

exp

(
−

Gact,2j + Gint,2j − jeη

kT

)
+/
-

+ log10

(
kT
h

)
. (26)

The first term does not depend on the activation energies and
the second term does not depend on Gint,2, Gint,3, and Gint,5. The
second order indices between elements of these two classes
must then be zero.

B. Discussion

The uncertainty analysis illustrates the potential impact
of the approximate DFT energetics in microkinetic modeling.
One of the key objectives of such modeling, the TOF, might
carry an uncertainty of several orders of magnitude such that
a qualified statement cannot be made on the question whether
the surface is highly active or not. We have also found this
in a previous study on the first-principles kinetic Monte Carlo
model for the CO oxidation on RuO2(110).10

However, the global sensitivity analysis discussed in
Sec. V A reveals that it is still possible to identify the key atom-
istic aspects controlling the reactivity—even if one assumes
only the worst case scenario and a corresponding PDF. For
each overpotential, only a fraction of all energetic errors has
an influence on the model outcome, i.e., variation of the respec-
tive parameters results in a potentially larger variation of the
TOF than variations of the others. In a more kinetic lan-
guage, we would therefore assign the adjective “kinetically
relevant” to those parameters with high sensitivity indices.
These important errors belong to only very few intermedi-
ate states. We can conclude that the physical details of these
states potentially control the reactivity, irrespective of the
possible error. Our results indicate that these kinetically rel-
evant states change with the applied overpotential. Thus, an
identification of one or two atomistic indicators that control

the reactivity at all reasonable overpotentials is generally not
possible.

The devised locally and dimension-adaptive SG approach
performs well for carrying out the GSA, requiring only a mod-
est number of function evaluations to achieve a high accuracy.
For the problem at hand, this is not so crucial, as even mil-
lions of function evaluations would come at negligible costs
compared to the underlying DFT calculations. By contrast,
for complex models like kinetic Monte Carlo simulations, the
number of function evaluations might become a major issue.
The case η = 0.7 V requires generally more points to achieve
a target threshold tol. As detailed in Sec. V A, the system has
a higher intrinsic dimensionality at this overpotential than at
the other two, i.e., the number of non-vanishing TSIs is larger.
It is this intrinsic dimensionality which matters more for the
convergence behavior of a dimension-adaptive SG approach
than the true dimensionality.

A problem with the adaptive SG approach is the need
for a sufficiently resolved initial grid. Only then, the adaptive
strategy accurately explores the parameter space and does not
terminate prematurely. Here, we addressed this by imposing
an extremely high threshold and restricting the maximum res-
olution in an initial phase. For complex models, this might
not be appropriate, as the required high accuracy in the model
evaluations may not be affordable. Overcoming this limitation
will be a subject of our future research.

Besides the presence of large uncertainties in the predicted
TOF, our results demonstrate that the mere use of LSA might
lead to erroneous conclusions about the most important uncer-
tainties. As discussed in Sec. V A, LSA might fail to identify all
errors which have an impact, as seen most prominently for the
overpotential η = 0.7 V. Furthermore, it overestimates the sen-
sitivities with respect to other parameters. This failure of LSA
becomes critical when we want to employ sensitivity anal-
ysis to identify parameters which should be calculated with
higher accuracy. Because LSA might miss some important
parameters, we would identify very few energies for higher-
level treatment if we only consider LSA and the corresponding
equation for the variance, Eq. (8). Also, after refinement of
the identified parameters at a higher level of theory, the latter
might then give an artificially low estimate of the variance for
the model, leading us to falsely conclude that our refined model
is accurate enough. For instance, let us consider the case with
η = 0.7 V and suppose we have a method with which we can
achieve an accuracy of 0.06 eV, i.e., a factor five better than
our employed accuracy of 0.3 eV. Of course, such a method
would likely be significantly more expensive than a semi-local
DFT calculation and we would like to employ it for only those
energies which are most important. If we now only consider
the LSA results from the middle panel of Fig. 5, the only three
energies with non-vanishing sensitivities are Gint,2, Gint,4, and
Gact,4, and the LSA estimated variance is 17.2. After improv-
ing these energies, the LSA estimate of the variance would
be 1, where, for simplicity, we assumed that the new nominal
energy values agree with the old ones. If we now calculate the
true (GSA) variance, we have 9.5 before improving the three
energies and 4.6 afterwards. Instead of a variance reduction by
a factor 17, as LSA implies, we achieved only at reduction by a
factor 2 in reality. That is, we improve the accuracy of the TOF



034102-13 Döpking et al. J. Chem. Phys. 148, 034102 (2018)

by a factor of eight, instead of the more than three orders of
magnitude suggested by the misleading linear approximation.
If we now improve the four most important energies according
to the GSA from middle panel of Fig. 5, the resulting variance
is 3, i.e., the accuracy of the TOF was improved by a factor
of 22. But unlike LSA, GSA suggests how to proceed further.
Reducing the error of all nine energies with non-vanishing
sensitivities results in a variance of 0.6 and we achieved the
targeted large reduction.

The simple example discussed above illustrates that
resources only need to be spent on refining those parameters
with a high sensitivity index. GSA therefore might serve as
an ingredient to a hierarchical modeling strategy, where one
exploits methods with increasing accuracy for computing the
energetics. In the first step of a hierarchical parameter estima-
tion, the energetics are determined with the cheapest but also
most inaccurate method. After a GSA, only the most impor-
tant parameters will be improved using the method having the
next highest accuracy. A new GSA with an updated PDF will
then reveal which parameters to improve next. This is repeated
until one either achieves a target accuracy or further improve-
ment would become too computationally expensive. In such an
approach, one may want to include approaches which are even
less accurate than semi-local DFT (and computationally also
less expensive). The value of a mere LSA is then even more
questionable, as with the larger error bounds, the importance
of non-linearities also increases.

In principle, GSA is performed to quantify the parametric
dependence of a given model on its input parameters. Now,
reduced kinetic models are often only reasonable for a cer-
tain set of parameters. The question then arises whether the
sensitivities determined for such a reduced model are robust
against the extension of the model. For the OER on Co3O4

(110)-A, a straightforward extension would be the inclusion
of reaction {1} from odd-numbered intermediate states. These
have been excluded in the original model because the corre-
sponding intermediate states are not populated at the nominal
settings.29,30 If we allow to vary the energies of the interme-
diates, as is done during the GSA, this may no longer be the
case.

In Fig. 7, we have calculated the local and global sensi-
tivity indices for η = 0.7 V, where we have included reaction
{1} from the odd-numbered states 5–11 (the states below 4
do not allow for reaction {1}). For simplicity, we have set the
nominal barriers to 0.6 eV as all other barriers are close to this
value. As expected, the LSA results hardly change compared to
the original model (cf. the middle panel of Fig. 5). For GSA,
the situation is very different. The sensitivities for the even
states up to 6 hardly change, but now the intermediate ener-
gies for the odd states 5, 7, and 9 are also important, unlike in
the original model in Fig. 5. Concomitantly, the corresponding
newly introduced activation barriers also show finite sensitiv-
ities. Additionally, the sensitivity with respect to the energy
parameters of intermediate state 8 changes: While in the orig-
inal model it had only a minor impact, the corresponding ST,i

are now sizable. The rise in importance for the odd-numbered
intermediate states 5, 7, and 9 could have been expected from
the GSA of the original model. At η = 0.7 V, these states are
close in free energy (and charge) to the even states that do

FIG. 7. Local and global sensitivity indices ST,i for the extended model of the
OER on the (110)-A surface for an overpotential η = 0.7 V. The gray-shaded
fields describe intermediate states that are not considered for a reaction in
the model (see the text). Shown are the sensitivities of log10(TOF × s) with
respect to the errors in the input parameters.

show finite sensitivity in the original model. Because of this
predictable structure, GSA might actually guide chemical intu-
ition in the extension of a coarser model. For the OER on the
(110)-A surface, GSA suggests to only add the intermediate
states 5 and 7 in a first step, and, indeed, this largely resembles
the full case in Fig. 7 (cf. the supplementary material).

While in the original model there are only eight parame-
ters with significant TSI, the extended model shows a sensitiv-
ity above 0.5 with respect to more than fourteen parameters.
This higher intrinsic dimensionality has a significant impact
on the performance of the adaptive SG methodology. While
we needed only≈14 000 grid points for a threshold tol = 0.001,
approximately 70 000 grid points were needed for the extended
model and a threshold of tol = 0.01.

It is important to note that the results of our sensitivity
analysis depend on our choice of the error model, and we
have employed a rather generous PDF which only imposes the
bound constraints on the errors of the individual parameters. In
reality, we expect that the DFT errors of different parameters
are correlated. For the system at hand, the errors in the free
energies of the intermediate states most likely arise from an
inaccurate description of the oxidation of Co(iii) to Co(iv) by
the DFT + U method. We therefore expect that the intermediate
energies tend to be strongly correlated (either being all over-
or underestimated) and not independent as we have assumed.
Also the barriers have very close values, which suggests that
these might be independent of the actual degree of oxidation
and the errors would essentially be the same for all barriers.
Finally, the Bronsted-Evans-Polanyi theory implies that these
barriers are not completely independent of the corresponding
intermediate energies. A corresponding correlated PDF would
then lead to a different uncertainty, and we would expect that
this uncertainty is lower than for the employed uncorrelated
PDF. Of course, also the sensitivities might change as well
as the first and second order indices, for which we would
need to consider a generalized version of ANOVA for depen-
dent parameters.41 But these changes, especially the relative
changes, are largely unpredictable because they depend on the
details of the correlated PDF. However, a GSA with a rather
simple PDF, like the one employed, might serve as a starting
point for the identification of which parameter correlations

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-024803


034102-14 Döpking et al. J. Chem. Phys. 148, 034102 (2018)

should be investigated in more detail, e.g., using the method-
ologies outlined in Refs. 9 and 39. Such an improvement of
the PDF might also be incorporated in the hierarchical model
construction outlined above. That is, we first determine the cor-
relations between parameters on the lower level and see how
this changes the sensitivities. Based on this information, we
then proceed with improving the important parameters with a
higher level method.

Another potential application of GSA would be in the con-
text of computational materials screening,38 where parameter
uncertainty arises due to the desire to inexpensively examine
a large class of materials. GSA and SGs might serve here as a
tool to identify indicators of the catalytic function which can be
computed economically. Also different parametrizations of the
problem—e.g., linear scaling relations,38 UBI-QEP,47 or from
some machine learning procedure48,49—could be compared
and one could choose the parametrization for which inclusion
of the expensive parameters has a small enough impact that
their calculation can be avoided.

VI. CONCLUSION

We have presented an approach to quantify the impact
of individual errors in the input parameters on the response
of a first-principles microkinetic model. The approach utilizes
locally and dimension-adaptive sparse grids for the determina-
tion of variance-based global sensitivity measures. This allows
the efficient numerical quadrature of the high-dimensional
integrals required for global sensitivity analysis. Due to the
possibility to work with only relatively few model evaluations,
more complex models might become tractable, such as kinetic
Monte Carlo50 or other methods addressing the direct solution
of the master equation.51,52 As one might expect, the method’s
performance diminishes when the exploited properties—like
low intrinsic dimensionality—are not so pronounced. Our
future work will concentrate on improving the adaptive strat-
egy, on application of the mentioned complex models, and on
the comparison with other approaches to GSA.8,10,53

We tested our approach on a model for the electrochem-
ical oxygen evolution reaction on the Co3O4 (110)-A surface
at room temperature. For the employed error model, we find a
sizable uncertainty for the predicted turnover frequency, up to
the level that makes it impossible to assess whether the catalyst
is active or not. We want to emphasize that our results depend
on the employed parametrization and error model. Both were
chosen to pose a challenging test case; in reality, however,
existing correlations might reduce the uncertainty to an accept-
able level. Not withstanding, even with the here employed
error model, our global sensitivity analysis reveals that it is
still possible to identify the key atomistic aspects driving or
hindering the catalytic performance. However, the commonly
used local sensitivity analysis appears inadequate to identify
these parameters due to strong non-linearities in the response
of the model when varying the parameters within the typical
error bounds.

Our approach might ultimately aid in the construction
of kinetic models from first principles by identifying those
kinetic parameters which should be investigated more deeply,
either by some higher-level electronic structure method11,12

or by incorporating previously ignored aspects, e.g., solvation
effects.54 The outlined methodology might also be of help in
the context of materials screening, where it could serve as a
tool to identify suitable indicators for catalytic performance.

SUPPLEMENTARY MATERIAL

See supplementary material for convergence tests, for an
alternative representation of the uncertainty, and for the GSA
for an extended model with reactions only enabled for the
intermediate states 5 and 7.
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034102-15 Döpking et al. J. Chem. Phys. 148, 034102 (2018)

29C. P. Plaisance and R. A. van Santen, J. Am. Chem. Soc. 137, 14660
(2015).

30C. P. Plaisance, K. Reuter, and R. A. van Santen, Faraday Discuss. 188,
199–226 (2016).

31M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A.
Santori, and N. S. Lewis, Chem. Rev. 110, 6446 (2010).

32A. Marshall, B. Børresen, G. Hagen, M. Tsypkin, and R. Tunold, Energy
32, 431 (2007).

33A. Roudgar, M. Eikerling, and R. van Santen, Phys. Chem. Chem. Phys. 12,
614 (2010).

34V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).
35A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467

(1995).
36V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens.

Matter 9, 767 (1997).
37A. J. Cohen, P. Mori-Sanchez, and W. Yang, Science 321, 792 (2008).
38J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Nat. Chem.

1, 37 (2009).
39J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis,

J. K. Nørskov, T. Bligaard, and K. W. Jacobsen, Phys. Rev. B 85, 235149
(2012).

40S. Kucherenko, S. Tarantola, and P. Annoni, Comput. Phys. Commun. 183,
937 (2012).

41S. Rahman, SIAM/ASA J. Uncertainty Quantif. 2, 670 (2014).
42T. Homma and A. Saltelli, Reliab. Eng. Syst. Saf. 52, 1 (1996).
43T. Gerstner and M. Griebel, Computing 71, 65 (2003).
44H. Yserentant, Computing 78, 195 (2006).
45A. Klimke and B. Wohlmuth, ACM Trans. Math. Software 31, 561 (2005).
46M. Griebel and M. Holtz, J. Complexity 26, 455 (2010).
47E. Shustorovich and H. Sellers, Surf. Sci. Rep. 31, 1 (1998).
48Z. W. Ulissi, A. J. Medford, T. Bligaard, and J. K. Nørskov, Nat. Commun.

8, 14621 (2017).
49L. M. Ghiringhelli, J. Vybiral, E. Ahmetcik, R. Ouyang, S. V. Levchenko,

C. Draxl, and M. Scheffler, New J. Phys. 19, 023017 (2017).
50M. Stamatakis and D. G. Vlachos, ACS Catal. 2, 2648 (2012).
51G. J. Herschlag, S. Mitran, and G. Lin, J. Chem. Phys. 142, 234703

(2015).
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