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First-principles screening studies aimed at predicting the catalytic activity of transition metal (TM)
catalysts have traditionally been based on mean-field (MF) microkinetic models, which neglect the
effect of spatial correlations in the adsorbate layer. Here we critically assess the accuracy of such
models for the specific case of CO methanation over stepped metals by comparing to spatially resolved
kinetic Monte Carlo (kMC) simulations. We find that the typical low diffusion barriers offered by
metal surfaces can be significantly increased at step sites, which results in persisting correlations in
the adsorbate layer. As a consequence, MF models may overestimate the catalytic activity of TM
catalysts by several orders of magnitude. The potential higher accuracy of kMC models comes at
a higher computational cost, which can be especially challenging for surface reactions on metals
due to a large disparity in the time scales of different processes. In order to overcome this issue,
we implement and test a recently developed algorithm for achieving temporal acceleration of kMC
simulations. While the algorithm overall performs quite well, we identify some challenging cases
which may lead to a breakdown of acceleration algorithms and discuss possible directions for future
algorithm development. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4989511]

I. INTRODUCTION

The computational screening of potential catalyst mate-
rials has been greatly facilitated by the development of scal-
ing relations.1–5 These relations allow for the prediction of
important catalytic parameters such as adsorption energies
and activation energies over the whole series of transition
metals (TMs) based on a limited number of actual first-
principles calculations. Traditionally, such screening studies
have relied on microkinetic models based on the mean-field
approximation (MFA), in which spatial correlations in the
distribution of the reaction intermediates on the catalyst sur-
face are neglected. While early MFA models used an assumed
rate-determining step to derive an analytical expression for
the reaction rate,6 more recent models treat all reaction steps
as potentially rate-determining and solve a set of coupled
differential equations numerically for the surface coverages
and rates.7–9 It is commonly believed, though rarely actu-
ally tested, that MFA models are accurate representations
of the system kinetics, when these kinetics are characterized
by low barriers for diffusion and insignificant lateral interac-
tions between the adsorbates. Since diffusion barriers of com-
mon adsorbates are typically low on metal catalysts (around
0.5 eV),10 MF models disregarding lateral interactions have
been extensively applied to study surface reactions on met-
als.6,9,11 Recently, MFA models that account for finite lateral
interactions through coverage-dependent adsorption energet-
ics have also been developed.7,12,13 The accuracy of such mod-
els remains, however, to be thoroughly benchmarked against
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more general methods that explicitly treat lateral interactions,
for instance, through cluster expansion models.14,15

An alternative branch of microkinetic models avoids the
MFA by making use of spatially resolved (lattice) kinetic
Monte Carlo (kMC) simulations.16–19 kMC simulations allow
for the inclusion of detailed site-resolved lateral interactions
between the adsorbates, using either site-blocking rules20,21 or
cluster expansion models.22,23 However, even in the absence
of lateral interactions, previous studies, for example, of CO
oxidation on RuO2(110) have shown that kMC models may
give a more accurate description of the system kinetics than a
corresponding MFA model since the latter still neglects cor-
relations in the spatial configuration of the adsorbates.24,25

Such correlations were shown to be particularly important
in the regime characterized by a high surface coverage of
O species and could be traced to a relatively high barrier of
1.6 eV for O diffusion. Still, considering the typically lower
diffusion barriers on metals, such findings have been consid-
ered to be uniquely associated with oxides or other compound
materials.

In the present work, we challenge the assumption that
MFA models disregarding lateral interactions generally pro-
vide an accurate description of surface catalytic reactions
on metals. For this, we explicitly compare MFA and kMC
simulations based on exactly the same adsorption energet-
ics and reaction network. As a test case for this comparison,
we choose CO methanation on stepped metal surfaces, which
is a prototypical reaction model including various classes
of surface reactions (dissociation/recombination and hydro-
genation/dehydrogenation reactions) as well as different types
of adsorption sites (step and terrace). A corollary of our
endeavor is to demonstrate the applicability of kMC models to
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computational screening studies based on scaling relations.
Such studies have typically been based on simpler MFA mod-
els since the focus lay more on screening a large space of
potential catalyst materials for trends in the catalytic activity
rather than giving as quantitative as possible an account of the
activity of a given material. In contrast, previous kMC mod-
els have typically had the opposite focus. However, nothing
prevents the use of energetic databases constructed from the
more approximate scaling relations in kMC models as well.
Our reaction model for CO methanation is therefore particu-
larly inspired by the recent scaling-relation-based MFA study
of Lausche et al.7

kMC models have the great advantage of allowing for
a detailed spatial resolution of the system, both in the pres-
ence and absence of lateral interactions. Their main disad-
vantage is that the computational cost is significantly higher
than for corresponding MFA models. This becomes espe-
cially problematic for surface reactions on metals due to the
large disparity in the time scales of the processes consid-
ered. As already emphasized, these often range from very
fast surface diffusion processes to very slow surface reactions.
This causes kMC algorithms to spend all of the computa-
tional effort simulating the fast processes, while never reaching
the time scales relevant for the slow processes. A typical
work-around employed in previous kMC studies on metals
is to artificially raise the barriers for diffusion to a compu-
tationally tractable level.20–22 The validity of this approach,
i.e., that it does not affect the outcome of the simulations,
is straightforward as long as the study focuses on a single
material and rather simple reactions such as CO oxidation,
which contain at most a handful of different diffusion barri-
ers. However, when we consider significantly more compli-
cated reaction models such as CO methanation and employ
scaling-relation-based models to consider not only one catalyst
material but the whole series of TMs, such manual adjustment
and verification of the used diffusion barriers quickly become
intractable.

In the present work, we therefore aim for an alternative,
automated treatment of the time scale disparity problem in
kMC. Several methods proposed in the literature rely on a
user-specified division of the processes into “fast” and “slow”
reactions, where only the slow reactions are treated stochas-
tically, while the fast reactions are treated deterministically
or using a Langevin equation.26,27 While we do rely on such
an approach to describe H in our reaction model (vide infra),
these methods are in general difficult to use for complex reac-
tion models since we do not a priori know which processes can
be reliably approximated as fast processes under steady state
conditions. Chatterjee and Voter developed a temporal accel-
eration scheme that functions by modifying the rate constants
of fast processes without the need for the user to specify these
processes in advance.28 While it seemed to perform well for
simple toy models, the fact that it identifies processes based
on the configuration of the entire system likely makes it too
inefficient for complex reaction models, where the number of
possible configurations is typically so large that many con-
figurations may only be visited very rarely during the entire
simulation. This problem was addressed in the recently devel-
oped alternative acceleration scheme by Dybeck, Plaisance,

and Neurock,29 where processes are instead grouped into
reaction channels based on certain, flexible criteria. We there-
fore choose this method as the basis for accelerating our
kMC model, but also discuss possible extensions towards the
algorithm of Chatterjee and Voter.

Compared to the rather simple reaction model used to
test the acceleration algorithm in Ref. 29, which could have
equivalently been described in the MFA, our more complex
scaling-relation-based reaction model provides for a much
more thorough testing of the algorithm. Indeed, as we will
show, such a complex reaction scheme does pose some unfore-
seen challenges for the algorithm. Additionally, we test the
algorithm for a surface catalytic system involving diffusion,
which was not included in the reaction model used in Ref. 29.
We implemented the algorithm in our in-house kMC code
kmos.30 Owing to the high numerical efficiency of kmos, we
are able to directly test the algorithm against non-accelerated
kMC simulations for selected cases where the time scale dis-
parity problem is less severe. It was speculated in Ref. 29
that the algorithm may not be applicable in systems where
diffusion is slow and rate-limiting. By direct comparison to
non-accelerated kMC, we show that it does give accurate
results if diffusion is rate-limiting and slow enough that it
is not significantly accelerated by the algorithm. However,
we find the algorithm to underestimate the number of execu-
tions of fast diffusion processes necessary to correctly cap-
ture the system kinetics if diffusion is both fast and still
rate-limiting.

II. MODELS AND METHODS
A. Reaction model and rate constants

To allow for a clean comparison of MFA and kMC, we
base both models on exactly the same reaction model and the
exact same underlying (scaling-relation-based) rate constants.
The reaction model employed for CO methanation is similar to
the model from Ref. 7. The only difference is that, whereas the
previous study considered only the most stable adsorption site
of each adsorbate, we consider here all stable adsorption sites
of each adsorbate. Thus, our extended reaction model con-
siders multiple reaction pathways with far fewer pre-existing
assumptions about the preferred pathway. As in Ref. 7, we con-
sider various TMs (Cu, Pd, Pt, Re, Rh, Ru) and three generic
site types on the stepped (211) TM surface (cf. Fig. 1): the
“step” site (s) is located on the upper part of the step, the
“fourfold” site (f ) is located at the lower part of the step, and
the “terrace” site (t) is located in between the two step sites.
From our density functional theory (DFT) calculations (cf.
Sec. II C), we find that the fourfold coordinated f site is a
stable adsorption site for C and CH species, while all adsor-
bates are stable on the s and t sites. In addition, hydrogen is
adsorbed on a special “hydrogen reservoir” site (h), which has
the same energetics as a t site, similar to the approach taken
in Ref. 7 (cf. Sec. S4 in the supplementary material for more
details).

In short and without yet specifying reaction sites, our
reaction model includes CO and (dissociative) H2 adsorp-
tion, H-assisted CO dissociation, C and CHx hydrogenation
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FIG. 1. Schematic of the upper step (s), lower fourfold (f ), and terrace (t) sites
offered by the stepped (211) surface as well as the supercell used for the DFT
calculations (dashed black line). As indicated by the arrows, C and CH adsorb
on all three sites, while CO, O, OH, CH2, and CH3 are only stable on the s
and t sites. Note that the exact location of a site is only schematic. In reality,
the locations of the s and t sites are either ontop, bridge, or hollow depending
on the most stable adsorption site exhibited by the studied adsorbate on each
metal.

steps up to CH4 (followed by immediate desorption), hydroxyl
disproportionation, and O and OH hydrogenation. Considering
all site combinations, this leads to 24 different (non-diffusive)
reaction steps. These steps are explicitly listed in Sec. S1.1
of the supplementary material. For every adsorbate, we also
consider all possible diffusion processes between the stable
adsorption sites. This leads to a total of 27 different diffu-
sion steps, which are listed in Sec. S1.2 of the supplementary
material. Note that diffusion between two sites of the same
type is only considered explicitly in the kMC model, whereas
the MFA model implicitly considers this type of diffusion to
be so fast as to yield the perfect mixing in the adsorbate layer
assumed in the MFA.

To determine the rate constants, different approximations
are used depending on whether the reaction step is activated or
not. CO adsorption is non-activated on all metals. Furthermore,
H2 adsorption is a very fast process compared to the typical
rate-limiting step for CO methanation (CO dissociation). This
allows us to also model this step as non-activated without loss
of accuracy. The rate constant kad

st,i for non-activated adsorption
onto the site st is the product of the local sticking coefficient
S̃st,i and the rate of impingement of the gas-phase species i
onto the site st of area Ast ,31

kad
st,i(T , pi) = S̃st,i(T )

piAst
√

2πmikBT
. (1)

Here T is the temperature, pi and mi are the pressure and mass
of species i, respectively, and kB is the Boltzmann constant.
Lacking further detailed knowledge, S̃st,i is set to unity. In
the case of activated adsorption (for H2O and CH4), the rate
constants can be derived using transition state theory (TST),

kad,TST
st,i (T , pi) =

Ast

Auc

kBT
h

exp *
,

−∆Gad
st,i

kBT
+
-
, (2)

where ∆Gad
st,i is the free energy barrier for adsorption. When

there are several adsorption sites within the unit cell area Auc,
the ratio of areas is a normalization factor reflecting the relative
adsorption weight onto the site st. Here we simply assume that
the active area for adsorption Ast is equal to half of the unit
cell area for both the s and t adsorption sites. The desorption

rate constants kdes
st,i follow from detailed balance, i.e.,

kad
st,i(T , pi)

kdes
st,i (T )

= exp

(
∆Gst,i(T , pi)

kBT

)
, (3)

where ∆Gst,i is the difference in free energy between the
species i adsorbed on site st and the species i in the gas phase.

The rate constants for surface-bound processes such as
surface reaction and diffusion, kbound

IS→FS , are given by the TST
expression

kbound,TST
IS→FS (T ) =

kBT
h

exp *
,

−∆Gbound
IS→FS

kBT
+
-
, (4)

where IS and FS are the initial and final states of the process,
and ∆Gbound

IS→FS is the free energy barrier for the process. The
latter consists of the energetic (DFT-calculated) part of the
barrier ∆Ebound

IS→FS as well as the enthalpy/entropy corrections
calculated from the vibrational frequencies of the initial state
and the TS. Further details regarding the derivation of the rate
constants can be found in Ref. 31.

Assuming diffusion to be fast, MFA models often neglect
kinetic barriers for diffusion between different site types.7 In
this work, we aim to compare MF and kMC models, which
makes an explicit description of diffusion barriers necessary.
On Re(0001), diffusion barriers for the species involved in
CO methanation have been calculated using DFT and were
found to lie in the range 0.1–0.8 eV.10 Since our reaction
model contains more than 25 unique diffusion processes (cf.
Sec. S1.2 in the supplementary material), the calculation of
accurate barriers for all six TM surfaces for each diffusion
process is computationally very demanding. As a first approx-
imation, we therefore use the barriers calculated on Re(0001)
in Ref. 10 for all TMs and neglect the enthalpy/entropy correc-
tions to the TS energy. In order to ensure that the rate constants
resulting from the diffusion barriers fulfill detailed balance,
we model the barriers with a Brønsted-Evans-Polanyi (BEP)
relationship

∆Ediff
st→st′,i = α ∗ ∆Est→st′,i + β, (5)

where ∆Ediff
st→st′,i is the diffusion barrier for the species i to

diffuse from any site st to any other site st ′, and ∆Est→st′,i is
the difference in the adsorption energy of species i between
the two sites st and st ′. The parameter α was fixed to 0.5
for all diffusion reactions, while the β value was fixed to
the value of the barrier calculated for Re(0001).10 For dif-
fusion between two sites of the same type, ∆Est→st′,i will
be zero, i.e., in this case the diffusion barrier used corre-
sponds to the value estimated for Re(0001). As discussed in
Sec. III B in detail, as soon as diffusion barriers turned out
to be critical for a correct estimation of the catalytic activ-
ity, we replace them by more accurate barriers calculated
explicitly on all six TMs and using the correct stepped (211)
geometry.

B. Scaling relations

It is well known that linear scaling relations exist between
certain quantities such as the adsorption energies of CHx

species and C, OHx species and O, or between TS energies
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FIG. 2. MFA steady-state coverages of
COs, COt , Cf , Os, Ot , and OHs as
a function of the Cf and Os adsorp-
tion energies. The Cf and Os adsorp-
tion energies for the considered stepped
metal (211) surfaces are indicated in
white, while the descriptor points con-
sidered as test cases for the kMC simu-
lations (A, B, C, D, and E) are indicated
in grey. The reaction conditions are T
= 523 K and p = 1 bar with a gas com-
position of 1% CO, 97% H2, 1% CH4,
and 1% H2O as in Ref. 7.

and the adsorption energies of the dissociated products on
TM surfaces.3,4 Such scaling relations also exist between the
adsorption energy of a species on one site type (e.g., CO on the
s site) and the adsorption energy of another species on a dif-
ferent site type (e.g., C on the f site).7 By constructing scaling
relations, we can effectively express the energetic data required
for all the rate constants in the reaction model on a given TM in
terms of only two so-called descriptors: the adsorption energy
of C on the f site and the adsorption energy of O on the s site.
This allows for the visualization of trends over the TM series
in terms of only these two parameters (cf. Figs. 2–4) and can be
used for the rapid screening of potential catalyst materials by
calculating only the descriptors and not the full DFT dataset.
The scaling plots and fitted scaling parameters from our own
DFT calculations can be found in Sec. S2 of the supplementary
material.

We also make use of scaling relations to reduce the overall
number of TS energies that must be calculated in a multi-site
kinetic model. The reaction model discussed in Sec. II A con-
tains a total of 17 adsorption energies and 21 TS energies that
must be determined on each of the six TM surfaces by DFT
calculations. With the exception of CO dissociation, which is
known to be feasible only at step sites,32 most of the reac-
tion steps are considered at several different sites. For these

reaction steps, we found that the same TS scaling relation holds
regardless of the site type on which the reaction occurs. This
is exploited to estimate some TS energies directly from the
scaling relations (cf. Sec. S2.3 of the supplementary material).
This reduces the number of TS energies to be calculated on
each metal from 21 to 14.

C. Density functional theory

The density functional theory calculations are performed
with the plane-wave code Quantum ESPRESSO33 (PWSCF
v.5.0.2, svn rev. 10452) using ultrasoft pseudopotentials.34

Electronic exchange and correlation effects are described using
the BEEF-vdW functional,35 which includes a correction to
account for van der Waals interactions. The stepped (211) sur-
faces of Cu, Pd, Pt, Re, Rh, and Ru are modeled by nine-layer
slabs, which corresponds to three layers in the (111) direc-
tion. All metals are modeled in fcc stacking. A vacuum region
of 15 Å perpendicular to the surface separates the slab from
its periodic images and a dipole correction is applied.36 Dur-
ing the relaxation, the bottom six metal layers are fixed in
their bulk-truncated positions, while the top three layers and
the adsorbate are relaxed until the maximum force on each
atom fell below 0.05 eV/Å. For the calculation of diffusion

FIG. 3. Theoretical activity maps (volcano plots) for the formation of CH4 as a function of the Cf and Os adsorption energies. The indications of special
descriptor points and the reaction conditions are as in Fig. 2. The map in (b) is a zoom of the region marked with a dashed line in (a) calculated in the MFA,
while the map in (c) is the corresponding region calculated from the modified implementation of accelerated kMC, using explicitly DFT-calculated C and CH
diffusion barriers and for a value of N f equal to the number of unit cells in the simulation box. In (b) and (c), the solid lines indicate the contour line where the
coverage of C on the f site (vertical line) or the coverage of CO on the t site (horizontal line) is equal to 0.5, while the dashed line indicates the contour line
where the degree of rate control for the Os hydrogenation step is equal to 0.08 as calculated in the MFA (cf. Figs. 2 and 4), see text.
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FIG. 4. MFA degree of rate control
maps for the C–OHf , CH3–Ht , and
O–Hs TSs as a function of the Cf
and Os adsorption energies. The indi-
cations of special descriptor points and
the reaction conditions are as in Fig. 2.

barriers for C and CH, we increase the number of layers in the
slab to twelve, with the bottom six layers kept fixed while the
top six layers and the adsorbate are relaxed. This is necessary
since the very strong interaction of C with some metals at the
f site leads to significant displacements of the metal atoms in
the surface layers in the nudged elastic band (NEB) images
along the diffusion pathway. In contrast, a comparison of the
adsorption energies for C at the f site and CH at the f and t
sites calculated using nine-layer slabs (cf. Table S1 in Sec. S3
of the supplementary material) and using twelve-layer slabs
(cf. Table S2 in Sec. S3 of the supplementary material) shows
that the average change in adsorption energy when increas-
ing the number of metal layers from nine to twelve layers
is below 50 meV. For all calculations, the Brillouin zone is
sampled with a (4 × 4) k-point grid and cutoffs of 500 eV
and 5000 eV are used for the orbitals and the charge density,
respectively.

The (1 × 2) supercell used for all calculations is illus-
trated in Fig. 1 along with the sites used for the different
adsorbates. For each combination of adsorbate, metal, and
generic site (s or t), adsorption energies on all of the high-
symmetry sites (ontop, bridge, and hollow) were calculated,
and the site with the lowest energy is used in the kinetic sim-
ulations. Transition-state (TS) energies are calculated using
either the climbing-image NEB (CI-NEB) method37 or the
fixed bond length (FBL) method. The harmonic vibrational fre-
quencies of the adsorbates (including the TSs) are calculated
on Rh(211) using the Atomic Simulation Environment (ASE)
code.38 It is assumed that the frequencies are constant along the
TM series. In computing the free energies of the adsorbates,
imaginary and low frequency modes below a cutoff value of
6.9 meV are set to the cutoff value to approximate the entropy
contribution from a pseudotranslational/rotational degree of
freedom, as discussed in Refs. 13 and 39. Free energy correc-
tions are calculated both for the adsorbates (in the harmonic
approximation) and for the gas-phase species (in the ideal
gas approximation) using the ASE thermochemistry module.
For the gas-phase species, the DFT-calculated energy is used
along with experimental vibrational frequencies.40 All ener-
gies and vibrational frequencies are listed in Sec. S3 of the
supplementary material, and all structures are provided as
XYZ files, also in the supplementary material.

D. Kinetic Monte Carlo simulations

The kMC method relies on coarse-graining of the sys-
tem dynamics to consider only the rare events representing
adsorption, desorption, diffusion, and reaction. Assuming that

the system has equilibrated between any two rare events, and
thereby lost any memory of the previous state, leads to the
Markovian master equation16–19

dPI (t)
dt

= −
∑
J,I

kIJPI (t) +
∑
J,I

kJI PJ (t), (6)

where the sum runs over all states J accessible to the sys-
tem, PI (t) is the probability to find the system in state I at
time t, and kIJ is the rate constant (cf. Sec. II A) or proba-
bility for the system to jump from state I to state J. During
a kMC simulation, the system is propagated from state to
state using a sequence of random numbers and the rates of
the possible processes in each state in order to generate tra-
jectories in time. Averaging over infinitely many trajectories
yields the evolution of the probability density representing the
system kinetics. Thereby, a numerical solution to the mas-
ter equation is achieved, which allows to fully account for the
detailed spatial distribution of the reaction intermediates at any
time.

The kMC simulations are performed using the kmos soft-
ware package,30 which is based on the rejection-free variable
step-size method. As in the MFA study from Ref. 7, the kMC
unit cell that is used contains a terrace consisting of a sin-
gle s site, t site, and f site (cf. Fig. 1). In principle, both the
MFA and kMC models could be extended to consider wider
terraces by elongating the unit cell with additional t sites. How-
ever, steps taking place on all three site types are found to
exert a large degree of rate control (DRC) over the dominant
pathway (vide infra) so that adding only additional t sites is
unlikely to qualitatively change the results. A simulation box
is used containing one unit cell in the direction perpendicu-
lar to the step and 20 unit cells in the direction parallel to
the step, unless otherwise stated in the text. We found that
the results are independent of the number of unit cells in the
direction perpendicular to the step, i.e., a box with a width
corresponding to a single step is sufficient. It was also verified
that the use of larger simulation cells in the parallel direction
does not affect the results obtained. Periodic boundary con-
ditions are employed both perpendicular and parallel to the
step.

Each kMC data point presented in Figs. 5 and 6 corre-
sponds to the average of 24 simulations, differing from each
other only in the sequence of random numbers used. Each of
these simulation is first run until a steady state is achieved,
assessed by the temporal convergence of coverages and turn-
over-frequencies (TOFs). We note that this could require up
to 1011 kMC steps for the most expensive calculations. In
order to accelerate the convergence to the steady state, the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
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FIG. 5. kMC results for point A showing (a) the TOF and (b) the computational cost as a function of the equilibration factor divided by the number of unit cells
in the simulation box (N f /# unit cells). kMC results for point B showing (c) the TOF and (d) the ratio between the kMC probability to find an OH species at
an s site next to OH at a t site (N2(A, B)) and the MF-estimated value (2[A][B]) again as a function of N f /# unit cells. kMC results for point C showing (e) the
TOF as a function of N f /# unit cells and (f) the TOF as a function of the diffusion barrier for the added alternative OH diffusion pathway (see text). The default
(modified) implementation of the algorithm is plotted in blue (red) and non-accelerated kMC results are plotted in yellow (see text).

simulations are always initiated from a surface coverage cor-
responding to the MFA solution (vide infra). Once a simulation
reaches steady-state, we begin the production run which runs
until 250 CH4 molecules have been produced. The reported
turn-over-frequencies (TOFs) are averages over these pro-
duction runs. The resulting error bars are in most cases too
small to be visible in the plots. For the non-accelerated kMC

FIG. 6. kMC results for point D showing (a) the TOF and (b) the ratio between
the kMC probability to find a CH species at a t site next to a vacancy at an
f site (N2(A, B)) and the MFA-estimated value (2[A][B]) as a function of the
barrier for C f to f site diffusion. In (c) we show the kMC TOF as a function
of N f /# unit cells for the model with DFT-calculated diffusion barriers (see
text). kMC results for point E showing (d) the TOF and (e) the same kMC
pair probability as in (b) as a function of N f /# unit cells. In (f) is shown the
non-accelerated kMC TOF as a function of the barrier for CO diffusion on the
s and t sites. Note that the results in (a) and (b) have been obtained using a
simulation box containing 200 lattice sites parallel to the step (see text).

runs, it was not possible to run the simulation long enough to
obtain production runs producing 250 CH4 molecules. Instead,
these runs only produced 10–80 produced CH4 molecules.
The resulting error bars are indicated either directly or by the
shaded area in Figs. 5 and 6. The kMC results presented in
Fig. 3(c) are based on a single trajectory for each descriptor
point, producing at least 500 CH4 molecules in the production
run.

As already discussed in Sec. I, a major efficiency bot-
tleneck for kMC simulations on metals is the presence of
processes that occur on very different time scales. In order
to overcome this time scale disparity problem, we employ
a twofold strategy: (i) we treat the adsorption, desorption,
and diffusion of H on the h site in a MFA ansatz (cf.
Sec. S4 of the supplementary material) and (ii) we imple-
ment and test a recently developed algorithm29 for achiev-
ing temporal acceleration of kMC simulations in the kmos
code. A brief overview of the algorithm and its param-
eters is presented next. Further details can be found in
Ref. 29.

E. Acceleration algorithm

The acceleration algorithm of Dybeck, Plaisance, and
Neurock29 pairs all processes in the reaction model into a
forward and a reverse process belonging to a given reaction
channel, m. In our default implementation of the algorithm
within kmos, a reaction channel is defined by the type of the
process and the site(s) on which it occurs. This means that,
e.g., CO adsorption/desorption on the s and t sites are con-
sidered as separate reaction channels. This is necessary since
the binding energy of CO differs between these sites, making
these reaction channels execute on different time scales. In a
modified implementation of the algorithm, we altered the def-
inition of the reaction channels for selected processes to also
include the occupation of sites neighboring the site on which
the process takes place (vide infra). For diffusion processes,
the reverse process is defined as diffusion in the opposite
direction.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
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During the kMC simulation, all reaction channels are
dynamically partitioned into quasi-equilibrated and non-
equilibrated sets. The criteria for a reaction channel m to be
labeled as quasi-equilibrated is

|nm,forward − nm,reverse |

ne
≤ δ, (7)

where nm ,forward and nm ,reverse are the number of forward
and reverse executions of reaction channel m, and δ is an
adjustable parameter that determined the cutoff between quasi-
equilibrated and non-equilibrated reaction channels. The num-
ber of forward and reverse executions of each reaction channel
is tracked over the last ne total executions of that reaction
channel in either the forward or reverse direction, where ne

is also an adjustable parameter. We use the default values of
δ = 0.2 and ne = 200 proposed in Ref. 29, which appear
to give an optimal balance between accuracy and efficiency
for our reaction model as well. At the start of the simulation,
all reaction channels are flagged as non-equilibrated. During
the kMC simulation, this status is then continually updated
for all reaction channels that have executed more than ne

times.
Once a reaction channel has been flagged as quasi-

equilibrated, it can be subject to scaling. The scaling is carried
out by decreasing the rate constant of both the forward and
the reverse process of a quasi-equilibrated reaction channel by
multiplication with a scaling factor 0 < αm < 1,

k ′i = αmki, (8)

where k ′i is the scaled and ki is the non-scaled rate constant of
process i belonging to reaction channel m. The same scaling
factor is always applied to the forward and reverse process
of each reaction channel in order to preserve the underlying
thermodynamics (i.e., detailed balance).

The scaling approach is based on the concept of a super-
basin, which is defined as the set of all configurations that are
accessible to the system by only executing quasi-equilibrated
processes. In contrast, the execution of a non-equilibrated pro-
cess takes the system to a new superbasin. Effectively, the
scaling of the rate constants of fast quasi-equilibrated pro-
cesses encourages the system to leave the superbasin sooner
than would be the case in a non-accelerated simulation. The
value of the scaling factor αm is determined in order to allow
for an average of N f executions of either the forward or the
reverse process in reaction channel m before the systems exits
the current superbasin. The resulting scaling factor is given
by

αm = Nf
2rS

rm,S + r−m,S
, (9)

where N f is an adjustable parameter referred to as the equili-
bration factor, which determines how aggressively the quasi-
equilibrated processes are scaled, and rS is the effective rate for
escaping from the explored region of the current superbasin,
defined as

rS =
∑

m∈N ,QB

rm,S . (10)

Here, N denotes the set of all non-equilibrated reaction chan-
nels and QB denotes the set of all reaction channels that have

not yet been sufficiently executed to be considered locally equi-
librated. A reaction channel is considered locally equilibrated
when it has executed a total number of ne times in either the
forward or the reverse direction within the current superbasin.
The quantities rm ,S and r

�m ,S in Eqs. (9) and (10) are the
rates of the forward and reverse directions of reaction chan-
nel m averaged over the time spent in the current superbasin.
The scaling factors αm are readjusted at intervals of NS kMC
steps, where NS is an adjustable parameter. The value of this
parameter does not appear to be important for either the accu-
racy or the efficiency of the algorithm. We used a value of
NS = 20.

Once a non-equilibrated process is executed, all scal-
ing factors are reset to unity and all reaction channels are
flagged as not locally equilibrated, while the division into
quasi-equilibrated and non-equilibrated reaction channels is
not affected. The system then enters a new superbasin and
the scaling process is restarted. Further details concerning
the superbasin concept and the associated terminology can be
found in Refs. 28 and 29.

In practice, we fix three of the adjustable parameters (ne,
δ, and NS) to their default values, while the accuracy of the
algorithm is tested by varying the N f parameter. Note that
when N f goes to infinity, no scaling of the rate constants is
carried out, and the accelerated kMC simulation reduces to
a non-accelerated simulation. The required value of N f was
found to be related to the system size; we therefore present
the results as a function of N f divided by the number of unit
cells in the simulation box. When N f is equal to the num-
ber of unit cells, the quasi-equilibrated processes execute on
average once per site in the simulation box before the execu-
tion of a non-equilibrated process. We consider the algorithm
to be accurate when the results are converged at this value
of N f .

During the testing of the algorithm, we realized that the
efficiency could be substantially improved by considering all
diffusion processes to be equilibrated (but not locally equili-
brated) by default. This means that the execution of a diffu-
sion process will never cause the system to exit the current
superbasin and the scaling factors to be reset. In the begin-
ning of the simulation, such resets could substantially reduce
the efficiency of the algorithm. However, diffusion processes
still need to execute at least ne times within the superbasin
before being labeled as locally equilibrated and being subject
to scaling.

F. Mean-field microkinetic model

In the MFA, the detailed spatial configuration of the reac-
tion intermediates is coarse-grained into a mean coverage.
Thereby, spatial correlations in the positions of the reaction
intermediates and fluctuations away from the mean coverage,
both of which are correctly described in kMC simulations, are
neglected. In the MFA microkinetic model, the rates rIS→FS

for the elementary processes take the form

rIS→FS(T , pi) = NFS
IS kIS→FS(T , pi)

∏
Θi∈ΘIS

Θi, (11)

where NFS
IS is a geometric factor accounting for the connec-

tivity of the sites involved in the initial and final states of the
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process. The rate constants, kIS→FS, are given in Sec. II A, and
Θi is the coverage of species i belonging to the IS. The sum
of all coverages for each type of adsorption site (t, s, and f ) is
constrained to 1. The resulting set of coupled differential equa-
tions is solved to determine the coverages and rates at steady
state using the CatMAP software package.41 CatMAP uses
a modified multidimensional Newton’s method root-finding
algorithm, which is iterated until the rate of change for all
coverages is below 10�50. The time scale disparity problem
is also present in the MFA model as an extreme stiffness of
the differential equations, which requires the use of multiple
precision up to 100 digits.

Both the MFA and kMC results are presented for condi-
tions typical of reactor operation (T = 523 K and p = 1 bar
with a gas composition of 1% CO, 97% H2, 1% CH4 and 1%
H2O) as has also been employed in Ref. 7.

III. RESULTS AND DISCUSSION
A. Mean-field results

Figure 2 shows the steady-state coverages of the surface
species CO, O, OH, and C as a function of the Cf and Os

adsorption energies, as obtained by the MFA model. CO and
O both adsorb at the s and t sites and thus compete for cover-
age at these sites. As the oxygen adsorption energies on these
sites become more negative compared to the carbon adsorp-
tion energy, the dominant adsorbate on these sites switches
from CO to O. This transition occurs at a more negative value
of the oxygen adsorption energy (at fixed carbon adsorption
energy) on the t sites compared to the s sites. This can be
explained from the DFT adsorption energies (cf. Sec. S3 of the
supplementary material) in which O binds stronger relative to
CO by a greater amount on the s site than on the t site. The
coverage of OH is negligible on the t site (not shown), whereas
high OH coverage is present on the s site in a small area at weak
Cf adsorption energies and intermediate Os adsorption ener-
gies (cf. Fig. 2). Adsorption of atomic carbon is most favorable
at the f site and is present on this site at high coverage for
strong Cf adsorption energies (shown), whereas the C cov-
erages on the s and t sites are negligible (not shown). The
coverages of CH, CH2, and CH3 at all sites are negligible (not
shown).

As expected, the metals that are known to interact very
strongly with O and C (e.g., Re) show high surface coverages
of these two species. This could lead to surface morphological
changes such as the formation of oxides or carbides.19,42–44

Further, the very high coverages predicted on many of the
metals could also lead to sizable lateral interactions between
the adsorbates.14,15,45 The description of these effects and their
impact on catalyst activities is, however, outside of the scope
of the present work.

The TOF map (volcano plot) for CH4 formation is shown
in Fig. 3(a). Our results can be compared to Fig. S3(c) from
the supplementary material of Ref. 7, which contain neither
the direct effect of lateral interactions nor the indirect effect of
using a scaling relation for CO dissociation calculated for high
CO coverages. This comparison shows that the position and
absolute TOF of the volcano maximum agree reasonably well

with this previous study, while the overall shapes of the volca-
noes differ significantly. These differences could be caused
either by the different approximations at the level of the
DFT calculations used in the two studies (the RPBE func-
tional and the Dacapo DFT code was used in Ref. 7) or by
the more extended reaction model considered in the present
study.

Under the present consideration of an extended reaction
model, it is also possible to use the MFA solution to reveal
the dominant reaction pathway at each descriptor point. This
is important for the analysis of the kMC results in Sec. III B
since the MFA and kMC models follow the same dominant
reaction pathway. The steps in this pathway are characterized
by the fact that the net rate (the forward minus the reverse rate)
is nearly equal to the overall TOF, while unimportant reaction
steps typically have net rates that are orders of magnitude lower
than the TOF. The dominant reaction pathway identified this
way turns out to be rather constant in most of descriptor space
(at least around the points A–E in Fig. 3(a) which are used as
test cases for the kMC simulations) and is characterized by the
following steps:

1. CO(g) + *t −−−→←−−− COt ,
2. H2(g) + 2 *h −−−⇀↽−−− 2 Hh,
3. COt + Hh + *f −−−→←−−− OHt + *h + Cf ,
4. Cf + Hh −−−→←−−− CHf + *h,
5. CHf + *t −−−→←−−− *f + CHt ,
6. CHt + Hh −−−→←−−− CH2t + *h,
7. CH2t + Hh −−−→←−−− CH3t + *h,
8. CH3t + Hh −−−→←−−− *t + *h + CH4(g),
9. Os + Hh −−−→←−−− OHs + *h,

10. OHs + OHt −−−→←−−− H2O(g) + Os + *t .

It should be noted that several of these steps were not consid-
ered in the MFA model of Lausche et al.,7 i.e., they considered
only the most stable s adsorption site for CO and OH, while
we find that the t adsorption site is actually involved in the
dominant reaction mechanism.

Equally important is an analysis of the rate-determining
steps of the dominant reaction pathway at each descriptor
point. Figure 4 shows the degree of rate control (DRC) maps
for selected elementary steps calculated using the method
described in Ref. 46, where a DRC value larger than zero sig-
nifies a partly (DRC smaller than one) or completely (DRC
equal to one) rate-determining step. As expected, CO dissoci-
ation (occurring through TS C–OHf ) is the rate-determining
step in most of the descriptor space, in particular for weak
Cf adsorption which through the scaling relations translates
into weak adsorption of the reactants in this step, CO and
H. This is the only rate-determining step for point A. At
stronger Os adsorption (points B, C, and D), an elementary
step involved in the water formation pathway, the hydro-
genation of O at the s site, becomes partly rate-limiting as
well. Finally, at stronger Cf adsorption (points D and E),
the hydrogenation of CH3 at the t site also becomes partly
rate-limiting. The barriers for the diffusion processes between
different site types are not rate-limiting; thus, no refinement
of the diffusion barriers was judged necessary for the MFA
model.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
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B. Kinetic Monte Carlo results

The testing of the kMC acceleration algorithm was car-
ried out at five points (A, B, C, D, and E) around the maximum
of the MFA volcano plot (cf. Fig. 3(a)). As described above,
each of these points is characterized by significantly different
rate-limiting steps and surface coverages (cf. Figs. 2 and 4),
and thus they provide a diverse set of test scenarios for the
algorithm. For the diffusion barriers, the approximate values
discussed in Sec. II A are used as an initial estimation. When-
ever the results were found to be sensitive to the exact value
of a diffusion barrier, that barrier was refined through explicit
DFT calculations.

We first consider the point A, which is characterized by
high coverages of CO on the s and t sites, with vacant f sites.
The rate-determining step at this point is the dissociation of
CO. The kMC TOF for point A is plotted in Fig. 5(a) as a
function of the equilibration factor N f divided by the num-
ber of unit cells in the simulation box. The processes that get
scaled by the algorithm are CO adsorption/desorption at the
s and t sites, all CO, O, and OH diffusion processes, steps 9
and 10 related to the dominant water formation pathway, C
diffusion between f sites, nearly all CH diffusion steps, and
steps 4-6 related to C and CHx hydrogenation. It is seen that
the kMC TOF is equal to the MFA TOF and that the results are
insensitive to the value of N f . Similar to the MFA results, the
kMC results at point A are found to be insensitive to the exact
value of the diffusion barriers of all reaction intermediates (not
shown).

The computational cost of the simulation for point A is
plotted as a function of N f in Fig. 5(b). It is seen that the
cost grows roughly linearly with the N f parameter. The exact
value of the speedup compared to non-accelerated kMC can-
not be measured directly due to the exceeding computational
cost of the latter simulation. However, at point A the rate of
the slowest process (CO dissociation) can be estimated to be
around 10�3 s�1, while the (non-accelerated) rate of the fastest
process (CO diffusion on the t site) can be estimated to be
around 1010 s�1. In a non-accelerated simulation, CO diffu-
sion would thus be expected to execute around 1013 times for
each CO dissociation event. For N f equal to the number of unit
cells in the simulation box, it is found that an average of 107

kMC steps are needed to execute one CO dissociation step.
We thus estimate the speedup to be around six orders of mag-
nitude. Thus, the algorithm works well and the computational
speedup is indeed significant. In that regard, it is worth men-
tioning that our implementation of the acceleration algorithm
in kmos results in an increase in computational cost per kMC
step of only about 10% compared to non-accelerated kMC.
This is negligible compared to the speedup achieved by the
acceleration algorithm.

Next, we consider point B, where the s and t sites are
covered by O, while the f site is vacant. In addition to CO
dissociation, the hydrogenation of O at the s site is also partly
rate-limiting at point B. In Fig. 5(c) we plot the kMC TOF as
a function of N f for the default implementation of the algo-
rithm (blue points) as well as for a modified implementation
of the algorithm (red points, vide infra). The processes that
get scaled are similar to the ones listed for point A, with the

important exception of OH diffusion. In fact, as a consequence
of the much lower coverage of t and s vacancies at point B
compared to point A, the surface diffusion of OH is almost
completely suppressed at point B. For the default implemen-
tation of the algorithm, the convergence with respect to N f is
very slow and the results are far from being converged when
the equilibration factor equals the number of unit cells in the
simulation box. To understand this breakdown of the algo-
rithm, we plot in Fig. 5(d) the kMC probability to find an
OH species at an s site next to OH at a t site (as required
for step 10, the dominant water formation pathway), scaled
by the MFA probability to form the two neighboring OH
groups (the product of the site-connectivity factor 2 for s and
t sites and the kMC surface coverages of OHs and OHt).
We can see that the kMC probability is much lower than
the MF probability—in fact, the deviation is nearly identi-
cal to the deviation of the kMC TOF from the MFA TOF (cf.
Fig. 5(b)). Therefore, it appears that the poor convergence of
the accelerated kMC results with respect to N f is related to
this probability being artificially decreased by the acceleration
algorithm.

This problem arises because the acceleration algorithm
scales the rate constant for OH formation at the s and t sites too
aggressively to allow for sufficient sampling of configurations
containing pairs of adjacent OHs and OHt species. This issue
is actually quite general and can occur whenever a pair of
independent (i.e., not sharing any reactant/product species)
quasi-equilibrated thermodynamically unfavorable processes
(steps (a) and (b)) must occur sequentially in order to form a
pair of adjacent species A and B (OHs and OHt in this case),
which then react with each other in a third step (c),

(a) . . . −−−→←−−− A + . . .,
(b) . . . −−−→←−−− B + . . .,
(c) A + B −−−→←−−− . . ..

In Sec. S5 in the supplementary material, we further analyze
this case and show that adequate sampling of configurations
containing pairs of adjacent OHs and OHt species requires a
value of N f that is sufficiently greater than min(K−1

a , K−1
b ),

where Ka and Kb are the equilibrium constants of steps (a)
and (b), respectively. At point B the value of Ka (Kb) is
around 10�3 (10�10). Therefore, the value of N f should be
sufficiently greater than ∼103, which is a much larger value
than the criteria we defined for the acceleration algorithm
to be accurate for non-problematic systems (N f equal to the
number of unit cells in the simulation box as discussed in
Sec. II E) and is in between the two largest N f values
considered in Fig. 5(c).

The criteria for N f we defined in Sec. II E was based
on the assumption that step (a) (or step (b)) must execute an
average of once per site in the simulation box before exiting the
current superbasin, in order for the acceleration algorithm to be
accurate. However, this is not a sufficient criterion for this type
of reaction scheme. Step (a) (or step (b)) must instead execute
a sufficient number of times (i.e., many more than once) on
a site next to species B (A) generated by step (b) (step (a))
before the system exits the current superbasin. When both Ka

and Kb are unfavorable for the forward reactions, most of the
executions of step (a) (step (b)) will occur in the absence of an

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
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adjacent species B (A). As a result, an insufficient number of
adjacent A/B pairs will form within the residence time of the
current superbasin when using an N f value equal to the number
of unit cells in the simulation box. For N f values lower than
ten times the number of unit cells in the simulation box, step
10 is in fact not executed at all, while for higher values it is
executed insufficiently. Instead, the alternative water formation
pathway relying on the direct hydrogenation of OH at the s
site (Eq. (S17) in the supplementary material) is selected for
escaping the current superbasin. Typically, we can expect the
correct sampling of a highly improbable surface configuration
not to be important for the correct evolution of the system.
However, in this particular case the water formation pathway
relying on the reaction of two neighboring low-coverage OH
adsorbates is an important step in the mechanism. It is preferred
over the direct hydrogenation of OH at the s site since the latter
process has a much lower rate constant (kH−OHs = 10−4 s�1)
than the former (kOHs−OHt = 3 × 1011 s�1).

One way to correct this poor performance of the accelera-
tion algorithm is to scale the rate constants of steps (a) and (b)
differently when they occur on a site next to a species of B or A,
respectively. This entails modifying the assignment of events
to reaction channels. Instead of assigning every O hydrogena-
tion event on, e.g., the t site to the same reaction channel, we
distinguish between the different possibilities for the occupa-
tion of the two neighboring s sites. This means that the hydro-
genation of O occurring in a configuration with, e.g., O atoms
on the two neighboring s sites belongs to a different reaction
channel (and thus gets scaled differently) from the hydrogena-
tion of O occurring in a configuration where, e.g., one of the
neighboring s sites is occupied by OH. Similarly, the O hydro-
genation on the s site is assigned to different reaction channels
depending on the occupation of the two neighboring t sites.
This ensures that whenever the formation of two neighboring
OH groups is possible, the required O hydrogenation process
can execute with the non-scaled rate constant (since this pro-
cess has likely never occurred before within the current super-
basin). We note that this modification effectively represents a
step on the way towards the algorithm proposed by Chatterjee
and Voter,28 where a process is defined by the configuration of
the entire system and not just by the configuration of the nearest
neighbors. However, the inclusion of nearest neighbor config-
urations as performed here already increases the total number
of reaction channels significantly. This, in turn, decreases
the efficiency of the acceleration algorithm. The approach
pursued here therefore represents an attempt to find an opti-
mum between the accuracy and efficiency of acceleration
algorithms.

The results obtained using the modified implementation
are shown with red points in Figs. 5(c) and 5(d). The kMC
TOF is now insensitive to the value of N f , i.e., the algorithm
works well. However, the MFA TOF is still not recovered
in this case, which is reflected by the fact that the kMC
probability to find an OH species at an s site next to an
OH species at a t site stays below the MFA-estimated value.
This difference can be traced to the fact that OH diffusion is
completely suppressed as a consequence of the low OH and
vacancy coverage on the s and t sites. The remaining differ-
ence in TOF between MFA and kMC is thus not an artifact

of the acceleration algorithm, but a breakdown of the MFA
itself.

We further investigate this breakdown of the MFA for
the point C, which is located at the descriptor point where
the TOF is maximally sensitive to the rate of water formation
through the rate-limiting step of OH formation on the s site
(cf. Fig. 4) and where correspondingly the largest difference
between the MFA and kMC TOF is observed. Since the rate of
CO diffusion is very low at point C (as a consequence of low
CO and vacancy coverage on the s and t sites), while the rate of
the rate-limiting step is sufficiently high (as a consequence of
the proximity to the top of the volcano), the time scale disparity
at point C is small enough to allow for comparison with non-
accelerated kMC simulations. In Fig. 5(e), we plot the kMC
TOF for point C as a function of N f both with and without the
acceleration scheme. The results confirm that the acceleration
algorithm works properly and that the MFA also breaks down
for this point. The kMC results are found to be insensitive to the
barriers for diffusion of all reaction intermediates, including
OH (not shown), since OH diffusion is not limited by its rate
constant, but by the low coverage of vacancies on the s and t
sites.

While the MFA is found to break down for the presently
considered reaction mechanism, it is possible that other dif-
fusion mechanisms that are not included in our model could
affect the diffusion of OH groups on the surface. Such an alter-
native diffusion pathway could be the transfer of the H atom in
the OH group to a neighboring O atom, which has been found
to occur with a barrier of around 0.5 eV on rutile TiO2(110).47

In Fig. 5(f), we include this diffusion process parallel to the
step (i.e., from t to t site and from s to s site) and plot the
kMC TOF as a function of the corresponding barrier for diffu-
sion. The kMC TOF indeed increases for very small barriers of
such alternative OH diffusion mechanism. It should be noted
that if H transfer between Os and Ot species is also included
in the reaction model, the mechanism for water formation
changes, as evidenced by a change in the rate-determining
step and TOF for the MFA model (not shown). Since overall
the observed changes when including such alternative OH dif-
fusion pathways are relatively minor and limited to the small
area of descriptor space where the hydrogenation of Os is rate-
limiting, we do not calculate the barriers for these processes
using DFT.

Next, we move to the point D, which differs from points
B and C in the high coverage of C on the f site and the fact
that CH3 hydrogenation on the t site is partly rate-limiting
as well. At point D, we find that the kMC TOF is particu-
larly sensitive to the barrier for C diffusion between f sites, as
shown in Fig. 6(a). For very low C diffusion barriers, we fur-
thermore find that the kMC TOF is strongly dependent on the
length of the simulation box parallel to the step and increases
linearly for small step lengths. The kMC results presented in
Fig. 6(a) therefore had to be carried out using a significantly
larger simulation box of 200 lattice sites parallel to the step.
These finite-size effects are further discussed in Sec. S6 of the
supplementary material.

To understand why the kMC TOF is sensitive to the C
diffusion barrier at point D, consider that the rate of CH4 for-
mation is proportional to the concentration of CHx species

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
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on t sites. These species are formed by step 5 in the reac-
tion mechanism, whereby a CH diffuses from an f to a t site.
Their steady-state concentration is therefore determined by the
relative rates of the forward and reverse directions of this step
(since CH4 formation is negligibly slow compared to this step).
The reverse rate of step 5 is proportional to the concentration
of CHt species that are adjacent to f vacancies. Such config-
urations are formed by step 5 and broken up by diffusion of
the CHt or the f vacancy, the latter occurring via C diffusion.
When these latter processes are limited by low rates of CH
and C diffusion, the reverse rate of step 5 is higher, and as a
result, the concentration of CHxt species and the rate of CH4

formation are reduced.
We can see that this is the case by examining Fig. 6(b),

in which we plot the kMC probability to find a CH on a t site
adjacent to a vacancy on a f site, normalized by the MFA-
estimated probability for this configuration (when either Cf

or CHt diffusion is infinitely fast, this quantity will be unity).
The results show that for high C diffusion barriers, diffusion
is too slow to break up the configurations containing adjacent
CHt and f vacancies (at this descriptor point, CHt diffusion is
too slow to be significant), which is reflected by a significantly
increased kMC probability to sample this configuration. This
leads to an increased rate of CH diffusion back to the f site
and a reduction in the CHxt concentration and the rate of CH4

formation.
The effect just described is observed for any descriptor

point with a high coverage of C on the f site. Since the effect
on the TOF is substantial and since a high C coverage is found
in a relatively large area of descriptor space, we explicitly
calculated the important diffusion barriers using DFT. These
include CH diffusion between f and t sites, which determines
the rate of step 5 in the reaction mechanism, as well as C
diffusion between two f sites and CH diffusion between two
t sites, which in turn determines the likelihood of CHt and
*f to diffuse away from each other after being formed in
step 5.

The DFT results for C diffusion on Ru(211) are presented
in Fig. 7. Surprisingly, the direct f to f site diffusion pathway
has an extremely high barrier of around 1.6 eV. Considering
the structures for the initial state (A in Fig. 7) and the TS (B
in Fig. 7), the high barrier seems to be related to the fact that
the C atom has to move from a very favorable position, buried
down in the metal surface and coordinated to four Ru atoms
(A), to a highly unfavorable position in which it is coordinated
to only two Ru atoms (B). In an alternative diffusion pathway,
the C atom diffuses via the t site (D in Fig. 7), passing through
a TS in a terrace bridge position (C in Fig. 7). This diffusion
pathway has a slightly lower barrier of around 1.3 eV. How-
ever, given the extremely low coverage of t vacancies at point
D at steady state, this pathway is not feasible and is in fact
never observed in the kMC simulations, even when using the
originally estimated, much lower, diffusion barrier. The DFT
results in Fig. 7 also allow for an estimation of the C t to t
site diffusion barrier, which occurs via the TS C in Fig. 7. On
Ru this barriers is found to be around 0.7 eV, while on Re
we find a barrier of around 0.5 eV. The latter barrier corre-
sponds well to the value estimated for t to t site diffusion on
Re(0001) (also 0.5 eV) in Ref. 10. The energies and vibrational

FIG. 7. DFT structures and adsorption energies for different C diffusion path-
ways on Ru(211). All energies are given with respect to the most stable
adsorption site of C at the f site (structure A). Structure B shows the TS
for the direct f to f site diffusion pathway, while structure C shows the TS
for the f to t site or t to t site diffusion pathway. Structure D shows the most
stable adsorption site at the t site.

frequencies related to C and CH diffusion on all metals are
listed in Sec. S3 of the supplementary material, while the scal-
ing plots and fitted scaling parameters can be found in Sec. S2
in the supplementary material.

Using the explicitly calculated DFT barriers for C and CH
diffusion, we plot in Fig. 6(c) the kMC TOF as a function of
N f for point D. The processes that get scaled by the algorithm
at point D are similar to those at points B and C except that,
with the explicitly calculated C diffusion barrier, this process
is now too slow to actually get scaled. The value for the C
diffusion barrier at point D is found to be around 1.5 eV, which
results in an almost complete suppression of C diffusion. CH
diffusion between t sites is also found to be almost completely
suppressed, but in this case it is predominantly a result of the
low coverage of vacancies on the s and t sites. As a result,
the kMC TOF is found to be almost two orders of magnitude
lower than the MFA TOF at point D. This is again a breakdown
of the MFA, as the insensitivity to the value of N f evidences
the reliable performance of the acceleration algorithm. This is
also confirmed by non-accelerated kMC simulations for this
point (cf. Fig. 6(c)).

Finally, we consider the point E, which differs from point
D in the fact that the s and t sites are covered by CO and
not O, while the coverage of C on the f site is still high.
The rate-limiting steps for this point are CO dissociation and
CH3 hydrogenation. As with point D, we use explicitly DFT-
calculated C and CH diffusion barriers. The results for the kMC
TOF presented in Fig. 6(d) are rather similar to the results for
point D, except that the kMC TOF at point E increases slightly
with the N f value. This increase in TOF is accompanied by a
decrease in the kMC probability to sample a CH species on a
t site adjacent to a vacancy on an f site, as shown in Fig. 6(e).
The processes that get scaled by the algorithm are identical to
point D, except that OH diffusion additionally gets scaled at
point E. This was also the case for point A and is related to
the higher concentration of s and t vacancies in a CO-covered
surface compared to an O-covered surface. As a consequence
of the higher vacancy concentration at point E, the diffusion
of CH on the t site is also executed more often compared to
point D. For point E, executions are frequent enough that the
CH diffusion process between t sites gets scaled slightly by the
acceleration algorithm. In contrast, C diffusion continues to be
almost completely suppressed at point E since it is limited by

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-005799
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the very high C diffusion barrier rather than by the vacancy
concentration.

While the slight scaling of the rate constant of the CH
t to t diffusion process could potentially affect how effective
this process is in breaking up the correlation in position of the
CHt-*f pair formed in step 5, the CH diffusion could also be
affected by the scaling of rate constants for CO diffusion. This
is due to the fact that the diffusion of a CH species across a
CO-covered terrace proceeds via alternating CH and CO dif-
fusion steps. To further analyze this point, we plot in Fig. 6(f)
the non-accelerated kMC TOF as a function of the barrier for
CO diffusion on the s and t sites (effectively, what is varied
is the BEP offset in the approximate BEP relations used to
describe CO diffusion, as discussed in Sec. II A). It is seen
that the kMC TOF increases slightly for low barriers of CO
diffusion (the lowest barrier that it is computationally feasible
to consider for non-accelerated kMC simulations is 0.3 eV,
while the barrier estimated for Re in Ref. 10 is 0.11 eV). It
therefore seems likely that the slight variations observed in
the kMC TOF at large N f values in Fig. 6(d) are caused by
the algorithm artificially slowing down CO diffusion on the
t site, which in turn reduces the rate of CHt diffusion across
the terrace. Overall, though, the observed changes in the TOF
with N f (cf. Fig. 6(d)) and with the CO diffusion barrier (cf.
Fig. 6(f)) are rather small (at least within the range of parame-
ters that it is computationally feasible to consider). We do not
attempt to further refine the barriers for CO diffusion using
DFT.

The artificial effect of the acceleration algorithm on the
CHt diffusion rate has a similar cause as the artificial effect
on the water formation rate at points B and C. CHf forma-
tion followed by diffusion to a t site and t vacancy formation
via CO desorption followed by CO diffusion are both quasi-
equilibrated thermodynamically unfavorable processes that
are independent of one another, corresponding to steps (a) and
(b) discussed for the water formation pathway at point B. Like-
wise, CHt diffusion proceeds from a configuration containing
a CHt species adjacent to a t vacancy, corresponding to step (c)
in that reaction network. The poor convergence of the accel-
eration algorithm with respect to N f at point E is therefore
likely due to the fact that it reduces the rate of CO diffu-
sion too aggressively for sufficient sampling of configurations
containing adjacent CHt /*t pairs. Unfortunately, it is not as
straightforward to circumvent this problem by modifying the
assignment of processes to reaction channels as it was for the
water formation pathway due to the complex process by which
CH diffuses across a terrace that involves alternating CH and
CO diffusion steps. We would anticipate that the algorithm
of Chatterjee and Voter28 would perform better in this case
since every unique configuration of CHt /*t pairs would repre-
sent a separate reaction channel. However, the computational
cost of this latter algorithm would most likely be exceedingly
high.

To summarize the results of the kMC simulations, we
include in Fig. 3 a comparison of the TOF maps calculated
using both the MFA and the modified implementation of
accelerated kMC (with explicitly DFT-calculated C and CH
diffusion barriers and a value of N f equal to the number of
unit cells in the simulation box). In the region near point C

where the hydrogenation of O on the s site is rate-limiting
in the MF model, small differences are observed. This can
be explained by the limited OH diffusion in the kMC model.
Larger differences are observed in the regions represented by
the points D and E, where the coverage of C species on the f
site is high and CH4 formation on the t site is rate-limiting.
This can be explained in terms of the limited diffusion of C
between f sites and CH between t sites in the kMC model.
Whereas we can confirm by comparison to non-accelerated
kMC simulations that the discrepancies between the kMC
and MFA results at points C and D are due to a breakdown
of the MFA and not poor convergence of the acceleration
scheme, we conclude that the discrepancy at point E is likely
due to the latter cause. The TOFs in the accelerated kMC
model presented in Fig. 3(c) are therefore slightly underes-
timated in the region of descriptor space that is characterized
by high coverage of C on the f site and high coverage of
CO on the t site. In reality, the kMC TOF should be closer
to the MFA result in these regions. Unfortunately, an accu-
rate estimation of the TOF using non-accelerated kMC is not
possible due to the exceeding computational cost of running
the simulation with a realistic CO diffusion barrier of around
0.1 eV.

It is worth noting that the MFA ansatz used for describing
H in the kMC simulations effectively removes H2 adsorp-
tion/desorption (step 2 in the reaction mechanism) from the
kMC model and reduces the hydrogenation/dehydrogenation
reactions (steps 4, 6, 7, 8, and 10) to effective first-order reac-
tions. The only second-order reaction steps in the reaction
mechanism are therefore steps 3, 5, and 9. The MFA is sus-
ceptible to break down for second-order reaction steps where
both reactants are present in low coverage.25 Indeed, reaction
steps 5 (low *f and CHt coverages) and 9 (low OHs and OHt

coverages) are found to be responsible for the cases where the
MFA is found to break down in this study. Surprisingly, no
breakdown of the MFA is observed for step 3 (the reaction of
COt and *f to form OHt and Cf ). While a positive correlation
between the occupation of an f site by C and the occupation
of a neighboring t site by OH (the configuration formed after
step 3) is observed at point A, where O species are present in
low coverage on the t site and C is present in low coverage
on the f site, this does not lead to any visible effect on the
TOF, since the rate constant for the reverse of reaction step 3
is so low that this process is negligible. A correlation between
the occupation of a t site by CO and a neighboring f site by a
vacancy is never observed. One might expect this to occur at
point D where the t sites are covered with O and the f sites are
covered with C. That no such correlation is observed is prob-
ably related to the fact that CO can “diffuse” rather quickly
on an O-covered terrace by a three-step process involving CO
desorption, diffusion of the resulting vacancy via O diffusion,
and CO readsorption on the new vacancy.

IV. CONCLUSIONS

We have implemented a recently developed accelera-
tion algorithm for kMC simulations29 and tested it using a
scaling-relation-based reaction model for CO methanation
over stepped transition metal surfaces. While the algorithm
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was shown to always be reliable for the simple reaction model
tested in Ref. 29, our more thorough testing, using a rather
complex reaction model and considering the whole series
of TMs, reveals an unforeseen breakdown of the algorithm.
The problem occurs when two independent quasi-equilibrated
reaction steps produce low-coverage species which then react
with each other in a third reaction step. In that case, the
acceleration algorithm may scale the rates of the two quasi-
equilibrated steps too aggressively for adequate sampling
of configurations containing adjacent low-coverage species
needed for the third reaction step. Nevertheless, this problem
was easily identified by performing proper convergence tests
with respect to the N f parameter, which controls the degree of
acceleration that is applied.

In the present case, we were able to correct for the poor
performance of the acceleration algorithm in some cases by
modifying the way that processes are assigned to reaction
channels. This modification was not possible however when
the third step was CH diffusion across a terrace due to the com-
plicated mechanism by which this process occurs that involves
alternating CH and CO diffusion. This challenging case may
therefore serve as a benchmark for future algorithm develop-
ment. Such development efforts could, for example, aim at
finding a better compromise between the algorithm proposed
by Chatterjee and Voter,28 which has (presumably) high accu-
racy but low efficiency, and the algorithm proposed by Dybeck,
Plaisance, and Neurock,29 which has high efficiency but can
give poor accuracy in certain situations.

Regarding the comparison of the MFA and kMC method-
ologies, our results contradict the widespread assumption that
MFA models are always reliable for catalytic reactions on
metals in the absence of lateral interactions. For a descrip-
tor point located within a couple of hundreds of meV from
the top of the MFA activity volcano (point D, cf. Fig. 3),
we find that the MFA overestimates the TOF by nearly two
orders of magnitude. This could substantially influence the
reliability of a screening study attempting to find promising
new catalyst materials. We were able to trace this breakdown
of the MFA to the fact that diffusion barriers along step sites
can be substantially higher than those previously identified
along terrace sites10 since step sites generally bind adsor-
bates much stronger than terrace sites. This effectively renders
stepped-metal surfaces similar to oxide surfaces, where simi-
lar breakdowns of the MFA due to high diffusion barriers have
been reported before. The presented results demonstrate that
kMC models could be used equally well in scaling-relation-
based screening studies although the higher accuracy undoubt-
edly comes at a much higher, yet tractable, computational
cost.

The cases where the MFA was found to break down in
the present study were all related to slow diffusion in a high-
coverage configuration. Of course, it is well known that pre-
cisely for these cases the inclusion of lateral interactions could
be important for the outcome of the simulation and could sig-
nificantly influence both the barriers for all processes and the
adsorbate coverages. It is possible that the resulting changes
could influence the predictions of where the MFA breaks down
in the present study. However, it is also well known that the
inclusion of interactions could itself lead to a breakdown of

the MFA since such interactions tend to lead to the formation
of ordered adsorbate structures on the surface, even in cases
where all interactions are repulsive.48 The extension of accel-
erated kMC methods to models including lateral interactions
is therefore an equally important target for future algorithm
development.

SUPPLEMENTARY MATERIAL

See supplementary material for additional details about
the reaction model, scaling relations, DFT energies, vibra-
tional frequencies and structures, analysis of the accuracy of
the acceleration scheme for the water formation pathway, and
further kMC results.
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