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Many online platforms today (such as Amazon, Netflix, Spotify, LinkedIn or AirBnB) can be thought of as two-

sided markets with producers and customers of goods and services. Traditionally, recommendation services in

these platforms have focused on maximizing customer satisfaction by tailoring the results according to the

personalized preferences of individual customers. However, our investigation reinforces the fact that such

customer-centric design of these services may lead to unfair distribution of exposure to the producers, which

may adversely impact their well-being. On the other hand, a pure producer-centric design might become

unfair to the customers. As more and more people are depending on such platforms to earn a living, it is

important to ensure fairness to both producers and customers. In this work, by mapping a fair personalized

recommendation problem to a constrained version of the problem of fairly allocating indivisible goods, we

propose to provide fairness guarantees for both sides. Formally, our proposed FairRec algorithm guarantees

Maxi-Min Share (𝛼-MMS) of exposure for the producers, and Envy-Free up to One Item (EF1) fairness for

the customers. Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec
in ensuring two-sided fairness while incurring a marginal loss in overall recommendation quality. Finally,

we present a modification of FairRec (named as FairRecPlus) that at the cost of additional computation time,

improves the recommendation performance for the customers, while maintaining the same fairness guarantees.

CCS Concepts: • Information systems→ Recommender systems.

Additional Key Words and Phrases: Fair Recommendation, Multi-stakeholder Recommendation, Two-Sided

Markets, Fair Allocation, Maximin Share, Envy-Freeness

1 INTRODUCTION
Popular online platforms such as Netflix, Amazon, Yelp, Spotify, Google Local provide recom-

mendation services to help their customers browse through the enormous product spaces. These

recommendation services often play a huge role in controling the interaction between the two

stakeholders, namely (i) producers of goods and services (e.g., movies on Netflix, products on

Amazon, restaurants on Yelp, artists on Spotify) and (ii) customers who consume them. Maxi-

mization of customer satisfaction has been the traditional focus on these platforms which is often

achieved by tailoring the recommendations according to the personalized preferences of individual

customers, largely ignoring the interest of the producers. Several recent studies have shown how

such customer-centric designs may undermine the well-being of the producers [1, 20, 27, 36, 38].

As more and more people are depending on two-sided platforms to earn a living, recently plat-

forms have also started showing interest in creating fair marketplaces for all the stakeholders due

to multiple reasons: (i) legal obligation (e.g., labor bill for the welfare of drivers on Uber and

Lyft [50], fair marketplace laws for e-commerce [66]), (ii) social responsibility or voluntary
commitment (e.g., equality of opportunity to all gender groups in LinkedIn [32], commitment of
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non-discrimination to hosts and guests by AirBnb [5]), (iii) business requirement/model (e.g.,
minimum business guarantee by AirBnb to attract hosts [6]).

In this paper, our focus is on the fairness of personalized recommendation services deployed

on the two-sided platforms. Traditionally, platforms employ various state-of-the-art data-driven

methods (e.g., neighborhood-based methods [51], latent factorization methods [43, 46], etc.) to

estimate the relevance scores of every product-customer pairs, and then recommend 𝑘 most

relevant products to the corresponding customers. While such top-𝑘 recommendations achieve

high customer utility, our investigation on real-world datasets reinforces the presence of popularity

bias [40] that is, they can create a huge disparity in the exposure of the producers (detailed in §4.2),

which is unfair for the producers, and may also hurt the platforms in the long term.

In these platforms, exposure often determines the economic opportunities (revenues) for the producers
who depend on it for their livelihood. For instance, high exposure on Google Maps can increase the

footfall in a local business, thereby increasing their revenue. High exposure on YouTube, Spotify
or Last.fm can increase the traffic to a content producer’s channel, and hence help them earn

better platform-royalties or advertisement revenues. On the other hand, if only a few producers

get most of the exposure, then the other producers would struggle on the platform, which could

force them to either quit or switch to other platforms [25, 49, 60]. This, in turn, may limit the

choices for the customers, degrading the overall experience on the platform. Thus, it is important

to reduce exposure inequalities. However, extremely producer-centric ways of reducing inequality

(e.g., recommending the 𝑘 least exposed producers to the customers) may result in loss and disparity

in customer utilities (§4.2), making it inefficient as well as unfair to the customers.

To counter such unfairness for both producers and customers, we propose to tackle the challeng-

ing task of ensuring two-sided fairness while providing personalized recommendations. Specifically,

we propose to ensure a minimum exposure guarantee for every producer such that no producer

starves for exposure. Since the exposure guarantee on the producer side could incur losses on

the customer side (i.e., reduction in customer utilities), we propose that the loss in utility should

be fairly distributed among the customers. Motivated by a vast literature in social choice theory,

we map this problem to the problem of fairly allocating indivisible goods (§5). In an allocation

problem, there is often a predefined set of items and a set of agents with their valuations (how

much an agent values an item), and the task is to allocate the items among the agents. To map

our recommendation problem to an allocation problem, we assume the set of customers as the

set of agents. Now we can strategically fix the set of items as the one which contains as many

copies of each product (or producer) as the chosen exposure guarantee, and then allocate them

among the customers. If we have an algorithm that does this task, then the strategic setting of the

item-set and their allocation guarantee can, in turn, ensure minimum exposure for the producers.

Besides, the algorithm’s fairness guarantee for the agents during the allocation would also be able

to guarantee customer fairness. Thus, the original recommendation problem becomes an interesting

(constrained) extension to the existing fair allocation problem—find an allocation that guarantees

minimum exposure (upper bounded by maximin share of exposure or MMS) for the producers,

and envy-free up to one item (EF1) [19] for the customers
1
. We propose an algorithm FairRec (§6)

which solves this problem and gives guarantees on both producer and customer side (proofs in

§7). Extensive evaluations over multiple real-world datasets show the effectiveness of FairRec in

ensuring two-sided fairness while incurring a marginal loss in recommendation quality.

In summary, we make the following contributions in this paper.

1
The MMS guarantee ensures that each agent receives a value which is at least their maximin share threshold, defined in

eq. (1); whereas, EF1 ensures that every agent values her allocation at least as much as any other agent’s allocation after

(hypothetically) removing the most valuable item from the other agent’s allocated bundle.
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• We consider a two-sided fair recommendation problem that not only relates to social or

judicial precepts but also to the long-term sustainability of two-sided platforms (§4).

• We design an algorithm, FairRec (§6), exhibiting the desired two-sided fairness by mapping

the fair recommendation problem to a fair allocation problem (§5). Moreover, it is agnostic to

the specifics of the data-driven model (that estimates the product-customer relevance scores)

which makes it scalable and easy to adapt.

• In addition to the theoretical guarantees (§7), extensive experimentation and evaluation over

multiple real-world datasets deliver strong empirical evidence on the effectiveness of our

proposal (§8).

• Finally, we also present a modified version of FairRec (named as FairRecPlus) that uses an

envy-cycle elimination and swapping technique to improve the performance on customer-side

metrics, while maintaining the same two-sided fairness guarantees (§9).

2 BACKGROUND AND RELATEDWORK
We briefly survey related works in two directions: (i) fairness in multi-stakeholder platforms, and

(ii) fair allocation of goods.

2.1 Fairness in Two-Sided Platforms
With the increasing popularity of multi-sided platforms, recently researchers have looked into the

issues of unfairness and biases in such platforms. For example, Edelman et al. [27] investigated the

possibility of racial bias in guest acceptance by Airbnb hosts, Lambrecht and Tucker [45] studied

gender-based discrimination in career ads, Chakraborty et al. [24] proposed to ensure fair repre-

sentation in crowdsourced recommendations. While these works deal with group fairness, Serbos
et al. [58] proposed an envy-free tour package recommendations on travel booking sites, ensuring

individual fairness for customers.
On producer fairness, Hannák et al. [38] studied racial and gender bias in freelance marketplaces,

and Dash et al. [26] investigated favoritism towards certain producers on e-commerce marketplace.

In a social experiment, Salganik et al. [57] found that the existing popular producers often acquire

most of the visibility while new but good ones starve for visibility. Banerjee et al. [9] also found

popularity bias in location based recommendations. Kamishima et al. [41] and Abdollahpouri et al.

[2] proposed methods to reduce such popularity bias among producers. Sürer et al. [64] proposed

to maximize total customer utility while ensuring some exposure for the producers. While these

works have proposed to ensure some forms of producer-side fairness, they have not looked into the

resulting unfairness on the customer-side, the trade-off between producer and customer fairness,

and the cost of achieving one over the other.

Few past works have discussed fairness for both producers and customers. Abdollahpouri and

Burke [1] and Burke [20] categorized different types of multi-stakeholder platforms and their

desired group fairness properties, Chakraborty et al. [23] and Sühr et al. [63] presented mechanisms

for two-sided fairness in matching problems while Patro et al. [53] addressed fairness issues arising

due to frequent updates of platforms. In contrast, our paper addresses individual fairness for both

producers and customers, which also answers the question of the long-term sustainability of

two-sided platforms.

There exists another line of work on fairness in ranking and recommendations, namely Biega

et al. [12], Singh and Joachims [59], which propose to ensure the producers with expected exposures

in proportion to their corresponding relevance scores in order to maintain individual fairness for

producers in gig-economy platforms. One of the limitations of these works is that they assume

the availability of true relevance scores of producers. However, these relevance scores are often
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estimated and usually contain noise, which is also highlighted in Raj et al. [56]. The noise is not the

only issue here; if the estimated relevance scores themselves exhibit popularity bias, then ensuring

exposure in proportion to these relevance scores could cause the same inequalities in producer

exposures and can do very little towards producer fairness. Thus in this work, we try to isolate

the considerations of exposure and relevance. Formally, we use the exposure of a producer as the

measure of its utility, the relevance of recommended items as the utility of a customer (more details

in §3), and finally we define fairness for both sides using the (in)equality in their individual utilities.

2.2 Fair Allocation of Goods
The problem of fair allocation (popularly known as the cake-cutting problem) has been studied

extensively in the area of computational social choice theory. The classical notions of fairness for this

problem are envy-freeness (EF) [31, 65] and proportional fair share (PFS) [61]. Recent literature on

practical applications of fair allocation [18, 28] has focused on the problem of allocating indivisible
goods in budgeted course allocation [19], balanced graph partition [16], or allocation of cardinality

constrained group of resources [14]. In such instances, no feasible allocation may satisfy EF or PFS

fairness guarantees. Thus, the notable work of Budish [19] defined analogous fairness notions which

are appropriate for indivisible goods—namely, envy-freeness up to one good (EF1) and maximin

share guarantee (MMS).

The relevance of EF1 is substantiated by the fact that it is guaranteed to always exist under

general monotone valuations and, in fact, such allocations can be obtained in polynomial time [48].

When the valuations are additive, Caragiannis et al [22] show that a simple greedy round robin

algorithm is enough to ensure EF1.

MMS fairness is another solution concept that has been extensively studied in the fair allocation

space. In particular, Bouveret et al. [17] showed that an MMS allocation exists when the agents’

valuations are additive and binary (valuations are 0 or 1). However, Procaccia and Wang [55] and

Kurokawa et al. [44] provided intricate counterexamples to refute the universal existence of MMS

allocations, under additive and non-binary valuations. This motivated the study of approximate

maximin share allocations, 𝛼-MMS, where each agent obtains a bundle of value at least 𝛼 ∈ (0, 1)
times her maximin share. The existence of 2/3-MMS and accompanying algorithms were developed

in a sequence of results [8, 11, 55]. Later, Ghodsi et al. [33] improved the result by providing an

efficient algorithm that obtains 3/4-MMS allocations.

The vast majority of work in the fair allocation space has solely focused on the unconstrained

version of the problem; exceptions include the work of Biswas et al. [14, 15] and Gourvès et

al. [34, 35]. Biswas et al. [14] provide algorithms for computing EF1 and 1/3-MMS for the allocation

problem where items are categorized into groups, and an upper bound restricts the number of items

that can be allocated to each agent from each category. This is slightly different from the problem

we consider (detailed in §5.3). A general version of the category-wise upper bound constraint,

namely laminar matroid constraint, is studied by Biswas et al. [15] and the existence of EF1 is

proved for identical valuations. A different problem is considered by Gourvès et al. [34, 35] where

the goal is to find MMS fair allocation that union of all the allocated goods is an independent set of a

given matroid. Although these papers study fair allocation under several combinatorial constraints,

they do not directly apply to the problem we consider.

Moreover, all the above mentioned papers consider fairness among the agents but not among the

items. In this work, we consider fairness across the agents as well as the items. We map the problem

of fair recommendation to a fair allocation problem, which leads to an interesting extension of

previously studied problems owing to the specific constraints pertaining to recommendations

(detailed in §5.3).
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This paper is an extended version of our earlier work, titled “FairRec: Two-Sided Fairness for

Personalized Recommendations in Two-Sided Platforms" [52]. In [52], we introduced the notions of

two-sided fairness in recommendations and proposed the FairRec algorithm to ensure fairness for

both producers and customers. In this work, we prove that FairRec ensures a stronger theoretical

guarantee on the producer-side. Additionally, since we provide a tunable parameter 𝛼 to the

platforms to regulate the minimum exposure guarantee for the producers, we present a detailed

analysis on what actually happens when the value of 𝛼 is changed and its impact on both producer-

side and customer-side. In certain scenarios, the platforms might be interested in ensuring different

levels of exposure guarantee for different producers; for example, the platform may want to

give more exposure guarantee to higher-rated producers than the lower-rated ones. Thus, we also

evaluate FairRec in such scenarios by tweaking the FairRec algorithm to entertain such requirements.

We add several new baselines, such as MPB19 [3], MSR18 [64], MixedTR-𝑘 , MixedTP-𝑘 , to compare

against FairRec. Finally, we propose a new modification of FairRec (named as FairRecPlus) that

utilizes the envy graph to improve the recommendation performance for the customers, but comes

at a cost of increased time complexity.

3 PRELIMINARIES
In this section, we define the terminology and notations used throughout the paper.

3.1 Products and Producers
In a few two-sided platforms focusing on physical establishments (e.g., Google Maps, Yelp), a

producer typically owns one product (e.g., restaurant or shop); whereas in multimedia platforms

like Spotify, YouTube or Netflix, an artist can produce multiple songs or videos; the same is also true

for ecommerce platforms like Amazon and Flipkart, where one producer can list many products. To

generalize our approach to both types of two-sided platforms, we consider products and producers to

be equivalent, and use the terms ‘product’ and ‘producer’ interchangeably. Even for platforms where

a producer can have multiple products, ensuring fairness at the product level can ensure fairness

for individual producers – where fairness can be ensured by making the exposure proportional to

the producer’s portfolio size.
2

3.2 Notations
Let 𝑈 and 𝑃 be the sets of customers and producers respectively, where |𝑈 | =𝑚, and |𝑃 | = 𝑛. Let 𝑘

be the number of products to be recommended to every customer. 𝑅𝑢 ⊂ 𝑃 represents the set of 𝑘

products recommended to customer 𝑢; |𝑅𝑢 | = 𝑘 .

3.3 Relevance of Products
The relevance of a product 𝑝 to customer 𝑢, denoted as𝑉𝑢 (𝑝), represents the likelihood that 𝑢 would

like the product 𝑝 . Formally, relevance is a function from the set of customers and products to the

real numbers𝑉 : 𝑈 × 𝑃 → R. Usually, the relevance scores are predicted using various data-driven
methods (e.g., neighborhood-based methods [51], latent factorization methods [43, 46], etc.), and

𝑉𝑢 (𝑝) is a proxy for the utility gained by 𝑢 if product 𝑝 is recommended to her.

3.4 Customer Utility
The utility of a recommendation 𝑅𝑢 to a customer𝑢 is proportional to the sum of relevance scores of

products in 𝑅𝑢 . Thus, recommending the 𝑘 most relevant products will give the maximum possible

2
In platforms with producers having multiple products, ensuring producer-side fairness other than proportionality remains

open for future work.
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utility. Let 𝑅∗𝑢 be the set of top-𝑘 relevant products for 𝑢. We use a normalized form of customer

utility from 𝑅𝑢 , defined as: 𝜙𝑢 (𝑅𝑢) =
∑

𝑝∈𝑅𝑢 𝑉𝑢 (𝑝)∑
𝑝∈𝑅∗𝑢 𝑉𝑢 (𝑝) .

3.5 Producer Exposure
Exposure of a producer/product 𝑝 is the total amount of attention that 𝑝 receives from all the

customers to whom 𝑝 has been recommended. In this paper, we assume a uniform attention model
3

where customers pay similar attention to all 𝑘 recommended products, and express the exposure

of a product 𝑝 as 𝐸𝑝 =
∑

𝑢∈𝑈 1𝑅𝑢 (𝑝), where 1𝑅𝑢 (𝑝) is 1 if 𝑝 ∈ 𝑅𝑢 , and 0 otherwise. The sum of

exposures of all the products is

∑
𝑝∈𝑃 𝐸𝑝 =𝑚 × 𝑘 . Note that we assume the relevance of a product

does not play any role in producer’s utility (in contrast to Biega et al. [12], Singh and Joachims

[59]), and use only the exposure of a producer as her utility.

4 NEED FOR TWO-SIDED FAIRNESS IN PERSONALIZED RECOMMENDATIONS
Traditionally, the goal of personalized recommendation has been to recommend products that

would be most relevant to a customer. This task typically requires learning the relevance scoring

functions (𝑉 ), and several state-of-the-art data-driven methods [42, 46, 51, 67, 68] have been

developed to estimate the product-customer relevance values. Once these values are obtained,

the standard practice, across several recommender systems, is to recommend the top-𝑘 (𝑘=size of

recommendation) relevant products to corresponding customers. While this approach attempts

to maximize the satisfaction of individual customers, it can adversely affect the producers in a

two-sided platform, as we explore next.

4.1 Datasets
We consider the impact of customer-centric top-𝑘 recommendations on the exposure of the pro-

ducers using real-world datasets. We use a state-of-the-art relevance scoring model (a very widely

used latent factorization method [46]) and also a dataset-specific custom relevance scoring model

over the datasets.

4.1.1 Google Local Ratings Dataset (GL).
Google Local is a service to find nearby shops, restaurants on Google Maps (as Google Nearby

feature) platform. We use the Google Local dataset released by He et al. [39], which contains data

about customers, local businesses (producers), and their locations (geographic coordinates), ratings,

etc. We consider the active customers located in New York City and the business entities within

5 miles radius of Manhattan area with at least 10 reviews. The resulting dataset contains 11, 172

customers, 855 businesses and 25, 686 reviews. We consider the following two relevance scoring

functions (𝑉 ).

(1) GL-CUSTOM: We use a custom relevance scoring function: 𝑉 (𝑢, 𝑝) = 𝑟𝑎𝑡𝑖𝑛𝑔 (𝑝)
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑢,𝑝) , where

𝑟𝑎𝑡𝑖𝑛𝑔(𝑝) is the average rating of the producer (local business) and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑢, 𝑝) is the
distance between customer 𝑢 and producer 𝑝 .

(2) GL-FACT: Here we use the state-of-the-art latent factorization model [43, 46] to predict the

relevance scores from the ratings.

3
There can be more sophisticated attention models considering position bias [4], where customers pay more attention to the

top ranked products than the lower ranked ones. This being an initial work on two-sided fair recommendation (formulated

as a fair-allocation problem), we focused on a basic model setting without position bias.
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Fig. 1. Lorenz curves (figures 1a,1b,1c) show high inequality among producer exposures with the top-k
recommendation (using the ratio of rating to distance to estimate relevance in GL-CUSTOM, and using latent
factorization model [46] in GL-GACT and LF). In these curves, the cumulative fraction of total exposure is
plotted against the cumulative fraction of the number of corresponding producers (ranked in increasing order
of their exposures). The extent to which the curve goes below a straight diagonal line (or an equality mark)
indicates the degree of inequality in the exposure distribution. In figures 1d, 1e, and 1f, we plot the individual
customer utilities sorted in ascending order while 𝜇𝜙 represents the mean customer utility. While poorest-k
provides almost equal exposures, it introduces huge loss and disparity in individual customer utilities (figures
1d,1e,1f).

From here on, we refer to the above two datasets (relevance score sets) as GL-CUSTOM and

GL-FACT respectively.

4.1.2 Last.fm Dataset (LF).
We use the Last.fm dataset released by Cantador et al. [21], which contains 1, 892 customers,

17, 632 artists (producers), and 92, 834 records of play counts (the number of times a customer has

played songs from an artist). We again use a latent factorization model [43, 46] to find out the

relevance scores from the play counts. From here on, we refer to this dataset as LF.

4.2 Adverse Impact of Customer-Centric Recommendation
We simulate top-𝑘 (𝑘 = 20) recommendation on all three datasets, and calculate the exposure

different producers get. Figures-1a,1b,1c are the Lorenz curves for producer exposures. In Exposure

Lorenz curves, the cumulative fraction of total exposure is plotted against the cumulative fraction

of the number of corresponding producers (ranked in increasing order of their exposures). The

extent to which the curve goes below a straight diagonal line (or an equality mark) indicates the
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degree of inequality in the exposure distribution. We observe that the Lorenz curves for top-𝑘

recommendations are far below the equal exposure marks, revealing that for conventional top-𝑘

recommendation, 50% least exposed producers get only 32%, 5%, and 11% of total available exposure

(𝑚 · 𝑘) in GL-CUSTOM (using the ratio of rating to distance to estimate relevance), GL-FACT (using

latent factorization model [46]), and LF datasets (using latent factorization model [46]), respectively.

Huge disparity is in nobody’s interest: In two-sided platforms, the exposure determines the

economic opportunities. Thus, low exposure on a platform often puts many producers at huge losses,

forcing them to leave the platform; this may result in fewer available choices for the customers,

thereby degrading the overall quality of the platform. Thus, highly skewed exposure distribution

of the customer-centric top-𝑘 recommendation not only makes it unfair to the producers but also

questions the long-term sustainability of the platforms. Thus, there is a need to be fair to the

producers while designing recommender systems.

4.3 Pitfalls of Producer-Centric Solution
A naive approach to reduce inequality in producer exposures is to implement a producer-centric

recommendation (poorest-𝑘): recommend the least-𝑘 exposed products to the customer at any

instant. Such producer-centric scheme makes the exposure of all the producers nearly equal, as seen

in figures-1a, 1b and 1c: Lorenz curves for poorest-𝑘 recommendations are closer to the diagonal

than those of top-𝑘 recommendations. However, such poorest-𝑘 recommendation decreases overall

customer utilities (as seen in figures-1d, 1e and 1f). Moreover, the poorest-𝑘 introduces disparity

among individual customer utilities, where some customers may suffer much higher losses than

other customers, making it unfair to them.

4.4 Desiderata of Fair Recommendation
To counter the above-mentioned issues, in this work, we propose the following fairness properties

to be satisfied by the recommendation to be fair to both producers and customers.

A. Producer Fairness: Mandating a uniform exposure distribution over the producers can be too

harsh on the system; it may heavily hamper the quality of the recommendation, and might also

kill the existing competition by discouraging the producers from improving the quality of their

products or services. Instead, we propose to ensure a minimum exposure guarantee for every
producer such that no producer starves for exposure. The proposal is comparable to the fairness

of minimum wage guarantee (e.g., as required by multiple legislations in the US, starting from

Fair Labor Standards Act 1938 to Fair Minimum Wage Act 2007 [30, 37, 54]). Ensuring minimum

wage does not itself guarantee equality of income; however it has been found to decrease income

inequality [29, 47]. Similarly, we want to ensure minimum exposure to every producer in the system.

Note that we are not mandating a fixed exposure guarantee – the exact value of the guaranteed

minimum exposure can be decided by the respective platforms.

B. Customer Fairness: As maintaining producer fairness can cause an overall loss in customer

utility, we propose that the loss in utility should be fairly distributed among the customers.
To ensure this, products need to be recommended in a way such that no customer can gain extra

utility by exchanging her set of recommended products with another customer – a property called

envy-freeness, as detailed in the next section.
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5 RE-IMAGINING FAIR RECOMMENDATION AS FAIR ALLOCATION
Given a set of items (say, P), a set of agents (say,U), and valuationsV (how much an agent values

an item), the fair allocation problem aims at distributing the items fairly among the agents. In

the discrete version of this problem, the items are discrete (no item can be broken into pieces) and

non-shareable (no item can be allocated to multiple agents). If P contains several copies of the same

item, each copy can be thought of as non-shareable and discrete. The goal is to find a non-shareable

and discrete allocation (A := {(𝐴𝑢)𝑢∈U : 𝐴𝑢 ⊆ P}) while ensuring fairness properties.

5.1 Notions of Fairness in Allocation
The classical fairness notions, such as envy-freeness

4
(EF) and proportional-fair-share

5
(PFS), may

not be achievable in most instances of the problem. For example, if there are two agents and one

item, the item will be allocated to one of the agents, and the zero allocation to the other agent would

violate both EF and PFS. Thus, for discrete items, relaxations of EF and PFS have been considered.

Two such well-studied notions of fairness in the discrete fair allocation literature are (i) envy
freeness up to one item (EF1) and (ii) the maximin share guarantee (MMS), defined by Budish [19].

Since then, these have been extensively studied in various settings for providing existential and

algorithmic guarantees [7, 8, 10, 13–18, 22, 44, 55]. We now formally state these fairness notions:

• An allocation A is EF1 iff for every pair of agents 𝑢,𝑤 ∈ U there exists an item 𝑝 ∈ 𝐴𝑤 such

thatV𝑢 (𝐴𝑢) ≥ V𝑢 (𝐴𝑤 \ {𝑝}).
• An allocation is said to satisfy MMS if each agent receives a value greater than or equal to their

maximin share threshold. This threshold for an agent 𝑢 is defined as

MMS𝑢 = max

A
min

𝑤∈U
V𝑢 (𝐴𝑤). (1)

In other words, MMS𝑢 is the maximum value that the agent can guarantee for herself if she were

to allocate P into |U| bundles and then, from those bundles, receive the minimum valued one.

Formally, an allocationA satisfy MMS fairness iff for all agents𝑢 ∈ U, we haveV𝑢 (𝐴𝑢) ≥ MMS𝑢 .

5.2 Fair Recommendation to Fair Allocation
We propose to see the desired two-sided recommendation problem as a fair allocation problem. The

set of products 𝑃 can be thought of as the set of items P (there can be multiple copies of individual

products)
6
; similarly, the set of customers 𝑈 as the set of agents U, and the relevance scoring

function 𝑉 as the valuationsV . Now the task of recommending products to customers is the same

as allocating items in P to agents inU with certain constraints.

• Setting P for Producer Fairness: As the total exposure of the platform is limited (𝑘 · |𝑈 |), the
maximum guarantee on minimum possible exposure for the producers is

⌊
𝑘 · |𝑈 |
|𝑃 |

⌋
(this refers to

the MMS value for the producers). One way to formally define a lower threshold requirement 𝐸

is by using the notion of approximate maximin share (𝛼-MMS). More formally,

Definition 5.1. An allocationA = (𝐴1, . . . , 𝐴𝑛) is said to satisfy 𝛼-MMS for a fixed value 𝛼 ∈ (0, 1]
if and only if, for all agents 𝑖 ∈ {1, . . . , 𝑛}, the following holds:

4
An allocation is said to satisfy envy-freeness if the bundle of items allocated to each agent is as valuable to her as the bundle

allocated to any other agent [31, 62, 65].

5
An allocation is said to satisfy proportional-fair-share if each agent receives a bundle of value at least 1/ |U |𝑡ℎ of her total

value for all the items [61].

6
Note that 𝑃 represents the set of producers or products. On the other hand, P represents the set of items that are to be

allocated among the customers; this set of items can be suitably formed by creating and gathering copies of each product

based on how much exposure we want to guarantee for that product.
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V𝑖 (𝐴𝑖 ) ≥ 𝛼MMS𝑖 , where MMS𝑖 = max

A
argmin

𝑗 ∈{1,...,𝑛}
V𝑖 (𝐴 𝑗 ).

A platform can decide the exact value of 𝛼 and provide the minimum exposure guarantee

𝐸 = 𝛼MMS for every producer.

• Fair Allocation of P amongU: Once P is set according to the desired producer fairness, the

entire task of fair recommendation boils down to the allocation of P amongU while ensuring EF1

for agents/customers (to ensure fairness for customers, as introduced in §4.4). However, specific

constraints related to the recommendation problem need a novel extension of the traditional fair

allocation problem, as explained next.

5.3 Extending the Conventional Fair Allocation Problem
Traditionally, fair allocation literature aims at defining and ensuring fairness among the agents while

allocating all items the set P exhaustively. However, in the fair recommendation problem, along with

customer fairness, the challenge is to attain producer (or product) fairness by providing a minimum

exposure guarantee (where each product needs to be allocated to at least ℓ different customers).

Thus, achieving producer fairness is the same as creating at least ℓ copies of each product and

ensuring that all the copies are allocated, along with a feasibility constraint which enforces that

no customer gets more than one copy of the same product. This extension of the problem—where

all the items are grouped into disjoint categories and no agent receives more than a pre-specified

number of items from the same category—is called cardinality constrained fair allocation problem,

proposed in [14]. In this paper, we consider a novel extension of the cardinality constrained problem

by adding another constraint enforcing that exactly 𝑘 items are allocated to each customer. This

requires tackling hierarchical feasibility constraints—an upper bound cardinality constraint of

one on each product and a cardinality constraint of 𝑘 on the total number of allocated products.

Moreover, this additional feasibility constraint makes it difficult to decide how many copies of

which product should be made available for a total of (𝑘 · |𝑈 |) allocations, satisfying the feasibility

constraints as well as the fairness requirement. Thus, unlike the fair allocation problem, we consider

no restriction on the number of copies of each product that are made available. All these contrast

points, along with the two-sided fairness guarantees make fair recommendation an interesting

extension of the fair allocation problem.

Overall, we aim to recommend a set of 𝑘 products, denoted as 𝐴𝑢 ⊂ 𝑃 , to each customer 𝑢 ∈ 𝑈
that satisfies the following constraints:∑︁

𝑝∈𝐴𝑢

𝑉𝑢 (𝑝) ≥
∑︁
𝑝∈𝐴𝑤

𝑉𝑢 (𝑝) − max

𝑝∈𝐴𝑤

𝑉𝑢 (𝑝) for every pair of customers 𝑢,𝑤 ∈ U . (2)

|𝐴𝑢 | = 𝑘, for all customers 𝑢 ∈ 𝑈 . (3)∑︁
𝑝∈𝑃

𝐸𝑝 ≥
⌊
𝛼𝑚𝑘

𝑛

⌋
, for each producer 𝑝 ∈ 𝑃, for some 𝛼 ∈ (0, 1] . (4)

This formulation leads to a large number of constraints, of the order |𝑈 |2 + |𝑃 |. Standard Integer

Linear Programming techniques for finding a feasible solution, in this large constraint space, do not

scale well, especially considering the real-world two-sided platforms. Hence, in the next section,

we propose a greedy algorithm to solve the above-mentioned constraint satisfaction problem.
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Algorithm 1 FairRec (𝑈 , 𝑃, 𝑘,𝑉 )

Input: Set of customers𝑈 = [𝑚], set of distinct products 𝑃 = [𝑛], recommendation set size 𝑘 (such

that 𝑘 < 𝑛 and 𝑛 ≤ 𝑘 ·𝑚), and the relevance scores 𝑉𝑢 (𝑝).
Output: A two-sided fair recommendation.

1: Initialize allocation A0 = (𝐴0

1
, . . . , 𝐴0

𝑚) with 𝐴0

𝑖 ← ∅ for each customer 𝑖 ∈ [𝑚].

First Phase:
2: Fix an (arbitrary) ordering of the customers 𝜎 = (𝜎 (1), 𝜎 (2), . . . , 𝜎 (𝑚)).
3: Initialize set of feasible products 𝐹𝑢 ← 𝑃 for each 𝑢 ∈ [𝑚].
4: Set ℓ ←

⌊
𝛼𝑚𝑘
𝑛

⌋
denoting number of copies of each product.

5: Initialize each component of the vector 𝑆 = (𝑆1, . . . , 𝑆𝑛) with 𝑆 𝑗 ← ℓ , ∀𝑗 ∈ [𝑛], this stores the
number of available copies of each product.

6: Set 𝑇 ← ℓ × 𝑛, total number of items to be allocated.

7: [B, 𝐹 , 𝑥] ←Greedy-Round-Robin(𝑚,𝑛, 𝑆,𝑇 ,𝑉 , 𝜎, 𝐹 ).
8: Assign A ← A ∪ B.

Second Phase:
9: Set Λ = |𝐴𝜎 ( (𝑥) (mod 𝑚)+1) | denoting the number of items allocated to the customer subsequent

to 𝑥 , according to the ordering 𝜎 .

10: if Λ < 𝑘 then
11: Update each component of the vector 𝑆 = (𝑆1, . . . , 𝑆𝑛) with the value𝑚 in order to allow

allocating any product to any customer.

12: Set 𝑇 ← 0.

13: if 𝑥 < 𝑚 then
14: Set 𝜎 ′(𝑖) ← 𝜎 ((𝑖 + 𝑥 − 1) (mod𝑚) + 1) for all 𝑖 ∈ [𝑚].
15: 𝜎 ← 𝜎 ′.
16: 𝑇 ← (𝑚 − 𝑥).
17: Update Λ← Λ + 1.
18: end if
19: 𝑇 ← 𝑇 +𝑚(𝑘 − Λ) total number of items to be allocated.

20: [C, 𝐹 , 𝑥] ←Greedy-Round-Robin(𝑚,𝑛, 𝑆,𝑇 ,𝑉 , 𝜎, 𝐹 ).
21: Assign A ← A ∪ C.
22: end if
23: Return A.

6 FAIRREC: AN ALGORITHM TO ENSURE TWO-SIDED FAIRNESS
In this section, we provide a polynomial-time algorithm FairRec, for finding an allocation A which

satisfies the desired two-sided fairness described in §4.4 (we prove the theoretical guarantees in §7).

Note that we consider only the case of 𝑘 < |𝑃 |, and leave the trivial case of 𝑘 = |𝑃 | and the infeasible
case of 𝑘 > |𝑃 | out of consideration. Also, we consider |𝑃 | ≤ 𝑘 · |𝑈 |, otherwise, at least (|𝑃 | −𝑘 · |𝑈 |)
producers can not be allocated to any customer.

FairRec (Algorithm 1) executes in two phases. The first phase ensures EF1 among all the 𝑚

customers (Lemma 7.2.1) and tries to provide a minimum guarantee on the exposure of the producers

(Lemma 7.2.2). However, the first phase may not allocate exactly 𝑘 products to all the𝑚 users,

which is then ensured by the second phase while simultaneously maintaining EF1 for customers.
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The first phase creates ℓ =
⌊
𝛼𝑚𝑘
𝑛

⌋
copies of each product. Note that

⌊
𝑚𝑘
𝑛

⌋
is the maximin value

of any producer when𝑚𝑘 slots are allocated among 𝑛 producers, and thus ℓ represents the 𝛼-MMS

value for each producer. The algorithm then initializes each component of the vector 𝑆 of size |𝑃 |
to ℓ to ensure that at most ℓ copies from each product are allocated in the first phase. Feasible sets

𝐹𝑢 for each customer 𝑢 are then initialized to ensure that each customer receives at most one copy

of the same product. Then, assuming an arbitrary ordering 𝜎 of customers, Algorithm 2 is executed

and the allocation B is obtained.

The second phase checks if all the customers have received exactly 𝑘 products (by looking

at the number of products allocated to the customer 𝑥 + 1 which is next-in-sequence to the last

allocated customer 𝑥 of the first phase). If the customer 𝑥 +1 has received 𝑘 products, then no further

allocation is required; if not, then Algorithm 2 is called again with a new ordering obtained by 𝑥

left-cyclic rotations of 𝜎 . The remaining number of items is stored in 𝑇 which are to be allocated

among the customers. Also, each component of the vector 𝑆 is updated to |𝑈 | to allow allocating

any feasible product without any limit on the available number of copies. The second phase retains

EF1 fairness among the customers.

Both phases use a modified version of the Greedy-round-robin (Algorithm 2) [14, 22]: it follows

the ordering 𝜎 in a round-robin fashion (i.e., it selects customers, one after the other, from 𝜎 (1)
to 𝜎 (𝑚)), and iteratively assigns to the selected customer her most desired unallocated product

(feasibility maintained by the vector 𝑆 and sets 𝐹𝑢 and ties are broken arbitrarily). This process is

repeated over several rounds until one of the two disjoint conditions occur: (i) 𝑇 == 0: a total of 𝑇

allocations have occurred, or (ii) 𝑝 == ∅: no feasible product available (for the current customer

𝜎 (𝑖), we have 𝐹𝜎 (𝑖) ∩ {𝑝 : 𝑆𝑝 ≠ 0} = ∅). Finally, it returns an allocation 𝐵1, . . . , 𝐵𝑚 with each

𝐵𝑢 ⊆ [𝑛] for all 𝑢 ∈ [𝑚].
Note that while we choose minimum exposure guarantee and EF1 as fairness constraints for

producers and customers respectively, it does not necessarily mean that merely satisfying them is

enough. Apart from ensuring fairness, we also need to perform well in what any recommender sys-

tem is originally designed to do, i.e., to provide good (relevant) recommendations to the customers.

Thus, in Algorithm 2 which allocates products to customers in greedy-round-robin manner, we try

to allocate (in step-7) the best product which is available and feasible in every round. We believe

this is the reason why FairRec shows good performance in overall customer utility as well (based

on experimental results in §8).

7 THEORETICAL GUARANTEES
In this section, we provide a few important properties of Algorithm 2 in Proposition 7.1. Later,

we establish the fairness guarantees and time complexity of our proposed algorithm FairRec in
Theorem 7.2 using Lemma 7.2.1, 7.2.3 and 7.2.4.

Proposition 7.1. The allocation obtained by the Greedy-Round-Robin (Algorithm 2) exhibits the
following four properties:
(𝑃1) for any two indices 𝑥 and 𝑦, where 𝑥 < 𝑦, the customer 𝜎 (𝑥) (who appears earlier than 𝜎 (𝑦)

according to the ordering 𝜎) does not envy customer 𝜎 (𝑦), i.e., 𝑉𝜎 (𝑥) (𝐵𝜎 (𝑥) ) ≥ 𝑉𝜎 (𝑥) (𝐵𝜎 (𝑦) ).
(𝑃2) the allocation B obtained by Algorithm 2 is EF1.
(𝑃3) each customer is allocated at most one item from the same producer, thus ensuring the cardinality

constraint is satisfied for each producer (category).
(𝑃4) for any two customers, say 𝑢 and 𝑤 , the allocation B obtained by Algorithm 2 satisfies the

following: −1 ≤ (|𝐵𝑢 | − |𝐵𝑤 |) ≤ 1.

Proof. The properties 𝑃1 and 𝑃2 have been observed by Biswas and Barman [14] and Caragiannis

et al. [22], respectively. For completeness, we repeat the arguments towards these two properties.



Towards Fair Recommendation in Two-Sided Platforms 13

Algorithm 2 Greedy-Round-Robin (𝑚,𝑛, 𝑆,𝑇 ,𝑉 , 𝜎, 𝐹 )

Input : Number of customers𝑚, number of producers 𝑛, an array with number of available copies

of each product 𝑆 , total number of available products 𝑇 > 0, relevance scores 𝑉𝑢 (𝑝) and feasible

product set 𝐹𝑢 for each customer, and an ordering 𝜎 of [𝑚].
Output: An allocation of 𝑇 products among𝑚 customers, the residual feasible set 𝐹𝑢 and the last

allocated index 𝑥 .

1: Initialize allocation B = (𝐵1, . . . , 𝐵𝑚) with 𝐵𝑖 ← ∅ for each customer 𝑖 ∈ [𝑚].
2: Initiate 𝑥 ←𝑚.

3: Initiate round 𝑟 ← 0.

4: while true do
5: Set 𝑟 ← 𝑟 + 1.
6: for 𝑖 = 1 to𝑚 do
7: Set 𝑝 ∈ argmax

𝑝′∈𝐹𝜎 (𝑖 ) :(𝑆𝑝≠0)
𝑉𝜎 (𝑖) (𝑝 ′)

8: if 𝑝 == ∅ then
9: Set 𝑥 = 𝑖 − 1 only if 𝑖 ≠ 1.

10: go to Step 22.

11: end if
12: Update 𝐵𝜎 (𝑖) ← 𝐵𝜎 (𝑖) ∪ 𝑝 .
13: Update 𝐹𝜎 (𝑖) ← 𝐹𝜎 (𝑖) \ 𝑝 .
14: Update 𝑆𝑝 ← 𝑆𝑝 − 1.
15: Update 𝑇 ← 𝑇 − 1.
16: if 𝑇 == 0 then
17: 𝑥 = 𝑖 .

18: go to Step 22.

19: end if
20: end for
21: end while
22: Return B = (𝐵1, . . . , 𝐵𝑚), 𝐹 = (𝐹1, . . . , 𝐹𝑚) and index 𝑥 .

Let 𝑥 and 𝑦 be two indices, such that 1 ≤ 𝑥 < 𝑦 ≤ 𝑚. At each round 𝑟 , the customer 𝜎 (𝑥)
chooses her most desired product among all the unallocated items before customer 𝜎 (𝑦). Hence,
𝑉𝜎 (𝑥) (𝑝𝑟𝜎 (𝑥) ) ≥ 𝑉𝜎 (𝑥) (𝑝𝑟𝜎 (𝑦) ), where 𝑝

𝑟
𝜎 (𝑥) and 𝑝

𝑟
𝜎 (𝑦) denote the items assigned to customer 𝜎 (𝑥)

and 𝜎 (𝑦), respectively. Thus, over all the rounds, ∑𝑟 𝑉𝜎 (𝑥) (𝑝𝑟𝜎 (𝑥) ) ≥
∑

𝑟 𝑉𝜎 (𝑥) (𝑝𝑟𝜎 (𝑦) ) which implies

that 𝑉𝜎 (𝑥) (𝐵𝜎𝑥 ) ≥ 𝑉𝜎 (𝑥) (𝐵𝜎𝑦
) and thus the property 𝑃1 holds.

Property 𝑃2 states that if 𝜎 (𝑦) envies 𝜎 (𝑥), it will not violate EF1 property (note: we already

saw in 𝑃1 that 𝜎 (𝑥) does not envy 𝜎 (𝑦)). Now observe that, the value 𝑉𝜎 (𝑦) (·) of the item allocated

to customer 𝜎 (𝑦) in the 𝑟 th round is at least that of the item allocated to customer 𝜎 (𝑥) in the

(𝑟 + 1)th round. Let 𝑅 denote the total number of rounds, then the following holds:

𝑉𝜎 (𝑦) (𝑝𝑟𝜎 (𝑦) ) ≥ 𝑉𝜎 (𝑦) (𝑝
𝑟+1
𝜎 (𝑥) ) for all 𝑟 ∈ {1, . . . , 𝑅 − 1}

⇒
𝑅−1∑︁
𝑟=1

𝑉𝜎 (𝑦) (𝑝𝑟𝜎 (𝑦) ) ≥
𝑅−1∑︁
𝑟=1

𝑉𝜎 (𝑦) (𝑝𝑟+1𝜎 (𝑥) )

⇒𝑉𝜎 (𝑦) (𝐵𝜎 (𝑦) ) ≥ 𝑉𝜎 (𝑦) (𝐵𝜎 (𝑥) ) −𝑉𝜎 (𝑦) (𝑝1𝜎 (𝑥) ) (5)

Equation 5 shows that the customer 𝜎 (𝑦) stops envying 𝜎 (𝑥) when only one item is (hypothetically)

removed from B𝜎 (𝑥) (namely, 𝑝1
𝜎 (𝑥) ). Thus, the allocation B is EF1, i.e., 𝑃2 holds.
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The property 𝑃3 is satisfied by the use of the feasible sets 𝐹𝑢 for each customer𝑢. Each 𝐹𝑢 contains

the set of producers who have not yet been allocated to the customer 𝑢. At any round 𝑟 , step 7 of

Algorithm 2 selects the most relevant producer among the producers who had not been allocated to

𝑢 in any earlier rounds 𝑟 ′ < 𝑟 . Once, a producer 𝑝 is allocated to a customer 𝑢, step 9 of Algorithm 2

removes 𝑝 from 𝐹𝑢 . Thus, each customer is allocated at most one item from the same producer.

The property 𝑃4 states that, for any pair of customers 𝑢 and𝑤 , the number of allocated items

|𝐵(𝑢) | and |𝐵(𝑣) |, differ by at most 1. It is straightforward to see that, except for the last feasible

round, all customers are allocated exactly one item at each round. Thus, all the customers receive

the same number of allocations until the second last feasible round. In the last feasible round, some

customers may not get any allocation (if there is no available feasible product) and thus may receive

one item less than the others. □

We now state the main theorem (Theorem 7.2) that establishes the fairness guarantees of our

proposed algorithm.

Theorem 7.2. Given 𝑛 producers, the proposed polynomial time algorithm, FairRec, returns an EF1

allocation among𝑚 customers while allocating exactly 𝑘 items to each customer, when 𝑘 < 𝑛 ≤ 𝑚𝑘 .
Moreover, it ensures non-zero exposure among all the 𝑛 producers and 𝛼-MMS guarantee among at
least

(
1 − 1

𝑚+1
⌊
𝛼𝑚𝑘
𝑛

⌋ )
fraction of the producers.

Proof. We prove the fairness guarantees of customers and producers in Lemma 7.2.1 and 7.2.3,

respectively. In Lemma 7.2.4, we show that FairRec executes in polynomial time. □

Lemma 7.2.1. Given 𝑛 producers,𝑚 customers, and a positive integer 𝑘 (such that 𝑘 < 𝑛 ≤ 𝑚𝑘),
FairRec returns an EF1 allocation among𝑚 customers while allocating exactly 𝑘 items to each customer.

Proof. To prove this, we show that both phases of FairRec satisfy EF1. Since Algorithm 2

guarantees EF1 (by property 𝑃2), the allocation A at step 9 of FairRec is EF1. Thus, for any two

customers𝑢 and𝑤 , there exists an item 𝑗 ∈ 𝐵𝑤 such that𝑉𝑢 (𝐵𝑢) ≥ 𝑉𝑢 (𝐵𝑤)−𝑉𝑤 ( 𝑗). Next, the second
phase creates |𝑈 | copies of each product and calls Algorithm 2 to obtain the allocation C. Note that
the second phase assigns the most valued item to each customer at each round, that is, it allocates

top-Λ𝑢 feasible producers to each customer, where Λ𝑢 = 𝑘 − |𝐵𝑢 |. Thus, 𝑉𝑢 (𝐶𝑢) ≥ 𝑉𝑢 (𝐶𝑤). Thus,
𝑉𝑢 (𝐵𝑢)+𝑉𝑢 (𝐶𝑢) ≥ 𝑉𝑢 (𝐵𝑤)−𝑉𝑤 ( 𝑗)+𝑉𝑢 (𝐶𝑤), which implies EF1:𝑉𝑢 (𝐵𝑢∪𝐶𝑢) ≥ 𝑉𝑢 (𝐵𝑤∪𝐶𝑤)−𝑉𝑢 ( 𝑗).
This completes the proof that FairRec ensures EF1 among all the customers while recommending

exactly 𝑘 products to each customer. □

We now establish the fairness guarantees of FairRec for the producers. For ease of exposition, we
first consider 𝛼 = 1 to show exact MMS fairness guarantees are satisfied by at least (1− 𝑛

𝑘
) fraction

of the producers (in Lemma 7.2.2). Subsequently, we provide a stronger guarantee in Lemma 7.2.3

considering any 𝛼 ∈ (0, 1].

Lemma 7.2.2. Given 𝑛 producers,𝑚 customers, a positive integer 𝑘 (such that 𝑘 < 𝑛 ≤ 𝑚𝑘), and
𝛼 = 1, FairRec ensures non-zero exposure among all the 𝑛 producers. Moreover, it assuresMMS-fairness
among at least 𝑛 − 𝑘 producers.

Proof. We first prove that the first phase guarantees non-zero exposure for producers. The

allocation B obtained by Algorithm 2 in the first phase may have terminated for one of the two

conditions

(1) 𝑇 == 0: this means that all the ℓ = ⌊𝑚𝑘
𝑛
⌋ copies of each producer have been allocated among

all the customers. Thus, each producer receives exactly the maximin threshold ℓ . Hence MMS

fairness is achieved by all the 𝑛 producers.
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(2) 𝑝 == ∅: this happens when 𝑇 ≠ 0 and

∑
𝑝∈𝐹𝑢 𝑆𝑝 = 0 for a customer 𝑢 (at termination). That is,

𝑆𝑝 = 0 for each producer 𝑝 ∈ 𝐹𝑢 . Thus, all ℓ = ⌊𝑚𝑘
𝑛
⌋ copies of the producers in the set 𝐹𝑢 have

been allocated, and hence they attain MMS fairness. On the other hand, the producers in the set

𝐵𝑢 (the set recommended to customer 𝑢) is allocated to at least one producer. Thus, a minimum

value of 1 is achieved by all the 𝑛 producers. Also, |𝐹𝑢 | + |𝐵𝑢 | = 𝑛 and |𝐵𝑢 | ≤ 𝑘 , implies that

|𝐹𝑢 | ≥ 𝑛 − 𝑘 . Therefore, at least 𝑛 − 𝑘 producers attain MMS-fairness.

Since the thresholds are already satisfied in the first phase, adding more allocations in the second

phase retains the threshold-based fairness guarantees. This completes the proof that FairRec ensures

a non-zero exposure among all the𝑚 producers and assures MMS-fairness among at least 𝑛 − 𝑘
producers. □

One consequence of Lemma 7.2.2 is that, when 𝑘 is much lower than 𝑛, a large fraction of

producers are guaranteed to attain MMS fairness. We formally state this property of FairRec

algorithm in Corollary 7.2.2.1.

Corollary 7.2.2.1. Given 𝑛 producers, a positive integer 𝑘 , 𝛼 = 1, and 𝛽 ∈ (0, 1) such that 𝑘 ≤ 𝛽𝑛,
FairRec ensuresMMS-fairness among at least (1 − 𝛽)𝑛 producers.

Lemma 7.2.3. Given 𝑛 producers,𝑚 customers, recommendation size 𝑘 such that 𝑘 < 𝑛 < 𝑚𝑘 , and a
fixed value 𝛼 ∈ (0, 1], FairRec ensures a minimum exposure of 1 for all the producers and an 𝛼-MMS

guarantee to at least
(
1 − 1

𝑚+1
⌊
𝛼𝑚𝑘
𝑛

⌋ )
fraction of the producers.

Proof. The first phase of FairRec terminates with one of the two (mutually exclusive) options,

either 𝑇 == 0 or 𝑝 == ∅ (line 16 and line 8 of Algorithm 2). The case 𝑇 == 0 ensures that all the

producers achieve 𝛼-MMS exposure guarantee. However, in the other case, when 𝑝 == ∅, some

producers may not achieve 𝛼-MMS guarantee. We now provide a lower bound on the fraction of

producers who achieve an 𝛼-MMS guarantee after the first phase.

Let 𝑅 be the number of rounds after which the first phase of the algorithm FairRec terminates,

and 𝑄 be the total number of allocations that occurred in the first phase. Therefore,

𝑄 ≥ 𝑚𝑅 (6)

Also, let 𝛽 be the fraction of producers who achieved 𝛼-MMS exposure guarantee after the first

phase. Thus, the total number of allocation 𝑄 can be upper bounded as follows:

𝑄 ≤ 𝛽𝑛

⌊
𝛼𝑚𝑘

𝑛

⌋
+ (1 − 𝛽)𝑛

(⌊
𝛼𝑚𝑘

𝑛

⌋
− 1

)
≤ 𝑛

(⌊
𝛼𝑚𝑘

𝑛

⌋
+ 𝛽 − 1

)
(7)

Combining Inequalities 6 and 7, we obtain,

𝑚𝑅 ≤ 𝑛

(⌊
𝛼𝑚𝑘

𝑛

⌋
+ 𝛽 − 1

)
𝛽 ≥ 𝑚𝑅

𝑛
−

⌊
𝛼𝑚𝑘

𝑛

⌋
+ 1 (8)

Moreover, using the fact that at least 𝑛 − 𝑅 producers achieve 𝛼-MMS exposure guarantee, we

obtain,

𝛽𝑛 ≥ 𝑛 − 𝑅
⇒ 𝑅 ≥ (1 − 𝛽)𝑛 (9)
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Using the lower bound on 𝑅 (Inequality 9), the Inequality 8 can be rewritten as:

𝛽 ≥ 𝑚(1 − 𝛽) −
⌊
𝛼𝑚𝑘

𝑛

⌋
+ 1

⇒ 𝛽 (1 +𝑚) ≥ 𝑚 + 1 −
⌊
𝛼𝑚𝑘

𝑛

⌋
⇒ 𝛽 ≥ 1 −

⌊
𝛼𝑚𝑘

𝑛

⌋ (
1

𝑚 + 1

)
(10)

The Inequality 10 implies that the fraction of producers who achieve 𝛼-MMS guarantee is at

least 1 − 1

𝑚+1
⌊
𝛼𝑚𝑘
𝑛

⌋
. □

Finally, in Lemma 7.2.4, we show that FairRec executes in polynomial time.

Lemma 7.2.4. The time complexity of FairRec has a worst case bound of O(𝑚𝑛𝑘).

Proof. The time complexity of FairRec is the same as the complexity of Algorithm 2. Over the

two phases, Algorithm 2 allocates𝑚𝑘 items. For each allocation, it finds the maximum possible

feasible producer which can be done in at most O(𝑛) time. Thus, the total time complexity of the

algorithm is O(𝑚𝑛𝑘). □

8 EXPERIMENTAL EVALUATION
Experimental Setup and Baselines: We run the proposed FairRec algorithm (§6) for all three

datasets (as listed in §4.1) considering different values of the recommendation-size 𝑘 . For compari-

son, we use the following methods as baselines.

(1) Top-𝑘: This is the traditional way of recommending the top-𝑘 relevant products.

(2) Random-𝑘: Here, we randomly recommend 𝑘 products to all customers. Random recommenda-

tions can give equal chance to all producers, thus can serve as a baseline which has only producers’

interest in mind.

(3) Poorest-𝑘: Unlike random-𝑘 , this is a deterministic producer-centric method where 𝑘 least

exposed products are recommended to each customer in a round robin manner.

Note that poorest-k and random-k are not real recommendation algorithms, and we consider them

as baselines in the paper because of their theoretical property of bringing down inequality among

producers and serve as some of the most equitable options from the producers’ perspective.

(4) MixedTR-𝑘:Here, we choose top
⌈
𝑘
2

⌉
relevant products at first and then the remaining

(
𝑘−

⌈
𝑘
2

⌉ )
randomly, thus making it a mix of top-

𝑘
2
and random-

𝑘
2
. In mixedTR-𝑘 , the top-𝑘

2
could help keep

high customer utility while random-
𝑘
2
could help in improving provider-side performance by giving

equal chances to all producers to appear in the second half.

(5) MixedTP-𝑘: Here, we choose top
⌈
𝑘
2

⌉
relevant products at first and then the poorest

(
𝑘 −

⌈
𝑘
2

⌉ )
producers, thus making it a mix of top-

𝑘
2
and poorest-

𝑘
2
. In mixedTP-𝑘 , the top-𝑘

2
could help keep

high customer utility while poorest-
𝑘
2
could help in improving the exposure of under-exposed

providers by giving them a chance to appear in the second half.

(6) MPB19:We use the method proposed by Abdollahpouri et al. [3] as a baseline here. The proposal

by Abdollahpouri et al. [3] is to consider the relevance scores as intermediate scores and then

add a benefit term for less exposed producers to promote diversity thereby reducing popularity

bias. In our problem setting, we consider the relevance score of product 𝑝 to customer 𝑢 𝑉𝑢 (𝑝) as
intermediate scores and express the modified relevance score as 0.5 ×𝑉𝑢 (𝑝) + 0.5 ×

(
1 − 𝐸𝑝∑

𝑝′∈𝑃 𝐸𝑝′

)
;

the second part of the modified score promotes less exposed producers.

(7) MSR18: Sürer et al. [64] proposed to introduce producer-side constraints similar to exposure
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guarantees in our paper and then optimize overall customer utility. However, as the proposed

constrained optimization problem becomes a very hard combinatorial problem, the authors did a

Lagrangian relaxation and proposed to use iterative subgradient method to optimize the relaxed

problem. Although this methodology is not quite suitable for large scale online platforms as opti-

mizing the hard combinatorial problem could demand huge computing resources and time, we use

this as a baseline by limiting the number of iterations to 100.

Experiments:We run three sets of experiments. First in §8.1, we set the exposure guarantee as

𝐸 =MMS and run FairRec. However, the platforms may not always want to ensure the maximum

possible exposure guarantee for the producers as it might cause degradation of customer utility.

They might want to set a lower exposure guarantee in such cases. Thus, we set lower exposure

guarantees i.e., by considering 𝐸 = 𝛼 ·MMS where 0 ≤ 𝛼 ≤ 1 (in §8.2). While §8.1 and §8.2 show

the efficacies of FairRec, §8.3 digs deeper into the functioning of FairRec and discusses how phases

1 and 2 of FairRec work towards better performance on producer and customer sides. Finally in

§8.4, we also test FairRec for scenarios where the platforms may want to ensure different levels of

exposure guarantee for different categories of producers. For evaluating FairRec and the baselines,

we use the following producer-side and customer-side metrics.

8.0.1 Producer-Side Metrics. The evaluation metrics for capturing the fairness and efficiency

among the producers are:

Fraction of Satisfied Producers (𝐻 ): We call a producer satisfied iff its exposure is more than the

minimum exposure guarantee 𝐸. The fraction of satisfied producers can be calculated as below.

𝐻 =
1

|𝑃 |
∑︁
𝑝∈𝑃

1
𝐸𝑝 ≥𝐸 (11)

1
𝐸𝑝 ≥𝐸 is 1 if 𝐸𝑝 ≥ 𝐸, otherwise 0. The value of 𝐻 ranges between 0 and 1. The higher the 𝐻 , the

fairer is the recommender system to producers.

Inequality in Producer Exposures (𝑍 ): We earlier observed in §4 that conventional top-𝑘 recom-

mendation causes huge disparity in individual producer exposures. To capture how unequal the

individual producer exposures are, we employ an entropy-like measure as below.

𝑍 = −
∑︁
𝑝∈𝑃

( 𝐸𝑝

𝑚 × 𝑘

)
· log𝑛

( 𝐸𝑝

𝑚 × 𝑘

)
(12)

Note that the base of the logarithm above is 𝑛 which is the number of producers. Since each

of the 𝑚 customers is given 𝑘-sized recommendations, total available exposure is 𝑚𝑘 . If every

producer gets same exposure, i.e., recommended exactly
𝑚𝑘
𝑛

times, then the above entropy metric

will be: −𝑛 × 𝑚𝑘/𝑛
𝑚𝑘
× log𝑛

𝑚𝑘/𝑛
𝑚𝑘

= −𝑛 × 1

𝑛 × log𝑛
1

𝑛 = −𝑛 × 1

𝑛 × (−1) = 1. On the other hand, if only one

producer is allowed to get all the exposure, then the value entropy expression in equation-12 will

be −𝑚𝑘
𝑚𝑘
× log𝑛

𝑚𝑘
𝑚𝑘

= 0. Thus the range of 𝑍 is [0, 1]. The lower the 𝑍 , the more unequal individual

producer exposures are.

Exposure Loss on Producers (𝐿): As FairRec tries to ensure minimum exposure guarantee for all

the producers, some producers may receive a lower exposure in comparison to what they would

have got in top-𝑘 recommendations. To capture this, we compute the loss 𝐿 as the mean amount of

impact (loss in exposure) caused by FairRec, compared to the top-𝑘 recommendations.

𝐿<method> =
1

𝑛

∑︁
𝑝∈𝑃

max

( (
𝐸
top-𝑘
𝑝 − 𝐸<method>

𝑝

)
𝐸
top-𝑘
𝑝

, 0

)
(13)
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This metric takes the top-k recommendations (which is the regular recommendation based on

the estimated relevance scores, but with no additional constraints) as a reference point, and then

evaluates how much exposure is lost on average if some other method is used for the recommen-

dations. The lower the exposure loss metric, lower is the negative impact, and the better is the

recommendation algorithm.

8.0.2 Customer-Side Metrics. The evaluation metrics for capturing the fairness and efficiency

among the customers are:

Mean Average Envy (𝑌 ): Although FairRec ensures EF1 guarantee for customers by design, here

we capture how effectively this guarantee can reduce overall envy among customers in comparison

to the baselines. We define the mean average envy as below.

𝑌 =
1

𝑛

∑︁
𝑢∈𝑈

1

𝑛 − 1
∑︁
𝑢′∈𝑈
𝑢′≠𝑢

envy(𝑢,𝑢 ′) (14)

where envy(𝑢,𝑢 ′) = max

( (
𝜙𝑢 (𝑅𝑢′) − 𝜙𝑢 (𝑅𝑢 )

)
, 0

)
denoting how much 𝑢 envies 𝑢 ′, which is the extra

utility 𝑢 would have received if she had received the recommendation that had been given to

𝑢 ′ (𝑅𝑢′) instead of her own allocated recommendation 𝑅𝑢 . The lower the envy (𝑌 ), the fairer the

recommender system is for the customers.

Mean and Standard Deviation of Customer Utilities (using 𝜇𝜙 , 𝑠𝑡𝑑𝜙 ): FairRecmay not allocate

the most relevant products to the customers, which may introduce a loss in customer utilities.

This loss can be captured using the expression 𝜇𝜙 = 1

𝑚

∑
𝑢∈𝑈 𝜙𝑢 (𝑅𝑢 ). Higher the utility (i.e., lower

utility loss), the more efficient is the recommender system for the customers. We also calculate the

standard deviation of customer utilities, that is, 𝑠𝑡𝑑𝜙 = 𝑠𝑡𝑑𝑢∈𝑈 (𝜙𝑢 (𝑅𝑢 )). The lower the 𝑠𝑡𝑑 , lesser is
the disparity in individual customer utilities.

8.1 Experiments with MMS Guarantee
Here we test FairRec with exposure guarantee 𝐸 =

⌊
𝑚𝑘
𝑛

⌋
=MMS (or 𝛼 = 1), recommendation size 𝑘

in 1 to 20, and discuss the results.

8.1.1 Producer-Side Results. All producer-side results are plotted in Figure-2.

Producer Satisfaction (𝐻 ): Figures 2a, 2b, and 2c show that both FairRec and poorest-𝑘 perform

the best while top-𝑘 performs badly; this is because both FairRec and poorest-𝑘 explicitly try to

ensure larger exposure for producers while top-𝑘 considers only the preferences of the customers.

Similar to mixedTR-𝑘 and mixedTP-𝑘 , MPB19 also fails to ensure MMS exposure as it does not

explicitly ensure an exposure guarantee. On the other hand, MSR18 has exposure-based constraint

for producers similar to the exposure guarantee in FairRec. However, MSR18 fails to exactly satisfy

exposure constraint as it follows an approximate approach of constraint optimization while we find

that the producer exposures in MSR18 results are quite close to the MMS exposure even though

not crossing it. Thus, even though MSR18 performs quite bad in 𝐻 , we find it to be performing

almost as good as FairRec in the other two producer-side metrics.

Exposure Inequality (𝑍 ): Figures 2d, 2e, and 2f show that poorest-𝑘 has the lowest inequality

in exposure while FairRec and random-𝑘 perform similar or slightly less than that; on the other

hand top-𝑘 performs the worst as it is highly customer-centric. Since poorest-𝑘 strategy makes the

deterministic selection of less exposed producers thereby making smarter choices than random-𝑘 ,

poorest-𝑘 ensures less inequality (i.e., high 𝑍 ) than random-𝑘 . Performances of both mixedTR-𝑘 and

mixedTP-𝑘 lie in between the best and the worst lines as they mix customer-centric top half and

producer-centric bottom half recommendations. MPB19 shows inconsistent performances across

the datasets. On the other hand, MSR18 shows low exposure inequality (high 𝑍 ) very close to that
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Fig. 2. Producer-Side Performances with MMS Guarantee. First row: fraction of satisfied producers (𝐻 ).
Second row: inequality in producer exposures (𝑍 ). Third row: exposure loss on producers (𝐿).

of FairRec and poorest-𝑘 , since MSR18 is observed to be ensuring exposures close to MMS for

most of the producers. In summary, FairRec, poorest-𝑘 , and MSR18 seem to be good at maintaining

fairness on the producer-side by keeping exposure inequality low.

Exposure Loss (𝐿): Figures 2g, 2h, and 2i show that random-𝑘 and poorest-𝑘 cause the highest

amounts of exposure loss in comparison to top-𝑘 ; this is because both of them favor equality

in producer exposure (random-𝑘 gives equal chance to all producers to be recommended while

poorest-𝑘 tries to increase the exposure of least exposed producer). On the other hand, mixedTR-𝑘 ,
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Fig. 3. Customer-Side Performances with MMS Guarantee. First row: mean average envy (𝑌 ). Second row:
mean customer utility (𝜇𝜙 ). Third row: standard deviation of customer utilities (𝑠𝑡𝑑𝜙 ).

mixedTP-𝑘 cause smaller losses as only up to half of their recommendations are different from

top-𝑘 . FairRec causes only up to 0.2 fraction or 20% loss in exposure in comparison to top-𝑘 owing

to its intelligent selection approach.

It is worth noticing that MMS for LF is low (MMS= 0 for 𝑘 < 10, MMS= 1 for 𝑘 ∈ [10, 18],
MMS= 2 for 𝑘 ∈ [20, 29],...). MMS is satisfied for all producers until 𝑘 = 9; but at k=10, MMS is not

guaranteed for all producers, and thus, we see a drop in performance at 𝑘 = 10 which happens
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again at 𝑘 = 19. Such changes in MMS specific to LF make its plots different from other datasets. In

summary, both FairRec, poorest-𝑘 perform the best in producer fairness while they cause exposure

loss for very popular producers to compensate for the exposure given to less popular producers.

8.1.2 Customer-Side Results. All customer-side results are plotted in Figure-3.

Mean Average Envy (𝑌 ): Figures 3a, 3b, and 3c reveal that top-𝑘 causes the lowest possible (i.e.,

0) mean average envy among the customers; this is because it gives the maximum possible utility

of 1 to every customer thereby leaving no chances of envy among customers. Even mixedTR-𝑘 ,

mixedTP-𝑘 , MPB19, and MSR18 also show similarly low envy. FairRec generates very low values

of envy which are very comparable to those of top-𝑘 here. On the other hand both random-𝑘

and poorest-𝑘 cause the highest envy as they do not consider customer preferences at all during

recommendation.

Mean and Standard Deviation of Customer Utility (𝜇𝜙 ,𝑠𝑡𝑑𝜙 ): From Figures 3d, 3e, and 3f, we

see that both random-𝑘 and poorest-𝑘 cause huge losses in customer utility (i.e., low customer

utility) as they neglect customer preferences. The mixedTR-𝑘 and mixedTP-𝑘 perform moderately.

On the other hand, FairRec causes very small utility loss and performs almost at par with the

customer-centric top-𝑘 . The utility losses in MPB19 and MSR18 are higher as they do not guarantee

anything on the customer-side. This certifies that FairRec strikes a good balance between customer

utility and producer fairness. The standard deviation plots: figures-3g, 3h, and 3i reveal that for

larger sizes of recommendation, random-𝑘 and poorest-𝑘 show large disparities in customer utilities

while FairRec, mixedTR-𝑘 and mixedTP-𝑘 show relatively fewer disparities. As top-𝑘 is customer-

centric and provides the maximum utility of 1 to all the customers, it shows 0 standard deviation.

Besides MPB19 and MSR18 show higher disparities on customer-side as they do not specifically

guarantee anything on customer-side.

In summary, FairRec strikes a good balance between fairness on both producer-side and customer-

side while causing only marginal losses in customer utility.

8.2 Experiments with 𝛼-MMS Guarantee
Here we fix 𝑘 = 20, and test FairRec with different values of minimum exposure guarantee i.e.,

𝐸 =
⌊
𝛼 · 𝑚𝑘

𝑛

⌋
(where 0 ≤𝛼 ≤ 1) by varying 𝛼 in between 0 and 1 (or in other words varying 𝐸 in

between 0 and MMS); we plot the results in Figures 4 and 5.

8.2.1 Producer-Side Results. All the relevant producer-side results are plotted in Figure 4.

Producer Satisfaction (𝐻 ): Figures 4a, 4b, and 4c reveal that FairRec satisfies almost all the

producers (as𝐻 is close to 1) for all the tested𝛼 settings in all the datasets. However the performances

of the baselines in terms of metric 𝐻 reduces with the increase in 𝛼 ; this is because the criteria for

the producer satisfaction (as 𝐸 ∝ 𝛼) increases with the increase in 𝛼 while the baseline results do

not explicitly change with the change in 𝛼 .

Exposure Inequality (𝑍 ): From Figures 4d, 4e, and 4f, we see that increasing minimum exposure

guarantee (i.e., increasing 𝛼) results in lower inequality in producer exposures (as high 𝑍 signifies

lower inequality) for FairRec in all the cases. On the other hand, as the baselines do not depend on

𝛼 , their performances remain the same; thus the baseline performances are just horizontal straight

lines. At 𝛼 = 0, as the exposure guarantee 𝐸 by FairRec becomes 0, the results given by FairRec are
the same as that of top-𝑘 in all the datasets. While FairRec’s performance in terms of 𝑍 crosses that

of mixedTR-𝑘 at 𝛼 = 0.7, 𝛼 = 0.7, and 𝛼 = 0.5 in GL-CUSTOM, GL-FACT, and LF respectively, it

becomes close to that of producer-centric poorest-𝑘 at 𝛼 = 1 in all the datasets.

Exposure Loss (𝐿): Increasing values of 𝐿 are observed for increased 𝛼 in Figures-4g, 4h, 4i.
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Fig. 4. Producer-side performances with 𝐸 = 𝛼MMS guarantee for 𝑘 = 20. First row: fraction of satisfied
producers (𝐻 ). Second row: inequality in producer exposures (𝑍 ). Third row: exposure loss on producers (𝐿).

This suggests that increasing minimum exposure guarantee can cause higher exposure losses for

previously popular producers. Just like 𝑍 , here also the baseline performances are just horizontal

straight lines as they do not depend on 𝛼 . We see that at 𝛼 = 0, FairRec performs same as top-𝑘

with no losses. With the increase in 𝛼 settings, the losses increase and at 𝛼 = 1, the losses in FairRec
are very close to those of poorest-𝑘 (as discussed earlier, poorest-𝑘 is the best performing baselines

for producer side).

8.2.2 Customer-Side Results. All the relevant customer-side results are plotted in Figure 5. As

the baselines do not depend on 𝛼 , the customer-side results of baselines are just horizontal straight

lines. We find almost no change in Mean Average Envy (𝑌 ) of FairRec with the change in 𝛼 (refer

Figures 5a, 5b, 5c). On the other hand, with the increase in 𝛼 (i.e., higher exposure guarantee for

producers) there is a small decrease in customer utility (refer Figures-5d, 5e, 5f), and a small increase

in the standard deviation of customer utilities.
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Fig. 5. Customer-side performances with 𝐸 = 𝛼MMS guarantee for 𝑘 = 20. First row: mean average envy (𝑌 ).
Second row: mean customer utility (𝜇𝜙 ). Third row: standard deviation of customer utilities (𝑠𝑡𝑑𝜙 ).

In summary, although a larger exposure guarantee can help platforms achieve better producer

fairness, it might hurt the overall customer satisfaction and also the satisfaction of highly popular

producers of the platforms. Thus, the platforms, which are interested in similar minimum exposure

guarantees, should not ignore the above trade-offs.

8.3 Interplay Between Phase-1 and Phase-2 of FairRec
To understand how phase-1 and phase-2 of FairRec work towards better performance on producer

and customer sides, we plot the metrics at the end of both phase-1 and phase-2 (i.e., the end of

FairRec) in Figures 6 and 7.

8.3.1 Producer-Side Results. All the relevant producer-side results are plotted in Figure 6. We

find that the metrics evaluated after phase-1 and phase-2 of FairRec have almost the same values in

all the datasets; this is because the task of reducing exposure inequality through minimum exposure
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Fig. 6. Phase interplay figures on producer-side for 𝑘 = 20. First row: fraction of satisfied producers (𝐻 ).
Second row: inequality in producer exposures (𝑍 ). Third row: exposure loss on producers (𝐿).

guarantee to producers happens in phase-1 of FairRec, and phase-2 of FairRec does not explicitly
work towards these goals. Thus, there is very little change in the relevant metrics of producer

satisfaction (𝐻 in Figures 6a, 6b, 6c), exposure inequality (𝑍 in Figures 6d, 6e, 6f), and exposure loss

(𝐿 in Figures 6g, 6h, 6f) after phase-2 than those at the end of phase-1. However, at a few settings

of 𝛼 in GL-CUSTOM and LF where phase-1 falls a bit short in producer satisfaction (𝐻 ), phase-2

seems to improve it by a small extent (refer Figures 6a and 6c respectively).

8.3.2 Customer-Side Results. All the relevant customer-side results are plotted in Figure 7.

For all the 𝛼 values which correspond to 𝐸 = 0 (like 𝛼 = 0 in GL-CUSTOM and GL-FACT,

𝛼 ∈ {0.1, 0.2, 0.3, 0.4} in LF), we see that all the metrics 𝑌 , 𝜇𝜙 , and 𝑠𝑡𝑑𝜙 correspond to 0 after

phase-1 of FairRec as no allocation happens in phase-1; all the allocations happen in phase-2 thus

making the final results same as that of top-𝑘 (𝑌= 0, 𝜇𝜙= 1, and 𝑠𝑡𝑑𝜙= 0 after phase-2) in all the

cases. We observe variations in these metrics right from the point where 𝛼 corresponds to non-zero
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Fig. 7. Phase interplay figures on customer-side for 𝑘 = 20. First row: mean average envy (𝑌 ). Second row:
mean customer utility (𝜇𝜙 ). Third row: standard deviation of customer utilities (𝑠𝑡𝑑𝜙 ).

𝐸 (i.e., in our experiments 𝛼 = 0 in GL-CUSTOM and GL-FACT, 𝛼 = 0.5 in LF); we describe these

observations next.

Mean Average Envy (𝑌 ): For smaller non-zero values of 𝑎𝑙𝑝ℎ𝑎, we see higher envy after phase-1

(𝑌 in Figures 7a, 7b, 7c); however with the increase in 𝛼 , phase-1 envy decreases; this must be

because with the increase in 𝛼 , the number of rounds of allocation in phase-1 increases, and thereby

increasing the chances of canceling out envy to some extent in the Greedy Round Robin process. On

the other hand, phase-2 improves the results by reducing 𝑌 ; this is because it allows best possible

allocations to every customer by setting higher availability of all the products. However, with

the increase in 𝛼 , the amount of improvement happening in phase-2 reduces as more and more

allocations happen in phase-1 thereby reducing the number of rounds in phase-2.

Mean and Standard Deviation of Customer Utility (𝜇𝜙 ,𝑠𝑡𝑑𝜙 ): With the increase in 𝛼 , we ob-

serve increase in the mean customer utility of phase-1 allocations (refer Figures 7d, 7e, 7f); this is
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Fig. 8. Results of FairRec with producer-specific 𝛼 settings in GL-CUSTOM (𝑘 = 20).

because the number of allocations in phase-1 increases with the increase in 𝛼 . Customer utility after

phase-2 is higher than that of phase-1 (refer Figures 7d, 7e, 7f); however, the utility improvement in

phase-2 reduces with the increase in 𝛼 as more number of allocations happen in phase-1 and the

number of rounds in phase-2 becomes less for higher 𝛼 . We also observe that phase-2 reduces the

disparity in customer utilities than what is observed at the end of phase-1 (refer Figures 7g, 7h, 7i);

this is because phase-2 allows best possible allocations to every customer thereby compensating

for customer-side inequalities and losses incurred in phase-1.

In summary, phase-1 of FairRec tries to achieve better performance from the producer-side, whereas

the phase-2 mostly improves the performance from the customer-side. In addition to that the

customer-side improvement in phase-2 is often more when the 𝛼 values are smaller as it increases

the number of allocations happening in the second phase.

8.4 Experiments with Producer-Specific 𝛼
The platforms may also need to ensure different levels of exposure guarantee for different producers;

for example the platform may want to give more exposure guarantee to high-rated producers than

low-rated ones. Thus, we also test FairRec in such a scenario. Here, we fix 𝛼𝑝 = 0.2×⌊𝑟𝑎𝑡𝑖𝑛𝑔(𝑝)⌋; i.e.,
for 𝑟𝑎𝑡𝑖𝑛𝑔(𝑝) = 5 the exposure guarantee is 𝐸𝑝 = 1.0 ×𝑀𝑀𝑆 , and similarly for 𝑟𝑎𝑡𝑖𝑛𝑔(𝑝) = 3.2 the

exposure guarantee is 𝐸𝑝 = 0.6×𝑀𝑀𝑆 . We test FairRecwith the above settings on GL-CUSTOM and

GL-FACT, and plot the results in Figure 8. Figure 8b shows the distribution of producers in Google

Local dataset with different exposure guarantees (set based on their respective ratings). Figures 8a

and 8d plot 𝐻 for every group of producers with different exposure guarantees in GL-CUSTOM

and GL-FACT respectively; we find FairRec to be satisfying all the producers in both the cases.



Towards Fair Recommendation in Two-Sided Platforms 27

Metrics 𝑍 and 𝐿 are skipped here, as they are irrelevant in case of different exposure guarantees for

different producers. We plot customer-side results in Figures 8c and 8e, GL-CUSTOM and GL-FACT

respectively; we find that FairRec is able to achieve high customer utility (𝜇𝜙 very close to 1) while

maintaining customer fairness (small 𝑌 and 𝑠𝑡𝑑𝜙 ) in both cases.

9 IMPROVING FAIRREC THROUGH ENVY-CYCLE ELIMINATION
While FairRec provides two-sided fair recommendations, it can be further tweaked to improve the

recommendation performance for the customers. We propose such a modification of FairRec in

§9.1 as FairRecPlus, and then evaluate it against FairRec in §9.2. However, the improvement in

FairRecPlus comes at a cost of an increased computation time. Thus, in scenarios where platforms

can afford more time to compute a recommendation, FairRecPlus can be used to improve customer-

side performance while still maintaining the same fairness guarantees on both sides.

9.1 FairRecPlus

Algorithm 3 FairRecPlus (𝑈 , 𝑃, 𝑘,𝑉 )

Input: Set of customers𝑈 = [𝑚], set of distinct products 𝑃 = [𝑛], recommendation set size 𝑘 (such

that 𝑘 < 𝑚 and 𝑛 ≤ 𝑘 ·𝑚), and the relevance scores 𝑉𝑢 (𝑝).
Output: A two-sided fair recommendation.

1: Initialize allocation A0 = (𝐴0

1
, . . . , 𝐴0

𝑚) with 𝐴0

𝑖 ← ∅ for each customer 𝑖 ∈ [𝑚].
2:

3: First Phase:
4: Fix an (arbitrary) ordering of the customers 𝜎 = (𝜎 (1), 𝜎 (2), . . . , 𝜎 (𝑚)).
5: Initialize set of feasible products 𝐹𝑢 ← 𝑃 for each 𝑢 ∈ 𝑈 .

6: Set ℓ ←
⌊
𝛼𝑚𝑘
𝑛

⌋
denoting number of copies of each product.

7: Initialize each component of the vector 𝑆 = (𝑆1, . . . , 𝑆𝑛) with 𝑆 𝑗 ← ℓ , ∀𝑗 ∈ [𝑛], this stores the
number of available copies of each product.

8: Set 𝑇 ← ℓ × 𝑛, total number of items to be allocated.

9: [B, 𝐹 ] ←Modified-Greedy-Round-Robin(𝑚,𝑛, 𝑆,𝑇 ,𝑉 , 𝜎, 𝐹 ).
10: Assign A ← A ∪ B.
11:

12: Second Phase:
13: for 𝑖 = 1 to𝑚 do
14: if |𝐴𝑖 | < 𝑘 then
15: Set 𝐻 as the top (𝑘 − |𝐴𝑖 |) items from 𝐹𝑖 (based on 𝑉𝑖 (·) scores).
16: Update 𝐴𝑖 ← 𝐴𝑖 ∪ 𝐻 .

17: end if
18: end for
19: Return A.

We now present a modification of FairRec: named FairRecPlus. FairRecPlus executes in two phases,

similar to FairRec. The first phase creates ℓ =
⌊
𝑚𝑘
𝑛

⌋
copies of each product and then initializes

each component of the vector 𝑆 of size |𝑃 | to the value ℓ . Then, assuming an arbitrary ordering 𝜎

of customers, the modified greedy algorithm Alg 4 is executed, which is different from our earlier

approach. In this modification, at the end of a round of greedy-round-robin allocation, we create an

envy graph and compute the topological ordering among the agents based on their partial allocation.

The high-level idea is to re-order the priorities of the agents during round-robin allocations, aiming



28

Algorithm 4Modified-Greedy-Round-Robin (𝑚,𝑛, 𝑆,𝑇 ,𝑉 , 𝜎, 𝐹 )

Input : Number of customers𝑚, number of producers 𝑛, an array with number of available copies

of each product 𝑆 , total number of available products 𝑇 > 0, relevance scores 𝑉𝑢 (𝑝) and feasible

product set 𝐹𝑢 for each customer, and an ordering 𝜎 of [𝑚].
Output: An allocation of 𝑇 products among𝑚 customers and the residual feasible set 𝐹𝑢 .

1: Initialize allocation B = (𝐵1, . . . , 𝐵𝑚) with 𝐵𝑖 ← ∅ for each customer 𝑖 ∈ [𝑚].
2: Initiate round 𝑟 ← 0.

3: while true do
4: Set 𝑟 ← 𝑟 + 1.
5: for 𝑖 = 1 to𝑚 do
6: Set 𝑝 ∈ argmax

𝑝′∈𝐹𝜎 (𝑖 ) :(𝑆′𝑝≠0)
𝑉𝜎 (𝑖) (𝑝 ′)

7: if 𝑝 == ∅ then
8: Update B = {𝐵1, . . . , 𝐵𝑚} to obtain an acyclic envy graph G(B) using Lemma 9.0.1.

9: Update ordering 𝜎 to be the topological ordering of the envy graph G(B).
10: go to Step 24.

11: end if
12: Update 𝐵𝜎 (𝑖) ← 𝐵𝜎 (𝑖) ∪ 𝑝 .
13: Update 𝐹𝜎 (𝑖) ← 𝐹𝜎 (𝑖) \ 𝑝 .
14: Update 𝑆𝑝 ← 𝑆𝑝 − 1.
15: Update 𝑇 ← 𝑇 − 1.
16: if 𝑇 == 0 then
17: Update B = {𝐵1, . . . , 𝐵𝑚} to obtain an acyclic envy graph G(B) using Lemma 9.0.1.

18: Update ordering 𝜎 to be the topological ordering of the envy graph G(B).
19: go to Step 24.

20: end if
21: end for
22: Update B = {𝐵1, . . . , 𝐵𝑚} to obtain an acyclic envy graph G(B) using Lemma 9.0.1.

23: end while
24: Return B = (𝐵1, . . . , 𝐵𝑚) and 𝐹 = (𝐹1, . . . , 𝐹𝑚).

to balance the extent of envy between each pair of agents by maintaining an acyclic envy-graph

after each round. An envy graph is a directed graph that captures the envy between agents—the

nodes in the envy graph represent the agents and it contains a directed edge from 𝑖 to 𝑗 if and only

if, 𝑖 envies 𝑗 , i.e., if and only if 𝑣𝑖 (𝐵𝑖 ) < 𝑣𝑖 (𝐵 𝑗 ), where 𝐵𝑖 and 𝐵 𝑗 are partial allocations to agents 𝑖

and 𝑗 , respectively. It was established in [48] that one can always efficiently update a given partial

allocation such that the resulting envy graph is acyclic.

Lemma 9.0.1. (Lipton et al. [48]) Given a partial allocation (𝐴1, . . . , 𝐴𝑚), we can find another partial
allocation B=(𝐵1, . . . , 𝐵𝑚) in polynomial time such that
(i) The valuations of the agents for their bundles do not decrease: 𝑣𝑖 (𝐵𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all 𝑖 ∈ [𝑚].
(ii) The envy graph 𝐺 (B) is acyclic.

Proof Sketch. If the envy graph of A is acyclic then the claim holds trivially. Otherwise, find

a cycle in the graph 𝐺 (A) (time complexity O(𝑛 + |𝐸 |), where 𝐸 is the number of edges in the

graph). Let 𝐶 = 𝑖1 → 𝑖2 → . . .→ 𝑖𝑘 → 𝑖1 be the cycle. The bundles can be reallocated as follows:

for all agents not in 𝐶 , i.e., 𝑘 ∉ {𝑖1, 𝑖2, . . . , 𝑖𝑘 } set 𝐵𝑘 = 𝐴𝑘 , and for all the agents in the cycle set 𝐵𝑖
to be the bundle of their successor in 𝐶 , i.e., set 𝐵𝑖𝑎 = 𝐴𝑖 (𝑎+1) for 1 ≤ 𝑎 < 𝑘 along with 𝐵𝑖𝑘 = 𝐴𝑖1 .
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Fig. 9. FairRec modification results on producer-side for 𝑘 = 20. First row: fraction of satisfied producers (𝐻 ).
Second row: inequality in producer exposures (𝑍 ). Third row: exposure loss on producers (𝐿).

After this reallocation 𝑣𝑖 (𝐵𝑖 ) ≥ 𝑣𝑖 (𝐴𝑖 ) for all 𝑖 ∈ [𝑛]. Furthermore, the number of edges in 𝐺 (B)
is strictly less than 𝐺 (A): the directed edges 𝑖1 → 𝑖2 → . . . → 𝑖𝑘 → 𝑖1 do not appear in the

envy graph of (𝐵1, . . . , 𝐵𝑛) and if an agent 𝑘 starts envying an agent in the cycle, say agent 𝑖𝑎 ,

then 𝑘 must have been envious of 𝑖𝑎+1 in A. Edges between agents 𝑘 and 𝑘 ′ which are not in the

cycle 𝐶 remain unchanged, and edges going out of an agent 𝑖 in the cycle 𝐶 can only get removed,

since 𝑖’s valuation for the bundle assigned to her bundle increases. Therefore, we can repeatedly

remove cycles and keep reducing the number of edges in the envy graph to eventually find a partial

allocation B that satisfies the stated claim. □

The worst-case time complexity of eliminating envy cycles, to obtain a directed acyclic graph

(DAG) at each round, is 𝑂 (𝑚4). A topological ordering of the acyclic directed graph G(B) can be

computed for updating the 𝜎 in 𝑂 (𝑚) time. This new ordering is then used for allocating the next

round of items in a round-robin manner.
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Fig. 10. FairRec modification results on customer-side for 𝑘 = 20. First row: mean average envy (𝑌 ). Second
row: mean customer utility (𝜇𝜙 ). Third row: standard deviation of customer utilities (𝑠𝑡𝑑𝜙 ).

The second phase checks if all the customers have received exactly 𝑘 products. If yes, then no

further allocation is required; if not, then allocate each agent 𝑖 , their most valuable items from 𝐹𝑖
until they receive 𝑘 items.

The time complexity of FairRecPlus is governed by the envy cycle elimination step which takes

𝑂 (𝑚4𝑘) over 𝑘 rounds. Moreover, for each of the𝑚𝑘 items, finding the maximum valued feasible

producer takes𝑂 (𝑛) time. Thus, the total time complexity of FairRecPlus is𝑂 (𝑚4𝑘+𝑚𝑛𝑘). Therefore,
for a large number of customers, FairRecPlus would take a huge time to compute a two-sided fair

allocation. Although this modification requires more computation, we empirically observe that, it

improves on the customer-side metrics.
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9.2 Results with FairRecPlus
We test the FairRecPlus algorithm on all the datasets with 𝑘 = 20 while varying 𝛼 from 0 to 1

in separate trials. The results on producer-side and customer-side are plotted in figs. 9 and 10

respectively. While the producer-side plots for FairRec and FairRecPlus (fig. 9) seem to completely

overlap, they are marginally different from each other; for example, at 𝛼 = 0.5 in GL-CUSTOM, the

𝐻 , 𝑍 , and 𝐿 metrics for FairRecPlus are 1, 0.9908, and 0.0376 respectively while those in FairRec are

0.99, 0.9910, and 0.0380 respectively. The producer-side performances of FairRecPlus is very similar

to that of FairRec since the modification does not change any guarantee on the producer side. On

the other hand, the modification introduces only the envy-cycle removal rounds which reduces

the envy on customer-side. We observe that FairRecPlus reduces the mean customer envy (check

𝑌 in figs. 10a to 10c). On the other hand, the performances of FairRecPlus in other customer-side

metrics are similar to those of FairRec (figs. 10d to 10i); for example at 𝛼 = 0.5 in GL-CUSTOM, the

mean and standard deviation of customer utilities are 0.9841 and 0.0169 in FairRecPlus, against the

corresponding values 0.9834 and 0.0167 in FairRec.

10 CONCLUSION
In this work, we propose the notion of two-sided fairness for recommendations in two-sided

platforms. For producers, we consider a minimum exposure guarantee while we try to ensure less

inequality in customer utilities. Note that we assume the relevance of a product does not play any

role in producer’s utility (in contrast to Biega et al. [12], Singh and Joachims [59]), and use only

the exposure of a producer as her utility. We provide a scalable and easily adaptable algorithm

that exhibits desired two-sided fairness properties while causing a marginal loss in the overall

quality of recommendations. We establish theoretical guarantees and provide empirical evidence

through extensive evaluations of real-world datasets. Furthermore, we propose a modification of

our algorithm and show that it performs better on customer-side metrics while being two-sided

fair, but at the cost of additional computation time. Our work can be directly applied to fair rec-

ommendation problems in scenarios like mass recommendation/promotion sent through emails,

app/web notifications. Though our work considers the offline recommendation scenario where the

recommendations are computed for all the registered customers at once, it can also be extended for

online recommendation settings by limiting the set of customers to only the active customers at

any particular instant. However, developing a more robust realization of the proposed mechanism

for a completely online scenario remains future work. Going ahead, we also want to study attention

models that can handle position bias [4], where customers pay more attention to the top-ranked

products than the lower-ranked ones.
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