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salt solutions
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Implicit solvation calculations based on a Stern-layer corrected size-modified Poisson-Boltzmann
(SMPB) model are an effective approach to capture electrolytic effects in first-principles electronic
structure calculations. For a given salt solution, they require a range of ion-specific parameters, which
describe the size of the dissolved ions as well as thickness and shape of the Stern layer. Out of this
defined parameter space, we show that the Stern layer thickness expressed in terms of the solute’s
electron density and the resulting ionic cavity volume completely determine ion effects on the stability
of neutral solutes. Using the efficient SMPB functionality of the full-potential density-functional
theory package FHI-aims, we derive optimized such Stern layer parameters for neutral solutes in
various aqueous monovalent electrolytes. The parametrization protocol relies on fitting to reference
Setschenow coefficients that describe solvation free energy changes with ionic strength at low to
medium concentrations. The availability of such data for NaCl solutions yields a highly predictive
SMPB model that allows to recover the measured Setschenow coefficients with an accuracy that is
comparable to prevalent quantitative regression models. Correspondingly derived SMPB parameters
for other salts suffer from a much scarcer experimental data base but lead to Stern layer properties
that follow a physically reasonable trend with ionic hydration numbers. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4978850]

I. INTRODUCTION

The explicit account of solvation environments in first-
principles electronic structure calculations remains a huge
computational challenge. Simulating a large enough number
of solvent molecules and performing a sufficient sampling to
achieve converged thermodynamic properties are still largely
intractable, even for numerically most efficient approaches
like density-functional theory (DFT) in combination with low-
rung exchange-correlation functionals. This holds in particular
for electrolytic solutions, where the generally low concentra-
tions of dissolved ions would require even larger simulation
cells and more extensive sampling. In this situation, implicit
solvation methods enjoy a long-standing popularity.1 In such
embedding techniques, solvation effects on the solute are mod-
eled in an average way, for instance, by describing the solvent
as a simple dielectric continuum.1–6 To access electrolytic
environments, these techniques are combined with distribu-
tion models for the dissolved ions.7–10 Most commonly the
ions are thereby considered as continuous charge densities that
adapt to the mean-field electrostatic potential built up by all
system components (solute and ions embedded into the solvent
continuum).

Poisson-Boltzmann (PB, or Debye-Hückel/Gouy-
Chapman) theory11–14 is a corresponding ansatz that has
experienced a particularly long history of success.15–26 Due to

a)Electronic mail: stefan.ringe@tum.de

efficient implementations in DFT7–10,27–30 or force field31–35

program packages, it has become a wide-spread tool for
modeling chemical processes in electrolytes. In its original
formulation, PB theory only considers point-like ions. This
has often proven insufficient to describe ion-specific effects,
for instance, for systems with high electrostatic potentials,
for which point-like ions would accumulate to unphysically
high local ion densities.32,36–44 This includes highly charged
solutes, enzyme active sites,33,45 or charged surfaces like Lang-
muir monolayers.36 Two most prominent avenues to improve
on this limitation of standard PB theory are the size-modified
PB (MPB) approach and the coupling with a finite Stern
layer (PB+Stern layer = SPB theory or Gouy-Chapman-Stern
model), cf. Fig. 1. MPB theory accounts for solvated ion-ion
short-range repulsion by introducing finite ion sizes via a sta-
tistical lattice model in which the lattice cells are only allowed
to be occupied by one ion at a time.32,36,37,40,41,43,44 This creates
an upper bound for local ionic charge accretion and thereby
avoids an overshooting of ion concentrations, e.g., close to high
electrostatic potentials. The Stern layer concept46 accounts for
the existence of a finite solute-solvent layer formed around the
solute by strongly or weakly bound solvent molecules.47–49 In
SPB theory this is simply achieved by introducing an ion-free
(ion-exclusion) region between the solvation cavity and the dif-
fusive ionic solution. As illustrated in Fig. 1, this ion-exclusion
Stern layer may thereby partly arise from the solvation shells
around the ions, which also prevent the latter from further
approaching the solute.
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FIG. 1. Schematic representation of an electrolytic environment around
a molecular solute, illustrating two prominent modifications of standard
Poisson-Boltzmann (PB) theory: A solvent Stern layer of thickness rStern sepa-
rates the solute from the diffusive ions in the SPB approach, while MPB theory
accounts for more or less rigid solvation shells around the ions by describing
them with a finite size a. As apparent from the drawing, the Stern layer can
receive contributions from both the solute’s solvation layer and the solvation
shells around the ions leading to correlation between the corresponding model
parameters.

Even though these PB-derived methods have been
applied extensively in chemistry,50 in particular in (electro-)
catalysis,51–53 electrochemistry,54–56 electrokinetics,57,58 and
biology,15,16,24,26,32–34,59–62 it is often not clear which of the
two modifications is really required to achieve an accurate
modeling of ion-specific effects. This has led to the prag-
matic combination of both strands into MPB plus Stern layer
(SMPB) models.7,8,29,32,44,63 As is the characteristic for coarse-
grained approaches, all three theories (MPB, SPB, and SMPB)
depend on a number of effective parameters, describing the
ionic size or properties of the Stern layer as its thickness or
shape. These parameters can sensitively affect the outcome
of corresponding solvation calculations7,32,33,63 and need to
be carefully determined, for instance, by fitting to the experi-
mental data. Particularly valuable, especially for calculations
treating the solute on a first-principles level are thereby trans-
ferable parameter sets that can be applied to predict properties
for a wide range of solutes and salts.

In this work, we present a corresponding parametrization
approach for neutral solutes in aqueous monovalent salt solu-
tions. The protocol relies on fitting to experimentally available
Setschenow coefficients, which measure the change of sol-
vation free energy with ionic strength of the electrolyte.64,65

After assessing a meaningful parameter space, we first focus
on NaCl solutions for which the most experimental data are
available. Intriguingly, the thus optimized SMPB parameters
describe the measured Setschenow coefficients with an accu-
racy that is en par to prevalent quantitative structure-property
relationship (QSPR) regression models. For other salts, SMPB
parameters are established correspondingly. In view of the
scarcity of experimental reference data, their transferability
is less certain though. Encouragingly, we can nevertheless
show that the thus defined Stern layer thicknesses yield a
reasonable scaling with the number of strongly bound water
molecules around the ions (hydration numbers) as one would
expect from Fig. 1. As such, this scaling can even be used

to derive SMPB parameters for salts not explicitly covered in
this work.

II. METHODS
A. Size-modified PB solver including a Stern
layer correction

In this paper, we utilize the function-space based SMPB
solver7 as implemented in the all-electron DFT code FHI-
aims.66,67 In the following, we only briefly summarize the most
important points of this implementation and refer to the orig-
inal publication for further details and original references.7

Unless noted differently, atomic units are used throughout, as
is the sign convention commonly employed in DFT, where
electronic charge densities have a positive sign. The com-
bined SMPB-DFT method self-consistently minimizes a free
energy functional via the common SCF solver with respect
to the electron density nel and via a function-space-based
combined Newton-multipole expansion relaxation method
(Newton-MERM) with respect to the electrostatic potential 3.
The latter minimization yields the MPB equation

∇ · [ε[nel(r)]∇3(r)] = −4πnsol(r) − 4πnPB
ion(r), (1)

with the solute charge density nsol = nel + nnuc (including the
nuclei charge density nnuc) and the ionic charge density (for a
z:z charged electrolyte)

nPB
ion(r) = z

[
cs

+(r) − cs
−(r)

]
. (2)

Here cs
+(r) and cs

−(r) are the spatially-dependent concentrations
of the dissolved cations and anions, respectively. The dielectric
function ε[nel(r)] entering Eq. (1) is parametrized as a function
of the electron density and adopts the value of 1 inside the
solvation cavity and εs,bulk outside

εnmin,nmax [nel] =



1 nel > nmax,
et(ln(nel)) nmin < nel < nmax,
εs,bulk nel < nmin,

(3)

with

t (ln(nel)) =
ln(εs,bulk)

2π

[
2π

ln(nmax) − ln(nel)
ln(nmax) − ln(nmin)

− sin

(
2π

ln(nmax) − ln(nel)
ln(nmax) − ln(nmin)

)]
, (4)

where {nmin, nmax} define the dielectric transition and εs,bulk

is the static dielectric permittivity of the solvent. Here and
henceforth, the explicit dependence on r is dropped for greater
legibility.

The ionic concentrations in the SMPB model are given by

cs
± = cs,bulkα±ion[nel]

×
exp(∓z3/(kBT ))

1 − φ0 + 1
2φ0

[
α+

ion[nel]e−z3/(kBT ) + α−ion[nel]ez3/(kBT )
] ,

(5)

with cs,bulk denoting the bulk concentration of the salt, kB the
Boltzmann constant, T the temperature, φ0 = 2a3cs,bulk the vol-
ume fraction of the bulk electrolyte occupied by ions, and
a the finite ion size or lattice cell length in the MPB lattice
model.36 The smooth ion-exclusion functionsα±ion[nel] are also
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parametrized as a function of the electron density and in con-
trast to our previous paper, we here allow for two independent
functions for cations (negative sign) and anions (positive sign),
respectively, to increase the flexibility of our model

α±
ion,nα,±

min ,nα,±
max

[nel]

=




0, nel > nα,±
max,

1
εs,bulk−1

(et(ln(nel)) − 1), nα,±
min < nel < nα,±

max,
1, nel < nα,±

min,
(6)

where the function t is now evaluated with the isodensity val-
ues {nα,±

min, nα,±
max} which define the concentration transition for

cations and anions.

B. Model parameters

This methodology gives rise to a range of effective
parameters that have to be determined. For the non-ionic
parameters, we use the solvation model from Andreussi et al.,
which was shown to yield accurate solvation energies for
neutral molecules in water.5 In this model, the parameters
nmin = 0.0001 and nmax = 0.005 define the electron density
region in which the dielectric function switches from its bulk
value εs,bulk = 78.36 to 1, cf. Eq. (3). Additionally, param-
eters α + γ = 50 dyn/cm and β = − 0.35 GPa are utilized
to model non-electrostatic interactions between solute and
water.5,7 We note that compared to our original publication,7

we now implemented the latter interactions in FHI-aims sim-
ilar to Andreussi et al., i.e., also in a self-consistent way by
adding the functional derivative of the free energy term with
respect to the electron density to the Kohn-Sham Hamilto-
nian. Although we found this to be of minor importance for
the evaluation of solvation energies,7 it gives us a complete
self-contained physical model.

This leaves the ionic parameters, the determination of
which is the topic of the present paper. The size parameter
a from the original MPB method models the size of the lattice
cells and therefore the steric crowding of ions.36 The addi-
tional Stern layer in the SMPB approach is defined through
the exclusion functions α±ion for cations and anions. For these
ion exclusion functions, Eq. (6) employs the same functional
form for the transition at the cavity boundary as the dielectric
function, only that the α±ion become 1 in the bulk electrolyte
and vanish inside the ionic cavity, i.e., inside the combined
Stern layer and solvation cavity. The electron density cutoffs
nα,±

min/max for the ion exclusion functions are then directly related
to the cutoffs from the dielectric function transition nmin/max,

nα,±
min/max = exp

(
a±min/max ± (a±max − a±min)

1 − ξ±αion

2

)
, (7)

with

a±min/max = ln(nmin/max) + (ln(nmin) − ln(nmax)) d±αion
. (8)

d+
αion

(d−αion
) > 0 hereby yields a finite cation(anion)-free Stern

layer around the solvation cavity and a lowering (raise) of ξ±αion

to a sharpening (smoothening) of the Stern layer transition for
the corresponding ion type.

Apart from specific systems, such as, for instance, highly
charged solutes in contact with the ions of low complexing
ability,68 one can generally expect the existence of some kind

of Stern layer.7,48,49,54,69,70 This layer can be considered as a
shift of the solute-ion radial distribution functions (RDFs) fur-
ther outward than the solute-solvent RDF, cf. Fig. 1. While
finite ion sizes as included in the MPB model can also prevent
over-crowding of ions by the introduction of steric ion-ion
repulsions, only the explicit inclusion of solute-ion interaction
potentials can provide these observed different offsets of the
solute-ion RDF. While sometimes disputed,44,62 the inclusion
of a volume-based (MPB) ion exclusion does therefore not
suppress the need for a distance-based (SPB) ion exclusion
(Stern layer correction) since both modifications address dif-
ferent physical short-comings of PB theory. Similarly, there
are indications that the inclusion of solvated ion-ion inter-
actions through MPB does give additional improvement that
can not be reached by a Stern layer alone, in particular for
large ions or close to high electrostatic potentials due to high
local ion densities.7,33,44,62,70 While this generally motivates
the use of the combined SMPB model, it is also clear that
both corrections, MPB and SPB, are partly correlated, cf.
Fig. 1. Parameter optimization disregarding one or the other
correction may therefore lead to physically unrealistic parame-
ters,32,63 while simultaneous unconstrained optimization may
lead to overfitted models with little transferability (vide infra).

From their physical origin, the ion size parameter a
and the Stern layer thickness rStern should depend on ionic
properties like hydrated radii or hydration numbers of the
ions.47,71 For the size parameter a, exclusive correlations
with hydrated ion sizes have thereby a reasonable legitima-
tion.63 In contrast, the Stern layer thickness is an effective
parameter that results from the interactions of multiple differ-
ent species such as attractive60,72–76 and repulsive solute-ion,
solute-solvent, or ion-ion interactions. It will therefore also
depend strongly on properties of the solute. This makes it
unlikely that parametrization strategies for rStern that exclu-
sively draw on solute-independent ion sizes31,33,35,44,68,73 will
lead to much transferability. More general procedures that also
consider an explicit dependence on the solute have instead
hitherto only met limited success,63,77,78 as fitting Stern layer
parameters to chemically most diverse solutes is a difficult
to impossible task.68 In the SMPB-DFT approach, this prob-
lem can be efficiently addressed by modeling the Stern layer
thickness as a function of both ionic properties and the solute’s
electron density. With a single choice of the parameters d±αion

and ξ±αion
for a particular salt solution, rStern will then automat-

ically adapt to the size of the solute as measured by the extent
of the electron density.

C. Database of Setschenow coefficients

The determination of transferable SMPB parameters
requires accurate experimental data covering a diverse range
of solute molecules, salts, and ionic strengths. Among experi-
mentally accessible observables, solvation free energy changes
with ionic strengths,

∆∆Gion(cs,bulk) = ∆Gsol(c
s,bulk) − ∆Gsol(c

s,bulk = 0) (9)

(with ∆Gsol(cs,bulk) the solvation free energy at concentra-
tion cs,bulk), are hereby particularly appealing. While for
electrolytic solutes, these changes scale according to Debye-
Hückel theory with the square root of the ionic concentration,7
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neutral solutes show a linear regime

∆∆Gion = ks
kBT

log10(e)
cs,bulk (linear), (10)

where ks is the so-called Setschenow coefficient depending
on the solute and salt of choice.64,65 For most systems, ks is
positive indicating a reduction of the solubility of the dissolved
molecules called salting-out effect.

In contrast to incidences observed for more complex
salts,79 the linear Setschenow regime typically holds up to
salt molarities as high as 2M–5M for alkali halide salt solu-
tions.65,80–82 Over the years, different collections of molecu-
lar Setschenow coefficients in aqueous NaCl solutions have
appeared.80,83–86 They often contain data from early exper-
imental measurements though, which are likely affected by
experimental uncertainties. Setschenow coefficients obtained
from fitting entirely to experimental measurements at low ion
concentrations are for instance by now known to be prone
to high systematic errors which can easily yield uncertain-
ties up to 0.04 l/mol.80,85 Likewise, ks for strongly polar
molecules obtained from solubility measurements are masked
by solute-solute self-interaction energy changes.65 From about
150 experimentally measured molecular Setschenow coeffi-
cients in literature,49,65,80,83–86 we have therefore built up a
database with 95 entries (database I49,65,84–86) that is explic-
itly listed in the supplementary material (cf. Table S1). The
selection was based on highest apparent experimental accuracy
but also to arrive at a balanced and broad range of differ-
ent organic functionalities and physical properties (cf. dipole,
polarity, and isotropic static dipole polarizability distributions
in the supplementary material, Fig. S1) in the database. This
database was exclusively used in the fitting of the SMPB
parameters described below. In addition we collected a second
validation database (database Ival

86) containing 33 Setschenow
coefficients of mainly apolar aromatic molecules, cf. Table II
and Fig. S1 in the supplementary material, which we used to
test the transferability of the determined parameters.

Unfortunately, experimental Setschenow coefficients for
salts other than NaCl are very scarce. This does generally not
allow to discard data to arrive at balanced sets of different
organic functionalities. Nevertheless applying a similar qual-
ity selection as for NaCl, we collected a database II for various
alkali halides as well as NaNO3 and NH4Cl salt solutions that
in total contains 195 entries.65,79,84,87–103 The individual num-
ber of molecular reference values for each salt is listed in
Table II below, while the whole database is explicitly listed
in the supplementary material.

D. Computational setup

All implicit-solvation DFT calculations have been per-
formed with the SMPB functionality of the program pack-
age FHI-aims.7,66 The exchange-correlation functional due
to Perdew, Burke, and Ernzerhof (PBE) has been used
throughout.104 This functional was also used in the optimiza-
tion of the non-ionic solvation parameters by Andreussi et al.5

As detailed in the original implementation publication,7 use
of the default “tight” accuracy settings and the tier2 numeric
atomic orbital basis set in FHI-aims yields values of ∆∆Gion

that are numerically converged to 0.01 kcal/mol.

All solute molecule geometries were first relaxed in
vacuum until residual forces fell below 0.23 kcal/(mol/Å).
These geometries were then taken as a starting point for a
subsequent optimization in implicit water using the newly
implemented force functionality of the SMPB solver in FHI-
aims. Test calculations showed only negligible further geom-
etry changes when reoptimizing these relaxed geometries at
finite ionic strength. The experimental Setschenow coeffi-
cients in the databases were measured at room temperature.
Consistently, we therefore also employed T = 298.14 K as
ionic temperature in the SMPB model. However, we note
that for many neutral solutes, ks does not show a strong tem-
perature dependence, typically a few percent for variations
of ±20 K.105,106

III. RESULTS

As a first step in the generation of transferable SMPB
parameters for first-principles implicit solvation calculations,
we here consider the case of neutral solutes in aqueous mono-
valent salt solutions. In contrast to higher-valent ions where
ion correlations are known to play a larger role,107 SMPB
theory is generally expected to perform quite well for this
class of salt solutions. Compared to other salts and charged
solutes, the parametrization is furthermore simplified by the
much higher availability of experimental data, in particular
Setschenow coefficients, as well as by the fact that for many
neutral solutes, the linear Setschenow regime holds up to
medium concentrations of 3-4M.65,79–82

In its full generality, the SMPB model described in
Section II A contains five ionic parameters (a, d+

αion
, d−αion

, ξ+
αion

,
ξ−αion

) that need to be optimized. This already assumes a sin-
gle ion size a for both cations and anions, and extensions
would have to be implemented for the application to the salts
with very different anion and cation sizes.32 As discussed in
Section II B above, correlations between these ionic param-
eters are to be expected. An unconstrained optimization
by simultaneous fitting to experimental Setschenow coef-
ficients is therefore likely to get trapped in local minima
and thereby lead to overfitted models of low predictive quality.
In the following, we thus first concentrate on NaCl solutions,
for which we can draw on a large experimental database and
assess a meaningful parameter space in Section III A. On this
basis, we then obtain optimized NaCl SMPB parameters in
Section III B and discuss their transferability and reliability.
Finally, we determine SMPB parameters also for the other
electrolytes in Section III C and use their scaling with ionic
hydration numbers to argue in favor of their transferability,
despite the scarcity of the reference data that can be used for
the optimization.

A. Assessment of SMPB parameter space

We begin assessing a meaningful ionic parameter space
for neutral solutes by deriving an approximate analytical
expression for ∆∆Gion. This derivation rests on the realization
that neutral molecular solutes do not exhibit strong electro-
static fields and will therefore not lead to strong ionic accumu-
lation. This would suggest to approximately consider the elec-
tron density of the solute nel and the electrostatic potential 3 as

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-028712
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-028712
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-028712
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-028712
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unaffected by a finite ionic strength. Starting from the general
minimal SMPB free energy expression, Eq. (18) in Ref. 7,
this leads to the following approximate expression for the
solvation free energy change:

∆∆Gion ≈−
kBT

a3

∫
dr ln

(
1 + φ0

[
αion cosh

(
3

kBT

)
− 1

])
.

(11)

Here, this expression is given for simplicity for equal
ion-exclusion functions α±ion[nel]= αion[nel] for cations and
anions and the full derivation is provided in the supplementary
material. Taylor expanding the cosh-term to first order allows
to further simplify Eq. (11) to

ks ≈ −
log10(e)

cs,bulka3

∫
dr ln (1 + φ0 (αion − 1)) , (12)

where the expression is given here directly in terms of the
Setschenow coefficient as defined by Eq. (10).

This derived equation reveals that in the general case of
a, 0, the Setschenow coefficient is not constant but varies with
the ionic concentration. Only the limit a→ 0 allows to recover
a linear Setschenow regime as observed experimentally (cf.
derivation in the supplementary material)

ks(a→ 0) ≈ 2 log10(e)Vion,cav, (13)

where Vion,cav = ∫ dr(1 − αion) is the volume of the ionic cav-
ity as determined by the DFT electron density of the solute
in ion-free implicit water and the chosen Stern layer parame-
ters. The generalized form considering different cationic and
anionic cavity volumes, V+

ion,cav and V−ion,cav, respectively, can
be derived analogously and reads

ks(a→ 0) ≈ log10(e) (V+
ion,cav + V−ion,cav). (14)

In this limit a→ 0, the Setschenow coefficient is thus uniquely
given by the ionic cavity volume. This is consistent with the
known correlation of Setschenow coefficients with the solute
molecular volume.84–86 It also agrees with the current under-
standing that the dominant contribution for the salting-out
effect of neutral molecules is a change of the cohesive energy
of the aqueous solution by the presence of the ions and the
concomitant higher ionic cavity creation costs.49

Fig. 2 compares the approximate expressions for the
Setschenow coefficient with numerical results obtained from
full SMPB-DFT calculations for both a highly polar (cyto-
sine) and an apolar (isopropylbenzene) molecule. Deferring
the analysis of differing ionic cavity volumes to below, this
comparison considers the same Stern layer parameter dαion

and fixed smoothness parameters ξ±αion
= 0.5 for both cations

and anions. For two very different sets of values of dαion and
the ionic size parameter a, excellent agreement is achieved
across a wide range of ionic concentrations. Only for the
highly polar cytosine and thin Stern layers, minor deviations
can be discerned at the highest ionic concentrations shown.
In this regime, ions accumulate significantly in regions of
higher electrostatic potential, and the approximations behind
the approximate analytical expressions start to break down.

Having validated the approximate analytical expressions,
we can proceed with analyzing what this indicates in terms of
the SMPB parameter space. For the class of neutral molecules,

FIG. 2. Calculated∆∆Gion as a function of ionic bulk concentration cs,bulk for
the highly polar molecule cytosine (upper panel) and the apolar molecule iso-
propylbenzene (lower panel). Compared are the results from full SMPB-DFT
calculations (filled circles) with the analytical expressions for the Setschenow
coefficient of Eq. (12) (red lines) and Eq. (13) (blue lines). Shown are the
results for two different ionic sizes a (red vs. blue data) and Stern layer thick-
nesses dαion (dashed vs. solid lines). Equal Stern layer thickness for cations
and anions is employed, as well as a fixed ξ±αion

= 0.5. In the case a = 7 Å, the

ionic bulk concentration cs,bulk = 2.42M represents the upper bound for the
physically realistic region in which the lattice occupation of the MPB model
by ions φ0 < 1.

the use of any finite ion size parameter a will intrinsically lead
to deviations from the linear Setschenow regime, in partic-
ular, at higher ionic concentrations. The actual value of the
Setschenow coefficient is instead primarily governed through
the choice of the Stern layer thickness, d±αion

, and the smooth-
ness of the ionic transition, ξ±αion

, as these are the central param-
eters changing the ionic cavity volumes for a given solute. As
apparent from Fig. 2, the choice of a larger ion size parame-
ter can in principle also lead to an increasing slope of ∆∆Gion

in a pseudo-linear regime at lower ionic concentrations and
could therefore also be used to effectively fit the experimental
values for ∆∆Gion at a particular concentration. This high-
lights the afore discussed correlations in the SMPB parameter
space. On the basis of the obtained analytical understanding,
we expect a low transferability of corresponding a , 0 param-
eter sets though. For the targeted class of neutral solutes at
low to medium ion concentrations, we instead set a = 0 from
now on. MPB-like modifications with finite a are instead pre-
sumably useful to describe deviations from the Setschenow
law at high ion concentrations or in regions of high local
ion concentrations as expected for large ion sizes or charged
solutes.

To further analyze the role of the remaining four ionic
parameters, we compute the Setschenow coefficients for the
whole database I with the approximate Eq. (14) for vary-
ing choices of d±αion

and ξ±αion
. These calculations are done

for an ionic bulk concentration of cs,bulk = 1M, at which the
Setschenow law is known to hold for most monovalent salt
solutions. Evaluating the root mean-square error (RMSE) of
the thus estimated Setschenow coefficients for each set of
SMPB parameter values with respect to the experimental data
clearly demonstrates the expected effect of the total ionic
cavity volume as the central feature governing the accuracy
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FIG. 3. Root mean-square error (RMSE) for the NaCl training set (database I)
between calculated (through Eq. (14)) and measured Setschenow coefficients
as obtained for different choices of Stern layer parameters d+

αion
and d−αion

(a = 0, ξ±αion
= 0.5). The optimum RMSE of the full SMPB-DFT approach,

achieved for d±αion
= dαion = 0.68, is indicated by a white cross.

of the fit. Parameter combinations that effectively lead to the
same total volume (V+

ion,cav + V−ion,cav) generally achieve the
same RMSE. As exemplified by Fig. 3, a larger cationic volume
through the choice of a larger cationic Stern layer thickness
d+
αion

can for instance be compensated by a smaller anionic vol-
ume through the choice of a smaller Stern layer thickness d−αion

to yield the same RMSE fit. For the given functional form of
the transition function for the ionic cavity, Eq. (6), changes of
the smoothness parameters ξ±αion

lead to (albeit small) varia-
tions of the enclosed volume. Correspondingly, we also obtain
a weak sensitivity of the RMSE to the choice of this parameter,
where effective increases of the volume through ξ±αion

can again
be compensated by reductions of the Stern layer thickness
(cf. Fig. S2 in the supplementary material).

In this situation, unconstrained fitting of all four param-
eters makes no sense and should rather be guided by physi-
cal reasoning. For the targeted alkali-halide electrolytes and
their roughly similar cationic and anionic sizes, we there-
fore employ identical Stern layer thicknesses d±αion

= dαion and
shapes ξ±αion

= ξαion for both ion types. Since the Stern layer
shape has a similar but weaker impact on the total ionic cav-
ity volume than the thickness parameter, we simply fix it to a
value ξαion = 0.5 that yields a reasonable agreement with the
molecular dynamics (MD) data shown in Fig. 4 below. In total,
this thus leaves only the Stern layer thickness as a meaningful
SMPB parameter to be optimized by fitting to the experimental
database.

B. Optimized SMPB model: Strengths and limitations

Under the constraint of equal Stern layer thicknesses for
cations and anions, an optimum RMSE of 0.068 l/mol to the
experimental Setschenow coefficients of database I is achieved
for dαion = 0.68, cf. Fig. 3. At a bulk ion concentration of
1 M, this corresponds to an excellent prediction of the solva-
tion free energy change on average to within ∼0.1 kcal/mol. A
good transferability of the thus determined SMPB parameter
set is thereby indicated by essentially the same RMSE for the
validation database Ival (see Table I). We attribute this predic-
tive power to successfully capturing the correct physics of the

FIG. 4. Comparison of the solvation environment around the center of mass
(COM) of naphthalene in a 2.18M NaCl solution. Shown are the spherically-
averaged radial distribution functions (RDFs) of the oxygen atoms in the
water solvent (gH2O, dashed red line) and of the sum of both ion types (gion,
dashed black line) as reported by Li et al. from all-atom molecular dynamics
simulations,49 as well as the corresponding spherically-averaged dielectric
function ε(r) (solid red line) and ion-exclusion function αion(r) (solid black
line) as obtained with the optimized SMPB model. Both the onset of the solute
solvation shell and the radial Stern layer shift of the ionic distribution are rather
well reproduced. To better grasp the involved scales, two dotted vertical lines
illustrate the radial distance to the molecule COM as shown in the top view
in the inset.

ion-specific effects with the established SMPB ion distribu-
tion model. This is for instance indicated by comparison to
the explicit solute-solvent and solute-ion RDFs obtained from
all-atom MD simulations for naphthalene in NaCl solutions by
Li et al.49 As shown in Fig. 4, the onset of the solute solvation
shell and the outward Stern layer shift of the ion distribution
as modeled by the nel and αion functions of the optimized
SMPB model agree to within a physically reasonable win-
dow. As an aside, we found this onset to also be independent
of the dielectric function parameterization (cf. Fig. S6 of the
supplementary material) as expected from the validity of Eqs.
(13) and (14), additionally supporting the generality of the
drawn conclusions about the role of the SMPB parameters.

Interestingly, the RMSE achieved with the effective one-
parameter SMPB model is only slightly worse than the one
achieved with state-of-the-art multi-parameter data regression

TABLE I. Comparison of the achieved accuracy of the present opti-
mized SMPB model in reproducing experimental Setschenow coefficient
databases against models from the literature. This comprises both physi-
cally motivated models (TIP3P/TI,49 SEA49) and descriptor-based approaches
(all others85,86,108–110). Stated is the number of parameters involved in the
model (#params), the sizes of the training and validation set, and the achieved
RMSE (in l/mol) in both sets.

Training Validation

Descriptor/method #pa–rams Size RMSE Size RMSE

SMPB 1 95 0.068 33 0.064
pp-LFER85 5 43 0.030 91 0.047
QSPR108 4 71 0.030 30 0.043
QSPR (SVM)109 4 51 0.019 50 0.029
Connect. inx110 3 71 0.041 30 0.038

TIP3P/TI49 ... ... ... 43 0.084
SEA49 ... ... ... 43 0.050
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FIG. 5. Comparison of Setschenow coefficients obtained by the optimized
SMPB model with the experimental references from the training database I
(filled circles) and the validation database Ival (empty circles). The light blue
region around the correlation line marks an error within 0.05 l/mol. The largest
outliers are explicitly labeled with the solute name. Amino acid solutes are
marked by darker label color. The black arrows visualize the shift of the
calculated Setschenow coefficients for four amino acids when considering a
zwitterion molecular structure, see text.

models, cf. Table I. The main contribution to this RMSE
in the training I and validation Ival database arises thereby
from a small number of highly functionalized and polar
molecules, for which the SMPB model strongly overestimates
the Setschenow coefficients. These outliers are illustrated in
Fig. 5. A similar overestimation for polar molecules has also
been reported for regression-model studies,85 which points
towards experimental uncertainties or an incorrect account
of experimental conditions in the models as a reason for the
discrepancies. An important aspect to this end could be the
actual protonation state of the solute in the measurements, as
reference values for ks are often obtained by averaging over
solubility measurements at different pH values.111 Since stabi-
lizing electrostatic solute-ion interactions drastically increase
for charged molecules, deviations in the protonation state can
have a large impact on the determined Setschenow coeffi-
cient. In this respect, it is intriguing to realize that amino acids
are a prominent group among the outliers in Fig. 5. Close to
their isoelectric point, amino acids adopt a zwitterionic form,
rather than the neutral geometry which we considered in the
calculations by default. Recalculating the SMPB Setschenow
coefficients for four such amino acids in the zwitterionic geom-
etry indeed leads to much reduced ks values in much better
agreement with the experimental reference data, cf. Fig. 5.

While this underscores the importance of accurate exper-
imental reference data obtained in carefully adjusted physical
conditions, it is nevertheless clear that the SMPB model gen-
erally performs worse with increasing polarity of the solute. In
fact, when taking the solvation free energy ∆Gsol(cs,bulk = 0)
as a measure for this polarity, a good correlation can actually
be obtained with the signed error in the Setschenow coeffi-
cient (kSMPB-DFT

s − kexp
s ) (cf. Fig. S3, in the supplementary

material). This indicates that the SMPB model fails to capture
the interactions which are particularly strong for highly polar
molecules. This could comprise ion complexation, a reduc-
tion of the dielectric permittivity by strong ion-polar group

interactions (dielectric decrement112–114), or solute-ion
dispersive interactions, all of which would increase the attrac-
tive solute-ion interactions and therewith yield lower ks values
than the ones presently calculated.

More insight can be obtained by considering the vacuum
isotropic and static dipole polarizability as obtained from the
trace of the diagonalized polarizability tensor αiso

0 = tr (α0) /3
calculated with density-functional perturbation theory in FHI-
aims.115 As put forward by Ninham, Parsons, and Boström,
solute-ion dispersion interactions which scale with the solute’s
polarizability are suspected to play an important role in the
explanation of ion-specific effects.60,72–76 While, however, the
polarizability correlates well with the modeled Setschenow
coefficients kSMPB-DFT

s , we found experimental values to be
largely independent of it (cf. Figs. S4 and S5, in the supplemen-
tary material). At first sight, the introduction of such artificial
correlation could indicate that the electron density represen-
tation of the solute volume employed in the present SMPB
model might not be optimal to introduce volume correlations
in the Setschenow coefficient, at least not throughout the whole
database I. The good transferability of our SMPB model, how-
ever, renders it more plausible that the found correlation would
eventually be compensated by the inclusion of so far neglected
physical interactions. Among such possible interactions, we do
not expect solute-ion dispersion interactions to play a major
role, as reasoned from the missing correlation of the experi-
mental data with the dipole polarizabilities. However, in the
end, this can only be decided through the development of more
advanced PB methods in order to gain more insight into the
complex physics of solute-ion interactions.

C. Parameter sets for other monovalent salt solutions

In principle, the SMPB parametrization strategy devel-
oped for NaCl solutions can straightforwardly be extended
to other monovalent salt solutions. For each salt, an opti-
mized Stern layer thickness is determined by fitting to the
experimental Setschenow coefficients of this salt contained
in database II. Table II summarizes the thus optimized dopt

αion

values. The RMSEs also reported in Table II and the corre-
lation plot in Fig. 6 generally indicate a similar capability
and limitations to reproduce the experimental reference data
as found for NaCl before. Somewhat higher RMSEs are only
obtained for the iodides. We attribute this to strongly attractive
solute-ion interactions beyond the reach of the SMPB model.
For corresponding molecules like lindane or γ-butyrolactone,
these forces lead even to an overall salting-in effect, i.e., neg-
ative experimental Setschenow coefficients, which the current
SMPB model is unable to reproduce.

Unfortunately, the transferability of the thus optimized
Stern layer parameters for the other salts is also not as clear
as it was the case for the NaCl solution. The corresponding
experimental data sets are generally smaller than database I,
for some salts like LiBr, NaF, NaI, or KF even considerably
smaller, cf. Table II. At this scarcity, it is not possible to ensure a
balanced and broad range of different organic functionalities in
the data set, as was done in database I for NaCl. Every reliable
empirical Setschenow coefficient is needed for the training;
no validation databases can be spared. To nevertheless arrive
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TABLE II. Optimized Stern layer parameters dopt
αion

for monovalent salt solu-
tions. Listed is for each salt the size of the employed training set of experi-
mental Setschenow coefficients as well as the achieved RMSE (in l/mol) over
the training set. Detailed lists of the various training sets (database II) are
provided in Table S3 in the supplementary material. Data marked with an
asterisk could not be completely converged, as the implemented SMPB solver
exhibits numerical instabilities at dαion . 0.09.

Salt Size dopt
αion

RMSE

LiCl 30 0.46 0.047
LiBr 8 0.27 0.021

NaF 7 1.51 0.026
NaCl 95 0.68 0.068
NaBr 21 0.34 0.064
NaI 6 0.07* 0.127*

KF 9 1.34 0.080
KCl 48 0.48 0.063
KBr 29 0.09* 0.071*
KI 14 0.09* 0.136*

NH4Cl 11 0.13 0.047
NaNO3 12 0.08* 0.076*

at some form of independent validation we recall the phys-
ical picture behind different Stern layer parameters for the
different salts in the SMPB model. As apparent from Fig. 1,
corresponding variations would be attributed to different sizes
of the hydrated salt ions. As such, one would expect the opti-
mized Stern layer thicknesses for the different salts to roughly
scale with empirical hydrated ion sizes.

Static observables like mean ion-water nuclear dis-
tances117,118 provide thereby only an inappropriate repre-
sentation of the Stern layer thickness though, as they do
not include information about the bonding strength of the
hydration shells. Consistent with this expectation, we indeed
do not find a correlation of the Stern layer parameters with
reported such quantities. A more helpful set of descriptors are

FIG. 6. Correlation of SMPB-DFT calculated Setschenow coefficients with
the experimental references of database II. For each salt, the optimized Stern
layer thickness parameter dopt

αion
from Table II is used. The light blue region

around the correlation line marks an error within 0.05 l/mol. Some of the points
with largest deviations have been exemplarily labeled using the following
abbreviations: 1,4-BQ = 1,4-benzoquinone, 4-NA = 4-nitroaniline, 2-NBA
= 2-nitrobenzaldehyde.

FIG. 7. Correlation of the optimized Stern layer thicknesses dopt
αion

for dif-
ferent monovalent salts, cf. Table II, with the hydration number as obtained
from compressibility data of the bulk electrolyte.116 The linear regression
showed a low standard deviation (sd) = 0.17 and a high coefficient of deter-
mination R2 = 0.90. The Stern layer parameters marked in red were obtained
with training sets containing less than 20 molecules.

instead dynamic hydration sizes which resemble the average
sizes of hydrated ions as they propagate through the solution.47

These sizes are directly related to the number of strongly bound
water molecules (hydration numbers) which can be obtained
by different experimental techniques.71 Figure 7 shows that
the optimized Stern layer parameters indeed correlate well
with such hydration numbers as obtained from compressibil-
ity measurements at the infinite dilution limit.116 We thereby
averaged the available empirical cation and anion hydration
numbers116 to be consistent with the SMPB model using iden-
tical Stern layer thicknesses for both ion types. This correlation
clearly increases the confidence in the Stern layer parameters
given in Table II. This in particular, when considering that the
Stern layer parameters with the largest deviations from the
regression line were actually also obtained with the smallest
training set sizes and that on the contrary the NaCl value as
obtained from a converged training set is found directly on top
of the line.

The found scaling relation reveals that ion-specific effects
on molecular systems can indeed be explained by varying Stern
layer thicknesses, which by themselves are determined by the
dynamic hydration state of the ions. Moreover, the found cor-
relation between the optimized Stern layer parameters and the
hydration numbers can be also used to predict the parameters
for other monovalent salts for which experimental Setschenow
data are similarly scarce or even scarcer than for the here
considered salts. Using the obtained regression expression

dopt
αion
= 0.52 h.n. − 0.85, (15)

with h.n. the hydration number, to derive the Stern layer thick-
ness parameter, we expect that salt effects can be predicted to
a good degree of accuracy for most molecules and monovalent
salts. Overall we thus arrive at a rather optimistic perspective
on the obtained optimized SMPB models, which suggests their
tentative use for production first-principles electrolytic sol-
vation calculations. Notwithstanding, more reliable reference
Setschenow coefficients from the experiment would clearly be
desirable to fully validate the parameter transferability.
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IV. SUMMARY

Stern-layer corrected finite-size modified Poisson-
Boltzmann models refine the original Gouy-Chapman solva-
tion theory to account for both the presence of solvated ion-ion
(volume-based ion exclusion) and solute-ion (distance-based
ion exclusion) repulsive interactions. This comes at the prize
of a range of effective ionic parameters that need to be deter-
mined. For the use of a SMPB model to describe an electrolytic
environment in first-principles electronic structure calcula-
tions of solute molecules, optimum such parameters provide
maximum transferability, i.e., they allow to reliably treat a
wide range of solutes and ion concentrations.

The objective of the present work was to determine cor-
responding parameters for the much studied class of neutral
solutes in aqueous monovalent electrolytes. In corresponding
systems, solvation free energy changes with ionic strengths
generally show a linear, so-called Setschenow regime up to
medium ion concentrations. This suggests to base an empiri-
cal SMPB parametrization protocol on reference Setschenow
(proportionality) coefficients, which are rather widely avail-
able at good accuracy, at least in comparison to other observ-
ables sensitive to ion-specific effects. In its full generality, the
SMPB implementation in the DFT package FHI-aims com-
prises five ionic parameters (a, d+

αion
, d−αion

, ξ+
αion

, ξ−αion
). They

describe the effective size of solvated ions in the MPB lat-
tice model, as well as the extension and shape of the Stern
layer for cations and anions with the latter parameters defined
in terms of the solute’s electron density. As is clear from their
physical origin, these parameters are in parts highly correlated,
which excludes any unconstrained simultaneous optimization
when aiming for transferable parameter sets.

Deriving an approximate analytical expression for the sol-
vation free energy change with ionic strength we could show
that for the targeted class of neutral solutes and monova-
lent electrolytes, the majority of the parameters can be fixed
in a salt-independent way. Specifically, we arrive at a = 0,
ξ±αion
= 0.5 and an equal Stern layer extension for cations and

anions d+
αion
= d−αion

. The remaining thickness parameter dαion

is then optimized for each salt by fitting to a database of
empirical Setschenow coefficients from the literature, while
an additional dependence of the Stern layer extension on the
actual solute molecule is automatically achieved through the
dependence of the ion exclusion function on the solute electron
density.

For NaCl salt solutions, a high availability of reference
Setschenow coefficients allows to determine and validate a
highly transferable dαion . The thus optimized single-parameter
SMPB model reproduces measured Setschenow coefficients
with an accuracy that is comparable to the prevalent quan-
titative multilinear regression models and yields solute-ion
radial distribution functions that are consistent with the atomi-
cally resolved simulation data. Increasing deviations for highly
polar molecules thereby point towards the necessity for future
SMPB model modifications like a dielectric decrement or
solute-ion dispersion interaction corrections.

For monovalent salts other than NaCl, the availability
of accurate reference Setschenow coefficients is much lower.
Following the established protocol, we could still determine

the optimized Stern layer thickness parameters. However,
their transferability could not be fully validated in the same
way as for NaCl. On the other hand, we could show that
the corresponding dαion over the treated range of monovalent
electrolytes follow a trend as expected from the empirical
ionic hydration numbers, which in turn are directly related
to the dynamic ion sizes. This correlation suggests that ion-
specific effects for neutral molecules can be straightforwardly
explained by varying Stern layer thicknesses which by itself
are explainable by different dynamic ion sizes. Moreover, the
correlation allows to also evaluate reliable Stern layer param-
eters for any monovalent salt, i.e., also for the salts for which
experimental Setschenow coefficients are not available. Cau-
tiously suggest to employ these parameters for a first account
of ion-specific effects in first-principles implicit solvation elec-
tronic structure calculations for the corresponding salt solu-
tions. Eventually, we hope this work to trigger new and sys-
tematic experimental Setschenow coefficient measurements
though, which can then serve as a reliable basis for a future
reparametrization following the here established protocol.

SUPPLEMENTARY MATERIAL

See supplementary material for derivations of the SMPB
free energy expression in the case of two different ion exclusion
functions and the approximation to the Setschenow coeffi-
cient in the case of neutral solutes. Beside that all Setschenow
coefficient databases that were used are explicitly listed and
the distribution of absolute dipole moments, hydration ener-
gies and isotropic, static dipole polarizibilities over the NaCl
databases is visualized. Remaining figures show the impact
of the Stern layer smoothness and thickness parameter on
the quality of the SMPB model, correlations of Setschenow
coefficient and signed errors with hydration energy and polar-
izability, and the dependence of the Stern layer optimized ionic
radial distribution function for naphthalene on the choice of
the dielectric function.
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M. Sánchez, J. Chem. Soc., Faraday Trans. 1 83, 1029–1039 (1987).
80A. Burant, G. V. Lowry, and A. K. Karamalidis, Chemosphere 144,

2247–2256 (2016).
81D. F. Keeley, M. A. Hoffpauir, and J. R. Meriwether, J. Chem. Eng. Data

33, 87–89 (1988).
82E. M. Waxman, J. Elm, T. Kurtén, K. V. Mikkelsen, P. J. Ziemann, and

R. Volkamer, Environ. Sci. Technol. 49, 11500–11508 (2015).
83P. Debye and I. MacAulay, Phys. Z. 131, 22–29 (1925).
84W.-H. Xie, W.-Y. Shiu, and D. Mackay, Mar. Environ. Res. 44, 429–444

(1997).
85S. Endo, A. Pfennigsdorff, and K.-U. Goss, Environ. Sci. Technol. 46,

1496–1503 (2012).
86N. Ni and S. H. Yalkowsky, Int. J. Pharm. 254, 167–172 (2003).
87W. Xie, H. Ji, and W. Li, Acta Phys.-Chim. Sin. 1, 304–307 (1985).
88M. A. Paul, J. Am. Chem. Soc. 74, 5274–5277 (1952).
89H. Kruyt and C. Robinson, Proc. Acad. Sci. Amsterdam 29, 1244 (1926).
90R. L. Bergen and F. A. Long, J. Phys. Chem. 60, 1131–1135 (1956).
91A. Osol and M. Kilpatrick, J. Am. Chem. Soc. 55, 4430–4440 (1933).
92J. N. Sugden, J. Chem. Soc. 129, 174–196 (1926).
93W. Herz and E. Stanner, Z. Phys. Chem. 128, 399 (1927).
94P. Groß and K. Schwarz, Monatsh. Chem. Verw. Teile Anderer Wiss. 55,

287–306 (1930).
95W. L. Masterton and T. P. Lee, Environ. Sci. Technol. 6, 919–921 (1972).
96A. Al-Maaieh and D. R. Flanagan, J. Pharm. Sci. 91, 1000–1008 (2002).
97F. I. El-Dossoki, J. Chem. 2016, 1–8.
98M. Randall and C. F. Failey, Chem. Rev. 4, 285–290 (1927).
99M. Randall and C. F. Failey, Chem. Rev. 4, 271–284 (1927).

100M. Randall and C. F. Failey, Chem. Rev. 4, 291–318 (1927).
101A. G. Leiga and J. N. Sarmousakis, J. Phys. Chem. 70, 3544–3549 (1966).
102J. C. Philip and A. Bramley, J. Chem. Soc., Trans. 107, 377–387 (1915).
103T. J. Morrison and F. Billett, J. Chem. Soc. 1952, 3819–3822.
104J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868

(1996).
105W. E. May, S. P. Wasik, and D. H. Freeman, Anal. Chem. 50, 997–1000

(1978).
106G. Gold and S. Rodriguez, Can. J. Chemistry 67, 822–826 (1989).
107R. R. Netz and H. Orland, Euro. Phys. J. E 1, 203–214 (2000).

http://dx.doi.org/10.1051/jphystap:019100090045700
http://dx.doi.org/10.1080/14786440408634187
http://dx.doi.org/10.1021/jp971521k
http://dx.doi.org/10.1021/jp971162t
http://dx.doi.org/10.1002/jmr.577
http://dx.doi.org/10.1107/s0021889807001707
http://dx.doi.org/10.1107/s0021889807001707
http://dx.doi.org/10.1063/1.446600
http://dx.doi.org/10.1002/9780470141533.ch1
http://dx.doi.org/10.1016/s0006-3495(98)77503-4
http://dx.doi.org/10.1021/ma9707300
http://dx.doi.org/10.1103/physrevb.86.075140
http://dx.doi.org/10.1021/ja00105a030
http://dx.doi.org/10.1016/j.cattod.2012.04.055
http://dx.doi.org/10.1103/physrevb.73.115407
http://dx.doi.org/10.1038/14940
http://dx.doi.org/10.1529/biophysj.106.099168
http://dx.doi.org/10.1021/jp511702w
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1073/pnas.181342398
http://dx.doi.org/10.1002/jcc.540090407
http://dx.doi.org/10.1016/s0013-4686(00)00576-4
http://dx.doi.org/10.1103/physrevlett.79.435
http://dx.doi.org/10.1002/jcc.22946
http://dx.doi.org/10.1007/s10915-010-9441-7
http://dx.doi.org/10.1051/jp2:1996193
http://dx.doi.org/10.1103/physreve.84.021901
http://dx.doi.org/10.1103/physrevlett.99.077801
http://dx.doi.org/10.1103/physreve.78.061506
http://dx.doi.org/10.1021/ct1002785
http://dx.doi.org/10.1021/ct1002785
http://dx.doi.org/10.1016/s0022-2836(02)01036-7
http://dx.doi.org/10.1016/s0301-4622(02)00153-9
http://dx.doi.org/10.1002/anie.201512025
http://dx.doi.org/10.1063/1.4900890
http://dx.doi.org/10.1126/science.7761829
http://dx.doi.org/10.1021/ja1069272
http://dx.doi.org/10.1021/jp9059888
http://dx.doi.org/10.1039/c1cp21349k
http://dx.doi.org/10.1039/c1cp21349k
http://dx.doi.org/10.1063/1.1464826
http://dx.doi.org/10.1103/physreve.85.031130
http://dx.doi.org/10.1063/1.1676121
http://dx.doi.org/10.1007/s10404-009-0518-2
http://dx.doi.org/10.1007/s10404-009-0518-2
http://dx.doi.org/10.1103/physreve.75.021503
http://dx.doi.org/10.1103/physreve.71.061106
http://dx.doi.org/10.1021/jp0551869
http://dx.doi.org/10.1016/j.bpj.2010.04.066
http://dx.doi.org/10.1016/j.bpj.2011.12.055
http://dx.doi.org/10.1063/1.4864460
http://dx.doi.org/10.1021/cr60158a004
http://dx.doi.org/10.1016/j.cpc.2009.06.022
http://dx.doi.org/10.1088/1367-2630/14/5/053020
http://dx.doi.org/10.1021/jp056801b
http://dx.doi.org/10.1021/ma00214a021
http://dx.doi.org/10.1021/jp402482q
http://dx.doi.org/10.1016/j.cocis.2011.04.006
http://dx.doi.org/10.1016/j.cocis.2011.04.006
http://dx.doi.org/10.1016/j.colsurfa.2010.12.025
http://dx.doi.org/10.1039/c1cp20538b
http://dx.doi.org/10.1039/c1cp20538b
http://dx.doi.org/10.1021/la0102298
http://dx.doi.org/10.1016/s0006-3495(03)74512-3
http://dx.doi.org/10.4208/cicp.270711.140911s
http://dx.doi.org/10.1016/s0006-3495(03)74453-1
http://dx.doi.org/10.1039/f19878301029
http://dx.doi.org/10.1016/j.chemosphere.2015.10.115
http://dx.doi.org/10.1021/je00052a006
http://dx.doi.org/10.1021/acs.est.5b02782
http://dx.doi.org/10.1016/s0141-1136(97)00017-2
http://dx.doi.org/10.1021/es203183z
http://dx.doi.org/10.1016/s0378-5173(03)00008-5
http://dx.doi.org/10.3866/PKU.WHXB19850402
http://dx.doi.org/10.1021/ja01141a011
http://dx.doi.org/10.1021/j150542a024
http://dx.doi.org/10.1021/ja01338a016
http://dx.doi.org/10.1039/jr9262900174
http://dx.doi.org/10.1007/bf02716024
http://dx.doi.org/10.1021/es60069a011
http://dx.doi.org/10.1002/jps.10046
http://dx.doi.org/10.1155/2016/7234320
http://dx.doi.org/10.1021/cr60015a004
http://dx.doi.org/10.1021/cr60015a003
http://dx.doi.org/10.1021/cr60015a005
http://dx.doi.org/10.1021/j100883a031
http://dx.doi.org/10.1039/ct9150700377
http://dx.doi.org/10.1039/jr9520003819
http://dx.doi.org/10.1103/physrevlett.77.3865
http://dx.doi.org/10.1021/ac50029a042
http://dx.doi.org/10.1139/v89-127
http://dx.doi.org/10.1007/s101890050023


134103-11 Ringe, Oberhofer, and Reuter J. Chem. Phys. 146, 134103 (2017)

108Q. Xu, L. Fan, and J. Xu, Maced. J. Chem. Chem. Eng. 35, 53–62
(2016).

109X. Yu and R. Yu, Ind. Eng. Chem. Res. 52, 11182–11188 (2013).
110Y. Li, Q. Hu, and C. Zhong, Ind. Eng. Chem. Res. 43, 4465–4468 (2004).
111R. Carta and G. Tola, J. Chem. Eng. Data 41, 414–417 (1996).
112A. Levy, D. Andelman, and H. Orland, Phys. Rev. Lett. 108, 227801

(2012).
113H. Li and B. Lu, J. Chem. Phys. 141, 024115 (2014).

114Y. Nakayama and D. Andelman, J. Chem. Phys. 142, 044706 (2015).
115H. Shang, C. Carbogno, P. Rinke, and M. Scheffler, “Lattice dynamics cal-

culations based on density-functional perturbation theory in real space,”
Comput. Phys. Commun. (in press).

116Y. Marcus, Ions in Solution and their Solvation (Wiley, New Jersey, USA,
2015), pp. 145–146.

117H. Ohtaki, Monatsh. Chem. 132, 1237–1268 (2001).
118Y. Marcus, Chem. Rev. 88, 1475–1498 (1988).

http://dx.doi.org/10.20450/mjcce.2016.848
http://dx.doi.org/10.1021/ie400001u
http://dx.doi.org/10.1021/ie049811s
http://dx.doi.org/10.1021/je9501853
http://dx.doi.org/10.1103/physrevlett.108.227801
http://dx.doi.org/10.1063/1.4887342
http://dx.doi.org/10.1063/1.4906319
http://dx.doi.org/10.1016/j.cpc.2017.02.001
http://dx.doi.org/10.1007/s007060170016
http://dx.doi.org/10.1021/cr00090a003

