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Abstract

Culture and demography jointly facilitate flexible human adaptation, yet it still remains

unclear how social learning operates in populations with age structure. Here, we present a

mathematical model of the evolution of social learning in a population with different age clas-

ses. We investigate how demographic processes affect the adaptive value of culture, cul-

tural adaptation and population growth, and identify the conditions that favor learning from

older vs. younger individuals. We find that, even with age structure, social learning can

evolve without increasing population fitness, i.e., “Rogers’ paradox” still holds. However, a

process of “demographic filtering”, together with cultural transmission, can generate cumu-

lative improvements in adaptation levels. We further show that older age classes have

higher proportions of adaptive behavior when the environment is stable and adaptive behav-

ior is hard to acquire but important to survival. Through individual-based simulations com-

paring temporal and spatial variability in the environment, we find a “copy-the-old”-strategy

only evolves when social learning is erroneous and the opposite “copy-the-young”-strategy

can function as a compromise between individual and social information use. Our results

reveal that age structure substantially changes how culture evolves and provide principled

empirical expectations about age-biased social learning and the role of demography in cul-

tural adaptation.

1 Introduction

When should we expect individuals to adopt the behavior and norms of older generations? In

her book “Culture and Commitment”, anthropologist Margaret Mead suggested a prominent

role for the prevalent rate of social change [1]. When social change is slow, juveniles grow up

in an environment that resembles that of their parents and older generations serve as valued

models and authorities. In so called gerontocratic societies, which include the Ancient Greek

city state of Sparta and contemporary East-African pastoralists such as the Kenyan Samburu
[2, 3], social stratification is predominantly based on age classes and opinions of older
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individuals tend to be highly valued. When societal change is more rapid, on the other hand,

being old may predict being out of date as relevant conditions might have changed since older

generations acquired their norms and behaviors. Starting in the 1960s, attitudes associated

with older generations are often seen as backward and outdated in Western societies and

young individuals regularly attend to their peers instead [1, 4, 5]. Which demographic and cul-

tural factors could explain these opposing views on the value of information provided by older

individuals?

Children across societies need to learn many essential skills to become competent adult

members of their communities. The transmission and gradual modification of cultural infor-

mation over generations is often considered key to human evolutionary success as it allows us

to flexibly adjust to vastly different environments through locally adapted tools, beliefs and

institutions [6–9]. Past theoretical work has investigated the conditions that favor the evolu-

tion of social learning and the way individuals should combine individual and social informa-

tion strategically [10–12].

One starting point was Alan Rogers’ equally simple and elegant model that demonstrates

how pure social learning does not increase mean population fitness because its adaptive value

is strongly frequency-dependent [13]. With few other social learners, chances are high to copy

an individual learner, who has learned from direct interactions with the environment, provid-

ing adaptive information without costly trial-and-error learning. As the proportion of social

learners increases, fewer and fewer individuals track the state of the environment, which can

result in maladaptive information cascades [14]. At equilibrium, there tends to be a mix of

individual and social learners that have the same mean fitness as a population entirely com-

prised of individual learners. This observation has become famous as “Rogers’ paradox” in the

literature—even though there is nothing inherently paradoxical about it, other than violating

many researchers’ intuitions.

This and most following models omit age structure and study the evolution of learning in

populations with discrete, non-overlapping generations. Individuals are assumed to be born,

learn from the previous generation, reproduce and then all die at the same time. Social learn-

ing and life history, however, interact in human adaptation and we need further modeling

work that incorporates age structure and different population dynamics [15]. Age structure is

a central feature of human and other animal populations, can have profound consequences for

evolutionary dynamics [16], and is also expected to shape the informational environment

learning is responding to. To address how culture facilitates flexible human adaptation and

when selection favors learning from older generations, we need formal theory of the evolution

of social learning in populations with age classes. The few previous models that did include age

structure divided the population into a small number of fixed age categories and investigated

the cultural and demographic consequences of transmission modes that varied across life

stages (e.g., [17–19]) or solved for learning schedules that could support cumulative culture

[20]. We still require a game-theoretic life-history theory of learning that does not externally

impose age structure but has it emerge from basic assumptions about survival and reproduc-

tion and focuses on the frequency-dependent nature of the evolution of social learning.

The goal in this paper is to develop the simplest possible model of the classic adaptive value

of culture, but in an age-structured population. So call this “Rogers model with age classes”. As

such, it isn’t meant to represent any specific organism. Rather it represents the structure of an

argument. How does demographic population structure and social learning interact in adapta-

tion and population growth and what are the minimal conditions for such forces to make it

worthwhile to copy older individuals? We first formulate a mathematical model of the popula-

tion and learning dynamics and demonstrate that adding age does not resolve Rogers’ paradox.

The differential survival of adapted individuals to high ages (what we call “demographic
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filtering”), however, can lead to higher frequencies of social learning and cumulative improve-

ments in adaptation levels. We then solve for the conditions that favor learning from older vs.

younger individuals. Finally, we confirm and extend the analytical results through individual-

based simulations and investigate how age-biased social learning evolves in temporally and

spatially variable environments.

2 The model

Consider a large population of perennial organisms that live in a temporally varying environ-

ment. The environment can take on one of a very large number of states. Each state has a cor-

responding adaptive response. An adaptive response may increase both survival and fertility of

adults. The environment may change with probability u each time step, rendering all previ-

ously adaptive behavior non-adaptive.

Individuals are born as juveniles who cannot yet reproduce, but may learn about the envi-

ronment. After one time step, a juvenile who survives transitions to adulthood. In the analyti-

cal model, adults do not learn, but do reproduce (in the individual-based simulations, we later

also allow for adult learning). This implements the extreme form of an exploration–exploita-

tion trade-off between investment in learning and investment in reproduction that all organ-

isms face. Focusing on pure mechanisms helps to reveal causal impacts. Let sj be the

probability of survival of a juvenile or an adult who practices response j, where j = 1 indicates

adaptive behavior and j = 0 indicates non-adaptive behavior. Let bj be the fertility of an adult

with response j. Juveniles always have zero fertility. They must survive once to have any chance

of producing descendants.

The organism’s challenge is to find the currently adaptive response. Juveniles may learn

either socially or individually. Social learners sample two models and then may choose among

them based upon relative age. Individual learners instead reduce their probability of survival

to adulthood by a factor c for a chance z of innovating an adaptive response.

2.1 Recursions

The state of the population is given by the state variables nij, where i is an age class and j = 1

indicates an individual with adaptive response. The number of juveniles n10 (all are born non-

adapted) is regenerated each time period by fertility from all adult age classes:

n0
11
¼ p
X1

i¼2

X1

j¼0

nijbj; ð1Þ

n0
10
¼ ð1 � pÞ

X1

i¼2

X1

j¼0

nijbj; ð2Þ

where p is the probability a juvenile acquires currently adaptive response through learning.

We define p as a function of heritable strategies in the next section. The number in each adult

age class i> 1 is given instead by:

n0i0 ¼ s0ni� 1;0 þ us1ni� 1;1; ð3Þ

n0i1 ¼ ð1 � uÞs1ni� 1;1: ð4Þ

Since adults do not learn in this model, these recursions are rather simple. However, when

the environment changes with probability u, all adapted adults are rendered forever non-
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adapted. There is a special case for i = 2 that includes the cost of innovation c:

n0
20
¼ ðs0n1;0 þ us1n1;1Þð1 � cpÞ; ð5Þ

n0
21
¼ ðð1 � uÞs1n1;1Þð1 � cpÞ: ð6Þ

The symbol π gives the probability of individual learning and is further defined in the next

section.

2.2 Learning

Let p be the probability a juvenile acquires currently adaptive behavior. We define this as a

function of a strategy vector {π, ϕ}, where π is the probability of individual learning and ϕ
determines the direction and strength of any age bias for models to socially learn from. Specifi-

cally:

pðp; �Þ ¼ pz þ ð1 � pÞQð�Þ; ð7Þ

where z is the probability an individual learner acquires adaptive behavior. Q is a function for

the probability of acquiring adaptive response by social learning. We define ϕ as the propor-

tional odds of copying the older of two individuals. Let R be the probability of copying the

older of two individuals. This implies that the probability of copying the older individual is

given by solving this expression for R:

� ¼
R

1 � R
; ð8Þ

yielding R = ϕ/(ϕ + 1). To compute Q, we need to average over all possible pairs of social mod-

els. Let qi be the proportion of individuals in age class i with adaptive behavior. Let ai be the

proportion of adults (i> 1) in age class i. Then the probability a juvenile acquires adaptive

behavior through social learning is:

Qð�Þ ¼
X1

i¼2

a2
i qi þ

X1

i¼3

Xi� 1

j¼2

2aiaj qi
�

�þ 1
þ qj

1

�þ 1

� �

: ð9Þ

In the above expression, the first summation is all pairs with tied ages. In these pairs, there

is no age asymmetry. So the learner imitates at random and acquires adaptive response when a

random individual of age class i has an adaptive response. In the second summation, we sum

over asymmetric pairs where an individual in age class i is older than one in age class j. There

is a probability 2ai aj of such a pair, allowing for both orderings, and then the learner acquires

adaptive response according to which model is imitated and whether an individual of that age

class has an adaptive response. When ϕ = 1, the above simplifies to random copying of any

adult: Qð1Þ ¼
P1

i¼2
aiqi.

2.3 Individual-based simulations

To corroborate the analytical predictions and extend the model to more complex scenarios

that also account for adult learning and different sources of stochasticity in finite populations,

we construct an individual-based version of the model with either temporally or spatially vary-

ing environments.

Temporal variation. In the temporal model, we consider a population of fixed size with

N = 1000 individuals. After birth, each juvenile engages in either individual or social learning

according to a dichotomous genotype. Individual learners acquire adaptive behavior with

PLOS ONE Social learning in age-structured populations

PLOS ONE | https://doi.org/10.1371/journal.pone.0267204 April 15, 2022 4 / 19

https://doi.org/10.1371/journal.pone.0267204


probability z and pay a recruitment cost c. Social learners randomly sample two interaction

partners from the adult population and copy the behavior of either the older or younger indi-

vidual depending on an inherited learning strategy. If both interaction partners have the same

age, they choose among them at random. Individuals acquire adaptive behavior from an

adapted interaction partner with probability 1 − �, where � represents the degree of copying

error. All individuals survive to the next age class with probability s0 (non-adapted) or s1
(adapted). We assume asexual, haploid reproduction and all adults have an equal opportunity

to give birth to offspring to fill the empty spots in the population. Juveniles inherit the geno-

type, which determines learning strategies, from their parent with a small probability, μ =

0.005, of mutation for both loci. Each time step, there is a probability u that the environment

changes. When environmental change occurs, all variants in the population become non-

adaptive.

Spatial variation. For the spatial model, we consider a metapopulation of fixed size with

N = 2000 individuals. The metapopulation is divided into 4 equal sub-populations linked by

migration. Life cycle and learning process are identical to the temporal model. The only excep-

tion is that, instead of temporal changes in the environment, there is now constant migration

between different habitats. Habitats are assumed to differ in important environmental parame-

ters such that each habitat is characterized by a different adaptive response. Specifically, per

time step, each adult has a probability m of migrating to another habitat which results in a loss

of adaptive behavior. Note that the way migration is implemented ensures that population

sizes in all sub-populations stay constant over time.

3 Analysis

3.1 Does adding age structure resolve Rogers’ paradox?

As a first step, we investigate whether age structure resolves “Rogers’ paradox”, i.e., the finding

that social learning can invade a population of individual learners without increasing mean

population fitness. We compare a baseline model with discrete, non-overlapping generations

(i.e., the original Rogers model) to the age-structured learning model described above. For this

analysis, as in the Rogers model, we assume individual learning always produces adaptive

behavior (i.e., z = 1) and social learners copy adults randomly (i.e., ϕ = 1). Relaxing these

assumptions produces the same qualitative results. Fig 1 shows proportions of social learners

(top) and fitness (bottom) for the original Rogers model (left) and the age-structured version

(right). Fitness is calculated as the lineage growth rate at equilibrium λ which is the correct

measure to use in age-structured populations [16]. Unsurprisingly, in both models, social

learning evolves more readily as individual learning is more costly and the environment

changes less frequently (Fig 1A and 1B).

Fig 1C and 1D show fitness for populations with only individual learners (black shapes)

and populations with individual and social learners (colored lines). This comparison reveals

that fitness in both models is solely determined by the fitness of individual learners and does

not change with the introduction of social learners. Age structure, thus, does not resolve Rog-

ers’ paradox. As a direct consequence of age structure and the assumption that only juveniles

learn, fitness in the age-structured model decreases as the environment becomes more unsta-

ble. With discrete generations, the whole population gets replaced each time step, so fitness of

individual learners does not depend on environmental stability. With age structure, however,

individual learners can lose adaptive behavior during their lifetime through environmental

change resulting in the decline in population fitness.
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3.2 Demographic filtering and its interplay with social learning

Next, we investigate the interplay between social learning and demography and their joint

effect on the distribution of adaptive information across age classes and adaptation after a

change in the environment. If there are differential chances of survival for adapted and non-

adapted individuals (i.e., viability selection), the “demographic filtering” of adaptive behavior

Fig 1. Proportion of social learners (top) and mean population fitness (lineage growth rate at equilibrium λ; bottom) conditional on the rate of environmental change

u and the cost of individual learning c. Results for the original Rogers model with discrete, non-overlapping generations are shown on the left, results for the age-

structured model with overlapping generations on the right. Lines in plots C and D represent populations with social learners, black shapes give corresponding values

for populations with only individual learners. Other parameter values were: z = 1, ϕ = 1, b0 = 1, b1 = 1.5, s0 = 0.9, s1 = 0.9.

https://doi.org/10.1371/journal.pone.0267204.g001
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in older age classes might constitute another adaptive force that social learners could benefit

from. To illustrate the pure effects of this demographic filtering and cultural transmission,

parameter values were chosen to keep fitness constant at λ� 1.2 across all comparisons.

Individual learning only. We start with a population of only individual learners and com-

pare the behavior of the model with a stochastically changing environment under pure fecun-

dity and pure viability selection. Fig 2A and 2E illustrate the effect of demographic filtering on

the distribution of adaptive behavior across age classes. If there is no survival advantage to

adaptive behavior (Fig 2A), older age classes are always expected to have lower proportions of

adaptive behavior as environmental change periodically renders their behavior out of date.

This effect is illustrated by the “cliffs” in Fig 2, where adaptive behavior suddenly drops to 0

above certain ages. If being adapted confers survival benefits (Fig 2E), average proportions of

adaptive behavior increase up to a certain age as those possessing adaptive behavior will be

more likely to survive to old ages. For populations of pure individual learners, we can calculate

the proportion of individuals in age class i with adaptive behavior, qIL,i, and evaluate how the

forces of demographic filtering and environmental change trade off:

qIL;i ¼ ð1 � uÞi� 1 si� 1
1

z
si� 1

1
z þ si� 1

0
ð1 � zÞ

: ð10Þ

A first prerequisite is that the environment has not changed since an individual has learned,

which is given by the first part of the equation. This term is multiplied by the relative

Fig 2. Proportion of adapted individuals per age class (left) and for different time intervals after an environmental change (right). Dynamics under fecundity selection

(i.e., without demographic filtering) are shown on the top, dynamics under viability selection (i.e., with demographic filtering) are shown on the bottom. Comparison

of populations with only individual learners (IL) and populations comprising both individual and social learners (IL and SL). Black solid lines represent averages.

Results are shown for a z = 0.5 success rate of individual learning. Other parameter values were chosen to keep fitness constant at λ� 1.2 across different scenarios:

u = 0.01, c = 0.01, ϕ = 1, b0 = 0.35, b1 = 0.5 (for fecundity selection), s0 = 0.85, s1 = 0.93 (for viability selection).

https://doi.org/10.1371/journal.pone.0267204.g002
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probability that adults have invented adaptive behavior as juveniles and survived up to age i.
S1 Fig plots resulting age curves for different values of u, σ = s0/s1, and z. Expectedly, more

rapid changes in the environment result in lower values and earlier peaks of adaptive behavior.

Stronger viability selection leads to earlier peaks, as even surviving to relatively young ages

indicates being adapted when selection acts strongly on chances of survival.

We now turn to levels of population adaptation after a change in the environment (Fig 2C

and 2G). Resulting from demographic filtering, which leads to high adaptation levels in old

age classes, populations under viability selection reach slightly higher average adaptation levels

(Fig 2G) compared to populations under fecundity selection (Fig 2C). However, they still pla-

teau at a value determined by the success rate of individual learning (here z = 0.5) because the

benefits of adaptive filtering are limited to older age classes and cannot improve juvenile

learning.

Individual and social learning. Now we also let social learners evolve. Demographic fil-

tering increases the adaptive value of culture and leads to substantially higher frequencies of

social learners in the population (for this parameter combination, means of 98% and 38%

social learners for viability and fecundity selection, respectively). By increasing proportions of

adaptive behavior in older age classes, demographic filtering improves the quality of social

information in the population; this results in more copying among juveniles. As social learning

effectively drains adaptive information accumulated through demographic filtering, it lowers

the peak in adaptive behavior in older age classes (Fig 2F).

After an environmental shock, populations under fecundity selection (Fig 2D) quickly

recover as they maintain high rates of individual learning. However, they are limited to the

adaptation levels individual learners can obtain because innovation is the only adaptive force

in the system. Under viability selection (Fig 2H), populations take longer to recover because

few individual learners track the state of the environment. However, in the long run, adapta-

tion levels exceed those of individual learners (Fig 2C and 2G) and of cultural populations

without demographic filtering (Fig 2D) and increase until the whole population is adapted.

Combining demographic filtering and social learning, the accumulated benefits of adaptive fil-

tering can feed back on juveniles and provide them with high-quality social information. This

process results in an adaptive interplay between cultural and demographic forces that is char-

acterized by high proportions of adaptive behavior across age classes and much higher overall

adaptation levels than acultural populations could obtain.

3.3 When are older individuals better adapted?

After considering the general impacts of age structure, we now turn to our starting question:

When will selection favor a positive (ϕ> 1) or negative (ϕ< 1) age bias? To address this ques-

tion, we require expressions for the qi state variables, the proportion of each age class i with

adaptive behavior. Specifically, we would like to know, under a separation of genetic and

demographic time scales (see chapter 5.4. in [21]), the demographic environment that selec-

tion of ϕ responds to. This means we seek expressions for the steady state q̂i values correspond-

ing to a stable age distribution.

Since this model contains no population regulation (see [15] for effect of different forms of

population regulation on social learning), the population will either increase to infinity or

decline to zero. We are interested in the former case. In that case, the frequency of individuals

in each age-and-behavior class ij will eventually stabilize, even though the number of individu-

als in the population will continue to grow. Therefore we analyze the frequencies ^f ij ¼ nij=N
that define the stable age-and-behavior distribution. These frequencies are defined by the

recurrence equations in section 2, normalized by N. This normalization introduces a
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population growth adjustment. To see this, consider the simplest case:

^f i;1 ¼
n0i;1
N 0
¼

1

N 0
ð1 � uÞs1 ni� 1;1: ð11Þ

Since we consider now the stable age-class distribution, we divide both sides by N so we

relate stable frequencies:

^f i;1
N
¼

1

N 0
ð1 � uÞs1

ni� 1;1

N
ð12Þ

¼
1

N 0
ð1 � uÞs1

^f i� 1;1: ð13Þ

Finally, move the N−1 on the left to the right and note that N0/N = λ, the stable population

growth rate:

^f i;1 ¼
N
N 0
ð1 � uÞs1

^f i� 1;1 ¼
1

l
ð1 � uÞs1

^f i� 1;1: ð14Þ

The same approach yields the recurrence for non-adapted individuals at age i:

^f i;0 ¼
1

l
s0

^f i� 1;0 þ us1
^f i� 1;1

� �
: ð15Þ

Note that when the population grows slowly, λ� 1. This is a common assumption in life

history analysis [21, 22], but we will attempt to keep λ general, in case further insights arise

from the generality. These equations can be solved explicitly, yielding formulas in terms of

only initial conditions and parameters (see analysis notebook in GitHub repository). For i> 1:

^f i;0 ¼ ^f 1;0

s0

l

� �i� 1

þ ^f 1;1us1

s0
l

� �i� 1

� si� 1
1
ð1 � uÞi� 1

s0 � ls1ð1 � uÞ
; ð16Þ

^f i;1 ¼ ðl
� 1
ð1 � uÞs1Þ

i� 1 ^f 1;1: ð17Þ

Remember that we are looking to identify the stable proportion of individuals at age i with

adaptive behavior. This is defined as:

q̂i ¼
^f i;1

^f i;1 þ ^f i;0
: ð18Þ

This expression depends implicitly upon p̂, the stable probability that a juvenile acquires

adaptive behavior. But p̂ depends in turn upon the q̂i values. Fortunately, we do not need to

determine p̂ at steady state, we just need to use it implicitly in our solution. Specifically, note

that the expressions for n0
1;1

and n0
1;0

in section 2 imply:

p̂ ¼
^f 1;1

^f 1;1 þ
^f 1;0

: ð19Þ
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Equivalently:

p̂
1 � p̂

¼
^f 1;1

^f 1;0

: ð20Þ

This allows us to substitute ^f 1;1 ¼
^f 1;0 p̂=ð1 � p̂Þ, yielding (for λ� 1):

q̂i ¼
p̂s0si1ðs0 � s1ð1 � uÞÞð1 � uÞi

si
0
s1ð1 � uÞðus1 � ð1 � p̂Þðs1 � s0ÞÞ � p̂s0ðs1 � s0Þsi1ð1 � uÞi

: ð21Þ

The expression for general λ is complicated and rather non-transparent (see analysis note-

book in GitHub repository). Now we can ask when q̂i > q̂i� 1, i.e., when older age classes are

expected to have higher proportions of adaptive information, yielding the condition (again for

λ� 1):

p̂ < 1 � u
s1

s1 � s0

: ð22Þ

Or equivalently, letting σ = s0/s1:

p̂ < 1 �
u

1 � s
: ð23Þ

This is the condition for older age classes to have larger proportions of adaptive behavior

and therefore the precondition for selection to favor ϕ> 1. Neither copying the old nor the

young is always beneficial. Rather, whether or not older individuals are better adapted depends

upon a balance of forces. The force of environmental change u is to reduce the proportion of

adaptive behavior in older age classes—as u increases, the condition above becomes increas-

ingly difficult to satisfy. The force of a survival advantage to adaptive behavior, in contrast, is

to increase adaptive behavior in older age classes. As σ decreases, corresponding to a larger

advantage to adaptive behavior, the condition is easier to satisfy.

This condition confirms the intuition behind the model and also provides quantitative

guidance on the relative strength of these forces. In Fig 3, we plot the threshold value of p̂
across all possible values of σ, for different values of u. The region below each curve corre-

sponds to combinations of p̂ and σ that lead to older age classes having higher proportions of

adaptive behavior. When environments change very rapidly, the adaptive behavior must be

hard to acquire for a juvenile and must provide large survival benefits for older individuals to

be better adapted. On the other hand, when environments are very stable, the above condition

is almost always fulfilled, such that older individuals are better adapted irrespective of other

factors.

3.4 The evolution of age-biased social learning in temporally and spatially

varying environments

According to Eq 23, juveniles should be more likely to copy the older of two individual if the

environment is relatively stable, adaptive behavior is hard to acquire and there is a large sur-

vival advantage to adaptive behavior. Which of these forces is strongest depends not only on

their parameters, σ = s0/s1 and u, but also on the frequency of adaptive behavior in the popula-

tion. To confirm and extend the analytical results, we analyze the stochastic individual-based

version of the model and explore how readily age-biased social learning actually evolves in

both temporally and spatially varying environments.
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Fig 4 shows proportions of social learners (top) and of individuals biasing their learning

towards older vs. younger individuals (“Old Bias”; bottom) for both the temporal (left) and

spatial model (right). Lighter colors indicate higher proportions. In the temporal model, social

learning evolves when the environment is relatively stable or when there is no or very little

advantage to possessing adaptive behavior (σ� 1). Notably, there are no regions in parameter

space that clearly favor copying the old. Instead, when the environment changes frequently,

but not rapidly enough to favor large numbers of individual learners, evolution favors a pro-

nounced “copy-the-young” bias.

In the spatial model, high proportions of social learning can also occur with much more

unstable environments (i.e., high migration rates) in simulations with strong viability selec-

tion. This is because, under such circumstances, selection continuously removes non-adaptive

variation brought in by migrants, such that most group members possess adaptive behavior

and copying is advantageous. Here, selection favors a slight “copy-the-old” bias in regions with

stable environments and/or large advantages to adaptive behavior, as predicted by the analyti-

cal model.

While u and σ are parameters that we can directly manipulate, p̂, the third variable in Eq

23, arises endogenously from different interacting forces within the model. The reason no

stronger “copy-the-old” bias can evolve in either model, is that in stable environments with

large benefits to adaptive behavior—conditions that would favor old bias—essentially everyone

will be adapted. As a consequence, any social learning strategy will result in the acquisition of

Fig 3. Threshold values as defined by expression 23 for different rates of environmental change u. Areas

underneath each curve indicate parameter combinations of p̂ (probability to acquire adaptive behavior) and σ
(strength of viability selection) for which older age classes are expected to have larger proportions of adaptive behavior.

https://doi.org/10.1371/journal.pone.0267204.g003
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adaptive behavior and there is a strong ceiling effect limiting the scope of demographic filter-

ing. So far, we have assumed there is no copying error, � = 0, i.e., social learners can perfectly

reproduce the behavior they observe in a model. This is a rather strong assumption and in real-

ity there might be many circumstances where juveniles fail to acquire a trait through social

learning [23]. S2 Fig shows results for simulations where social learning results in the success-

ful adoption of adaptive behavior in only 70% of learning events (i.e., � = 0.3). By lowering p̂,

this slight modification leads to the evolution of large proportions of “copy-the-old” bias in

both the temporal and spatial model. When social learning is imperfect, there is room for

Fig 4. Proportion of social learners (top) and old bias (bottom) for the temporal (left) and spatial (right) individual-based model. Squares represent different

parameter combinations for the rate of environmental change u / migration rate m and the strength of viability selection σ. Lighter colors indicate higher

proportions, darker colors lower proportions. Results for both models are averaged over the last 5000 time steps of 10 independent 7000 time-step simulations

per parameter combination. Other parameter values are: c = 0.05, z = 0.5, s1 = 0.9, μ = 0.005.

https://doi.org/10.1371/journal.pone.0267204.g004
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demographic filtering to increase proportions of adaptive behavior in older age classes which

turns older individuals into preferable models. This effect is also illustrated in Fig 5 which

plots the proportion of old bias against p̂ as calculated from simulation results. These results

confirm that individuals are less likely to copy older individuals if juveniles have high chances

to acquire adaptive behavior. This relationship holds for different combinations of u and σ.

Finally, to better understand the influence of the assumption that only juveniles learn and

to determine the generality of our findings, we run additional individual-based simulations

with temporally changing environments and now also let adults update their behavior with a

certain age-dependent probability. Specifically, we assume that the probability to learn

(through either individual or social learning) declines exponentially, with parameter β giving

the rate of age-related decline: e−β(Age−1). This formulation implies that juveniles (Age = 1)

always learn and adults become less likely to update their behavior as they become older. Fig 6

shows proportions of social learners (left) and old bias (right) for different age-related expo-

nential decline rates in learning. If juveniles are substantially more likely to learn compared to

older individuals (top rows), the results replicate previous findings where only juveniles could

learn. As more older adults learn each time step and, thus, are less likely to become outdated,

social learning becomes more prevalent in the population and learners progressively shift

towards older versus younger role models. However, even if all adults learn each time step

(bottom row), there is only a small region in parameter space—marked by moderate environ-

mental stability and strong viability selection—that favors a pronounced “copy-the-old” bias

even though older individuals have had more learning opportunities. Moreover, S3 Fig reveals

that adult learning does not qualitatively change results for analyses with social learning errors.

Overall, these analyses show that our results do not depend on a specific assumption about

Fig 5. Proportions of old bias conditional on p̂, the probability juveniles acquire adaptive behavior, for high (left), moderate (middle) and low (right)

environmental stability. Results are taken from temporal individual-based model. Each point represents mean across last 5000 timesteps of 10 independent 7000

timestep simulations per parameter combination. Colors/shapes indicate different values of σ, the survival advantage of adaptive behavior. In addition to u and σ,

we also varied the cost of individual learning (c = 0.05, c = 0.1, c = 0.2), the success rate of individual learning (z = 0.01, z = 0.5, z = 1) and the error rate of social

learning (� = 0, � = 0.1, � = 0.3), resulting in 972 parameter combinations. Lines (best linear fits) serve purely illustrative purposes.

https://doi.org/10.1371/journal.pone.0267204.g005
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Fig 6. Proportion of social learners (left) and old bias (right) for temporal individual-based model with adult learning. Rows show results for

different age-related exponential decline rates in learning; β = 1 means mostly juveniles learn, β = 0 means all age classes are equally able to

learn. Squares represent different parameter combinations for the rate of environmental change u and the strength of viability selection σ.

Lighter colors indicate higher proportions, darker colors lower proportions. Results are averaged over the last 5000 time steps of 10

independent 7000 time-step simulations per parameter combination. Other parameter values are: c = 0.05, z = 0.5, s1 = 0.9, μ = 0.005.

https://doi.org/10.1371/journal.pone.0267204.g006
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exclusively juvenile learning, but on the biologically plausible assumption that adults become

less likely to change their behavior as they age.

4 Discussion

Culture and demography jointly facilitate flexible human adaptation, yet most previous models

decided to leave out demographic complexity and studied the evolution of learning and cul-

tural dynamics in isolation. Making simplifying assumptions is of course important but even

relatively basic questions, such as “When does selection favor learning from the old?”, cannot

be answered or even formally asked unless age structure is taken into account. Here, we have

developed and analyzed the age-structured version of the classic Rogers model of the adaptive

value of culture. As such, our model also omits a good deal of real-world complexity. The goal

of theoretical modeling is not to approximate the natural world as closely as possible but to iso-

late the fundamental structure of an overly complex reality and apply formal logic to deduce

basic causal forces [21, 24–26].

First, we found that adding age structure does not resolve Rogers’ paradox. In populations

with age classes, pure social learning still does not increase mean population fitness compared

to individual learners alone. Theory has shown that for culture to increase population fitness,

it must make individual learning either more accurate or less costly [27]. Enquist and col-

leagues [28], for instance, showed that a strategy of “critical social learning”, where individuals

switch to individual learning if social learning proves unsatisfactory, outcompetes pure indi-

vidual and social learning strategies (see [29] for similar results investigating a “hybrid” learn-

ing strategy). In the present model, age structure can increase the adaptive value of culture,

such that a population can maintain higher proportions of copying, but social learning cannot

increase the fitness of individual learners. As both types of learners must per definition have

the same fitness at equilibrium, social learning cannot increase mean population fitness. In a

stochastic model with spatial population structure, Rendell and colleagues [30] found that,

under some circumstances, pure social learning can increase average fitness. They also show

that spatial structure can introduce a new paradox with social learning spreading even when it

decreases average fitness. Individuals in this model occupied different cells within a square

toroidal environment with both dispersal and learning occurring locally. This creates an “edge

effect” where social learners can spread because they have greater fitness in contact zones

between genotypes (due to higher chances to copy individual learners), even though their aver-

age fitness is lower. Future work should study the effects of different kinds of population struc-

ture and their interaction with each other and cultural dynamics.

Even though social learning did not increase mean population fitness, in combination with

demographic filtering, it enabled the population to reach much higher proportions of adapted

individuals. Demographic filtering increases proportions of adaptive behavior in older age

classes and thus constitutes a second adaptive force in addition to individual learning. While

this source of adaptive information is unavailable to populations of pure individual learners,

social learners can utilize it by copying older generations. Thereby, social learners can spread

to higher frequencies and simultaneously increase adaptation levels across age classes. Previous

work has investigated how social learning and culture help organisms adapt to changing envi-

ronments, but cultural adaptation is intimately related to the way organisms grow, reproduce

and die [31, 32]. Humans show highly developed abilities to learn from others, but we also

exhibit a prolonged childhood and juvenile period, shorter intervals between births, and a sig-

nificant post-reproductive lifespan. To explain how these conspicuous features might have

coevolved with our unique reliance on culture, we need more modeling work on the adaptive

interplay between social learning and different life history dynamics [15]. As steps in this
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direction, our results demonstrate that more realistic demographies can produce unique pre-

conditions for social learning to flourish, and cumulative cultural improvement can arise from

purely demographic processes in a model without built-in cumulative cultural evolution.

Our starting question was when natural selection would favor learning from older vs. youn-

ger individuals. This question has attracted considerable empirical attention (see [33] for a

review on model-based biases in social learning), yet we still lack a principled theoretical

framework to unify existing findings and generate new predictions. In developmental psychol-

ogy, 15-month-olds were reported to be more likely to copy behaviors performed by an adult

versus a two-year-old child [34] and three- and four-year-olds preferentially attended to infor-

mation provided by an adult over a child in a object labelling task [35]. Studies also showed

that children faithfully copy both relevant and irrelevant actions demonstrated by adult models

but only relevant actions demonstrated by children [36, 37]. Research in anthropology suggests

that hunter–gatherer social learning is primarily vertical under age 5 and oblique and horizon-

tal between the ages of 6 and 12 [38]. Finally, adult participants in a collective learning experi-

ment, which implemented population turnover through a schedule of migration and

environmental change, also preferentially copied more experienced (or “older”) group mem-

bers [39]. Taken together, these studies seem to imply that under most circumstances learners

preferentially attend to older, more experienced, individuals. Our modeling results show that

this can be a good strategy, especially when the environment is relatively stable, adaptive

behavior is hard to acquire and confers large survival advantages. However, we note that any

agreement with empirical results could of course also be due to missing factors. Many essential

skills in real animals, and humans in particular, take generations to evolve and years to

develop, which is particularly true for cumulative and causally opaque human culture [15, 40].

If adaptive behaviour takes time and practice to develop, older individuals may be more likely

to have mastered high skill levels and may therefore—not because of demographic filtering—

be preferable cultural role models.

Moreover, we found through simulation that due to ceiling effects in adaptive behavior a

“copy older over younger models” strategy can only reliably evolve when social learners occa-

sionally fail to copy adaptive behavior, even if adults can repeatedly update their behavior. The

opposite “copy younger over older models” strategy can be advantageous when the environ-

ment fluctuates frequently but still maintains large proportions of social learners. This means,

organisms might use a “copy-the-young” strategy as a compromise between individual and

social information use when only young individuals are likely to have updated their behavior

since the last change in the environment. Similar to our findings, the best strategies in the sec-

ond round of the social learning strategies tournament copied both successful and young dem-

onstrators [41, 42]. Individuals in their simulations could update behavior throughout their

lifetime, so one might expect older individuals would be better adapted due to more learning

opportunities. At each point in time, individuals could either exploit known behaviors to

obtain their rewards or learn a new behavior. As a consequence, individuals mostly learned

right after birth or after a change in the environment when they experienced a drop in payoffs.

Because births were random with respect to changes in the environment, juveniles were more

likely to acquire adaptive behavior after birth compared to adults who mostly learn when the

environment has just changed. In line with our simulation results including adult learning,

this shows that selection can favor learning from the young as long as there is some explora-

tion–exploitation trade-off between investment in learning and investment in reproduction

and not only when learning is restricted to pre-reproductive juveniles, the extreme form of

this trade-off.

Our model contributes to a greater theoretical understanding of how culture helps organ-

isms adapt, but it also generates several empirical predictions on age-biased social learning
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that researchers could start testing in both humans and other animals. For example, research-

ers could identify which behaviors in a given population are most strongly associated with lon-

gevity and investigate if there are differences in who juveniles learn those behaviors from. The

model predicts that age should more heavily be used as a cue for behaviors that improve survival.

Similarly, researchers could investigate how difficult it is to innovate a behavior or to adopt it

though social learning and determine whether learners rely more on age cues for behaviors that

are particularly hard to acquire (e.g., causally opaque and/or normative social information).

Finally, our model provides predictions about the influence of rates of environmental change:

Learners should rely more on older role models to learn behaviors for which relevant environ-

mental parameters are relatively stable and focus on younger models, instead, when parameters

change frequently. In general, predictions are expected to apply both to differences in relevant

parameters among populations and to different behavioral contexts within a population.

Summarizing, in this paper, we developed and analyzed an age-structured model of the evo-

lution of social learning. Even in such simple models, we find intricate interactions between

culture and demography that change our understanding of how cultural organisms learn and

adapt. We are just beginning to understand how such joint culture-demography-systems

might behave in general and further bodies of theory including strategic learning and cumula-

tive culture are necessary to untangle the co-evolutionary relationships between demography

and culture.
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