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Abstract

We present a new eigenvalue solver for the ideal magneto-hydrodynamics (MHD) equations in
axisymmetric equilibria that enables the robust and accurate description of eigenfunctions near the
magnetic axis. The algorithm is based on discrete differential forms in combination with C1-smooth
polar splines in the framework of isogeometric analysis. The symmetric discretization leads to a
Hermitian Alfvén part in the MHD force operator, mirroring the self-adjointness of the continuous
operator. Moreover, eigenfunctions are continuous across the magnetic axis by use of the polar
spline framework. We provide comparisons to the standard tensor product approach by selected
numerical examples and show that a) the polar spline framework correctly reproduces the tensor
product results sufficiently far away from the magnetic axis and that b) it gives better results close
to the magnetic axis with regards to back transformations to the physical (Cartesian) domain as
usually needed if a coupling to a particle-in-cell code is desired.
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1 Introduction

The linearized ideal magneto-hydrodynamic (MHD) equations are at the center of most stability
analyses concerning the design of nuclear fusion reactors such as tokamaks or stellarators. It is widely
agreed upon that MHD stability is necessary for sustained power production in these reactors, even
though MHD time scales are much shorter than envisioned confinement times. In its most basic form,
the ideal MHD eigenvalue problem reads [15]

−ω2ρeqU = F(U) , (1.1)

where ω2 denotes the eigenvalue, U (in some suitable space to be defined) is an eigen-solution and F
stands for the MHD force operator1,

F(U) = iω
{
∇p(U)−

[
∇×B(U)

]
×Beq − Jeq ×B(U)

}
, (1.2)

where

iω p(U) = ∇ · (peqU) + (γ − 1) peq∇ ·U ,

iωB(U) = ∇× (Beq ×U) ,

(1.3)

(1.4)

and Jeq = ∇×Beq denotes the equilibrium current density and γ = 5/3 the heat capacity ratio of an
ideal gas (we set the vacuum permeability µ0 = 1 for the time being). The equilibrium is characterized

1Note that F is independent of ω when plugging (1.3) and (1.4) in (1.2).
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by the force balance Jeq ×Beq = ∇peq. Equation (1.1) is also called the normal mode equation, as it
stems from the assumption that MHD unknowns have a time dependence ∼ e−iωt.

To obtain unique solutions to the normal mode equation (1.1), suitable boundary conditions must
be defined. In this article, we shall only consider fixed boundary modes, characterized by vanishing
normal components of U at the boundary of the considered domain,

U · n = 0 , (1.5)

where n is a outward pointing unit vector normal to the surface of the computational domain. Together
with the assumption that Beq · n = 0, it is easily verified that (1.4) ensures B · n = 0. Physically
speaking, we consider a plasma which is surrounded by a perfectly conducting wall.

It can be shown that the force operator F is self-adjoint, which means that eigenvalues ω2 are
purely real. As a consequence, stability transitions (Im(ω) = 0 → Im(ω) > 0) occur at ω = 0, which
is beneficial for computations since the real part of the transition point is known a priori [17]. From
a numerical point of view it would thus make a lot of sense to have a discrete, self-adjoint operator
force operator, i.e. a Hermitian eigenvalue problem.

There exist many sophisticated solvers for the solution of (1.1) in axissymmetric equilibria (where
Fourier modes in toroidal direction decouple), among the best-known being PEST [16], ERATO [18],
GATO [4], as well as KINX [12] to include divertor configurations, the code in [29] and MARS [5]
which include resistive effects, CASTOR [21] which can also handle 3D stellarator configurations and
LIGKA [23], which includes energetic particle effects. The conventional approach is to expand the
eigen-solutionU in a suitable, finite set of basis functions, usually Fourier basis in the poloidal direction
and spline or polynomial basis in the radial direction of the poloidal plane, and to solve the ensuing
discrete eigenvalue problem. A complication arises from the geometry of the problem, which has a
polar point at the magnetic axis where the Jacobian determinant of the mapping between logical and
physical coordinates vanishes. This usually requires some kind of work-around when computing the
push-forward of the solution to physical coordinates.

In this work we propose a new MHD eigenvalue solver that produces physical (i.e. pushed-forward)
solutions which are continuous across the magnetic axis, the continuity being enforced directly through
the basis functions in which U is represented. Moreover, compared to conventional approaches which
usually start from a symmetrized energy functional derived from (1.1), we directly solve the system
of linearized MHD equations composed of the fluid momentum balance equation, pressure equation
and induction equation and hence treat the perturbed fluid velocity U , the perturbed pressure p and
the perturbed magnetic field B as independent variables. This is advantageous in a sense that the
resulting discretized operators can directly be used in an initial value solver for the linear ideal MHD
equations and/or some extended model (e.g. hybrid MHD-kinetic models). As a consequence of this
strategy, our discretization leads to a ”partly Hermitian” force operator, meaning that the Alfvén part[
∇×B(U)

]
×Beq of F is self-adjoint on the discrete level, while the other parts are left non-Hermitian

and will be treated in a future work. With regards to time integration, the Hermitian Alfvén part
ensures exact conservation of energy for Alfvénic modes if supplemented with a suitable time integrator
(e.g. Crank-Nicolson [10]) and it is expected that this is beneficial with respect to long-term numerical
stability.

In more detail, our solver is based on discrete differential forms in combination with smooth polar
splines. Discrete differential forms, or finite element exterior calculus (FEEC) [2, 3], is a framework
for geometric discretization of PDEs which allows to encode properties such as curl grad = 0 and
div curl = 0 into conforming finite element (FE) spaces. More broadly, FEEC discretizations ensure
a discrete version of Stokes theorem, which is extremely beneficial when local conservation laws are
in play. On mapped domains, discrete differential forms are particularly powerful when used in the
context of isogeometric-analysis (IGA) [9]. In the IGA approach, the mapping describing the geometry
of the problem is represented in the same set of basis functions as the solution fields. The theory for
IGA in FEEC has been worked out in [7] using tensor product B-spline basis functions. Later, this
theory was extended to include also domains with a polar singularity [28, 27], leading to the notion
of ”smooth polar splines”. These polar splines, while constructed as linear combinations of tensor
product B-splines supported in the vicinity of the polar point (magnetic axis), can be made as regular
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as desired when pushed-forward to physical coordinates. In this work we use C1-polar splines for
practical reasons, as higher regularity would demand more computational resources without expecting
significant improvements in the results. C1-regularity is necessary, however, to guarantee the continuity
of the eigen-solutions of problem (1.1).

Our contribution is the formulation of a commuting de Rham diagram in case when the sub-
complex is spanned by 2D smooth polar spline bases presented in [27], which are supplemented with
a single toroidal Fourier harmonic in order to be applicable to 3D axisymmetric systems (a sub-
complex applicable to general 3D configurations based on a third B-spline basis in toroidal direction
was constructed in [25]). For this we define new polar projection operators that project into the polar
spline spaces, such that the commuting property holds. We achieve this by formulating ”polar degrees
of freedom” (polar DOFs), i.e. linear functionals on functions from the de Rham sequence that define
the conforming polar sub-complex. Just as the polar basis functions are linear combinations of tensor
product basis functions, the polar DOFs can be constructed as linear combinations of tensor product
DOFs. We provide explicit expressions for all reduction matrices needed in the process.

The article is organized as follows: First, the ideal MHD eigenvalue problem (1.1) is formulated
in terms of differential forms followed by the derivation of a weak formulation suitable for a finite
element discretization. The resulting weak formulation at the end of Section 2 is the basis for the
presented methodologies. For this, we first review the construction of finite-dimensional subspaces
of the continuous function spaces appearing in the weak formulations using C1-smooth polar splines
introduced in [27]. Based on this, Section 4 deals with the construction of commuting projectors from
the continuous spaces on the finite-dimensional subspaces. In Section 5, we apply the methods to the
continuous weak formulation to obtain a discrete eigenvalue problem that can be solved for a finite
set of eigenfrequencies and eigenfunctions. Finally, in Section 6, we discuss two numerical examples.
On the one hand, we investigate the behavior of eigenfunctions close to the magnetic axis and, on the
other hand, we perform a benchmark study with existing codes.

2 MHD with differential forms

As a first step, we shall write the MHD eigenvalue problem (1.1) in terms of differential forms (we
refer to e.g. [14] for a thorough introduction to differential geometry). Consider the logical domain
Ω̂ = [0, 1]3 with logical coordinates (s, θ, ϕ) ∈ Ω̂. The physical domain Ω ⊂ R3 is the image of Ω̂ under
the mapping

F : Ω̂→ Ω, (s, θ, ϕ) 7→ (x, y, z) = F (s, θ, ϕ). (2.1)

Hence, x := (x, y, z) are global or ”Cartesian” coordinates of Ω and η := (s, θ, ϕ) are local, curvilinear
coordinates of Ω. For the time being, the map F is assumed to be C1 everywhere (we can relax
this assumption later when dealing with polar domains). The Jacobian matrix, its determinant and
the metric tensor are denoted by DF ,

√
g := | det(DF )| and G := DF>DF , respectively. Scalar

functions like the plasma pressure or mass density can be written either as 0-forms or as 3-forms.
On the other hand, vector-valued functions like the magnetic field can be written either as vector
fields (contra-variant), as 1-forms (co-variant) or as 2-forms (pseudo-vectors). Table 1 summarizes the
relevant transformation formulae which we refer to as pull-back (Ω → Ω̂) and push-forward (Ω̂ → Ω)
operations. The differential operators grad, curl and div transform as

∇f = DF−> ∇̂f̂0 ,

∇× V =
1√
g
DF ∇̂ × (G V̂ ) =

1√
g
DF ∇̂ × V̂ 1 ,

∇ · V =
1√
g
∇̂ · (√g V̂ ) =

1√
g
∇̂ · V̂ 2 ,

(2.2a)

(2.2b)

(2.2c)

where ∇ = [ ∂x, ∂y, ∂z ] and ∇̂ = [ ∂s, ∂θ, ∂ϕ ] act on Cartesian and logical coordinates, respectively.
From (2.2) it is immediately evident that the gradient acts on 0-forms and transforms as a 1-form, the
curl acts on 1-forms and transforms as a 2-form, and the divergence acts on 2-forms and transforms as
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Table 1: Summary of pull-back and push-forward transformations between generic scalar and vector-
valued functions f = f(x) and V = [Vx(x), Vy(x), Vz(x)], respectively, and differential k-forms (0 ≤
k ≤ 3) under the map F : Ω̂→ Ω, η 7→ x = F (η).

pull-back push-forward

0-form f̂0(η) = f(F (η)) f(F (η)) = f̂0(η)

1-form
(co-variant)

V̂ 1 =

V̂
1

1 (η)

V̂ 1
2 (η)

V̂ 1
3 (η)

 = DF>

Vx(F (η))

Vy(F (η))

Vz(F (η))


Vx(F (η))

Vy(F (η))

Vz(F (η))

 = DF−>

V̂
1

1 (η)

V̂ 1
2 (η)

V̂ 1
3 (η)



2-form
(pseudo-vector)

V̂ 2 =

V̂
2

1 (η)

V̂ 2
2 (η)

V̂ 2
3 (η)

 =
√
g DF−1

Vx(F (η))

Vy(F (η))

Vz(F (η))


Vx(F (η))

Vy(F (η))

Vz(F (η))

 =
1√
g
DF

V̂
2

1 (η)

V̂ 2
2 (η)

V̂ 2
3 (η)



3-form f̂3(η) =
√
g f(F (η)) f(F (η)) =

1√
g
f̂3(η)

vector field
(contra-variant)

V̂ =

V̂1(η)

V̂2(η)

V̂3(η)

 = DF−1

Vx(F (η))

Vy(F (η))

Vz(F (η))


Vx(F (η))

Vy(F (η))

Vz(F (η))

 = DF

V̂1(η)

V̂2(η)

V̂3(η)


a 3-form (compare with push-forward operations in Table 1). Cross products are transformed using
the formula MV ×MW = det(M)M−>(V ×W ) for some invertible matrix M ∈ R3×3. For example,
the cross product of two 2-forms transforms as

V ×W =
1√
g
DF−>

(
V̂ 2 × Ŵ 2

)
. (2.3)

Using the transformation formulae listed in Table 1 together with (2.2) and (2.3) it is straightfor-
ward to write the MHD eigenvalue problem (1.1) in terms of differential forms. We choose to express
ρeq, peq and p as 3-forms and Jeq, Beq, B and U as a 2-forms. While the choices for the 3-forms,
the current density and the magnetic fields are motivated by physics arguments, namely being (flux)
densities, the reason for the choice of U being a 2-form is the boundary condition (1.5). It is easily
understood that the second and the third basis vector of 2-forms (columns of DF/

√
g) are always

tangential to the surface at s = 1. Therefore, forcing the first component of a 2-form to zero at the
boundary directly leads to the boundary condition (1.5). Using the fact that equilibrium quantities
are independent of the angle-like coordinate ϕ in axisymmetric systems, we consider a single Fourier
mode with wave number k = 2π ·n (n ∈ Z) in ϕ-direction for the perturbed fields. Hence, we introduce
the following notations2:

ρeq := ρ̂3
eq(s, θ) , peq := p̂3

eq(s, θ) , Beq := B̂2
eq(s, θ) , Jeq := Ĵ2

eq(s, θ) ,

Û2 = U(s, θ) eikϕ , p̂3 = p(s, θ) eikϕ , B̂2 = B(s, θ) eikϕ .

(2.4)

(2.5)

Note that we use the superscript (·)eq for the equilibrium forms to avoid confusions with the ”physical”
equilibrium fields (e.g. peq = peq(x) but peq = p̂3

eq(s, θ)). The unknown functions U, p and B are

2We remark the slight abuse of notation for p. Until now, p = p(x) has denoted the pressure as a function of the
Cartesian coordinates (x, y, z), whereas in the remainder of this article, p = p(s, θ) shall denote the ”poloidal” part of the
3-form pressure p̂3.
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defined on the poloidal domain (s, θ) ∈ Ω̂P = [0, 1]2 and are generally complex-valued. The ”poloidal”
gradient operator is ∇̂P := [∂s, ∂θ, ik] and can be used in (2.2) in place of ∇̂ when using the ansatz
(2.5). Finally, although not appearing in (1.1), we additionally define the variables

f̂0 = f(s, θ) eikϕ, Â1 = A(s, θ) eikϕ , (2.6)

which will serve as dummy variables for 0-forms and 1-forms in the remainder of this article.
We choose to write the MHD momentum conservation law in weak form. In this way we mimic

the implementation used in the STRUPHY hybrid code and preserve certain symmetries of the MHD
operator [19], such as the skew-symmetry in the shear-Alfvén subsystem. For this, we define the
”poloidal” L2-scalar products

(f, h)0,P :=

∫
Ω̂P

f h∗
√
g ds dθ ,

(A,C)1,P :=

∫
Ω̂P

A>G−1 C∗
√
g ds dθ ,

(B,K)2,P :=

∫
Ω̂P

B>GK∗
1√
g

ds dθ ,

(p, r)3,P :=

∫
Ω̂P

p r∗
1√
g

ds dθ ,

(2.7a)

(2.7b)

(2.7c)

(2.7d)

where (·)∗ denotes the complex conjugate. Let us remark that we once more used the assumption
of axial symmetry meaning that the metric tensor G and its determinant g are real-valued and inde-
pendent of the angle-like coordinate ϕ. Details shall be discussed in Section 3.2. Furthermore, let us
introduce the function spaces

V 0 := H2(Ω̂P )
∇̂P−−→ V 1 := H1(curl, Ω̂P )

∇̂P×−−−→ V 2 := H1(Ω̂P )
∇̂P ·−−→ V 3 := L2(Ω̂P ) , (2.8)

which form a de Rham complex with enhanced smoothness compared to the more common L2 de
Rham complex with minimal regularity (also called Stokes complex, see e.g. [20] for more details).
The enhanced smoothness is needed for obtaining a well-posed weak formulation of the linearized
MHD equations, which shall be given in a moment. To properly account for boundary conditions at
s = 1 (∂Ω), we additionally define the spaces

V 0
0 :=

{
f ∈ V 0, f(s = 1, θ) = 0 ∀ θ

}
,

V 1
0 :=

{
A ∈ V 1, A2(s = 1, θ) = 0, A3(s = 1, θ) = 0 ∀ θ

}
,

V 2
0 :=

{
B ∈ V 2, B1(s = 1, θ) = 0 ∀ θ

}
,

(2.9a)

(2.9b)

(2.9c)

which ensure that elements in V 1
0 that are pushed-forward according to Table 1 have vanishing tan-

gential components on ∂Ω. Moreover, as explained previously, elements in V 2
0 that are pushed-forward

have vanishing normal components on ∂Ω.
To finally obtain the weak eigenvalue formulation, we multiply (1.1) with the test function K∗

(which lives in the same space as U), integrate over the computational domain Ω and perform inte-
gration by parts in the first and second term on the right-hand side of the MHD momentum balance
equation. This is followed by transformation to differential forms (with the help of Table 1, (2.2) and
(2.3)) and insertion of the ansatz (2.5). This leads to the following weak eigenvalue problem: find
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non-trivial ω ∈ C and (U, p, B) ∈ V 2
0 × V 3 × V 2

0 such that

iω

(
ρeq

√
g

U, K

)
2,P

= −
(
p, ∇̂P ·K

)
3,P
−
(

B, ∇̂P ×
(

1√
g

Beq ×K

))
2,P

−
(
K, G−1 (Jeq ×B)

)
2,P

∀ K ∈ V 2
0 ,

iω p = ∇̂P ·
(
peq

√
g

U

)
+ (γ − 1)

peq

√
g
∇̂P ·U in V 3 ,

iωB = ∇̂P ×
(

1√
g

Beq ×U

)
in V 2

0 .

(2.10a)

(2.10b)

(2.10c)

The two boundary terms appearing on the right-hand side of (2.10a) when integrating by parts vanish
due to the choice K ∈ V 2

0 and the assumption that Beq ·n = 0. Moreover, we assume the equilibrium
fields ρeq and peq and the components of Beq and Jeq to be in C∞ for simplicity. As already stated
in the Introduction, system (2.10) is the basis for the methodologies presented in this article and the
aim is to find a corresponding discrete version.

3 Discrete differential forms on polar domains

3.1 Review on tensor product B-splines

Let Ωs = Ωθ = [0, 1] with partitions defined by 0 = s0 < s1 . . . < sns−qs = 1 and 0 = θ0 < θ1 . . . <
θnθ = 1 such that the number of cells (or elements) is ns−qs and nθ, respectively. Uni-variate B-spline
bases of degree qs ≥ 1 and qθ ≥ 1 are defined via the knot sequences

Ts := ( 0, . . . , 0︸ ︷︷ ︸
qs times

, s0, s1, . . . , sns−qs−1, sns−qs , 1, . . . , 1︸ ︷︷ ︸
qs times

) ,

Tθ := ( θ−qθ , . . . , θ−1︸ ︷︷ ︸
qθ points

, θ0, θ1, . . . , θnθ−1, θnθ , θnθ+1, . . . , θnθ+qθ︸ ︷︷ ︸
qθ points

) .

(3.1)

(3.2)

For details on B-splines, see e.g. [11, 24]. We construct clamped B-splines in Ωs and periodic B-splines
in Ωθ. In the periodic case, we have θ−i = θnθ−i − 1 and θnθ+i = θi + 1 for i ∈ {1, . . . , qθ} and the
multiplicity of each knot is 1. The knot sequence Tθ containing nθ + 2qθ + 1 distinct cell interfaces
yields nθ + qθ shifted B-splines of identical shape that are Cqθ−1 everywhere. The last qθ B-splines are
identified with the first qθ B-splines to ensure periodicity. This yields the final number of nθ linearly
independent periodic B-spline basis functions in Ωθ, denoted by N qθ

i (θ) with i ∈ {0, . . . , nθ − 1}. In
the clamped case, the knot sequence Ts with ns + qs + 1 points yields ns B-splines, where all, except
for the first and the last B-spline, are Cqs−1 everywhere. Hence, we obtain ns linearly independent
clamped B-spline basis functions in Ωs, denoted by N qs

i (s) with i ∈ {0, . . . , ns − 1}. Since the first
and the last knot have multiplicity qs + 1, the first and the last B-spline are interpolatory at s = 0
and s = 1, respectively:

N qs
0 (0) = N qs

ns−1(1) = 1 , N qs
i>0(0) = N qs

i<ns−1(1) = 0 . (3.3)

This allows for an efficient construction of spaces of the form (2.9) by simply removing contributions
from the last spline N qs

ns−1(s). The derivatives of B-splines N qs
i (s) and N qθ

i (θ) can be expressed as

d

ds
N qs
i (s) = qs

(
N qs−1
i (s)

Ts,i+qs − Ts,i
− N qs−1

i+1 (s)

Ts,i+qs+1 − Ts,i+1

)
, N qs−1

0 (s) = N qs−1
ns (s) = 0 ,

d

dθ
N qθ
i (θ) = qθ

(
N qθ−1
i (θ)

Tθ,i+qθ − Tθ,i
− N qθ−1

i+1 (θ)

Tθ,i+qθ+1 − Tθ,i+1

)
,

(3.4)

(3.5)

6



where N qs−1
i (s) and N qθ−1

i (θ) are lower degree B-splines created from the same knot sequences (3.1)
and (3.2), respectively. It is convenient to define the lower degree, re-scaled B-splines (also called
M-splines)

Dqs
i (s) := qs

N qs−1
i+1 (s)

Ts,i+qs+1 − Ts,i+1
, Dqθ

i (θ) := qθ
N qθ−1
i+1 (θ)

Tθ,i+qθ+1 − Tθ,i+1
, (3.6)

where i ∈ {0, . . . , ds − 1} with ds = ns − 1 for Dqs
i (s). In the periodic case the last qθ − 1 M-splines

that have a non-vanishing support in Ωθ are once more identified with the first qθ − 1 M-splines. This
yields the total number of dθ = nθ linearly independent periodic M-splines. Using (3.6) the recursion
formulae for the derivatives (3.4) become

d

ds
N qs
i (s) = Dqs

i−1(s)−Dqs
i (s) , Dqs

−1(s) = Dqs
ns−1(s) = 0 ,

d

dθ
N qθ
i (θ) = Dqθ

i−1(θ)−Dqθ
i (θ) .

(3.7)

(3.8)

Finally, we define the so-called Greville points [13], denoted by (si)
ns−1
i=0 and (ti)

nθ−1
i=0 :

si :=
1

qs

i+qs∑
j=i+1

Ts,j , ti :=
1

qθ

i+qθ∑
j=i+1

Tθ,j . (3.9)

These points will serve as interpolation points in Section 4 when projection operators on B-spline spaces
based on interpolation and histopolation are introduced. A Greville point is generally located close
the maximum of the B-spline with the same index. Typical examples of uni-variate B-spline bases are
plotted in Figure 1 for the clamped (top left) and the periodic (bottom left) case. The corresponding
lower degree, re-scaled B-splines (here called M-splines) are plotted in the right column. The splines
are created from equally spaced cell interfaces (here called break points) and the Greville points (3.9)
are shown as well (red dots).

Based on the introduced uni-variate B-spline bases in both directions s and θ, we define the
following function spaces:

V s,0
h :=

{
f(s) =

ns−1∑
i=0

fiN
qs
i (s) , fi ∈ C

}
, dimV s,0

h = ns ,

V s,1
h :=

{
f(s) =

ds−1∑
i=0

fiD
qs
i (s) , fi ∈ C

}
, dimV s,1

h = ds = ns − 1 ,

V θ,0
h :=

{
g(θ) =

nθ−1∑
i=0

giN
qθ
i (θ) , gi ∈ C

}
, dimV θ,0

h = nθ ,

V θ,1
h :=

{
g(θ) =

dθ−1∑
i=0

giD
qθ
i (θ) , gi ∈ C

}
, dimV θ,1

h = dθ = nθ .

(3.10a)

(3.10b)

(3.10c)

(3.10d)

For fh ∈ V s,0
h and gh ∈ V θ,0

h we have for the derivatives, thanks to (3.7) and (3.8),

f ′h =

ns−1∑
i=0

fi(D
qs
i−1 −D

qs
i ) =

ds−1∑
i=0

(fi+1 − fi)Dqs
i ∈ V s,1

h ,

g′h =

nθ−1∑
i=0

gi(D
qθ
i−1 −D

qθ
i ) =

dθ−1∑
i=0

(gi+1 − gi)Dqθ
i ∈ V θ,1

h .

(3.11)

(3.12)

Hence, we can define the derivative matrices Gs ∈ Rds×ns and Gθ ∈ Rdθ×nθ with entries

Gsij :=


−1 for j = i ,

1 for j = i+ 1 ,

0 else ,

Gθij :=


−1 for j = i ,

1 for j = mod(i+ 1, nθ) ,

0 else ,

(3.13)
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Figure 1: B-spline basis functions of degree qs = qθ = 2 on a uniform grid with ns − qs = nθ = 6 cells
defined by equally spaced break points (black crosses). Shown are clamped (top left) and periodic
(bottom left) B-splines. The corresponding lower degree (qs − 1 = qθ − 1 = 1), re-scaled B-splines
(here called M-splines) are plotted for the clamped (top right) and the periodic (bottom right) case.
The corresponding Greville points (3.9) are shown as well (red dots).

respectively. By additionally stacking FE coefficients and basis functions on top of each other (bold
symbols),

f := (fi)
ns−1
i=0 , Ns := (N qs

i )ns−1
i=0 , Ds := (Dqs

i )ds−1
i=0 ,

g := (gi)
nθ−1
i=0 , Nθ := (N qθ

i )nθ−1
i=0 , Dθ := (Dqθ

i )dθ−1
i=0 ,

(3.14)

(3.15)

functions fh ∈ V s,0
h and gh ∈ V θ,0

h and their derivatives f ′h ∈ V
s,1
h and g′h ∈ V

θ,1
h can compactly be

written as

fh = f>Ns , f ′h = (Gs f)>Ds ,

gh = g>Nθ , g′h = (Gθ g)>Dθ ,

(3.16)

(3.17)

respectively.
To represent two-dimensional functions, let us define the tensor product spaces

V 0
h :=

fh(s, θ) =

ns−1∑
i=0

nθ−1∑
j=0

f(ij)N
qs
i (s)N qθ

j (θ) , f(ij) ∈ C

 , dimV 0
h = nsnθ ,

V 1,1
h :=

fh(s, θ) =

ds−1∑
i=0

nθ−1∑
j=0

f(ij)D
qs
i (s)N qθ

j (θ) , f(ij) ∈ C

 , dimV 1,1
h = dsnθ ,

V 1,2
h :=

fh(s, θ) =

ns−1∑
i=0

dθ−1∑
j=0

f(ij)N
qs
i (s)Dqθ

j (θ) , f(ij) ∈ C

 , dimV 1,2
h = nsdθ ,

V 3
h :=

fh(s, θ) =

ds−1∑
i=0

dθ−1∑
j=0

f(ij)D
qs
i (s)Dqθ

j (θ) , f(ij) ∈ C

 , dimV 3
h = dsdθ .

(3.18a)

(3.18b)

(3.18c)

(3.18d)
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Two-dimensional indices are ”flattened” in row-major ordering. Hence, in the definition of the spaces,
we introduced the flattened-index notation (ij) which enables us to stack tensor product basis functions
(and coefficients) in the following way:

Λ0 := (Λ0
(ij)) ∈ Rnsnθ , Λ0

(ij) := N qs
i N

qθ
j ,

with (ij) = nθ i+ j , 0 ≤ i < ns , 0 ≤ j < nθ ,

Λ3 := (Λ3
(ij)) ∈ Rdsdθ , Λ3

(ij) := Dqs
i D

qθ
j ,

with (ij) = dθ i+ j , 0 ≤ i < ds , 0 ≤ j < dθ .

(3.19)

(3.20)

Moreover, we introduce the two product spaces

V 1
h := V 1,1

h × V 1,2
h × V 0

h , dimV 1
h = dsnθ + nsdθ + nsnθ ,

V 2
h := V 1,2

h × V 1,1
h × V 3

h , dimV 2
h = nsdθ + dsnθ + dsdθ ,

(3.21a)

(3.21b)

with their respective stacked vector valued basis functions

~Λ1 := [ ~Λ1,1, ~Λ1,2, ~Λ1,3 ] , ~Λ2 := [ ~Λ2,1, ~Λ2,2, ~Λ2,3 ] , (3.22)

where

~Λ1,µ := (~Λ1,µ
(ij)) ,

~Λ1,1
(ij) :=

D
qs
i N

qθ
j

0

0

 , ~Λ1,2
(ij) :=

 0

N qs
i D

qθ
j

0

 , ~Λ1,3
(ij) :=

 0

0

N qs
i N

qθ
j

 ,

~Λ2,µ := (~Λ2,µ
(ij)) ,

~Λ2,1
(ij) :=

N
qs
i D

qθ
j

0

0

 , ~Λ2,2
(ij) :=

 0

Dqs
i N

qθ
j

0

 , ~Λ2,3
(ij) :=

 0

0

Dqs
i D

qθ
j

 .

(3.23)

(3.24)

We point to the difference between the bases Λk (k = 0, 3) and ~Λk (k = 1, 2), the former being used for
scalar functions while the latter is used for vector valued functions with values in C3. The components
µ = 1, 2, 3 indicated by the arrow are usually written with an upper index, whereas FE indices referring
to the bold symbol are lower indices. Discrete functions can now compactly be written as

V 0
h 3 fh = S0[ f ] = f>Λ0 , f := (f(ij)) ∈ Cnsnθ ,

V 1
h 3 Ah = S1[~a ] = ~a>~Λ1 , ~a :=

a1 := (a1
(ij))

a2 := (a2
(ij))

a3 := (a3
(ij))

 ∈ C(dsnθ+nsdθ+nsnθ) ,

V 2
h 3 Bh = S2[ ~b ] = ~b>~Λ2 , ~b :=

b1 := (b1(ij))

b2 := (b2(ij))

b3 := (b3(ij))

 ∈ C(nsdθ+dsnθ+dsdθ) ,

V 3
h 3 ph = S3[ p ] = p>Λ3 , p := (p(ij)) ∈ Cdsdθ ,

(3.25)

(3.26)

(3.27)

(3.28)

where the operators Sk : C dimV kh → V k
h (0 ≤ k ≤ 3) map FE coefficients to the corresponding spline

space V k
h . With regards to derivatives (grad, curl and div), let us introduce the tensor product matrices

Ds := Gs ⊗ 1θ , Dθ := 1s ⊗ Gθ , (3.29)
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where ⊗ denotes the Kronecker product of two matrices. The size of the identity matrices 1 will be
adapted to the corresponding space it acts on; hence 1s = 1ns or 1s = 1ds and accordingly for 1θ.
Thus, the following derivatives are easily computed in view of (3.11) and (3.12),

∇̂P fh = (G f)>~Λ1 ∈ V 1
h , G :=

 Ds

Dθ

ik 1

 ,

∇̂P ×Ah = (C~a)>~Λ2 ∈ V 2
h , C :=

 0 −ik 1 Dθ

ik 1 0 −Ds

−Dθ Ds 0

 ,
∇̂P ·Bh = (D ~b)>Λ3 ∈ V 3

h , D :=
[

Ds Dθ ik 1
]
,

(3.30)

(3.31)

(3.32)

where 1 = 1s⊗ 1θ with appropriate sizes of 1s and 1θ as explained before. Note that we use the same
symbol C for the discrete curl matrix (3.31) and the space of complex numbers. By construction, it is
immediately evident that

C G = 0 , D C = 0 , (3.33)

which allows the construction of the discrete cochain complex

V 0
h

G−→ V 1
h

C−→ V 2
h

D−→ V 3
h , (3.34)

meaning that the image of the previous operator (either G or C) is in the kernel of the next operator
(either C or D).

3.2 Mappings with polar singularity

Let us make two generic assumptions on the mapping F : (s, θ, ϕ) 7→ (x, y, z) = F (s, θ, ϕ) introduced
in Section 2:

1. Axial symmetry: the metric tensor G = DF>DF is independent of the angle-like coordinate ϕ.

2. There is a polar singularity at s = 0, i.e. for fixed ϕ = ϕ0 the function F (0, θ, ϕ0) is independent
of θ such that the Jacobian determinant detDF (s = 0, θ) = 0 but detDF (s > 0, θ) 6= 0.

As prototypical examples we consider mappings of the form

Fcyl(s, θ, ϕ) :=

R(s, θ)

2πR0 ϕ

Z(s, θ)

 , Ftor(s, θ, ϕ) :=

R(s, θ) cos(2πϕ)

R(s, θ) sin(2πϕ)

Z(s, θ)

 , (3.35)

where the second mapping Ftor represents a toroidal configuration with ϕ being the geometrical toroidal
angle. In contrast to that, the first mapping Fcyl represents a straight configuration with length 2πR0

such that ϕ plays the role of the (normalized) axial coordinate of a cylindrical configuration (typically
z, but y in the present case). In both cases the ”poloidal” mapping Fpol is such that

Fpol : (s, θ) 7→ (R,Z), DFpol|s=0 =

[
∂R
∂s

∂R
∂θ

∂Z
∂s

∂Z
∂θ

]∣∣∣∣∣
s=0

=

[
∂R
∂s

∣∣
s=0

0
∂Z
∂s

∣∣
s=0

0

]
. (3.36)

The simplest example would be the standard square-to-disc mapping

R(s, θ) = R0 + a s cos(2πθ) ,

Z(s, θ) = Z0 + a s sin(2πθ) ,

(3.37a)

(3.37b)
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where (R0, Z0) is the center of the disc and a its radius. In case of the toroidal mapping (3.35), R0 and
a have the meaning of the major and minor radius of the torus, respectively. However, other mappings
with more complicated poloidal cross sections can be considered as well as long as (3.36) holds. In
view of applications in fusion research, the functions R(s, θ) and Z(s, θ) are usually chosen in a way
that (s, θ) become magnetic flux coordinates, i.e. for fixed s = s0, the curve γ(θ) = (R(s0, θ), Z(s0, θ))
defines a closed magnetic flux surface corresponding to a given MHD equilibrium. A common choice
for the angle-like coordinate θ is then to define it in a way that magnetic field lines become straight
when plotted in the (θ, ϕ)-plane. However, other choices can be made as well.

With regards to differential forms that are obtained by pull-back operations under polar mappings
with the above stated properties, one can deduce the following properties for differential forms at the
pole:

polar 0-forms : f(s = 0, θ) = f0 ∀ θ ,

polar 1-forms : A2(s = 0, θ) = 0 , A3(s = 0, θ) = A0 ∀ θ ,

polar 2-forms : B1(s = 0, θ) = 0 , B3(s = 0, θ) = 0 ∀ θ ,

polar 3-forms : p(s = 0, θ) = 0 ∀ θ .

(3.38a)

(3.38b)

(3.38c)

(3.38d)

The polar spline framework for discrete differential forms laid out in [27] is designed in way that it
meets the requirements (3.38) while keeping the discrete cochain complex property (3.34). Moreover,
the push-forward of a polar spline is sufficiently regular at the pole (C1 for 0-forms in this work for
instance). The framework is based on the isogeometric approach, which means that the mapping Fpol

must be represented in the same B-spline basis that is used to construct the space V 0
h in (3.18a), i.e.

V 0
h 3 Rh(s, θ) = S0[ R ] = R0 +

ns−1∑
i=1

nθ−1∑
j=0

R(ij)N
qs
i (s)N qθ

j (θ) ,

V 0
h 3 Zh(s, θ) = S0[ Z ] = Z0 +

ns−1∑
i=1

nθ−1∑
j=0

Z(ij)N
qs
i (s)N qθ

j (θ) .

(3.39a)

(3.39b)

The FE coefficients R := (R(ij)) and Z := (Z(ij)) are called the control points of the poloidal mapping;
they can be obtained by interpolation of given analytical expressions like (3.37), or, once more in
view of fusion research, by interpolation of a given poloidal magnetic flux function ψ = ψ(R,Z), e.g.
obtained by an MHD equilibrium code, in a way that (s, θ) become magnetic flux coordinates. Note
that in (3.39) we used that R(0j) = R0 and Z(0j) = Z0 ∀j representing the pole (R0, Z0) on the physical
domain.

3.3 Discrete polar 0-forms

The details of constructing the C1-continuous polar basis for the V 0
h -space from spline mappings such

as (3.39) are given in [28, 26] and will not be repeated here. We start directly from the result and
review the derivation of basis functions for the other spaces in the discrete de Rham sequence, namely
V k
h (0 ≤ k ≤ 3). These spaces will be C0 at the pole s = 0 because a) first derivatives are, and b)

mixed first derivatives will turn out to be zero. According to [28], a C1-continuous polar differential
0-form fh is represented as

fh(s, θ) =

2∑
`=0

f`

1∑
i=0

nθ−1∑
j=0

χ`ijN
qs
i (s)N qθ

j (θ)︸ ︷︷ ︸
=:Λ0

` (s,θ)

+
∑
i>1,j

f(ij)N
qs
i (s)N qθ

j (θ) , (3.40)

where the meaning of (ij) is given in (3.46). The three new polar basis functions are denoted by Λ0
`

with ` = 0, 1, 2; they are obtained by linear combination of i = 0 and i = 1 tensor product basis
functions. The dimension of the polar subspace is thus

n0 := (ns − 2)nθ + 3 . (3.41)
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Figure 2: The three new basis functions Λ0
0 , Λ0

1 and Λ0
2 for the example qs = qθ = 3, ns = 4 and

nθ = 12 on the logical domain (upper row) and physical domain (lower row) using the generic mapping
Fcyl in (3.35) with (3.37), R0 = 2 and a = 1. Any linear combination of these three basis functions is
single-valued at the pole and continuously differentiable across the pole. The pole (R0, Z0) is marked
with a cross

Using the abbreviations ∆R1j := R(1j) −R0 and ∆Z1j := Z(1j) − Z0, the polar extraction coefficients
are given by

` = 0 : χ0
0j :=

1

3
, χ0

1j :=
1

3
+

2

3τ
∆R1j ,

` = 1 : χ1
0j :=

1

3
, χ1

1j :=
1

3
− 1

3τ
∆R1j +

√
3

3τ
∆Z1j ,

` = 2 : χ2
0j :=

1

3
, χ2

1j :=
1

3
− 1

3τ
∆R1j −

√
3

3τ
∆Z1j .

(3.42a)

(3.42b)

(3.42c)

They are the barycentric coordinates of the control points R(ij) and Z(ij) with i = 0 and i = 1 with
respect to an equilateral triangle with vertices

v1 := (τ +R0, 0), v2 :=

(
R0 −

τ

2
, Z0 +

√
3

2
τ

)
, v3 :=

(
R0 −

τ

2
, Z0 −

√
3

2
τ

)
. (3.43)

The parameter τ is chosen such that the triangle encloses the pole (R0, Z0) and the first ring of control
points (R1j , Z1j). This leads to the definition

τ := max

[
max
j

(−2∆R1j) ,max
j

(
∆R1j −

√
3 ∆Z1j

)
,max

j

(
∆R1j +

√
3 ∆Z1j

)]
. (3.44)

The three new basis functions are plotted in Figure 2 for cubic B-splines both on the logical (upper
row) and physical (lower row) domain using the generic mapping Fcyl in (3.35) with (3.37) (cylinder).
Unlike pure tensor product basis functions, each of the new polar basis functions has a support that
overlaps the pole. Moreover, using the property (3.3) of clamped B-splines, it is easily verified that
(3.40) satisfies

fh(s = 0, θ) =
1

3
(f0 + f1 + f2), (3.45)
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i.e. polar 0-forms are by construction single-valued at the pole such that the requirement (3.38a) is
met. Similar to the tensor product basis functions (3.19), we introduce the stacking notation

Λ0 :=
(

Λ0
0 , Λ0

1 , Λ0
2 ,Λ

0
(ij)

)
∈ Rn

0
, Λ0

(ij)
:= N qs

i N
qθ
j ,

with (ij) = nθ (i− 2) + j + 3 , 1 < i < ns , 0 ≤ j < nθ .
(3.46)

Hence, the new set of basis functions Λ0 contains as its first three entries the three new polar basis
functions, followed by standard tensor product basis functions with index i > 1. Based on this new
set of basis functions, the polar subspace V 0

h is readily defined as

V 0
h := span

(
Λ0
)
⊂ V 0

h , dimV 0
h = n0 , (3.47)

and moreover, similar to (3.25), polar spline functions fh ∈ V 0
h can compactly be written as

fh = S0[ f ] = f
>

Λ0 , f :=
(
f0, f1, f2, f(ij)

)
∈ Cn

0
. (3.48)

Finally, we define the polar extraction operator

E0 :=

[
X0 0

0 1(ns−2)nθ

]
∈ Rn

0×nsnθ , X0 ∈ R3×2nθ , X0
`j :=

χ
`
0j 0 ≤ j < nθ ,

χ`1(j−nθ) nθ ≤ j < 2nθ ,
(3.49)

where the matrix X0 performs the linear combination of the first 2nθ tensor product basis functions in
Λ0 to yield the three new polar splines Λ0

` (` = 0, 1, 2). Therefore, the complete new basis Λ0 = E0Λ0

and

fh = f
>

Λ0 = f
>

E0Λ0 = f>Λ0 . (3.50)

Consequently, for given polar FE coefficients f , the corresponding tensor product FE coefficients are
obtained via f = (E0)> f . It should be noted that the inverse operation, i.e. going from f to f , is not
unique and can be achieved through any kind of projection V 0

h → V 0
h. Such a projection has been

identified in [26], for instance. In other words, V 0
h is a subspace of V 0

h comprised of those elements

with FE coefficients of the form f = (E0)>f for any f ∈ Cn
0
.

3.4 Discrete polar gradient operator and 1-forms

When applying the ”poloidal” gradient operator ∇̂P to a polar 0-form, the result must be a polar
1-form whose coefficients are obtained via the application of the polar gradient matrix G, formally

∇̂P fh =

∂sfh∂θfh

ik fh

 = ( G f )> ~Λ1 . (3.51)

The goal of this section is to identify on the one hand the suitable basis ~Λ1 and on the other hand
the form of the polar gradient matrix G.

Let us start by computing the partial derivatives of (3.40). Using the recursion formulae (3.7) and
(3.8) in both directions s and θ we obtain

∂fh
∂s

=
2∑
`=0

f`

1∑
i=0

nθ−1∑
j=0

χ`ij(D
qs
i−1 −D

qs
i )N qθ

j +
∑
i>1,j

f(ij)(D
qs
i−1 −D

qs
i )N qθ

j ,

∂fh
∂θ

=

2∑
`=0

f`

1∑
i=0

nθ−1∑
j=0

χ`ijN
qs
i (Dqθ

j−1 −D
qθ
j ) +

∑
i>1,j

f(ij)N
qs
i (Dqθ

j−1 −D
qθ
j ) .

(3.52)

(3.53)
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We can sort this in terms of tensor product basis functions that span the space V 1
h :

∂fh
∂s

=

2∑
`=0

f`

nθ−1∑
j=0

(χ`1j − χ`0j)Dqs
0 N

qθ
j +

nθ−1∑
j=0

(
f(2j) −

2∑
`=0

f`χ
`
1j

)
Dqs

1 N
qθ
j

+
∑
i>1,j

(f(i+1j) − f(ij))D
qs
i N

qθ
j ,

∂fh
∂θ

=

2∑
`=0

f`

1∑
i=0

dθ−1∑
j=0

(χ`ij+1 − χ`ij)N qs
i D

qθ
j +

∑
i>1,j

(f(ij+1) − f(ij))N
qs
i D

qθ
j .

(3.54)

(3.55)

Before further simplifying these expressions, we note some important properties of the extraction
coefficients (3.42):

1. χ`0j+1 − χ`0j = 0 ∀ j, ` ,

2.

2∑
`=0

f` (χ`1j − χ`0j) =

2∑
`=1

(f` − f0)(χ`1j − χ`0j) ∀ j ,

3.
2∑
`=0

f` (χ`1j+1 − χ`1j) =

2∑
`=1

(f` − f0)(χ`1j+1 − χ`1j) ∀ j ,

4.
2∑
`=0

χ`1j = 1 ∀ j .

(3.56)

(3.57)

(3.58)

(3.59)

By substituting the first three relations (3.56)-(3.58) into the derivatives (3.54) and (3.55), the first
two components of the gradient of fh can be written as[

∂sfh

∂θfh

]
=

2∑
`=1

(f` − f0)

nθ−1∑
j=0

[
(χ`1j − χ`0j)Dqs

0 N
qθ
j

(χ`1j+1 − χ`1j)N qs
1 D

qθ
j

]
+

nθ−1∑
j=0

(
f(2j) −

2∑
`=0

f`χ
`
1j

)[
Dqs

1 N
qθ
j

0

]

+
∑
i>1,j

(f(i+1j) − f(ij))

[
Dqs
i N

qθ
j

0

]
+
∑
i>1,j

(f(ij+1) − f(ij))

[
0

N qs
i D

qθ
j

]
.

(3.60)

Here, one should keep in mind that dθ = nθ. This representation of the gradient is intuitive because
each term is multiplied by a difference of FE coefficients f . Due to the property (3.59) this means that
the gradient is evidently zero if all entries of f are identical. From the partition of unity property of
B-splines it then follows that constant functions are in the kernel of the polar gradient operator. The
first term on the right-hand side of (3.60) leads to the definition of two new basis functions:

~Λ1,2
0 :=

nθ−1∑
j=0

 (χ1
1j − χ1

0j)D
qs
0 N

qθ
j

(χ1
1j+1 − χ1

1j)N
qs
1 D

qθ
j

0

 , ~Λ1,2
1 :=

nθ−1∑
j=0

 (χ2
1j − χ2

0j)D
qs
0 N

qθ
j

(χ2
1j+1 − χ2

1j)N
qs
1 D

qθ
j

0

 . (3.61)

Note that these basis functions are vector valued (in R3) and that we will attribute them to the second
component of polar 1-forms, which will become clear when discussing projection operators in Section
4. The other basis functions are standard tensor product basis functions. The dimensions are thus

n1,1 := (ds − 1)nθ , n1,2 := (ns − 2) dθ + 2 . (3.62)

The two new basis functions are plotted in Figure 3 both on the logical (upper row) and physical (lower
row) domain (push-forward with DF−>, see Table 1) using the generic mapping Fcyl in (3.35) with
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Figure 3: The two new vector valued basis functions ~Λ1,2
0 (left column) and ~Λ1,2

1 (right column) (3.61)
on the logical domain (uppper row) and physical domain (lower row) for the example qs = qθ = 3,
ns = 4 and nθ = 12 using the generic mapping Fcyl in (3.35) with (3.37) (cylinder). The arrows’
absolute values are color-coded. Arrows on the physical domain are normalized to the same value for
better visibility and arrows at s = 0 pointing in the negative direction are not visible on the logical
domain.

(3.37) (cylinder). It is seen that both basis functions have no θ-dependence on the physical domain.
Moreover, we note that(

~Λ1,2
0 · ~e2

)
(s = 0, θ) =

(
~Λ1,2

1 · ~e2

)
(s = 0, θ) = 0 ∀ θ , (3.63)

where ~e2 = [ 0, 1, 0 ]. Hence, when using these two basis functions for discrete polar 1-forms, they
correctly mimic the requirement (3.38b) for the second component of continuous polar 1-forms. Similar
to the tensor product basis functions (3.22) we introduce the notation

~Λ1 :=
[
~Λ1,1, ~Λ1,2, ~Λ1,3

]
, (3.64)
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where

~Λ1,1 :=
(
~Λ1,1

(ij)

)
∈ Rn

1,1
, ~Λ1,1

(ij)
:=

D
qs
i N

qθ
j

0

0

 ,
with (ij) = nθ (i− 1) + j , 0 < i < ds , 0 ≤ j < nθ ,

~Λ1,2 :=
(
~Λ1,2

0 , ~Λ1,2
1 , ~Λ1,2

(ij)

)
∈ Rn

1,2
, ~Λ1,2

(ij)
:=

 0

N qs
i D

qθ
j

0

 ,
with (ij) = dθ (i− 2) + j + 2 , 1 < i < ns , 0 ≤ j < dθ ,

~Λ1,3 :=
(
~Λ1,3

0 , ~Λ1,3
1 , ~Λ1,3

2 , ~Λ1,3

(ij)

)
∈ Rn

0
, ~Λ1,3

`=0,1,2 :=

 0

0

Λ
0
l=0,1,2

 , ~Λ1,3

(ij)
:=

 0

0

N qs
i N

qθ
j

 ,
with (ij) = nθ (i− 2) + j + 3 , 1 < i < ns , 0 ≤ j < nθ .

(3.65a)

(3.65b)

(3.65c)

Based on this new set of basis functions, the polar subspace V 1
h is readily defined as

V 1
h := span

(
~Λ1
)
⊂ V 1

h , dimV 1
h = n1,1 + n1,2 + n0 =: n1 , (3.66)

and moreover, similar to (3.26), polar spline functions Ah ∈ V 1
h can compactly be written as

Ah = S1[~a ] := ~a
>~Λ1 , ~a :=


a1 := (a1

(ij)
)

a2 := (a2
0, a

2
1, a

2
(ij)

)

a3 := (a3
0, a

3
1, a

3
2, a

3
(ij)

)

 ∈ Cn
1
. (3.67)

With regards to (3.49), we define in a block-wise fashion the polar extraction operator

E1,pol :=

 0 1(ds−1)nθ 0 0

X1,1 0 X1,2 0

0 0 0 1(ns−2) dθ

 ∈ R(n1,1+n1,2)×(dsnθ+nsdθ) , (3.68)

where the X1,1 ∈ R2×nθ acts on the first nθ tensor product basis functions in ~Λ1,1 and X1,2 ∈ R2×2dθ

acts on the first 2dθ tensor product basis functions in ~Λ1,2 to yield the two new polar splines (3.61).
The entries can be deduced from (3.61) and read

X1,1
`j := χ`+1

1j − χ`+1
0j , X1,2

`j :=

0 0 ≤ j < dθ ,

χ`+1
1(j−dθ+1) − χ

`+1
1(j−dθ) dθ ≤ j < 2dθ .

(3.69)

The full extraction operator for obtaining the basis in (3.67) reads

E1 :=

[
E1,pol 0

0 E0

]
. (3.70)

Therefore, the complete new basis ~Λ1 = E1~Λ1 and

Ah = ~a
>~Λ1 = ~a

>
E1~Λ1 = ~a>~Λ1 . (3.71)

Consequently, for given polar FE coefficients ~a, the corresponding tensor product FE coefficients are
obtained via ~a = (E1)>~a.
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In view of (3.60), we shall write the poloidal gradient of fh ∈ V 0
h compactly as

∇̂P fh = ( G f )> ~Λ1 , G :=

 Ds

Dθ

ik 1

 , (3.72)

with the derivative matrices

Ds :=
[
D1χ Gs−2 ⊗ 1nθ

]
∈ Rn

1,1×n0
, Dθ :=

[
Dχχ 0

0 Dθ

]
∈ Rn

1,2×n0
, (3.73)

with blocks

D1χ ∈ Rn
1,1×3 , D1χ

(ij)`
:=

{
−χ`1j for i = 1 ,

0 else ,

Gs−2 := (Gsij)i>0,j>1 ∈ R(ds−1)×(ns−2) ,

Dχχ ∈ R2×3 , Dχχ :=

[
−1 1 0

−1 0 1

]
,

(3.74)

(3.75)

(3.76)

and Dθ has been defined in (3.29) and is used here with 1s = 1ns−2.

3.5 Discrete polar curl operator and 2-forms

When applying the ”poloidal”curl operator ∇̂P× to a polar 1-form (3.67), the result must be a poloidal
2-form whose coefficients are obtained via the application of the polar curl matrix C, formally

∇̂P ×Ah =

∂θAh,3 − ik Ah,2ik Ah,1 − ∂sAh,3
∂sAh,2 − ∂θAh,1

 = ( C~a )> ~Λ2 . (3.77)

The goal of this section is to identify on the one hand the suitable basis ~Λ2 and on the other hand
the form of the polar curl matrix C.

Since Ah,3 = (a3)>Λ0, we already computed ∂sAh,3 and ∂θAh,3 in (3.60) of the previous section.
Therefore, from (3.61),

~Λ2,1
0 := ~Λ1,2

0 × ~e3 ,
~Λ2,1

1 := ~Λ1,2
1 × ~e3 , (3.78)

where ~e3 = [ 0, 0, 1 ]. Note that we attribute these basis functions to the first component of polar
2-forms. The dimensions are thus

n2,1 := n1,2 = (ns − 2) dθ + 2 , n2,2 := n1,1 = (ds − 1)nθ =: n3 , (3.79)

The two new basis functions are plotted in Figure 4 both on the logical (upper row) and physical (lower
row) domain (push-forward with DF/

√
g, see Table 1) using the generic mapping Fcyl in (3.35) with

(3.37) (cylinder). It is seen that both basis functions have no θ-dependence on the physical domain.
Moreover, we note that(

~Λ2,1
0 · ~e1

)
(s = 0, θ) =

(
~Λ2,1

1 · ~e1

)
(s = 0, θ) = 0 ∀ θ , (3.80)

where ~e1 = [ 1, 0, 0 ]. Hence, when using these two basis functions for discrete polar 2-forms, they
correctly mimic the requirement (3.38c) for the first component of continuous polar 2-forms. Similar
to the tensor product basis (3.22) we introduce the notation

~Λ2 :=
[
~Λ2,1, ~Λ2,2, ~Λ2,3

]
, (3.81)
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Figure 4: The two new vector valued basis functions ~Λ2,1
0 (left column) and ~Λ2,1

1 (right column) (3.78)
on the logical domain (uppper row) and physical domain (lower row) for the example qs = qθ = 3,
ns = 4 and nθ = 12 using the generic mapping Fcyl in (3.35) with (3.37)) (cylinder). The arrows’
absolute values are color-coded. Arrows on the physical domain are normalized to the same value for
better visibility and arrows tangential to the surface s = 0 are not visible on the logical domain.

where

~Λ2,1 :=
(
~Λ2,1

0 , ~Λ2,1
1 , ~Λ2,1

(ij)

)
∈ Rn

2,1
, ~Λ2,1

(ij)
:=

N
qs
i D

qθ
j

0

0

 ,
with (ij) = dθ (i− 2) + j + 2 , 1 < i < ns , 0 ≤ j < dθ ,

~Λ2,2 :=
(
~Λ2,2

(ij)

)
∈ Rn

2,2
, ~Λ2,2

(ij)
:=

 0

Dqs
i N

qθ
j

0

 ,
with (ij) = nθ (i− 1) + j , 0 < i < ds , 0 ≤ j < nθ ,

~Λ2,3 :=
(
~Λ2,3

(ij)

)
∈ Rn

3
, ~Λ2,3

(ij)
:=

 0

0

Dqs
i D

qθ
j

 ,
with (ij) = dθ (i− 1) + j , 0 < i < ds , 0 ≤ j < dθ .

(3.82a)

(3.82b)

(3.82c)
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The third component ~Λ2,3 has been determined from (3.77): the relevant partial derivatives of Ah,1 =
~Ah · ~e1 and Ah,2 = ~Ah · ~e2 read

∂Ah,2
∂s

=

1∑
`=0

a2
`

dθ−1∑
j=0

(χ`+1
1j+1 − χ`+1

1j )(Dqs
0 −Dqs

1 )Dqθ
j +

∑
i>1,j

a2
(ij)

(Dqs
i−1 −D

qs
i )Dqθ

j

=

1∑
`=0

a2
`

dθ−1∑
j=0

(χ`+1
1j+1 − χ`+1

1j )Dqs
0 D

qθ
j +

dθ−1∑
j=0

[
a2

(2j)
−

1∑
`=0

a2
` (χ

`+1
1j+1 − χ`+1

1j )

]
Dqs

1 D
qθ
j

+
∑
i>1,j

(a2
(i+1j)

− a2
(ij)

)Dqs
i D

qθ
j ,

∂Ah,1
∂θ

=
1∑
`=0

a2
`

nθ−1∑
j=0

(χ`+1
1j − χ`+1

0j )Dqs
0 (Dqθ

j−1 −D
qθ
j ) +

∑
i>0,j

a1
(ij)
Dqs
i (Dqθ

j−1 −D
qθ
j )

=

1∑
`=0

a2
`

dθ−1∑
j=0

(χ`+1
1j+1 − χ`+1

0j+1 − χ`+1
1j + χ`+1

0j )Dqs
0 D

qθ
j +

∑
i>0,j

(a1
(ij+1)

− a1
(ij)

)Dqs
i D

qθ
j

=

1∑
`=0

a2
`

dθ−1∑
j=0

(χ`+1
1j+1 − χ`+1

1j )Dqs
0 D

qθ
j +

∑
i>0,j

(a1
(ij+1)

− a1
(ij)

)Dqs
i D

qθ
j ,

(3.83)

(3.84)

respectively, where we used (3.56) to obtain the last line. Taking the difference yields

∂Ah,2
∂s

− ∂Ah,1
∂θ

=

dθ−1∑
j=0

[
a2

(2j)
−

1∑
`=0

a2
` (χ

`+1
1j+1 − χ`+1

1j )− a1
(1j+1)

+ a1
(1j)

]
Dqs

1 D
qθ
j

+
∑
i>1,j

(a2
(i+1j)

− a2
(ij)
− a1

(ij+1)
+ a1

(ij)
)Dqs

i D
qθ
j ,

(3.85)

which reveals the basis ~Λ2,3 of the third component of 2-forms, namely being the standard tensor
product basis functions without the i = 0 ones such that the second requirement in (3.38c) is satisfied.
Based on the new set of basis functions, the polar subspace V 2

h is readily defined as

V 2
h := span

(
~Λ2
)
⊂ V 2

h , dimV 2
h = n2,1 + n2,2 + n3 =: n2 , (3.86)

and moreover, similar to (3.27), polar spline function Bh ∈ V 2
h can compactly be written as

Bh = S2[ ~b ] = ~b
>~Λ2 , ~b :=


b

1
:= (b10, b

1
1, b

1
(ij)

)

b
2

:= (b2
(ij)

)

b
3

:= (b3
(ij)

)

 ∈ Cn
2
. (3.87)

With regards to (3.68), we define in a block-wise fashion the polar extraction operator

E2,pol :=

X1,2 0 −X1,1 0

0 1(ns−2) dθ 0 0

0 0 0 1(ds−1)nθ

 ∈ R(n2,1+n2,2)×(nsdθ+dsnθ) , (3.88)

where X1,1 and X1,2 were defined in (3.69). The full extraction operator for obtaining the basis in
(3.82) finally reads

E2 :=

[
E2,pol 0

0 E3

]
, E3 :=

[
0 1(ds−1)dθ

]
∈ Rn

3×dsdθ . (3.89)
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Therefore, the complete new basis ~Λ2 = E2~Λ2 and

Bh = ~b
>~Λ2 = ~b

>
E2~Λ2 = ~b>~Λ2 . (3.90)

Consequently, for given polar FE coefficients ~b, the corresponding tensor product FE coefficients are

obtained via ~b = (E2)>~b.
In view of (3.77) and (3.85), we shall write the poloidal curl of Ah ∈ V 1

h compactly as

∇̂P ×Ah = ( C~a )> ~Λ2 , C~a :=

 0 −ik 1 Dθ

ik 1 0 −Ds

−Dθ S 0


 a1

a2

a3

 , (3.91)

where Dθ has been defined in (3.29) and is used here with 1s = 1ds−1 and the derivative matrices D
have been defined in (3.73) and need to be used here with appropriate sizes of the identity matrices
1. Moreover,

S :=
[
D2χ Gs−2 ⊗ 1dθ

]
∈ Rn

3×n1,2
, (3.92)

where

D2χ ∈ Rn
3×2 , D2χ

(ij)`
:=

{
−(χ`+1

1j+1 − χ`+1
1j ) i = 1 ,

0 else ,
(3.93)

and Gs−2 has been defined in (3.75).

Proposition 1. We have C G = 0.

Proof. The matrix product of interest reads

C G =

 0 −ik 1 Dθ

ik 1 0 −Ds

−Dθ S 0


 Ds

Dθ

ik 1

 .
The first two rows yield zero immediately. In the last row we must show that

−Dθ Ds + S Dθ = 0 ,

where
Dθ = 1ds−1 ⊗ Gθ ∈ Rn

3×n1,1
, Ds =

[
D1χ Gs−2 ⊗ 1nθ

]
∈ Rn

1,1×n0
,

S =
[
D2χ Gs−2 ⊗ 1dθ

]
∈ Rn

3×n1,2
, Dθ =

[
Dχχ 0

0 Dθ

]
∈ Rn

1,2×n0
.

and the single blocks

Gθ ∈ Rdθ×nθ , Gs−2 ∈ R(ds−1)×(ns−2) , D1χ ∈ Rn
1,1×3 , D2χ ∈ Rn

3×2 , Dχχ ∈ R2×3 .

Therefore,
−Dθ Ds + S Dθ = −

[
Dθ D1χ Gs−2 ⊗ Gθ

]
+
[
D2χ Dχχ Gs−2 ⊗ Gθ

]
.

It remains to show the equality of the first block:

Dθ D1χ

(ij)`
= D1χ

(ij+1)`
− D1χ

(ij)`
=

{
−χ`1j+1 + χ`ij i = 1, ` = 0, 1, 2 ,

0 else ,

D2χ Dχχ =


χ1

1j+1 − χ1
ij + χ2

1j+1 − χ2
ij i = 1, ` = 0 ,

−χ`1j+1 + χ`ij i = 1, ` = 1, 2 ,

0 else .

From the polar extraction coefficients (3.42) follows

χ1
1j+1 − χ1

ij + χ2
1j+1 − χ2

ij = −χ0
1j+1 + χ0

ij ,

which completes the proof.
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3.6 Discrete polar divergence operator and 3-forms

When applying the ”poloidal” divergence operator ∇̂P · () to a polar 2-form (3.87), the result must be
a polar 3-form whose coefficients are obtained via the application of the polar divergence matrix D,
formally

∇̂P ·Bh = ∂sBh,1 + ∂θBh,2 + ik Bh,3 = ( D ~b )>Λ3 . (3.94)

The goal of this section is to identify on the one hand the suitable basis Λ3 and on the other hand
the form of the polar divergence matrix D.

The basis is evidently given by the basis (3.82c) in which Bh,3 is displayed, thus

Λ3 :=
(

Λ3
(ij)

)
∈ Rn

3
, Λ3

(ij)
:= Dqs

i D
qθ
j ,

with (ij) = dθ (i− 1) + j , 0 < i < ds , 0 ≤ j < dθ .
(3.95)

Based on this new set of basis functions, the polar subspace V 3
h is readily defined as

V 3
h := span

(
Λ3
)
⊂ V 3

h , dimV 3
h = n3 , (3.96)

and moreover, similar to (3.28), polar spline functions ph ∈ V 3
h can compactly be written as

ph = S3[ p ] = p>Λ3 , p := (p(ij)) ∈ Cn
3
. (3.97)

The polar extraction operator E3 has already been defined in (3.89). Therefore, Λ3 = E3Λ3 and

ph = p>Λ3 = p>E3Λ3 = p>Λ3 . (3.98)

Consequently, for given polar FE coefficients p, the corresponding tensor product FE coefficients are
obtained via p = (E3)>p.

In order to compute the polar divergence matrix we note that the sum of the derivatives with
respect to s and θ can be easily deduced from (3.85), where we take note of the minus sign in the
definition of the polar 2-form basis functions (3.78):

∂Bh,1
∂s

+
∂Bh,2
∂θ

=

dθ−1∑
j=0

[
b1
(2j)
−

1∑
`=0

b1` (χ
`+1
1j+1 − χ`+1

1j ) + b2
(1j+1)

− b2
(1j)

]
Dqs

1 D
qθ
j

+
∑
i>1,j

(b1
(i+1j)

− b1
(ij)

+ b2
(ij+1)

− b2
(ij)

)Dqs
i D

qθ
j .

(3.99)

The polar divergence of Bh ∈ V hpolc can then be written compactly as

∇̂P ·Bh = ( D ~b )>Λ3 , D ~b =
[

S Dθ ik 1
]  b

1

b
2

b
3

 , (3.100)

where Dθ has been defined in (3.29) and is used here with 1s = 1ds−1 and S has been defined in (3.92).

Proposition 2. We have D C = 0.

Proof. The matrix product of interest reads

D C =
[

S Dθ ik 1
]  0 −ik 1 Dθ

ik 1 0 −Ds

−Dθ S 0

 .
The first two rows yield zero immediately and the relation

S Dθ − Dθ Ds = 0 ,

has been proven in Proposition 1.
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Figure 5: Commuting diagrams in 3D. Top row: continuous spaces, middle row: pure tensor product
spaces, bottom row: polar spaces.

Consequently, due to the fact that C G = 0 and D C = 0 (see Propositions 1 and 2), we can
construct similar to the pure tensor product case (3.34) the discrete cochain complex

V 0
h

G−→ V 1
h

C−→ V 2
h

D−→ V 3
h , (3.101)

meaning that the image of the previous operator (either G or C) is in the kernel of the next operator
(either C or D).

4 Commuting projectors

The discrete complexes (3.34) (pure tensor product splines) and (3.101) (polar splines) can be thought
of as sub-complexes of the continuous version,

V 0 grad−−−→ V 1 curl−−→ V 2 div−−→ V 3 . (4.1)

The link between the spaces V k, V k
h and V k

h (0 ≤ k ≤ 3) is provided by projection operators
Πk : V k → V k

h and Πk : V → V k
h , and the transpose extraction operators (Ek)> : V k

h → V k
h , as

displayed in Figure 5. The discrete spaces are defined here through the spline basis functions, such
that there is a one-to-one correspondence between the elements (piece-wise polynomial functions) and
their spline coefficients.

In this part we define the projection operators based on inter- and histopolation, such that the
diagrams in Figure 5 are commuting in the following sense: at first, we shall prove the ”standard”
commutation relations

Π1 grad = grad Π0 , Π2 curl = curl Π1 , Π3 div = div Π2 , (4.2)

where

grad = ∇̂P () , curl = ∇̂P × () , div = ∇̂P · () . (4.3)

The proof can be based solely on the definition of the degrees of freedom (DOFs) by inter- and
histopolation (see below). The mechanics of the proof in the tensor product case suggests how to
choose the DOFs for polar projectors in order to achieve, secondly,

Π1 grad = grad Π0 , Π2 curl = curl Π1 , Π3 div = div Π2 . (4.4)

Additionally, in [25] it was shown that

G (E0)> = (E1)>G , C (E1)> = (E2)>C , D (E2)> = (E3)>D . (4.5)
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V s,0 V s,1

Rns Rds

Rns Rds

V s,0
h V s,1

h

∂
∂s

σs,0

Πs,0

σs,1

Πs,1(Is)−1

Gs

(Hs)−1

Gs

Ss,0

Is Hs

Ss,1
∂
∂s

Figure 6: Commuting diagram in 1D using the notions of degrees of freedom (DOFs) σs,0 and σs,1

and finite element (FE) coefficients.

4.1 Tensor product degrees of freedom and projectors

The construction of degrees of freedom and commuting projectors in the pure tensor product setting
can be found in [6], for instance, and is only repeated here in order to prepare for the polar case in
the next section. A good understanding of the commuting projectors can be obtained in terms of
the 1D diagram in Figure 6. We choose the s-space in this example, the θ-direction is treated in full
analogy (even though the spaces are slightly different because of the boundaries). The upper row of the
diagram contains the continuous function spaces V s,0 = H1(Ωs) and V s,1 = L2(Ωs) with Ωs = [0, 1].
The degrees of freedom (DOFs) σs,0 : V s,0 → Cns and σs,1 : V s,1 → Cds are linear functionals on
the continuous spaces, with their image in the second row. The third row contains the finite element
(FE) coefficients (in the spline bases) and the fourth row the FE spaces V s,0

h ⊂ V s,0 and V s,1
h ⊂ V s,1

spanned by the 1D spline bases and introduced in (3.10).
When dealing with inter-/histopolation, the DOFs can be defined as

f ∈ V s,0 : σs,0 := (σs,0i )ns−1
i=0 , σs,0i (f) := f(si) ,

g ∈ V s,1 : σs,1 := (σs,1i )ds−1
i=0 , σs,1i (g) :=

∫ si+1

si

g(s) ds .

(4.6a)

(4.6b)

Here, s = (si)
ns−1
i=0 are the interpolation points in Ωs, for example the Greville points of a spline basis

(3.9), and ds = ns − 1 is the number of histopolation intervals. The bases of the FE spaces V s,0
h and

V s,1
h appear in the inter-/histopolation matrices

Isij := N qs
j (si) , Hsij :=

∫ si+1

si

Dqs
j (s) ds , (4.7)

respectively. The interpolation points s have to be chosen such that Is andHs are invertible (that is the
reason for Greville points with splines, usually). When using for instance a quadrature rule of sufficient
order for computing integrals, the matrix Hs is exact since M-splines are piece-wise polynomials.

The operators Ss,0 : Cns → V s,0
h and Ss,1 : Cds → V s,1

h map FE coefficients to the corresponding
spline function:

V s,0
h 3 fh = Ss,0[ f ](s) =

ns−1∑
j=0

fj N
qs
j (s) , f = (fj)

ns−1
j=0 ,

V s,1
h 3 gh = Ss,1[ g ](s) =

ds−1∑
j=0

gj D
qs
j (s) g = (gj)

ds−1
j=0 .

(4.8a)

(4.8b)
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For the DOFs (4.6) this means

σs,0i (fh) =

ns−1∑
j=0

fj N
qs
j (si) =

∑
j

Isij fj ⇒ σs,0(fh) = Is f ,

σs,1i (gh) =

ds−1∑
j=0

gj

∫ si+1

si

Dqs
j (s) ds =

∑
j

Hsij gj ⇒ σs,1(gh) = Hs g ,

(4.9a)

(4.9b)

such that it is evident that the DOFs (4.6) uniquely define an element in V s,0
h and V s,1

h provided that
Is and Hs are invertible.

Definition 1. The projectors Πs,0 : V s,0 → V s,0
h and Πs,1 : V s,1 → V s,1

h are defined via the DOFs:

σs,0(Πs,0(f)) = σs,0(f) , σs,1(Πs,1(g)) = σs,1(g) . (4.10)

Proposition 3. Provided that the histopolation matrix Hs is exact, the projectors (4.10) satisfy

Πs,1

(
∂f

∂s

)
=

∂

∂s
Πs,0(f). (4.11)

Proof. By definition both sides of the equality are in V s,1
h . Since an element in V s,1

h is uniquely defined

by its DOFs, we can apply σs,1i on both sides and show the results to be equal:

σs,1i

(
Πs,1

(
∂f

∂s

))
(4.10)

= σs,1i

(
∂f

∂s

)
= f(si+1)− f(si) = σs,0i+1(f)− σs,0i (f) ,

σs,1i

(
∂

∂s
Πs,0(f)

)
= Πs,0(f)(si+1)−Πs,0(f)(si) = σs,0i+1(Πs,0(f))− σs,0i (Πs,0(f))

(4.10)
= σs,0i+1(f)− σs,0i (f) .

We note that this proof did not rely on the choice of basis functions. The DOFs defined by (4.6)
and projectors defined in Definition 1 are sufficient conditions for the commuting property. This proof
generalizes to tensor product spaces and even to the polar case in a straightforward way, as shown in
the following.

Let us now shift to the spaces V k (0 ≤ k ≤ 3) defined in (2.8). Here, one has to keep in mind
that the smoothness of these spaces is strictly speaking not large enough to be able to carry out
interpolation everywhere. However, in the discrete MHD eigenvalue problem in Section 5, we shall
only apply projectors to functions which are continuous everywhere; a consequence of the restrictions
qs, qθ ≥ 2 in the polar spline framework (see Def. 3.1 in [28]). Therefore, the projection operations are
well-defined in this case. To define the DOFs, we consider the tensor product grid (si, tj) built from
the additional 1D set of Greville points t = (tj)

nθ−1
j=0 in θ-direction. The DOFs can then be defined as

f ∈ V 0 : σ0
(ij)(f) := f(si, tj) ,

A = [A1, A2, A3] ∈ V 1 :



σ1,1
(ij)(A) :=

∫ si+1

si

A1(s, tj) ds ,

σ1,2
(ij)(A) :=

∫ tj+1

tj

A2(si, θ) dθ ,

σ1,3
(ij)(A) := A3(si, tj) ,

(4.12a)

(4.12b)
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B = [B1, B2, B3] ∈ V 2 :



σ2,1
(ij)(B) :=

∫ tj+1

tj

B1(si, θ) dθ ,

σ2,2
(ij)(B) :=

∫ si+1

si

B2(s, tj) ds ,

σ2,3
(ij)(B) :=

∫ si+1

si

∫ tj+1

tj

B3(s, θ) dsdθ ,

p ∈ V 3 : σ3
(ij)(p) :=

∫ si+1

si

∫ tj+1

tj

p(s, θ) dsdθ .

(4.12c)

(4.12d)

Similar to (4.9) we have for discrete functions

fh = S0[ f ] ∈ V 0
h : σ0(fh) = I0 f ,

Ah = S1[~a ] ∈ V 1
h : σ1(Ah) = I1 ~a ,

Bh = S2[ ~b ] ∈ V 2
h : σ2(Bh) = I2 ~b ,

ph = S3[ p ] ∈ V 3
h : σ3(ph) = I3 p ,

(4.13a)

(4.13b)

(4.13c)

(4.13d)

where the mixed inter-/histopolation matrices Ik are given by

I0 := Is ⊗ Iθ , I1 :=

H
s ⊗ Iθ 0 0

0 Is ⊗Hθ 0

0 0 Is ⊗ Iθ

 ,

I3 := Hs ⊗Hθ , I2 :=

I
s ⊗Hθ 0 0

0 Hs ⊗ Iθ 0

0 0 Hs ⊗Hθ

 .

(4.14)

(4.15)

Definition 2. The projectors Πk : V k → V k
h (0 ≤ k ≤ 3) are defined via the DOFs (4.12):

σ0(Π0(f)) = σ0(f) , σ1(Π1(A)) = σ1(A) , σ2(Π2(B)) = σ2(B) , σ3(Π3(p)) = σ3(p) . (4.16)

Proposition 4. Provided that the integrals in (4.12) are exact, the projectors (4.16) satisfy the commu-
tation relations

Π1 grad = grad Π0 , Π2 curl = curl Π1 , Π3 div = div Π2 . (4.17)

Proof. We only prove the first relation Π1 grad = grad Π0 explicitly, the other two relations can be
proven accordingly. By definition both sides are in V 1

h . Since an element in V 1
h is uniquely defined by

its DOFs, we can apply σ1 on both sides:

σ1,1
(ij)

(
Π1(∇̂P f)

)
(4.16)

= σ1,1
(ij)

(
∇̂P f

)
= f(si+1, tj)− f(si, tj) = σ0

(i+1j) (f)− σ0
(ij) (f) ,

σ1,2
(ij)

(
Π1(∇̂P f)

)
(4.16)

= σ1,2
(ij)

(
∇̂P f

)
= f(si, tj+1)− f(si, tj) = σ0

(ij+1) (f)− σ0
(ij) (f) ,

σ1,3
(ij)

(
Π1(∇̂P f)

)
(4.16)

= σ1,3
(ij)

(
∇̂P f

)
= ik σ0

(ij)(f) ,
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and on the other hand

σ1,1
(ij)

(
∇̂P Π0(f)

)
= Π0(f)(si+1, tj)−Π0(f)(si, tj)

= σ0
(i+1j)(Π0(f))− σ0

(ij)(Π0(f))
(4.16)

= σ0
(i+1j)(f)− σ0

(ij)(f) ,

σ1,2
(ij)

(
∇̂P Π0(f)

)
= Π0(f)(si, tj+1)−Π0(f)(si, tj)

= σ0
(ij+1)(Π0(f))− σ0

(ij)(Π0(f))
(4.16)

= σ0
(ij+1)(f)− σ0

(ij)(f) ,

σ1,3
(ij)

(
∇̂P Π0(f)

)
= ik σ0

(ij) (Π0(f))
(4.16)

= ik σ0
(ij) (f) .

Because this holds for any (ij) the first relation in (4.17) is proved. The proofs for the second and
third relation work in full analogy.

By identifying the projected functions with their spline coefficients as in (4.13),

Π0(f) = S0[ f ] , Π1(A) = S1[~a ] , Π2(B) = S2[~b] , Π3(p) = S3[ p ] , (4.18)

the projection problems (4.16) can be written as linear systems

I0 f = σ0(f) , I1 ~a = σ1(A) , I2 ~b = σ2(B) , I3 p = σ3(p) . (4.19)

The solution of these linear systems can be done very efficiently because of the tensor product structure
of the matrices Ik, e.g. (I0)−1 = (Is⊗Iθ)−1 = (Is)−1⊗(Iθ)−1, and the costs for inverting the matrices
Is and Iθ corresponding to 1D spline bases are negligible.

4.2 Polar degrees of freedom and projectors

In this section we derive polar DOFs that guarantee the commuting property shown in Figure 5.
Figure 7 shows the grey tensor product grid with nsnθ interpolation points (si, tj) on the vertices for
the DOFs σ0 defined in (4.12a). In the polar case, only the blue points/grid are used for interpolation.
The number of blue points is (ns − 2)nθ + 3 which corresponds to the dimension of V 0

h. The first
two ”rings” around the pole (s0, tj) and (s1, tj) are removed and three new points (s1, t0), (s1, t1) and
(s1, t2) on the i = 1 ring are added for interpolation. The three angles {t0, t1, t2} ⊂ t must be distinct
and are here chosen to be part of the tensor product grid for implementation reasons. They account
for the three DOFs necessary for the three new polar spline basis functions Λ0

` around the pole. In
the polar setting, we define the DOFs σ0 as

f ∈ V 0 :

 σ0
` (f) := f(s1, t`) , ` = 0, 1, 2 ,

σ0
(ij)

(f) := f(si, tj) , 1 < i < ns .
(4.20)

We now aim to construct the DOFs for the space V 1
h such that the commutation relations (4.4) hold.

The proof of Proposition 4 serves as the blue print of how to achieve this. From Figure 7 we see that
for i > 1 histopolation can be carried out as usual on the blue grid. However, we also need to carry
out histopolation between i = 1 and i = 2 in order to get as many DOFs as basis functions in the
space V 1

h. In order to get the commuting property, we employ a convex combination of the DOFs for
i = 1 and demand

σ1,1

(1j)

(
∂f

∂s
~e1

)
= f(s2, tj)−

2∑
`=0

w`jf(s1, t`) , w`j ∈ R ,
2∑
`=0

w`j = 1 ∀ j , (4.21)

for f ∈ V 0. In the θ-direction we demand

σ1,2
`

(
∂f

∂θ
~e2

)
= f(s1, t`+1)− f(s1, t0) , ` = 0, 1 . (4.22)
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The conditions (4.21) and (4.22) can be satisfied with the following polar DOFs for the space V 1
h:

A ∈ V 1 :



σ1,1

(1j)
(A) :=

∫ s2

s0

A1(s, tj) ds−
2∑
`=0

w`j

∫ s1

s0

A1(s, t`) ds ,

σ1,1

(ij)
(A) :=

∫ si+1

si

A1(s, tj) ds , 1 < i < ds ,

σ1,2
` (A) :=

∫ t`+1

t0

A2(s1, θ) dθ , ` = 0, 1 ,

σ1,2

(ij)
(A) :=

∫ tj+1

tj

A2(si, θ) dθ 1 < i < ns ,

σ1,3(A) := σ0(A3) .

(4.23)

Let us verify that (4.21) is indeed fulfilled: from the first line in (4.23) we obtain

σ1,1

(1j)

(
∂f

∂s
~e1

)
= f(s2, tj)− f(s0, tj)−

2∑
`=0

w`j
[
f(s1, t`)− f(s0, t`)

]
. (4.24)

Taking into account that f(s0 = 0, θ) (s0 = 0 for clamped B-splines) is independent of θ because polar
0-forms are single-valued at the pole and, moreover, that we demanded

∑
`w`j = 1, we obtain relation

(4.21). The relation (4.22) follows directly from the third line in (4.23). The polar DOFs for B ∈ V 2

follow by exchanging the components in (4.23):

B ∈ V 2 :


σ2,1(B) := σ1,2(B) ,

σ2,2(B) := σ1,1(B) ,

σ2,3(B) := σ3(B3) .

(4.25)

Here, σ3 is identified by looking at DOFs for p ∈ V 3 which we define to be

p ∈ V 3 :


σ3

(1j)
(p) :=

∫ s2

s0

∫ tj+1

tj

p(s, θ) ds dθ −
1∑
`=0

a`j

∫ s1

s0

∫ t`+1

t0

p(s, θ) dsdθ ,

σ3
(ij)

(p) :=

∫ si+1

si

∫ tj+1

tj

p(s, θ) ds dθ , 1 < i < ds .

(4.26)

Here, we introduced the coefficients a0j , a1j ∈ R which have to be chosen such that the commuting
property holds (see below). Note that the above DOFs are linearly independent and that the number
of DOFs matches the dimension of each respective space.

Definition 3. The projectors Πk : V k → V k
h are defined via the DOFs (4.20), (4.23), (4.25) and (4.26):

σ0
(

Π0(f)
)

= σ0(f) , σ1
(

Π1(A)
)

= σ1(A) , σ2
(

Π2(B)
)

= σ2(B) , σ3
(

Π3(p)
)

= σ3(p) . (4.27)

Proposition 5. Provided that the integrals in (4.23), (4.25) and (4.26) are exact and that for any
(f0, f1, f2) ∈ R3,

1∑
`=0

a`j(f`+1 − f0) =
2∑
`=0

(w`j+1 − w`j)f` , a`j 6= 0 ,
2∑
`=0

w`j = 1 , (4.28)

the projectors (4.27) satisfy the commutation relations

Π1 grad = grad Π0 , Π2 curl = curl Π1 , Π3 div = div Π2 .
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Figure 7: Only the three blue points and the vertices of the blue grid are used for interpolation in the
polar setting. Note that all points on the line at s0 = 0 are mapped to the pole (R0, Z0) under the
mapping Fpol. However, no interpolation points are located on this line for the new blue grid.

Proof. Let us start with Π1 grad = grad Π0. By definition both sides of the equality are in V 1
h. Since

an element in V 1
h is uniquely defined by its DOFs, we can apply σ1 on both sides. The tensor product

part is as usual; the new parts for i = 1 read

σ1,1

(1j)

(
Π1(∇̂P f)

)
(4.27)

= σ1,1

(1j)

(
∇̂P f

)
= f(s2, tj)− f(s0, tj)−

2∑
`=0

w`j [ f(s1, t`)− f(s0, t`)]

= σ0
(2j)

(f)−
2∑
`=0

w`j σ
0
` (f) ,

σ1,2
`

(
Π1(∇̂P f)

)
(4.27)

= σ1,2
`

(
∇̂P f

)
= f(s1, t`+1)− f(s1, t0) = σ0

`+1 (f)− σ0
0 (f) ,

σ1,3
(

Π1(∇̂P f)
)

(4.27)
= σ1,3

(
∇̂P f

)
= ik σ0 (f) ,

and

σ1,1

(1j)

(
∇̂P Π0(f)

)
= Π0(f)(s2, tj)−Π0(f)(s0, tj)−

2∑
`=0

w`j
[

Π0(f)(s1, t`)−Π0(f)(s0, t`)
]

= σ0
(2j)

(
Π0(f)

)
−

2∑
`=0

w`j σ
0
`

(
Π0(f)

) (4.27)
= σ0

(2j)
(f)−

2∑
`=0

w`jσ
0
` (f) ,

σ1,2
`

(
∇̂P Π0(f)

)
= Π0(f)(s1, t`+1)−Π0(f)(s1, t0) = σ0

`+1

(
Π0(f)

)
− σ0

0

(
Π0(f)

)
(4.27)

= σ0
`+1(f)− σ0

0 (f) ,

σ1,3
(
∇̂P Π0(f)

)
= ik σ0

(
Π0(f)

) (4.27)
= ik σ0 (f) .

In order to prove the second and the third commutation relation, we just need to prove the com-
mutation for the third component of the second relation (which corresponds to the divergence of the
vector curl in 2D); everything else then follows in a straightforward manner. Hence, let us look at the
third component of Π2(curl A) = curl Π1(A). As usual, we can apply σ2,3 on both sides. The tensor
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product part is as usual; the new parts for i = 1 read

σ2,3

(1j)

(
Π2(∇̂P ×A)

)
(4.27)

= σ2,3

(1j)

(
∇̂P ×A

)
= σ3

(1j)

(
∂A2

∂s
− ∂A1

∂θ

)

=

∫ tj+1

tj

[A2(s2, θ)−A2(s0, θ)] dθ −
1∑
`=0

a`j

∫ t`+1

t0

[A2(s1, θ)−A2(s0, θ)] dθ

−
∫ s2

s0

[A1(s, tj+1)−A1(s, tj)] ds+
1∑
`=0

a`j

∫ s1

s0

[A1(s, t`+1)−A1(s, t0)] ds

=

∫ tj+1

tj

A2(s2, θ) dθ −
1∑
`=0

a`j

∫ t`+1

t0

A2(s1, θ) dθ

−
∫ s2

s0

[A1(s, tj+1)−A1(s, tj)] ds+
2∑
`=0

(w`j+1 − w`j)
∫ s1

s0

A1(s, t`)ds

= σ1,2

(2j)
(A)−

1∑
`=0

a`j σ
1,2
` (A)− σ1,1

(1j+1)
(A) + σ1,1

(1j)
(A) ,

where we used that A2(s0 = 0, θ) = 0 ∀ θ. Moreover, when going from the second to the third equality
sign we inserted the condition (4.28). By replacing A→ Π1(A) in the last line, we obtain

σ2,3

(1j)

(
∇̂P ×Π1(A)

)
= σ3

(1j)

(
(∇̂P ×Π1(A)) · ~e3

)
= σ1,2

(2j)

(
Π1(A)

)
−

1∑
`=0

a`j σ
1,2
`

(
Π1(A)

)
− σ1,1

(1j+1)

(
Π1(A)

)
+ σ1,1

(1j)

(
Π1(A)

)
(4.27)

= σ1,2

(2j)
(A)−

1∑
`=0

a`j σ
1,2
` (A)− σ1,1

(1j+1)
(A) + σ1,1

(1j)
(A) .

Remark 1. By comparing coefficients of f` it is easy to see that the equations (4.28) are satisfied if

a`j = w`+1j+1 − w`+1j , ` = 0, 1 . (4.29)

This leads to the relation (3.58) if we set w`j = χ`1j.

In the tensor product setting, projection onto the spaces V k
h (0 ≤ k ≤ 3) means inverting the re-

spective inter-/histopolation matrices Ik, as written in (4.19). We will now identify the corresponding
linear systems for the previously introduced polar projectors Πk. The starting point is the Definition 3
of the polar projectors via the DOFs. By expressing the projected function in the respective basis that
spans V k

h , the left-hand side can be expressed in terms of new polar inter-/histopolation matrices Ik,

I 0 f = σ0(f) , I 1 ~a = σ1(A) , I 2 ~b = σ2(B) , I 3 p = σ3(p) . (4.30)

In order to determine the matrices I, we note that the polar DOFs are linear combinations of the
tensor product DOFs. Therefore, let us write the projection problems in the tensor product bases,
restrict the solution to the polar subspaces via the transpose extraction operators (Ek)>, and project
the DOFs to get square matrices:

P0 I0 (E0)> f = P0 σ0(f) ,

P1 I1 (E1)> ~a = P1 σ1(A) ,

P2 I2 (E2)> ~b = P2 σ2(B) ,

P3 I3 (E3)> p = P3 σ3(p) .

(4.31)

(4.32)

(4.33)

(4.34)

29



Here, we introduced the matrices Pk that map tensor product DOFs to polar DOFs, σk(·) = Pkσk(·).
These matrices perform linear combinations of tensor product DOFs and thus play a similar role
as the extraction matrices for basis functions Ek. However, while Ek always act on tensor product
basis functions, Pk always act on tensor product DOFs. Their explicit form follow directly from the
definitions of the polar DOFs from the previous section. From (4.20) we obtain

P0 :=

[
Y0 0

0 1(ns−2)nθ

]
∈ Rn

0×nsnθ , Y0 ∈ R3×2nθ , Y0
`j :=

{
1 j = nθ + j` ,

0 else ,
(4.35)

where j` is the local index of the point t` on the i = 1 ring such that Y0 selects the three interpolation
points t`=0,1,2 from the entire set of interpolation points. From (4.23) we obtain

P1 :=

P1,1 0 0

0 P1,2 0

0 0 P0

 ∈ Rn
1×(dsnθ+nsdθ+nsnθ) , (4.36)

with blocks

P1,1 :=

[
Y1,1 0

0 1(ds−2)nθ

]
∈ Rn

1,1×dsnθ , P1,2 :=

[
Y1,2 0

0 1(ns−2)nθ

]
∈ Rn

1,2×nsdθ , (4.37)

where Y1,1 ∈ Rnθ×2nθ acts on the first 2nθ tensor product DOFs σ1,1
(ij) and Y1,2 ∈ R2×2dθ acts on the

first 2dθ tensor product DOFs σ1,2
(ij):

Y1,1
ij :=


δij −

∑2
`=0 δjj`w`i 0 ≤ j < nθ ,

δi(j−nθ) nθ ≤ j < 2nθ ,

0 else ,

Y1,2
`j :=

{
1 dθ + j0 ≤ j < dθ + j`+1 ,

0 else .
(4.38)

From (4.25) and (4.26) we obtain

P2 :=

P1,2 0 0

0 P1,1 0

0 0 P3

 ∈ Rn
2×(nsdθ+dsnθ+dsdθ) , P3 :=

[
Y3 0

0 1(ds−2)dθ

]
∈ Rn

3×dsdθ , (4.39)

where Y3 ∈ Rdθ×2dθ acts on the first 2dθ tensor product DOFs σ2,3
(ij) = σ3

(ij),

Y3
ij :=



δij 0 ≤ j < j0 and j2 ≤ j < dθ ,

δij − (a0i + a1i) j0 < j ≤ j1 ,

δij − a1i j1 < j ≤ j2 ,

δi(j−dθ) dθ ≤ j < 2dθ ,

0 else .

(4.40)

4.3 Convergence test

To investigate the performance of the introduced polar projection operators Πk (0 ≤ k ≤ 3), we
conduct an L2-convergence test by increasing the number of splines both in s- and θ- direction and
increasing the spline degrees. For this purpose, we define the (exact) scalar and vector valued functions

fex(x, z) = (1− x2 − z2) cos(2πx) cos(2πz) ,

fex(x, z) = fex(x, z) ex + fex(x, z) ez ,

(4.41a)

(4.41b)
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Figure 8: L2-errors of projected polar differential k-forms (0 ≤ k ≤ 3) corresponding to the fields (4.41)
for different spline degrees qs and qθ and different number of elements Ns = ns−qs and Nθ = nθ (solid
lines). Dashed lines are expected convergence rates hqs+1 for Π0 and hqs for Πk (0 < k ≤ 3).

respectively, where ex and ez are Cartesian unit vectors along the respective directions. First, these
fields are transformed to differential k-forms via the pull-back operations listed in Table 1 under the
mapping Fcyl in (3.35) with (3.37) (cylinder) such that the resulting differential forms are functions of
s and θ only. This is followed by projections on the spaces V k

h (0 ≤ k ≤ 3) using the polar projection
operators introduced in the previous section. The errors compared to the exact forms corresponding
to the fields (4.41) are then measured in the L2-norm based on the L2-scalar products (2.7).

The resulting errors are shown in Figure 8 for each of the four projectors using spline degrees
qs = qθ = 2, 3, 4, 5 (solid lines). The same convergence behavior as for the pure tensor product case
is observed: hqs+1-convergence for the Π0 projector which is based on pure interpolation and hqs-
convergence for the other three projectors which are based on either mixed inter- and histopolation in
case of Π1 and Π2 or pure histopolation in case of Π3. The parameter h = 1/

√
NsNθ is the geometric

mean of the 1D element lengths hs = 1/Ns and hθ = 1/Nθ on the logical domain, where Ns = ns − qs
and Nθ = nθ are the number of elements in the s- and θ-direction, respectively.

5 Discrete MHD eigenvalue problem

To obtain a discrete version of the weak MHD eigenvalue problem (2.10), we replace the continuous
function spaces by the corresponding polar spline subspaces introduced in Section 3. To incorporate
the boundary conditions in the same way as in (2.9), we introduce boundary operators Bk (0 ≤ k < 3)
whose application on the set of basis functions spanning V k

h form reduced bases spanning spaces V k
0,h

satisfying the same boundary conditions as in (2.9). E.g.

Λ0
0 = B0 Λ0 = B0 E0Λ0 , V 0

h = span
(
Λ0
)
, V 0

h = span
(
Λ0
)
, V 0

0,h = span
(
Λ0

0

)
, (5.1)

and similarly for k = 1 and k = 2. Thanks to the property of clamped B-splines being interpolatory
at the boundaries (see (3.3)), the operators Bk have a simple form and just have to make sure that
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basis functions in V k
h having contributions from N qs

ns−1(s) are eliminated:

B0 :=
[
1n0

0
0n0

0×nθ

]
∈ Rn

0
0×n0

, n0
0 := n0 − nθ ,

B1 :=

1n1,1 0 0 0

0 1
n1,2
0

0
n1,2
0 ×nθ

0

0 0 0 B0

 ∈ Rn
1
0×n1

, n1
0 := n1,1 + n1,2

0 + n0
0 , n1,2

0 := n1,2 − dθ ,

B2 :=

1
n2,1
0

0
n2,1
0 ×nθ

0 0

0 0 1n2,2 0

0 0 0 1n3

 ∈ Rn
2
0×n2

, n2
0 := n2,1

0 + n2,2 + n3 , n2,1
0 := n2,1 − dθ .

(5.2)

(5.3)

(5.4)

Discrete derivatives acting on FE coefficients of fields in the reduced spaces V k
0,h can then easily be

computed as matrix-matrix products

G0 := B1 G (B0)> , C0 := B2 C (B1)> , D0 := D (B2)> . (5.5)

Replacing next the continuous function spaces V k
0 in the weak formulation (2.10) with the subspaces

V k
0,h and introducing the approximations (Uh, ph, Bh) ∈ V 2

0,h×V 3
h×V 2

0,h for the three trial functions

and K ∈ V 2
0,h for the test function,

U ≈ Uh = S2,0[ ~u ] , p ≈ ph = S3[ p ] , B ≈ Bh = S2,0[ ~b ] , K ≈ Kh = S2,0[~k ] , (5.6)

the following discrete eigenvalue problem is obtained: find non-trivial ω ∈ C and ( ~u, p, ~b ) ∈ Rn
2
0 ×

Rn
3 × Rn

2
0 such that

iωMρ ~u = −D†0 M3 p− T >( I 1
0 )−> C†0 M2 ~b− MJ ~b ,

iω p = D0 ( I 2
0 )−1F ~u + (γ − 1) ( I 3

0 )−1KD0 ~u ,

iω ~b = C0 ( I 1
0 )−1 T ~u .

(5.7a)

(5.7b)

(5.7c)

The matrices D†0 and C†0 are the conjugate transposed matrices of D0 and C0, respectively, and appear
when applied to the test function Kh rather than to one of the trail functions in the weak momentum
balance equation. Moreover, we introduced the mass matrices

M2 := E2
0 M2 (E2

0)> , M2 := (M2
µν)3

µ,ν=1 , M2
µν,(ij)(mn) :=

∫
Ω̂P

Λ2,µ
(ij)Gµν Λ2,ν

(mn)

1√
g

ds dθ ,

M3 := E3 M3 (E3)> , M3
(ij)(mn) :=

∫
Ω̂P

Λ3
(ij) Λ3

(mn)

1√
g

ds dθ ,

Mρ := E2
0 Mρ (E2

0)> , Mρ := (Mρ
µν)3

µ,ν=1 , Mρ
µν,(ij)(mn) :=

∫
Ω̂P

Λ2,µ
(ij)Gµν Λ2,ν

(mn) ρ
eq 1

g
dsdθ ,

MJ := E2
0 MJ (E2

0)> , MJ := (MJ
µν)3

µ,ν=1 , MJ
µν,(ij)(mn) :=

∫
Ω̂P

Λ2,µ
(ij) εµαν Λ2,ν

(mn) J
eq
α

1√
g

dsdθ ,

(5.8)

(5.9)

(5.10)

(5.11)

where Ek0 := Bk Ek (0 ≤ k < 3) as in (5.1). The mass matrices M are obtained from the pure tensor
product mass matrices M by applying the respective polar extraction operator from the left-hand side
and its transposed from the right-hand side. In (5.11), εµαν are the components of the Levi-Civita
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tensor and Λk,µ(ij) = ~Λk,µ(ij) · ~eµ for k = 1, 2 and µ = 1, 2, 3. Furthermore, we introduced the matrices

T := P1
0 T (E2

0)> , T = (Tµν)3
µν=1 , Tµν,(ij)(mn) := σ1,µ

(ij)

[
1√
g

(
Beq × ~Λ2,ν

(mn)

)]
,

F := P2
0F (E2

0)> , F = (Fµν)3
µν=1 , Fµν,(ij)(mn) := σ2,µ

(ij)

[
peq

√
g
~Λ2,ν

(mn)

]
,

K := P3K (E3)> , K(ij)(mn) := σ3
(ij)

[
peq

√
g

Λ3
(mn)

]
,

(5.12)

(5.13)

(5.14)

which appear in (5.7) at places where a projector Πk is applied. Here, Pk0 := Bk Pk (0 ≤ k < 3) and
I k0 := Pk0 Ik (Ek0)>.

The discrete MHD eigenvalue problem can finally be written in the same form as its continuous
counterpart (1.1). This is achieved by inserting (5.7b) and (5.7c) in (5.7a) which leads to the compact
form

−ω2 Mρ ~u = F ~u , (5.15)

where the discrete force operator on the right-hand side reads

F := −D†M3
[

D0 ( I 2
0 )−1F + (γ − 1) ( I 3

0 )−1KD0

]
− A− MJ C0 ( I 1

0 )−1 T ,

A := T >( I 1
0 )−> C†0 M2 C0 ( I 1

0 )−1 T ,

(5.16)

(5.17)

with A = A† being Hermitian. Hence, inverting the mass matrix Mρ and subsequently solving for the
eigenvalues ω2 and eigenvectors ~u yields the complete ideal MHD spectrum corresponding to some
given equilibrium state.

6 Numerical tests

6.1 Cylindrical magnetosonic eigenmodes

As a first test case we consider a cylindrical geometry with radius a and length 2πR0 (see mapping Fcyl

in (3.35) with (3.37)). For this geometry, analytical solutions to the MHD equilibrium force balance
are available. It is important to keep in mind, however, that the geometry in the IGA framework is not
an exact disc (in the poloidal plane) but rather represented by the spline functions (3.39). Hence, it
constitutes and additional source of numerical error, especially when comparisons of numerical results
to analytical results, which are based on the assumption of an exact disc, are performed. Such an
analytical result to the ideal MHD eigenvalue problem can be derived for the case of a homogeneous
plasma with ρeq = ρ0 and peq = p0 which is placed in a constant axial magnetic field Beq = B0 ey
[17]. This yields two types of solutions with eigenfrequencies

ω2 =


v2

Ak
2 ,

1

2

(
k2 +

α2
ml

a2

)(
(v2

A + v2
S)±

√
(v2

A + v2
S)2 − 4v2

Av
2
Sk

2/

(
k2 +

α2
ml

a2

))
,

(6.1)

where k = n/R0 is the ”toroidal”wave number and αml is the l-th zero of the first derivative of the m-th
Bessel function Jm. The characteristic velocities are the Alfvén velocity vA = B0/

√
µ0ρ0 and the speed

of sound vS =
√
γp0/ρ0. Hence, shear Alfvén waves are not affected by the presence of a cylindrical wall

and therefore exhibit a spectrum with infinitely degenerate eigenfrequencies ω2 = v2
Ak

2. In contrast
to that, fast (+) and slow (−) magnetosonic waves exhibit a discrete spectrum of eigenfrequencies
characterized by two integer mode numbers l > 0 and |m| ≥ 0, where m can be identified with
the ”poloidal” mode number in θ-direction. It is straightforward to show that in the limit a → ∞
the second expression in (6.1) collapses to the standard dispersion relation for magnetosonic waves
propagating parallel to the magnetic field in an infinitely extended plasma. In this case, the fast waves

33



−1.0

−0.5

0.0

0.5

1.0
te

n
so

r
p

ro
d

u
ct

sp
li

n
e
s

(Z
−
Z

0)
/a

Im(DF Û 2
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Figure 9: Normalized (to respective maximum absolute values) slow magnetosonic eigenmode (imagi-
nary part) with mode numbers l = 2 and |m| = 3 in cylindrical geometry with a pure axial magnetic
field using pure tensor product splines (upper line) and polar splines (lower line). Numerical parame-
ters are qs = qθ = 3, ns = 7 and nθ = 12.

Table 2: Comparison of analytical (see (6.1)) and numerical eigenfrequencies for the l = 2, |m| = 3 slow
magnetosonic eigenmode obtained with pure tensor product splines and polar splines (ωA = vA/R0).

(ω2 − ω2
∞)/ω2

A relative error

analytical 2.118 41× 10−5 -

pure tensor product splines 2.113 02× 10−5 2.545 86× 10−3

polar splines 2.112 72× 10−5 2.687 83× 10−3

(+) propagate with the Alfvén velocity and the slow waves (−) (which are then ordinary sound waves)
with the speed of sound.

For parameters a = 1 m, R0 = 2 m, n = −1, B0 = 1 T and p0 = 0.05B2
0/µ0 (plasma beta β = 10 %),

we compute numerical solutions to the MHD eigenvalue problem according to (5.15) and (5.16) and
compare it to the numerical spectrum obtained when using pure tensor product splines. For the latter,
boundary conditions at the pole (s = 0) must be supplemented. In the pure tensor product spline de
Rham complex (3.34) it is possible to impose the boundary conditions (3.38a), (3.38b) and the first
condition in (3.38c) at s = 0 but not the second condition in (3.38c) and the condition (3.38d) for
3-forms. For C1-smooth polar splines, by contrast, the latter two are satisfied as well. To highlight the
consequence of this, we investigate the l = 2, |m| = 3 slow magnetosonic eigenmode which is found in
both numerical spectra. In the V 0

h space, ns = 6 cubic B-splines are used in s-direction and nθ = 12
cubic B-splines in θ-direction. It can be shown that the eigenfrequencies (6.1) corresponding to the
slow magnetosonic eigenmodes converge towards the accumulation point ω2

∞ = v2
A v

2
S k

2/(v2
A + v2

S) for
l → ∞. Hence, rather than the absolute values, differences to this point are taken as a measure of
accuracy.

The resulting numerical eigenfrequencies listed in Table 2 agree well with the analytical one (relative
error < 3× 10−3) and the difference between the pure tensor product result and the polar spline result
is small. However, if the resulting eigenfunctions are plotted on the physical domain using the push-
forward operation for 2-forms shown in Table 1, a very different behavior is found close to the magnetic
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Figure 10: Numerical Alfvén continuous spectra for different aspect ratios R0/a → ∞, R0/a = 10
and R0/a = 5 and fixed toroidal mode number n = −6 (ωA = vA/R0). Numerical parameters are
qs = qθ = 3, ns = 64 and nθ = 96. Shown are also the locations of toroidal Alfvén eigenmodes (TAEs)
inside the gaps that form due to a coupling of the m = 10 and m = 11 branch.

axis for the axial component Uh,y. This is shown in Figure 9 where the resulting (Uh,x, Uh,z) vector
field (left column) and Uh,y-component (middle column) are plotted using pure tensor product splines
(upper row) and polar splines (lower row). While for the former the axial component diverges close to
the pole due to the 1/

√
g factor in the push-forward operation for 2-forms (

√
g → 0 for s → 0), this

is not the case for the polar splines where regularity in the push-forward is guaranteed. The point
where the tensor product solution explodes can be pushed towards the pole s = 0 by increasing the
resolution of the spline basis; however, this is not a viable solution when eigenfunctions need to be
evaluated arbitrarily close to the pole, as for instance in particle-in-cell codes such as STRUPHY [19].

6.2 Toroidal Alfvén eigenmodes

The second test case includes effects caused by toroidal curvature and serves as a benchmark study
with existing codes. The aim is to demonstrate that the presented eigenvalue solver based on FEEC
and polar splines can accurately reproduce well-known numerical results. The test case is taken from
[22] and is characterized by a circular toroidal geometry with minor radius a = 1 m and major radius
R0 (see mapping Ftor in (3.35) with (3.37)) together with an analytical equilibrium magnetic field of
the form

Beq =
B0R0

R

(
eϕ +

r

q(r)R0
eθ

)
, q(r) = q(r)

√
1−

(
r

R0

)2

, (6.2)

where r is the distance from the magnetic axis at R = R0 and eθ and eϕ are unit vectors (co-variant)
along the poloidal and toroidal direction, respectively. Moreover, B0 = 3 T is the on-axis toroidal
magnetic field and q = q(r) the safety factor which is chosen to be

q(r) = 1.71 + 0.16
r2

a2
. (6.3)

Finally, flat profiles for the mass density ρeq = ρ0 and the pressure peq = p0 = 8.055× 10−3B2
0/µ0

(on-axis plasma beta β = 0.179 %) are chosen. These profiles are not an exact solution to the MHD
equilibrium force balance and are rather chosen in an ad hoc way mainly to capture effects coming
from the characteristic 1/R dependence of the toroidal component of the magnetic field.

In such a configuration singular solutions corresponding to the shear Alfvén continuum exist [1].
In the cylindrical limit (R0/a→∞) the eigenfrequencies of these continuum modes read

ω2(r) =
B2

0

ρ0µ0

1

R2
0

(
n+

m

q(r)

)2

= v2
A k

2
‖(r) , (6.4)
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Figure 11: Normalized (to the maximum absolute value of the first component) 2-form components
of a toroidal Alfvén eigenmode (TAE) with mode numbers m = 10, 11 and n = −6 in a torus with
aspect ratio R0/a = 10 (corresponds to the black cross in the middle plot of Figure 10).

where vA = B0/
√
µ0ρ0 is the on-axis Alfvén velocity. It is evident that for a fixed toroidal mode

number (n), branches ω2(r) corresponding to different poloidal mode numbers m can intersect. This
degeneracy is lifted if poloidal coupling caused by toroidal curvature is present resulting in a formation
of a gap i.e. a ”forbidden” zone for continuum modes [8]. This feature is correctly captured by the
present eigenvalue solver as shown in Figure 10 where the numerical eigenfrequencies corresponding
to the shear Alfvén continuum in the range 0 < ω/ωA ≤ 1 are plotted (ωA = vA/R0). The toroidal
mode number n = −6 and the ”spatial location” of each eigenfrequncy is identified by looking for
the singularity in the corresponding eigenfunction. On the left, the cylindrical limit with intersecting
m = 10, 11 branches are identified while the plots in the middle and on the right show toroidicity
induced gaps at the intersection points at s = 0.5.

Besides continuum modes, toroidicity induced global, discrete Alfvén eigenmodes (TAEs) can exist
insides the gaps [8] which is also found in the numerical spectra with finite aspect ratios. Figure 11
shows the TAE mode structures for the three components of the resulting 2-form eigen-velocity for the
case R0/a = 10. Due to coupling of m = 10 and m = 11 modes, a ballooning-like mode structure, i.e.
an asymmetry between the high-field side and low-field side is observed. The computed TAE eigen-
frequency for a hydrogen plasma with number density n0 = 2× 1019 m−3 is ω = 4.14× 10−5 rad s−1

which is in good agreement with other codes (see graphs corresponding to MHD: no background pres-
sure gradient in plot (a) of Figure 2 in [22]).

7 Conclusion

We presented a numerical strategy for the solution of the ideal MHD eigenvalue problem for axissym-
metric equilibria on computational domains with a unique singular pole (edge that is mapped onto
a single point). Our approach combines discrete differential forms with the IGA-based polar spline
framework introduced by Toshniwal et al. [28, 27]. The former provides a natural discretization of
grad-, curl- and div-operators in curvilinear coordinates that preserves the de Rham complex on the
discrete level. The latter leads to continuous eigenfunctions on the mapped domain, including the pole.
The main contribution of this work is the definition of commuting projectors for the polar de Rham
diagram. These projectors are defined via polar degrees of freedom (DOFs), obtained as linear com-
binations of tensor product DOFs. We state several sufficient conditions for commutativity on these
linear combinations and give explicit, block-wise representations of all reduction matrices needed.
Finally, the new eigenvalue solver has been benchmarked with a toroidal-Alfvén eigenmode (TAE)
calculation and a cylindrical test case for analytic comparison; the correct behavior of eigenfunctions
near the pole is demonstrated, in contrast to the standard tensor product solver.

Future work will include detailed verifications for realistic tokamak equilibria with non-circular
poloidal cross-sections and coupling to a particle-in-cell code for a kinetic minority species as shown
in [19]. The latter was the original motivation for this work and it is expected that the developed
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methods help improving particle pushing close to the magnetic axis.
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