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Many problems in computational materials science and chemistry require the evaluation of expensive
functions with locally rapid changes, such as the turn-over frequency of first principles kinetic Monte
Carlo models for heterogeneous catalysis. Because of the high computational cost, it is often desirable
to replace the original with a surrogate model, e.g., for use in coupled multiscale simulations. The
construction of surrogates becomes particularly challenging in high-dimensions. Here, we present
a novel version of the modified Shepard interpolation method which can overcome the curse of
dimensionality for such functions to give faithful reconstructions even from very modest numbers of
function evaluations. The introduction of local metrics allows us to take advantage of the fact that,
on a local scale, rapid variation often occurs only across a small number of directions. Furthermore,
we use local error estimates to weigh different local approximations, which helps avoid artificial
oscillations. Finally, we test our approach on a number of challenging analytic functions as well as
a realistic kinetic Monte Carlo model. Our method not only outperforms existing isotropic metric
Shepard methods but also state-of-the-art Gaussian process regression. Published by AIP Publishing.
https://doi.org/10.1063/1.4997286

I. INTRODUCTION

The interest in multiscale modeling approaches for materi-
als science and chemistry has exploded in the last two decades.
One important class of such approaches employs sequential
(or hand-shaking) strategies, where a smaller scale model is
employed as the closure of a larger scale model. In the sim-
plest case, this just requires the adjustment of a finite set of
parameters, e.g., the viscosity of an isothermal Newtonian
fluid. In the general setting, the analytic form of the closure is
not known and the small-scale model is required to determine
functions of the large-scale variables. A prototypical example
is ab initio molecular dynamics, where the functional depen-
dence of the Potential Energy Surface (PES) is obtained from
first-principles electronic structure simulations. Employing a
microscale simulation every time the function is evaluated is,
of course, very time-consuming and then usually the bottle-
neck of such multiscale approaches. One way to accelerate
this is to parametrize a surrogate model using small-scale sim-
ulations and employ this in the large-scale simulations instead
of the microscale simulator. A number of different general pur-
pose surrogate models have been used in this way, including
neural networks,1 Gaussian processes,2–4 full5 and sparse grid
splines,6 and modified Shepard interpolation.7–9

The present work grew out of our efforts to couple
first-principles kinetic Monte Carlo (1p-kMC) to Computa-
tional Fluid Dynamics (CFD) simulations for reactive flows

a)juan.lorenzi@tum.de

over a heterogeneous catalyst using local modified Shepard
interpolations8,9 and extensions thereof.10,11 Here, the sur-
rogate model is used to interpolate the catalytic turnover
frequency (TOF) obtained from the mesoscopic 1p-kMC sim-
ulations as a function of the temperature, T, and the par-
tial pressures {pi} of the Nspec different gas phase species.
The surrogate model then serves as a boundary condi-
tion in CFD. A corresponding use of surrogate models
for coupling mean-field microkinetic models to CFD is
widespread, including the use of splines12,13 or in situ adap-
tive tabulation.14 The latter has also been employed in the
kMC+CFD context for the simulation of crystal growth
and catalysis,15,16 albeit with a phenomenological kMC
model.

Efficiently and reliably interpolating 1p-kMC based TOF
maps is a challenging problem. Under the appropriate coor-
dinate transformation (i.e., logarithmic pressures and TOF, as
well as inverse temperature), the maps display an approxi-
mately linear behavior for large parts of the ({pi}, T )-space.
Usually these linear regions correspond to steady-state kinetic
“phases,” characterized by a defined coverage regime on
the catalyst.17,18 In contrast, the behavior at the boundaries
between such “phases” is highly non-linear and characterized
by a rapid change of the TOF value and gradient within a nar-
row range of pi and T values. This is challenging for most
interpolation methods and normally it is necessary to sam-
ple such regions densely to get satisfactory results. This is
aggravated further in higher dimensions (i.e., for problems
with a larger number of gas-phase species Nspec) because
the number of points required to densely fill space grows
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exponentially with the number of dimensions (the so-called
curse of dimensionality). For this reason, 1p-kMC+CFD stud-
ies have, up to now, been limited to problems involving only
a small number of gas-phase species, such as CO oxida-
tion,10,11,18 where, in addition to the temperature, only the
CO and oxygen partial pressures play a role. Modeling more
complex pathways would, of course, be of great interest. For
example, in competitive CO + NO oxidation,19 the dimension-
ality is already five (at least) because the TOFs also depend on
the partial pressures of NO and NO2.

In this article, we present an extension to the popular
local modified Shepard interpolation20 addressing the prob-
lem of approximating functions with sharp transitions in
higher dimensions. Our approach constructs a local metric
for each data point (node), which is then used to deter-
mine local polynomial approximations (the nodal functions),
which are combined to estimate function values at arbitrary
points (query points). In this way, we can exploit (local) low-
dimensionality of the target functions: sharp variations typ-
ically occur only along a few directions, while the function
is smoother along the others. Having metrics that are local is
then crucial because the direction of rapid change might vary
across the domain. In the 1p-kMC context, sharp variations in
rates are often associated with phase transitions in the surface
coverage. These transitions have interfaces which are quasi-
(D � 1)-dimensional for D dimensional problems. Close to
such regions, only the direction perpendicular to the transi-
tion region presents rapidly changing behavior, and thus the
function is approximately one-dimensional there. Where two
interfaces meet (i.e., around points where three phases coex-
ist), the behavior will be approximately two-dimensional. The
idea of a local metric is shared with locally weighted pro-
jection regression,21 which differs, however, in the way the
metric is determined and the nodal functions are blended. Most
significantly, we do not base the blending on the distances
between the query point and the nodes, but on estimates of
the approximation quality of the nodal functions at the query
points.10,22

This combination of a local metric with error estimate
based weighting largely suppresses artificial wiggles and espe-
cially overshoots close to sharp changes, while the resulting
interpolant is once differentiable by construction. Our method
produces accurate and qualitatively correct interpolations of a
number of test functions with rapid, localized transitions, even
in higher dimensions (up to at least 7) and from small data
sets. All these properties are desirable in a multiscale context:
overshoots and wiggles might introduce qualitatively wrong
behavior, e.g., artificial hysteresis in 1p-kMC/CFD couplings;
large-scale solvers often require continuous derivatives, e.g.,
many CFD codes incorporate the stiff chemistry using implicit
ordinary differential equation (ODE) solvers;23 finally, the
small-scale models are often very costly and a large number
of function evaluations are usually not affordable. While our
present focus is on activity data, especially from 1p-kMC, our
approach is very general and should also be of help in other
fields, possibly with suitable adaptations.

This paper is structured as follows. In Sec. II, we present
the methodology of our interpolation as well as the details of
other versions of the Shepard interpolant that are relevant to

this work. In Sec. III, we use examples to demonstrate the
performance of our interpolant. The examples include a col-
lection of analytic test functions (cf. Subsection III A) and
a realistic 1p-kMC reactivity map (cf. Subsection III B). In
Sec. IV, we offer conclusions on our findings and discuss future
directions which might lead to an improvement of the devised
methodology.

II. METHODS

Our approach belongs to the class of modified Shepard
(MS) interpolation methods. They are meshless, scattered data
interpolation methods because they require neither the input
data to lay on a predefined grid nor any kind of triangulation
(meshing). The defining characteristic of the MS approach is
the use of a collection of local approximations of the target
function, centered on the data points. The interpolant itself is
evaluated as a weighted sum of these approximations.

In Sec. II A we introduce the common features of MS
interpolation methods as well as one of the standard ver-
sions, which we will call distance-based MS (cf. Sec. II A). In
Sec. II B, we discuss some of the limitations of distance-based
MS and a way to overcome these by using an estimate of the
error of the local approximations as the basis for the weighting.
This constitutes what we call error-based MS, first introduced
in Ref. 10. In Sec. II C we consider problems arising from the
use of isotropic weighting schemes when dealing with high-
dimensional functions with localized regions of rapid change.
We explain how local metrics can be constructed and com-
bined with the error estimates to solve such issues, resulting in
the error-based local metric MS (EBLMMS) method. Finally,
in Sec. II D, we discuss our choice of input data, i.e., the set
of independent variables for which we evaluate the original
function.

A. Modified Shepard interpolation

Formally, our aim is to interpolate a target function

f : RD → R (1)

within a certain D-dimensional domain Ω = [xmin
1 , xmax

1 ]
× · · · × [xmin

D , xmax
D ] ⊂ R. D is the number of parameters that

define the value of the function (e.g., D = Nspec + 1 in the
above 1p-kMC/CFD coupling example). The interpolant is
constructed using a set of points X = { x1, x2, . . . , xN } ⊂ Ω,
known as nodes, and the corresponding function values
F = { f1, f2, . . . , fN } ⊂ R, with f i = f (xi).

The formula for the modified Shepard interpolant is20

g(x) =

∑N
k=1 wk(x)Qk(x)∑N

k=1 wk(x)
=

N∑
k=1

Wk(x)Qk(x), (2)

where the nodal functions Qk are local approximations of f
around the nodes xk , wk are the relative interpolation weights,
and

Wk(x) =
wk(x)∑N

i=1 wk(x)
(3)

are the normalized interpolation weights or simply the weights.
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Typically, the nodal functions are low-order polynomials,
mostly first or second order. In this work, we will only consider
the linear case and take

Qk(x) = fk + ak · (x − xk)

= fk +
D∑

i=1

ak,i(xk,i − xi). (4)

The coefficients ak ,i are obtained by minimizing the weighted
sum of squared errors

N∑
i=1
i,k

w̃k(xi) (Qk(xi) − fi)
2 , (5)

where we have introduced the relative construction weights
w̃k(xi).

The flexibility in the selection of the weights wk and
w̃k allows for the definition of different classes of Shepard
interpolants. In this work, however, we only consider relative
interpolation weights that satisfy

wk(x) ≥ 0, (6a)

lim
x→xk

wk(x) = +∞, (6b)

lim
|x−xk |→+∞

wk(x) = 0. (6c)

This guarantees that the normalized weights constitute a
Shepard partition of unity, i.e.,

Wi(x) ≥ 0, (7a)

Wi(xk) = δik , (7b)
N∑

i=1

Wi(x) = 1 ∀x. (7c)

The property (7b) and the fact that Qk(xk) = f k ensure that
the interpolant goes through each of the datapoints exactly [i.e.,
g(xi) = fi ∀i]. By releasing one (or both) of these conditions,
the method could easily be extended to also deal with noisy
input data. However, this is outside the scope of this work.

A simple ansatz for the weights would be wk(x) = w̃k(x)
= |x − xk |

−2, i.e., inverse-square decay, which was used for
the interpolation weights by Shepard in his original work.24 In
most cases, however, such long-range weights are undesirable
and we want to construct the local approximations Qk using
only points close to the corresponding node xk . Accordingly,
we can only expect such functions to be predictive near xk .

For this reason, alternative versions of Shepard interpo-
lation use weights which either (a) decay (much) faster than
inverse-square at longer distances7,21 or (b) have finite sup-
port, i.e., the weights are only non-zero in the vicinity of the
nodes.20,25,26 In the latter case, which is the one we use in
this work, each of the nodal functions Qk is built using only a
subset of the nodesσk ⊂ X. Such subsets are called stars. Cor-
respondingly, the range of influence of each node xk is limited
to a region

ωk = {x | wk(x) > 0} ⊂ Ω (8)

around it. Such regions are called clouds. The simplest choice
is to make clouds and stars isotropic. This is most easily
achieved by making wk(x) and w̃k(x) non-zero only inside D-
balls centered around xk .25 In the seminal work of Renka,20

relative interpolation weights are correspondingly defined
according to

wk(x) =

(
1 −

dk(x)
Rw,k

)2

+(
dk(x)
Rw,k

)2
(9)

and construction weights are defined according to

w̃k(x) =

(
1 −

dk(x)
Rq,k

)2

+(
dk(x)
Rq,k

)2
, (10)

where dk(x) = ||x � xk ||2 is the Euclidean distance between
query point x and node xk and

(x)+ =



x, if x ≥ 0

0, if x < 0
. (11)

The radii Rw,k are chosen such that a given number of nodes
Nw fall inside each cloud σk . Similarly, Rq ,k are chosen such
that all stars σk contain a given number Nq of nodes. A
representation of these elements is given in Fig. 2(a).

Alternatively, clouds can be defined such that each query
point is inside the clouds of exactly Nw nodes. In this for-
mulation, distance based weights can be defined according
to

wk(x) =

(
1 −

dk(x)
Rw(x)

)2

+(
dk(x)
Rw(x)

)2
, (12)

where Rw(x) depends on the query point x and is set to the
distance to its Nwth neighbor. Such a method is implemented
in the numerical subroutine library ALGLIB.26

Nq and Nw are the two adjustable parameters of this
method. The smallest reasonable value for Nq is the num-
ber of free parameters in the nodal functions (i.e., D for linear
nodal functions), in order to be able to fit them to the Nq nodes.
In practice, Nq is chosen considerably larger than D to avoid
overfitting of the nodal functions. Nw represents the range of
validity of nodal functions and controls how much clouds over-
lap. A priori, we would expect that Nq and Nw should not differ
very much, as they ultimately represent the range in which we
expect the target function to be reasonably approximated by
linear functions.

In what follows, we will refer to methods using construc-
tion weights from Eq. (10) and evaluation weights from either
Eq. (9) or Eq. (12) as distance-based MS (DBMS) to differen-
tiate them from the error-based methods which we define in
Sec. II B.

B. Error-based modified Shepard (EBMS) interpolation

Purely distance-based weights are a natural choice when
we expect target function values at a given query point to be
predicted better by nodal functions of closer nodes than by
nodal functions of more distant nodes. This assumption might
be violated by functions with concentrated regions of large
gradient changes. An illustration of this is presented in Fig. 1,
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FIG. 1. The cause for overshoots with distance-based weights. The black
curve represents the target function; colored straight lines represent the nodal
functions Qi and Qj of nodes xi and xj , respectively. The distance-based
relative interpolation weight associated with Qi at query point q, i.e., wi(q),
will be larger than that for xj , i.e.,wj(q), even though the latter’s nodal function
predicts the target function value f (q) considerably better.

where nodes xi and xj are located on different sides of such a
region. The query point q is on the same side as xj but closer to
xi (di < dj). The prediction of nodal function Qi (red straight
line in the figure) at point q is much worse than that of Qj

(blue straight line), but the distance-based weight of the former
will be higher [wi(q) > wj(q)]. We therefore obtain a largely
overpredicted function value even though we have a better
approximation available.

Alternatively, we propose to weight nodal functions
according to how well they predict the target function, e.g.,
inversely proportional to their error,

wk(x) ∝
1

|Qk(x) − f (x)|
. (13)

Using an expression like Eq. (13) results in a larger weight
for Qj at query point q than for Qi because |Qi(q) − f (q)|
� |Qj(q)− f (q)|. Of course, the target function value and, con-
sequently, the nodal function error |Qk(x) � f (x)| are unknown
at arbitrary query points.

The key idea behind error-based modified Shepard
(EBMS) interpolation10 is to use computationally cheap error
estimates instead

εk(x) ∼ |Qk(x) − f (x)|. (14)

An analytic expression for such estimates can be obtained from
a formula giving upper bounds of the nodal function’s error,22

which can be parametrized using the known errors of the nodal
functions on nearby nodes.

We can formally derive the EBMS error estimates as fol-
lows: Let ∂i f , with i = 1, . . . , D, be the (unknown) partial
derivatives of the target function f. From the theory of Taylor
expansions, we have

f (x) = Tk(x) + Zk(x)

= fk +
D∑

i=1

∂i f (xk)(xi − xk,i) + Zk(x), (15)

where T k is the first-order Taylor expansion of f around xk

and Zk is the residual. It can be shown that, for continuously

differentiable target functions, there exists a scalar bk,2 ≥ 0
such that22

|Zk(x)| ≤ bk,2 (dk(x))2 ∀x ∈ ωk , (16)

where dk(x) = ||x � xk ||2 as before. With this in mind, we obtain
a bound for the error |Qk(x) � f (x)| within the cloud ωk ,

|Qk(x) − f (x)| = |Qk(x) − Tk(x) − Zk(x)|

≤

D∑
i=1

|∂if (xk) − ak,i | |xi − xk,i | − |Zk(x)|, (17)

where we have applied the definition of the nodal functions,
Eq. (4), and the triangle inequality. Combining the fact that∑D

i=1 |xi − xk,i | ≤ Ddk(x) with Eq. (16) and taking

bk,1 = D max
1≤i≤N

({|∂i f (xk) − ak,i |}),

we obtain a formula for a bound on the errors of nodal functions

|Qk(x) − f (x)| ≤ bk,1dk(x) + bk,2 (dk(x))2, (18)

which we can use as an analytic expression for our error
estimates

εk(dk(x)) = bk,1dk(x) + bk,2(dk(x))2. (19)

We need the error estimates εk to approximate the pre-
diction error of Qk . To achieve this, the coefficients bk ,1 and
bk ,2 are fitted by minimizing the sum of squared differences
between the error estimates and the known errors in the cloud,∑

xi∈ωk

(εk(dk(xi)) − |Qk(xi) − fi |)
2. (20)

In order to be consistent with the derivation of εk , this
minimization is performed under the constraints

0 ≤ bk,1, bk,2 (21a)

and

|Qk(xi) − fi | ≤ εk(dk(xi)) for all xi ∈ ωk . (21b)

Having obtained an expression for the error estimates εk ,
we can now formally define the EBMS interpolant: the nodal
functions Qk are built exactly as in DBMS [cf. Eqs. (4), (5),
and (10)], but the interpolation weights are given by

wk(x) =
λ(Rw , rw; dk(x))

εk(dk(x))
, (22)

where λ is a localization function

λ(R, r; d) =




1, if d < R − r

−2

(
R − d

r

)2

+ 3

(
R − d

r

)3

, if R − r ≤ d < R

0, if R ≤ d.

(23)

λ guarantees that wk have finite support and that the resulting
interpolant is once differentiable. The width of the transition,
i.e., the region where 0 < λ < 1, can be made small by choos-
ing rw << Rw , which ensures that the weights are purely error
based (except for the localization). It has already been shown
that error-based weights very effectively alleviate overshoots
in DBMS for low-dimensional cases.10 In Sec. III A, we show
that this also holds for higher dimensional functions.
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Much like in Sec. II A, the radius Rw of Eq. (22) can be
chosen to depend either on the node [like Rk,w in Eq. (9)] or
on the query point [like Rk(x) in Eq. (12)], which changes the
shape of the clouds. The EBMS implementation we use in
Sec. III is based on ALGLIB’s DBMS implementation26 and
thus uses the query point based interpolation weights.10

C. Local metric based modified Shepard

In both DBMS and EBMS, the relative construction
weights w̃k(x) and the interpolation weights wk(x) depend only
on the distance ||x � xk ||2. This isotropy corresponds to the
implicit assumption that the nodal functions approximate the
function equally well in all directions. However, this may not
reflect the true behavior of the target function. An example of
such an anisotropic function is depicted in Fig. 2. The (lin-
ear) nodal function corresponding to node xk approximates
the function very well at query point q1, but we expect a large
error at query point q2 (at the same distance from the node
as q1) because the function behaves highly non-linearly in the
direction xk � q2 (as indicated by the isolines).

To get an accurate interpolation of such a function using
isotropic weights, we would need to densely sample the
domains of rapid change. This becomes intractably expen-
sive in higher dimensions even if we were able to detect these
domains. An alternative is to introduce anisotropic stars and
clouds. Intuitively, stars and clouds that are narrow in the direc-
tions of rapid variation and wide in the other directions are
needed, as illustrated in Fig. 2. Instead of the (hyper-)spherical
cloud for isotropic weights in Fig. 2(a), we thus introduce a
cloud which is contracted in the xk � q2 direction, as shown in
Fig. 2(b). This reduces the deviation of the target function from
the linear nodal function within the cloud even if the cloud still
has the same volume.

A straightforward way to achieve anisotropic clouds is to
introduce a set of D×D matrices Mk = (mk ,ij), each associated
with a node. We can then introduce a set of local distance
measures

dk(x) B | |Mk(x − xk)| |2 (24)

and use this local metric to naturally extend the formulae from
the isotropic interpolant case. Since Mk is only used to define
distances, it suffices to consider symmetric, positive definite
matrices. Consequently, each of them is determined by D(D
+ 1)/2 coefficients.

In this formalism, the interpolation weights are given by

wk(x) =
λ(1, r0, dk(x))
εk(dk(x))

, (25)

where the local metric, Eq. (24), is used instead of the
Euclidean distance. The clouds resulting from these error
weights are D-dimensional ellipsoids. Notice that Mk already
contain the information giving the size of the ellipsoids. Con-
sequently, there is no explicit radius appearing in Eq. (25).
The parameter r0 defines the thickness of the shell in which
0 < λ < 1. To make this parameter scale adequately with the
dimension D of the problem, we define it as

r0 = 1 − D
√

1 − ρ0. (26)

This ensures that the fraction of the cloud’s volume taken by the
shell is ρ0 (the proof is given in the supplementary material).
In this work, we use ρ0 = 0.1.

In this local metric based MS (LMMS), the nodal func-
tions Qk are still constructed by minimizing Eq. (5), but now
using anisotropic construction weights. We can generalize the
isotropic construction weights from Eq. (10) to

w̃k(x) =
(1 − d̃k(x))2

+(
d̃k(x)

)2
, (27)

where we have introduced the local distance measure d̃k(x)
= | |M̃k(x − xk)| |2 and the M̃k construction matrices. The
supports of w̃k , also D-dimensional ellipsoids, define the
anisotropic stars.

Intuitively, we expect the ellipsoids defining stars and
clouds to be aligned and geometrically similar, i.e., they can
be mapped to each other through isotropic scaling, since their
orientation and shape should only depend on the local gradi-
ents of the target function. Therefore, we expect Mk = γM̃k for

FIG. 2. Schematic representation of the different geometric elements associated with the interpolation methods described in this work. Small circles represent
the nodes and gray lines represent contour levels of the target function, which accumulate in regions of rapid change. The shaded region corresponds to the cloud
ωk , i.e., the support of the interpolation weight wk . The region delimited by the blue dashed line represents the support of construction weight w̃k and defines the
star σk . Nodes belonging to the star are colored blue. Query points q1 and q2 are separated from xk by the same distance. In the isotropic case (left panel), both
regions are hyper-spheres with radii Rw and Rq, respectively. The weight associated with nodal function Qk is the same at query points q1 and q2, i.e., wk(q1)
= wk(q2). In the anisotropic case (right panel), the supports of wk and w̃k are coinciding hyper-ellipsoids, such that the weight associated with Qk is positive at
query point q1 but zero at point q2, i.e., wk(q1) > wk(q2) = 0.
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some scalar γ. For simplicity, we will only consider γ = 1 in
this work, thus restricting our study to stars and clouds of equal
size and shape. Although a preliminary analysis has shown the
effects of γ to be small, we postpone a detailed analysis to a
future study. For the sake of simplicity of exposition, in what
follows, we will often use the term clouds instead of clouds and
stars, even where strict conceptual analogy with the isotropic
methods would favor the term stars.

Constructing an error estimate for use with the anisotropic
version of the interpolant is straightforward. To rationalize this,
it is sufficient to notice that distances from Eq. (24) are simply
the Euclidean distance in the transformed coordinates x′ given
by

x → x′ = Mkx. (28)

Thanks to this, the formal derivation of the error estimates from
Sec. II B [cf. Eqs. (15)–(19)] is valid also in the transformed
coordinates. This means the error estimates εk in Eq. (25) are
still given by Eq. (19), but using the local distance dk(x) from
Eq. (24). Correspondingly, the coefficients bk ,1 and bk ,2 are
obtained by minimizing expression (20) under the constraints
of Eq. (21) using the local distance dk(x).

The only element missing is then a procedure to obtain
the matrices Mk . As discussed at the beginning of this section,
we want local matrices that minimize the prediction error of
the nodal functions. We can quantify this with a (distance)
weighted sum of errors given by

E(Mk) =
N∑

i=1
i,k

w̃k(Mk , xi) (Qk(Mk , xi) − fi)
2, (29)

where we have highlighted the dependence of the nodal func-
tions Qk and the distance-based construction weights w̃k [cf.
Eq. (25)] on Mk .

Directly minimizing Eq. (29) would often not provide use-
ful results since clouds will tend to shrink until the number of
nodes they contain is ≤ D, trivially resulting in E = 0. This
would lead to overfitting of the nodal functions and/or to gaps
in the cloud coverage of the domain. Instead, we would like
to control the number of points that fall within a cloud, as
we could in the isotropic versions of the method. We would
thus want to perform the minimization, constraining the search
space to Mk-matrices that produce clouds with a given number
of nodes in them. However, introducing a discontinuous con-
straint like node counts into a numerical minimization scheme
is technically difficult. To alleviate this, we have decided to
impose softer constraints.

We can define two estimates of the number of points in a
cloud: One given by

η−(Mk) =
N∑

i=1

λ(1, r−; dk(xi)), (30)

which is always equal to or smaller than the actual number of
nodes in the cloud η0(Mk), and the other given by

η+(Mk) =
N∑

i=1

λ(1 + r+, r+; dk(xi)), (31)

which is always η+(Mk) ≥ η0(Mk). Proof of the inequality
relations for η+ and η

�

are given in the supplementary material.

The width parameters are given by

r− = 1 − D
√

1 − ρsoft, (32a)

r+ =
D
√

1 + ρsoft − 1. (32b)

In the limit ρsoft → 0, both width parameters tend to zero and
the bounds η

�

and η+ both converge to the actual number of
nodes in the cloud. However, for very low values of ρsoft, the λ
function shows very steep gradients, which would disqualify
the estimates from Eqs. (30) and (31) for use in numerical
optimization routines. It is necessary, therefore, to work with
a finite ρsoft and we have employed ρsoft = 0.2 throughout this
study.

We use Eqs. (30) and (31) to define the following
optimization constraints:

η−(Mk) ≥ Nt , (33a)

η+(Mk) ≤ 2Nt , (33b)

which ensures that each cloud contains more than N t but less
than 2N t nodes. Here, N t is a free parameter of the interpolation
method, analogous to Nq and Nw in DBMS and EBMS. In this
formulation, the points in the cloud determine not only the
D coefficients of the nodal functions but also the D(D + 1)/2
coefficients of the local matrices. For this reason, it is necessary
to have Nt ≥ D(D + 1)/2.

The final necessary element, avoiding another potential
pitfall, is a limit on the skewness of the matrices. For node
distributions, in which they are approximately aligned, clouds
will tend to extend in one direction and shrink indefinitely in
the others, leading to overfitted, spurious nodal functions and
gaps in the cloud coverage. We can quantify the skewness of
an ellipsoid as the ratio between the length of its longest and
its shortest principal semi-axes, which is equal to the ratio
between the absolute values of the largest and the smallest
eigenvalues of the corresponding matrix. This is the condition
number27 of the matrix and can be approximated by

κ(Mk) = | |Mk | |1 | |M
−1
k | |1, (34)

where | | · | |1 represents the 1-norm for D × D matrices. We
penalize Mk with large κ by introducing a multiplicative factor
to our cost function of the form

K(Mk) = 1 +

(
κ(Mk) − κ0

κ0

)p

+
, (35)

where κ0 is the value at which this penalization term starts to
take effect, and p ≥ 2. In this work, we take κ0 = 100 and
p = 4.

In summary, local matrix coefficients are obtained by
minimizing the cost function

C(Mk) = E(Mk)K(Mk) (36)

subject to the constraints of Eq. (33).
For the rest of this work, we will refer to the interpola-

tion method described in this section as error-based LMMS
interpolation, EBLMMS for short. We have implemented the
EBLMMS method as a python28 package, with computation-
ally critical parts implemented as C-extensions with the help
of the SWIG29 interface generator. Linear algebra operations
on bigger matrices (mainly the matrix of node coordinates),
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as well as the least squares optimization of the nodal func-
tion coefficients, cf. Eq. (5), are done using the BLAS30 and
LAPACK31 linear algebra libraries. Both local matrix and error
estimate parameter optimizations were implemented with the
help of the NLopt non-linear optimization library.32

The initial guess for the local matrices is taken as M0
k

= ID/R0, where ID is the (D × D) identity matrix and

R0 =
D

√
(RNN

k (Nt))D + (RNN
k (2Nt))D

2
, (37)

with RNN
k (n) representing the distance from xk to its nth nearest

neighbor. The algorithm used to fit the matrices is Constrained
Optimization by Linear Approximations (COBYLA),33 which
is a derivative-free optimization algorithm able to handle
non-linear constraints. COBYLA works by solving consec-
utive linear approximations of the target optimization prob-
lem. The approximations are constructed using the points
in a simplex (similar to the one used in the well-known
Nelder-Mead method), which is reduced in size during the
optimization.

We have explored three different stopping criteria for the
optimization: (a) the value of the cost function, Eq. (36), falls
below some threshold value Cmin, (b) the size of the simplex
(i.e., the maximum distance between vertices) is smaller than
some value m0 (which represents convergence of the change of
the matrix coefficients mk ,ij), and (c) the number of cost func-
tion evaluations exceeds Neval. As expected, the choice of the
stopping criterion affects both the quality of the interpolant and
the time to reach convergence. For criterion (a), larger values
of Cmin (obviously) reduce the CPU time for determining Mk

but can affect the quality of the interpolant when the number of
nodes is large (and thus the value of the cost function is small).
In this work, we use Cmin = 10−8 for all calculations presented
in Sec. III. We find that reducing the value of this parameter
further provides only negligible gains in interpolant quality.
For criterion (b), we find that it is most robust to employ a
scale dependent on the local environment of the node and thus
select m0 = 0.05(RNN

k (2Nt) − RNN
k (Nt)). Finally, criterion (c)

is simply the backup for when the optimization takes too long
and we employ Neval = 1000 in this work.

In summary, we observe that the stopping criteria as
well as the initial value of the Mk matrix can have a strong
impact on both the quality and construction time of the inter-
polant. We believe this is a direction in which consider-
able improvements could be made to the method. However,
as we will see in Sec. III A, the method as presented can
already provide better results than other state-of-the-art meth-
ods for the class of functions which are of interest in this
work.

The fitting of the error estimate parameters bk ,1 and bk ,2

is achieved using the derivative-based Method of Moving
Asymptotes (MMA)34 optimization. The initial guess for the
parameters is a conservative guess

b0,1 = 10
∆F
∆X

,

b0,2 = 10
∆F

(∆X)2
,

where ∆F and ∆X are the range of variation of the function
values and the (maximum) range of variation of the coordinate
values, respectively. We stop the optimization, when both bk ,1

and bk ,2 change by less than 10�5 between two consecutive
iteration steps.

For clarity, we finally present a summary of the algorithm
for EBLMMS construction as pseudocode in Algorithm 1.

D. Interpolant construction and quality evaluation

In Sec. III we construct interpolants for different target
functions. In order to do this, we first need to select the loca-
tion of the nodes. As this work targets applications in higher
dimensions, using nodes on regular grids is not a viable option
because the number of total nodes for a given grid resolu-
tion grows exponentially with the number of dimensions, i.e.,
N = nD, where n is the number of nodes in each coordinate. This
is the so-called curse of dimensionality. The use of sequences
of pseudo-random vectors is also not ideal for our problem.
Such sequences typically show regions with a locally high or

Algorithm 1. Construction of the EBLMMS interpolant.

1: procedure Build
2: Set κ0, N t

3: Load nodes X = (x1, . . . , xN )
4: Load function values F = ( fi, . . . , fN )
5: for k = 1 to N do
6: DX ← (x1 − xk , . . . , xN − xk)
7: DF ← ( f1 − fk , . . . , fN − fk)
8: Get RNN

k (Nt), RNN
k (2Nt)

9: M0
k ← ID/R0 [cf. Eq. (37)]

10: ak , Mk ←Minimize C(. . . ) [cf. Eq. (36)] under constraints (33) using COBYLA
11: {bk ,1,bk ,2}←Minimize Eq. (20) under constraints (21a) using MMA
12: function C(Mk , DX, DF, κ0) . Eq. (36)
13: DXscaled ← MkDX
14: Get Qk by minimizing Eq. (5)
15: Evaluate E [cf. Eq. (29)]
16: Evaluate K [cf. Eq. (35)]
17: return E · K
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low density of points (compared to the overall density). For our
purposes, regions where nodes accumulate are undesirable as
these nodes could become redundant (especially in smooth
regions of the test function). Correspondingly, regions locally
devoid of nodes could leave parts of the domain outside of the
cloud coverage.

For these reasons, we use low-discrepancy sequences
(also known as quasi-random sequences or quasi-Monte Carlo
points), which are deterministic vector sequences covering
a given domain more evenly than pseudo-random vector
sequences. This property is often exploited to perform high-
dimensional numerical integration, where it allows accurate
estimates to be obtained from relatively few function evalua-
tions. We expect this to be beneficial for the determination
of the nodal functions as well since fitting the expansion
coefficients of a polynomial approximation is closely related
to integration. Specifically, we employ Sobol sequences,35,36

which are very frequently used and widely implemented. For
each of the cases presented in Sec. II, we construct the database
for the interpolant by evaluating the target function on the
first N vectors of the Sobol sequence of the correspond-
ing dimension {xsobol

i }Ni=1, for a number of different values
of N.

III. RESULTS

In this section, we analyze the performance of the newly
developed interpolant qualitatively and quantitatively. This is
done in comparison to isotropic versions of the MS method
as well as against the state-of-the-art Gaussian process regres-
sion (GPR) method, which has recently gained popularity in
computational physics and materials science.2–4 To obtain a
quantitative measure of the interpolant’s quality, we estimate
the L1 integral of the error of the interpolation as

Φ =
1
∆F

∑Ntest
i=1 |g(yi) − f (yi)|

Ntest
, (38)

where g is the interpolant, f is the target function, and ∆F is a
measure of the variation of the function values given by

∆F = max
Ω

( f ) −min
Ω

( f ). (39)

In all cases, we will be using the Ntest vectors of the Sobol
sequence immediately following the points used as nodes, i.e.,
{yi}

Ntest
i=1 = {x

sobol
i }

N+Ntest
i=N+1 . Taking Ntest = 2 × 105 was sufficient

to converge Φ values for all tests.
In Sec. III A, we first use a collection of analytic functions

designed specifically to emulate the challenging features this
method intends to tackle and to show how the method performs
for problems of different dimensionality. In Sec. III B, we
then test the method by interpolating results from a realistic
1p-kMC model of heterogeneous catalysis.

A. Analytic test functions

We define two function classes, which can be used to con-
struct related functions of arbitrary dimension. In this work,
we test dimensions from D = 2 to D = 7. A representation of
the 2D test functions is given in Fig. 3. All functions from
both classes have small gradients across most of the domain

FIG. 3. Representation of the 2D version of the analytic functions used to test
the interpolation method.

but show a sharp (but differentiable), step-like transition con-
centrated around a (D � 1)-dimensional hypersurface. What
differentiates the two function classes is the shape of this sur-
face, which also determines the intrinsic dimensionality of the
functions. The transition of kink step is on the union of two (D
� 1)-dimensional half-hyperplanes which meet on a common
(D � 2)-dimensional hyperplane. Therefore, this function is
intrinsically two-dimensional for all D values. ball step func-
tions have the transition on the surface of a D-ball and are
thus fully D-dimensional. However, they are approximately
one-dimensional at length scales smaller than the radius of the
ball. As we will see, our locally adaptive method is capable of
exploiting this fact to improve the quality of the interpolant.
The detailed definition of the test functions is given in the
supplementary material.

1. Analysis of anisotropic clouds

To demonstrate the working principle of the method in a
concrete example, we analyze the shape of the clouds result-
ing from the EBLMMS interpolation of the 2D version of
kink step [cf. Fig. 3(a)] using 256 nodes. Figure 4 shows a
comparison between the isotropic clouds (Nq = Nw = 20, left)
and the anisotropic clouds from EBLMMS (N t = 20, right)
for selected nodes, marked by colored symbols. The clouds
are represented by ellipses and are colored by the estimated

FIG. 4. Representation of clouds from selected nodes. Gray lines are con-
tour lines of the 2D kink step target function (cf. Fig. 3), and gray dots
mark the position of the nodes. The total number of nodes is 256. The left
panel corresponds to EBMS with Nq = Nw = 20, and the right panel corre-
sponds to EBLMMS with N t = 20. The clouds are represented by ellipses,
colored according to the value of the error estimate εk(x). The symbols mark-
ing selected nodes (star, squares, diamonds, and triangle) are used to assist the
discussion in the text.
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error of the corresponding nodal functions at their boundaries.
The target function is represented by gray equidistant contour
lines. In the isotropic case, all clouds close to the sharp tran-
sition show a high error. In the local metric case, the clouds
generally align to the expected directions and also become
narrower as they get closer to the region of strong gradient
changes. Moreover, for any given node, the error at the cloud
boundaries is typically smaller in the latter case. An exception
is the node marked with a star in the plot, located very close
to the point in which the transition region bends. Since there
is no satisfactory orientation for the cloud, the shape of the
corresponding ellipsoid is spurious. This is where the error
weighting scheme comes into play. The error associated with
the mentioned point is very high compared to those of neigh-
boring nodes, thus ensuring that the effect of this ill-defined
cloud is minimized. Another exception is the point marked by
a triangle. The resulting cloud aligns in the expected direction
but still contains several nodes that lie across the transition
region. As a consequence, the quality of the corresponding
nodal function is low and, correspondingly, the associated
weight is low in the flat regions, where there are multiple nodal
functions which better predict the function values. The nodes
marked with squares are examples of these. For these nodes,
the local matrix optimization has shrunk the ellipses to let them
lie fully within a single smooth sub-domain. In the isotropic
case (left panel), the corresponding clouds extend across the
transition region and, consequently, their nodal functions are
not accurate within the respective clouds and the error esti-
mates are large. Nodes marked with diamonds are located well
within a region of smooth behavior, so the isotropic method
is expected to work well. Here, the error estimates for both
cases are small and the EBLMMS clouds also have a roughly
circular shape.

2. Quantitative analysis

As a quantitative test of the quality of our interpolant,
we interpolate each of the test functions from Fig. 3 in the
domain Ω = [0, 1]D ⊂ RD for dimensions D = 2, 3, . . . , 7 and
evaluate the L1 error norm from Eq. (38) in each case. The
EBLMMS method, as described above, includes several free
parameters. While we leave the systematic assessment of the
effect of each parameter to a future study, we concentrate on the
N t parameter here, which has a clear geometric interpretation
and is analogous to the Nq parameter in traditional MS. We
construct interpolants using N t = ntD, with nt = 4, 10, 20,
50, 150, to cover a wide range of reasonable values of this
parameter. For each function class, dimension D, and nt value,
we build interpolants for different numbers of nodes using
the first N elements of the Sobol sequence (cf. Sec. II D).
We take N as the powers of 2 between 64 and 32 768 and
evaluate Φ for each interpolant using Eq. (38). In Fig. 5 we
plot the best (smallest) Φ value obtained from all calculations
(for a given test function class, dimension D, and number of
nodes N).

To quantify the specific effect of introducing anisotropic
clouds, we also calculate the L1 error resulting from the EBMS
interpolation (cf. Sec. II B). EBMS interpolants are constructed
using Nq values equal to the N t values used for EBLMMS.
Moreover, Nw = Nq/2, Nw = Nq, and Nw = 2Nq are tested.

FIG. 5. Scaling of the Φ error with increasing number of nodes for the
kink step (dark, red lines) and the ball step (light, blue lines) functions in dif-
ferent dimensions. The EBLMMS method (solid lines) is compared to EBMS
(dashed lines) and GPR (dotted lines) methods.

The best Φ values for each (Nq,Nw) and each dimension are
included in Fig. 5 as dashed lines. Naturally, the error for the
anisotropic case is always smaller. As expected, it can also be
seen that the relative improvement due to using EBLMMS is
larger for higher dimensions. This is due to the fact that the
rate of improvement of Φ with N (scaling) decreases more
slowly for EBLMMS than for EBMS. It is also important
to note that the benefit of using local metrics is much more
pronounced for the intrinsically low-dimensional kink step
test functions than for the fully D-dimensional ball step test
functions.

To compare also to a non-MS method, we assess the
performance of Gaussian process regression.37,38 Since the
popular squared exponential kernel yields very low quality
results for the target functions in this work, we employ the
more flexible neural network kernel, which has been shown
to be able to cope with discontinuities.37 In particular, we use
the diagonally anisotropic version of this kernel, which is the
most general version available in the GPy library.39 The work-
ing equations of the methods and further details are provided
in the supplementary material. Due to computer memory con-
straints, we only present GPR results up to node counts of N
= 4096.
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The GPR results are included in Fig. 5 as dotted lines.
We observe that the errors for GPR are larger than those for
EBLMMS in all cases except for D = 2 at larger node counts. In
this low-dimensional case, node counts N & 1000 correspond
to very high node densities, which usually is not practical.
Moreover, the error is already very low when GP becomes
more accurate. Even for D = 3, the Shepard interpolations
outperform GPR and the improvement continues to increase
with dimensionality.

To complement the results presented in this section, we
perform analogous calculations for two additional function
classes, including one with rapid change of the gradient but
not the function value. Since the conclusions drawn from the
analysis of these functions are very similar to the ones just
presented, we only present these results in the supplementary
material.

3. Graphical analysis

It is important to point out that the small differences in the
values ofΦ in Fig. 5 do not always fully capture the qualitative
improvement provided by the EBLMMS approach. To show
this, we compare different interpolations of the 5D ball step-
function graphically. The wireframe plots in Fig. 6 show a
number of interpolants evaluated in a 2D cut of the full 5D
domain, which passes through the center and is parallel to

FIG. 6. Comparison of different approximations of the 5D ball step test func-
tion, using a database of size N = 1024. Highlighted regions are colored
according to how much the interpolant has exceeded the maximum value of
the target function (as a percentage of the step height, i.e., 3).

coordinate directions 2 and 4 (cf. the supplementary mate-
rial; we observe qualitatively very similar behavior for the
nine other possible pairs of axes). All interpolants shown
in Fig. 6 were constructed using the same 1024 nodes. As
well as for EBLMMS, EBMS, and GPR, which were used
in Sec. III A 2, we also present results for the traditional,
distance-based isotropic DBMS (cf. Sec. II A) and for what
we call DBLMMS (distance-based local metric MS), in which
we use the local matrices Mk from EBLMMS to define the
clouds but evaluate the interpolant using distance-based inter-
polation weights [i.e., analogous to Eq. (9), but using the local
anisotropic distances instead of Euclidean distances]. In the
figure, we highlight overshoots by changing the wireframe-
color when the value of the interpolant is above the (true) max-
imum of the target function. The overshoot value is reported
as a percentage of the step-height (which here is 3). Regions
of the wireframe in which the interpolant is equal to or lower
than the maximum remain colored in dark blue (i.e., according
to the lower end of the colorbar).

We start by discussing the differences between methods
from the MS family, as they illustrate many of the effects
discussed in Sec. II. The isotropic, distance-based DBMS
interpolant suffers from overshoots, which are rather large in
this example. The shape of the step is barely reproduced and
the function is heavily smoothed out. In the isotropic EBMS
interpolant, such overshoots are considerably reduced and the
interpolant matches the target function very well far from the
highly non-linear region. However, this method is still unable
to reproduce the shape of the transition region (the 5-ball), and
some spurious features appear.

Looking at the bottom two panels, we can see that
anisotropic clouds improve the interpolation quality signifi-
cantly. However, the shape of the DBLMMS interpolant still
shows several flaws. In particular, small oscillations appear,
even in regions relatively far from the highly non-linear tran-
sition. In addition, the transition region is smoothed out con-
siderably and its shape is not particularly well reproduced. The
EBLMMS interpolant, finally, gives a much better qualitative
match than any of the other cases. Even with such a small
number of nodes, the shape of the highly non-linear transi-
tion region is traced very precisely. Moreover, there are no
overshoots or oscillations detectable. The main source of the
observed integral errorΦ is a smoothing of the sharp transition,
which, to some extent, is probably unavoidable using such a
small dataset.

For completeness, we also show a comparison with GPR.
All the spurious features observed for DBMS are present,
albeit somewhat less pronounced, namely, overshoots, artifi-
cial oscillations, smoothing of the step, and an inability to prop-
erly capture the step’s shape. As a final note, we point out that
the good quality observed for EBLMMS is not strongly depen-
dent on the exact choice of N t . In the supplementary material,
we provide wireframe plots comparing different values of this
parameter to illustrate this.

B. Realistic 1p-kMC based data

Having demonstrated the capabilities of the EBLMMS
method for a variety of analytic function classes and in multiple
dimensions, we next tackle a realistic example, interpolating
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the reactivity map arising from a 1p-kMC model of heteroge-
neous catalysis. Specifically, we use a reduced version of the
well-established and frequently studied model of CO oxidation
at RuO2(110) by Reuter and Scheffler.40 The original model
is based on an extensive set of Density Functional Theory
(DFT) calculations and has been shown to accurately capture
experimental results.17 It considers two adsorption site types,
bridge (br) and coordinately unsaturated (cus), and two sur-
face species, CO and O. The elementary steps modeled include
molecular CO adsorption and desorption, dissociative adsorp-
tion/associative desorption of O2, irreversible CO + O reaction,
and diffusional hops.

The reduced version of the model employed here was
introduced by Gelß et al.41 and is obtained by excluding all
processes involving br sites. It has been shown that chemical
kinetics is mainly controlled by the cus sites42–44 and that the
reduced model reproduces the results of the full model quanti-
tatively for many reaction conditions.41 Being computationally
cheap, the reduced model can be evaluated for a large number
of different input parameter values, which makes it a valuable
test problem for our interpolation method.

The reduced model contains 7 elementary reaction steps.
Single-site processes include unimolecular adsorption and
desorption of CO; two-site processes, defined on pairs of near-
est neighbors, include dissociative adsorption and associative
desorption of O2, CO2 desorption as an immediate result of
reaction of a pair of adsorbed CO and O, and diffusional hops
of both species. The whole reaction mechanism is summarized
in Table I.

In the context of 1p-kMC/CFD coupling, the TOF for this
model is a function of 3 parameters, namely, the partial pres-
sures of CO and oxygen, pCO and pO2 , and the temperature T.
As we intend to demonstrate the capabilities of the EBLMMS
method in higher dimensional problems, in this work, we will
study the TOF as a function of the individual rate constants
instead, i.e., we consider the 7D function

f : RD → R,

(kads
CO, kads

O2
, kdes

CO, kdes
O2

, kreac, kdiff
CO, kdiff

CO)→ TOF. (40)

On the one hand, understanding the parametric dependence
of the TOF on the rate constants is useful to perform local or
global sensitivity analyses,42,43,45 which are crucial to quantify

the effects of uncertainty in the determination of rate con-
stants (due to, e.g., DFT errors). On the other hand, and more
importantly for our purposes, the characteristics of this 7D
function in rate constant-space are very similar to 1p-kMC
TOF maps in ({pα},T )-space. This is highlighted in mod-
els such as the one used here, in which the rate constants
for non-activated adsorption are directly proportional to the
corresponding partial pressures,

kads
α =

Auc

nα

pα
√

2πmαk BT
, α = CO, O2, (41)

where mα are the molecular masses, Auc is the surface area
of the RuO2(110) unit cell, kB is the Boltzmann constant,
and nα is a factor arising from the multiplicity of the adsorp-
tion processes included in the model. The specific values are
Auc = 20.06 Å2, nCO = 2, and nO2 = 4. Variation in temperature
would correspond to concerted changes of the rate constants
for the activated processes, which are also included in the
domain of the 7D TOF function. For example, the rate constant
for CO oxidation is given by

k reac =
k BT

h
exp

(
−
∆E reac

k BT

)
, (42)

where h is the Planck constant and ∆Ereac is the activation
barrier for the CO oxidation elementary process. Moreover,
the 7D TOF function of Eq. (40) also includes variations in the
parameters of the model beyond those accessible by simple
changes in pCO, pO2 , and T. For these reasons, this function
is a useful proxy for a reactivity map arising from 1p-kMC
containing more species.

The advantages of using such a proxy are twofold. On the
one hand, the computational cost to run this 1p-kMC model is
reasonably low. This allows us to perform the 200 000 + kMC
calculations used as systematic test data. Just for the con-
tour plots presented in Sec. III B 2, we needed 10 000 results
for reference, which with more complex multi-species models
could cost vast amounts of computational time. On the other
hand, the RuO2 CO oxidation model has been characterized in
detail both in (pCO, pO2 , T )-space40,46–49 and in rate constant
space42–44 and its behavior is well understood. This makes it
ideal for testing new theoretical developments such as the one
presented here. In particular, the conditions under which the
model presents rapid changes in reactivity are well known.

TABLE I. List of elementary reaction events included in the reduced model for CO oxidation at RuO2. The
default value for each rate constant and its range of variation are indicated. The default values correspond to
reaction conditions T = 600 K, pCO = pO2 = 1 bar.

Name Expression Default rate constant (1/s) Range (1/s)

CO adsorption *→ CO* kads
CO = 2.0 × 108 2.0 × 106–2.0 × 1010

O2 adsorption 2*→ 2O* kads
O2
= 9.7 × 107 9.7 × 105–9.7 × 109

CO desorption CO*→ * kdes
CO = 9.2 × 106 9.2 × 104–9.2 × 108

O2 desorption 2O→ 2* kdes
O2
= 2.8 × 101 2.8 × 10−1–2.8 × 103

CO oxidation O + CO→ 2* kreac = 1.7 × 105 1.7 × 103–1.7 × 107

CO diffusion CO + *→ * + CO kdiff
CO = 5.0 × 10−1 5.0 × 10−3–5.0 × 101

O2 diffusion O + *→ * + O kdiff
O2
= 6.6 × 10−2 6.6 × 10−4–6.6 × 100
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Therefore, we can focus our study there, where interpolation
becomes most challenging.

Taking this into account, we consider the rate constants
corresponding to T = 600 K, pCO = pO2 = 1 bar, as the
default (central) values. Such values lay close to the antici-
pated (second order) phase transition.44 We define the limits
of the interpolation domain such as to encompass a change
in each of the rate constants of four orders of magnitude in
total (i.e., two orders of magnitude higher and lower than the
default, cf. Table I). Considering the Arrhenius-dependence of
the rate constants for activated processes on energy barriers,
e.g., as in Eq. (42), this accounts for changes in activation bar-
riers ∆E of up to ∼0.25 eV. For the non-activated adsorption
processes, cf. Eq. (41), this corresponds to a span of variation
of 4 orders of magnitude in the partial pressures. To perform
the interpolation, the domain is mapped onto a logarithmic
scale and into the [0, 1]7 unit hypercube.

The 1p-kMC predicted CO oxidation TOF is calculated
for the first 3 × 105 vectors of the 7D Sobol sequence to build
the database that will later be split into nodes and test points (cf.
Sec. II D). The 1p-kMC model is implemented with the help
of the kmos kinetic Monte Carlo simulation package50 using a
simulation cell containing 400 individual cus sites. A total of
3× 108 kMC steps are used for relaxation and another 5× 108

steps for steady-state sampling. To build the interpolant, the
TOF values are also log-scaled. As the upper limit of the TOF
scale, we take TOFmax = 3×106 s�1, which is (slightly) larger
than the maximum TOF in the database. For low TOF values,
kMC sampling is challenging and simulations can sometimes
result in rates equal to zero, which cannot be log-scaled. How-
ever, very low TOF conditions are of little interest in catalysis,
and we therefore sidestep this problem by capping the rates
from below at a value of TOFmin = 10−4 s�1. The interpolation
is then performed using the transformed TOF values, in which
the [TOFmin, TOFmax] interval is logarithmically mapped to
the [0, 1] interval. While we observe that the relaxation times
used are sufficient to reach the kinetic steady state, we also find
that a small amount of statistical noise remains in the data, as
can be seen in the line plots of Fig. 8. To quantify this error,
we recalculate 104 1p-kMC data points with different random
number seeds and find an average absolute error value due
to noise of ∼3× 10−3 (in the transformed TOF coordinates).
However, for some points, the kMC sampling error can be as
large as ∼3 × 10−1.

1. Quantitative analysis and method comparison

Similar to Sec. III A, the EBLMMS interpolant is built
for N t = 28, 70, 140, 350, 700, 1050 and the number of nodes
N equal to the powers of 2 from 64 to 32 768. The value
of the error measure Φ, Eq. (38), is evaluated for the trans-
formed TOF values. A summary of the results is presented in
Fig. 7, where we again plot the smallest value of Φ (varying
N t) obtained for each N (exactly as in Fig. 5). Even for sample
sizes as small as N ≈ 2 × 103, we can achieve global errors of
Φ ≈ 10−2. Considering the highly non-linear behavior of the
TOF (cf. Figs. 8 and 9) and the fact that such low values of
N would correspond to a regular grid with only ∼3 points in
each coordinate direction, we think this is a remarkably good
approximation.

FIG. 7. Scaling of the Φ error with increasing number of nodes for the 1p-
kMC model. The EBLMMS method (solid lines) is compared to EBMS
(dashed lines) and GPR (dotted lines) methods.

In Fig. 7 we also present results from the EBMS (cf.
Sec. II B) and GPR (cf. the supplementary material) methods
for comparison. For EBMS, Nq values equal to the N t val-
ues above were used, as well as Nw = Nq/2, Nw = Nq, and Nw

= 2Nq. As for the case of the analytic test functions, comparing
EBLMMS and EBMS shows that incorporating the local met-
rics produces a noticeable improvement in the quality measure.
Interestingly, the error values for GPR and EBLMMS are very
similar, with EBLMMS’s being slightly lower except for very
low node counts. However, a careful investigation reveals that
important qualitative differences are not sufficiently reflected
by this error measure. In Sec. III B 2, we demonstrate that GPR
is not able to capture features with rapid function value and
gradient changes as well as EBLMMS. Since such regions
are localized in a small volume fraction of the domain, this
difference is not properly captured by an integral error mea-
sure such as Φ. In Sec. III B 3, we show that this difference
can have large impacts in the results of coupled 1p-kMC/CFD
simulations.

2. Graphical analysis

To provide a clearer understanding of the quality and scal-
ing of the interpolant, we present 2D line plots of the CO
oxidation TOF as a function of selected rate constants in Fig. 8.
Both EBLMMS and GPR are compared to a set of additional
1p-kMC data points (not included in the interpolants’ input
database). The curves show the values the 7D interpolants
take along 1D cuts of the domain in which all but one of
the parameters are kept constant. We have decided to focus
on the directions of the adsorption rate constants, which can
be directly associated with changes in the partial pressures
pCO and pO2 , cf. Eq. (41), and of the CO oxidation rate con-
stant kreac, which can be associated with potential errors in
the activation barrier for oxidation, cf. Eq. (42). These asso-
ciated dependencies have been indicated by extra axes in the
plots. In all three directions, the TOF presents a rapid, step-like
change in value and gradient, which presents a challenge for
the interpolation methods.

From the plots, it can already be seen that EBLMMS
presents the correct qualitative behavior even at a very low

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020740
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FIG. 8. 1D cuts of different 7D interpolants compared
to 1p-kMC data not included in their input (dots). For
each case, all but one of the rate constants were fixed
at their default values (cf. Table I). Lines correspond
to EBLMMS built with 1024 (light green) and 16 384
(dark green) nodes and GPR built using 1024 nodes (light
blue lines). Axes indicating partial pressures associated
with the adsorption rate constants [cf. Eq. (41)] and the
activation barrier associated with the CO oxidation rate
constants [cf. (42)] are also included.

node count of N = 1024. Although there are quantitative errors
for high kreac values, we see that EBLMMS is able to reproduce
the step-like nature of the transition. For the kads

CO (pCO) and kads
O2

(pCO) cases, there is even very good quantitative agreement. In
contrast, GPR is qualitatively poorer in all cases at such (desir-
ably) a low node count. It is never able to reproduce the shape of
the curves and misses matching the high TOF peak in all cases.
For the kreac case, it does not even hint the step-like shape. In
1p-kMC/CFD, such interpolant deficiencies are crucial: The
highest TOF values at the ridge need to be reproduced quanti-
tatively, as this corresponds precisely to the region of highest
activity targeted in catalysis research. Steep TOF increases
over small pressure regions are also critical topological fea-
tures that govern potential reactor instabilities or gas-phase
coupled activity oscillations. If such features are washed out
as by the GPR interpolant in Fig. 8, the very targets of coupled
microkinetic-fluid dynamical multiscale simulations cannot be
met by construction.

Further increasing the number of nodes systematically
improves the quality of the EBLMMS interpolant. In Fig. 8,
this is illustrated for N = 16 384 nodes, in which very good
quantitative agreement is found for all the cases shown. In
the supplementary material, we have included a plot similar
to Fig. 8 presenting examples for other choices of number of
nodes N. There it can be seen that the quality of GPR remains
low even up to 4096 nodes (the highest value analyzed).

Another impression of the behavior of the interpolation
method can be gained by looking at the contour plots presented
in Fig. 9. The plots show TOF contour plots across cuts of the
7D domain in which all rate constants except for kads

CO and kreac

are now kept fixed at their default values. The panels on the left
(the same data top and bottom) show 1p-kMC data explicitly
calculated on a (100 × 100) grid. The central panels show the
TOF values predicted by the 7D EBLMMS interpolant built
using N = 1024 (top) and N = 8192 (bottom) nodes. The pan-
els on the right show the corresponding absolute value of the

FIG. 9. Contours of CO oxidation TOF
explicitly calculated with the 1p-kMC
model (left, plot repeats top and bot-
tom), compared with interpolations gen-
erated by EBLMMS using 1024 nodes
(center, top) and 8192 nodes (center,
bottom). The panels on the right present
the error, measured in the transformed
TOF coordinates. The domain is cut
through its center (where all rate con-
stants have their default value) and par-
allel to the axes corresponding to the CO
adsorption and CO oxidation rate con-
stants. The dotted lines mark the con-
ditions plotted in Fig. 8(c). Additional
axes have been added to show the corre-
spondence between changes in kads

CO and
pCO (kreac and ∆Ereac).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020740
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error, calculated in the transformed (logarithmic) TOF scale.
The plots demonstrate that even for N = 1024 the qualitative
features of the target function are remarkably well reproduced.
For N = 8192, the 1p-kMC and EBLMMS results are almost
indistinguishable by eye. In addition, it can be observed that the
errors are concentrated in the regions of rapid gradient change
and are very small in the rest of the domain. The conditions
of Fig. 8(c) are marked in the contour plots by a dotted line.
We can rationalize the difficulty of reproducing TOF values
for high kreac by noting that these conditions fall into the TOF
peak observed in the contours (i.e., located in the top-center
region). This peak is relatively localized and thus very difficult
to predict using only a small number of nodes. In the supple-
mentary material, an analogous contour plot with GPR pre-
dictions using 1024 nodes is presented. It shows that the qual-
itative behavior is poorer than the corresponding EBLMMS
interpolant.

3. A stagnation flow example

To further underscore our general remarks on the required
accuracy of TOF interpolants in coupled 1p-kMC/CFD sim-
ulations, we consider an isothermal and stationary stagnation
flow,51 where a mixture of CO, O2, and argon streams from a
sieve-like inlet against a disk-shaped catalyst. This is a suit-
able reactor model for flat-faced single-crystal model catalysts
as in the reduced RuO2(110) 1p-kMC CO oxidation model,
which we will continue to use for this demonstration. As
illustrated in Fig. 10, the geometry of the axisymmetric reac-
tor problem is fully determined by the vertical height L of
the inlet. For the calculations, we employ L = 3 cm and an
inlet velocity of 10 cm/s. The oxygen partial pressures at the
inlet is chosen as pinlet

O2
= 1bar, the CO partial pressure pinlet

CO
varies between one and 4 bars, and 50% of the mixture is
always argon, i.e., pinlet

Ar = pinlet
O2

+ pinlet
CO . We obtain numeri-

cal solutions to the resulting one-dimensional boundary value
problem using our previously employed perturbative approach

FIG. 10. Steady-state CO2 partial pressure immediately over the catalyst as
a function of the CO partial pressure of the inlet of the stagnation flow reac-
tor schematically depicted in the inset. Detailed conditions of the simulation
are summarized in the text. We compare the results obtained using as cat-
alyst boundary condition a reference solution (black) with those using the
EBLMMS-based (green) and GPR-based (blue) interpolants discussed in Fig.
8. Both surrogates are built using a total of 1024 nodes.

(see the supplementary material in Ref. 11) and a stagnation
flow solver.8,9

The interpolated TOF enters the stagnation flow equations
as a non-linear boundary condition. As a reference, we use a
dense regular 2D grid of 100 × 100 1p-kMC data points in
the pressure range (pCO, pO2 ) ∈ [10−2, 102]2, which we inter-
polate piecewise linearly. Against this reference, we assess
the performance of the high-dimensional GPR and EBLMMS
surrogate models with a low number of interpolation nodes
N = 1024 (cf. Fig. 8), i.e., we employ the full 7D interpola-
tions and Eq. (41) to obtain the partial pressures. This way, we
can assess the impact of interpolation errors in multidimen-
sional TOF maps onto CFD simulation results. Such multi-
dimensional TOF maps naturally arise from 1p-kMC models
with many reactive species but also the here considered TOF
map of the individual rates might be beneficial in practice,
e.g., when fitting reaction parameters to experimental reactor
data.

Figure 10 shows the CO2 partial pressure directly above
the catalyst pcatal

CO2
, which would be the central experimental

observable, e.g., when employing planar laser induced fluores-
cence measurements,11,52 and which is related to the catalytic
activity. For our reference calculations (black dots), we find a
low, monotonically increasing activity (pcatal

CO2
) for pinlet

CO below

the stoichiometric ratio. For high pinlet
CO , the activity is higher

and monotonically decreasing. These two regimes are con-
nected by a relatively narrow regime for pinlet

CO slightly above
the stoichiometric ratio, in which we find multiple stationary
solutions that could give rise to gas-phase coupled oscillatory
behavior of the catalytic activity. The EBLMMS-based model
reproduces the behavior of the reference calculation with only
minor quantitative differences. In contrast, the GPR-based
model deviates largely from the reference calculation for most
of the CO pressure range. Particularly at the phase transition,
it provides a qualitatively wrong picture. Multiple solutions
appear where they should not be, while the true regime with
multiple solutions is missed. This is a direct consequence of its
inability to properly trace the steep TOF variations predicted
by the 1p-kMC model.

IV. SUMMARY AND OUTLOOK

We have presented an interpolation technique able
to faithfully approximate high-dimensional functions with
locally rapid changes, such as those arising from first-
principles kinetic Monte Carlo models for heterogeneous
catalysis. Exploiting the fact that such functions often show
locally low-dimensional behavior, small global errors can be
achieved with this error-based local metric modified Shepard
(EBLMMS) method even with modest numbers of function
evaluations. Furthermore, the method successfully suppresses
undesired behavior, such as oversmoothing and artificial
wiggles.

Compared with existing methods from the Shepard family
as well as with state-of-the-art Gaussian process regression,
our approach proved to be superior for tested target func-
tions ranging from analytic test cases up to numerical 1p-kMC
data. In higher dimensions in particular, our combination of
a locally changing metric and error estimate based blending

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020740
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-020740
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proved to be advantageous. The superior accuracy was also
shown to be very important when building surrogates for use
in 1p-kMC/CFD coupling.

Another strength of the approach is its basis in geomet-
rical considerations and a conceptually simple mathematical
description. Most input parameters either have an intuitive geo-
metrical meaning or can be interpreted as an error, either in the
error function or in the coefficients of the local metric. Never-
theless, methodologically there is still room for improvement.
Most importantly, this concerns the determination of the ellip-
soids which define the clouds. A better initial guess of the
local metric and the exploitation of more efficient and robust
optimization algorithms are desirable. Furthermore, data struc-
tures can be developed which exploit the finite support of
the interpolation weights and make evaluation times scale
sub-linearly with the number of nodes. Finally, the cheaply
available error estimates could be used for parameter set opti-
mization. Instead of having to split the calculated data into
construction and test sets, the parameters could be obtained
by minimizing the error estimates at points in which the true
function value is unknown.

SUPPLEMENTARY MATERIAL

See supplementary material for the following: (a) the jus-
tification of Eqs. (26), (30), and (31); (b) the exact definition
of the analytic test functions; (c) a description of the GPR
method used; (d) error scaling plots for two additional test
function classes; (e) a graphical comparison of EBLMMS
interpolants with different N t values; (f) a plot similar to Fig. 8
for interpolants built with different numbers nodes; and (g) a
graphical comparison between EBLMMS and GPR for the
1p-kMC model.
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