日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Ultrafast dynamics of adenine following XUV ionization

MPS-Authors
/persons/resource/persons226549

Latini,  S.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons194590

Covito,  F.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;

/persons/resource/persons221949

de Giovannini,  U.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Dipartimento di Fisica e Chimica, Università degli Studi di Palermo;

/persons/resource/persons22028

Rubio,  A.
Theory Group, Theory Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society;
Center for Free-Electron Laser Science;
Center for Computational Quantum Physics (CCQ), The Flatiron Institute;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
付随資料 (公開)
There is no public supplementary material available
引用

Månsson, E. P., Latini, S., Covito, F., Wanie, V., Galli, M., Perfetto, E., Stefanucci, G., de Giovannini, U., Castrovilli, M. C., Trabattoni, A., Frassetto, F., Poletto, L., Greenwood, J. B., Légaré, F., Nisoli, M., Rubio, A., & Calegari, F. (2022). Ultrafast dynamics of adenine following XUV ionization. Journal of Physics: Photonics, 4(3):. doi:10.1088/2515-7647/ac6ea5.


引用: https://hdl.handle.net/21.11116/0000-000A-9277-B
要旨
The dynamics of biologically relevant molecules exposed to ionizing radiation contains many facets and spans several orders of magnitude in time and energy. In the extreme ultraviolet (XUV) spectral range, multi-electronic phenomena and bands of correlated states with inner-valence holes must be accounted for in addition to a plethora of vibrational modes and available dissociation channels. The ability to track changes in charge density and bond length during ultrafast reactions is an important endeavor toward more general abilities to simulate and control photochemical processes, possibly inspired by those that have evolved biologically. By using attosecond XUV pulses extending up to 35 eV and few-femtosecond near-infrared pulses, we have previously time-resolved correlated electronic dynamics and charge migration occurring in the biologically relevant molecule adenine after XUV-induced sudden ionization. Here, using additional experimental data, we comprehensively report on both electronic and vibrational dynamics of this nucleobase in an energy range little explored to date with high temporal resolution. The time-dependent yields of parent and fragment ions in the mass spectra are analyzed to extract exponential time constants and oscillation periods. Together with time-dependent density functional theory and ab-initio Green's function methods, we identify different vibrational and electronic processes. Beyond providing further insights into the XUV-induced dynamics of an important nucleobase, our work demonstrates that yields of specific dissociation outcomes can be influenced by sufficiently well-timed ultrashort pulses, therefore providing a new route for the control of the multi-electronic and dissociative dynamics of a DNA building block.